sched.c 173.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46
#include <linux/blkdev.h>
#include <linux/delay.h>
47
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
48 49 50 51 52 53 54
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
55
#include <linux/cpu_acct.h>
L
Linus Torvalds 已提交
56 57
#include <linux/kthread.h>
#include <linux/seq_file.h>
58
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
59 60
#include <linux/syscalls.h>
#include <linux/times.h>
61
#include <linux/tsacct_kern.h>
62
#include <linux/kprobes.h>
63
#include <linux/delayacct.h>
64
#include <linux/reciprocal_div.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
67

68
#include <asm/tlb.h>
L
Linus Torvalds 已提交
69

70 71 72 73 74 75 76 77 78 79
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
D
Dmitry Adamushko 已提交
101
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (1000000000 / HZ))
L
Linus Torvalds 已提交
102 103
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
104 105 106
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
107 108 109
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
110
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
111 112 113
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

136 137 138 139 140 141 142 143 144 145 146 147
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
148
/*
I
Ingo Molnar 已提交
149
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
150
 */
I
Ingo Molnar 已提交
151 152 153 154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
156 157 158 159 160
#ifdef CONFIG_FAIR_GROUP_SCHED

struct cfs_rq;

/* task group related information */
161
struct task_group {
S
Srivatsa Vaddagiri 已提交
162 163 164 165 166
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
167 168
	/* spinlock to serialize modification to shares */
	spinlock_t lock;
S
Srivatsa Vaddagiri 已提交
169 170 171 172 173 174 175
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

176 177
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
178 179

/* Default task group.
I
Ingo Molnar 已提交
180
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
181
 */
182
struct task_group init_task_group = {
I
Ingo Molnar 已提交
183 184 185
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
186

187
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
188
# define INIT_TASK_GRP_LOAD	2*NICE_0_LOAD
189
#else
I
Ingo Molnar 已提交
190
# define INIT_TASK_GRP_LOAD	NICE_0_LOAD
191 192
#endif

193
static int init_task_group_load = INIT_TASK_GRP_LOAD;
S
Srivatsa Vaddagiri 已提交
194 195

/* return group to which a task belongs */
196
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
197
{
198
	struct task_group *tg;
199

200 201 202
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
#else
203
	tg  = &init_task_group;
204
#endif
205 206

	return tg;
S
Srivatsa Vaddagiri 已提交
207 208 209 210 211
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_cfs_rq(struct task_struct *p)
{
212 213
	p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
	p->se.parent = task_group(p)->se[task_cpu(p)];
S
Srivatsa Vaddagiri 已提交
214 215 216 217 218 219 220 221
}

#else

static inline void set_task_cfs_rq(struct task_struct *p) { }

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
222 223 224 225 226 227
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
228
	u64 min_vruntime;
I
Ingo Molnar 已提交
229 230 231 232 233 234 235 236

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
237 238 239

	unsigned long nr_spread_over;

240
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
241 242 243 244 245 246 247 248 249 250
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
251
	struct task_group *tg;    /* group that "owns" this runqueue */
252
	struct rcu_head rcu;
I
Ingo Molnar 已提交
253 254
#endif
};
L
Linus Torvalds 已提交
255

I
Ingo Molnar 已提交
256 257 258 259 260 261 262
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
263 264 265 266 267 268 269
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
270
struct rq {
271 272
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
273 274 275 276 277 278

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
279 280
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
281
	unsigned char idle_at_tick;
282 283 284
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
285 286
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
287 288 289 290 291
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
292 293
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
L
Linus Torvalds 已提交
294
#endif
I
Ingo Molnar 已提交
295
	struct rt_rq  rt;
L
Linus Torvalds 已提交
296 297 298 299 300 301 302 303 304

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

305
	struct task_struct *curr, *idle;
306
	unsigned long next_balance;
L
Linus Torvalds 已提交
307
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
308 309 310 311 312

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
313 314
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
315
	u64 tick_timestamp;
I
Ingo Molnar 已提交
316

L
Linus Torvalds 已提交
317 318 319 320 321 322 323 324
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
325 326
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
327

328
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
329 330 331 332 333 334 335 336
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
337 338 339 340
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
341 342

	/* schedule() stats */
343 344 345
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
346 347

	/* try_to_wake_up() stats */
348 349
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
350 351

	/* BKL stats */
352
	unsigned int bkl_count;
L
Linus Torvalds 已提交
353
#endif
354
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
355 356
};

357
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
358
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
359

I
Ingo Molnar 已提交
360 361 362 363 364
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

365 366 367 368 369 370 371 372 373
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
374
/*
I
Ingo Molnar 已提交
375 376
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
377
 */
I
Ingo Molnar 已提交
378
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
379 380 381 382 383 384
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
385 386 387
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
388 389 390 391 392 393 394 395 396 397
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
398 399 400 401 402
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
403 404 405 406 407 408 409 410 411 412
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
413
}
I
Ingo Molnar 已提交
414

I
Ingo Molnar 已提交
415 416 417 418
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
419 420
}

N
Nick Piggin 已提交
421 422
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
423
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
424 425 426 427
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
428 429
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
430 431 432 433 434 435

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
449 450
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_START_DEBIT		= 2,
451
	SCHED_FEAT_TREE_AVG             = 4,
452
	SCHED_FEAT_APPROX_AVG           = 8,
453
	SCHED_FEAT_WAKEUP_PREEMPT	= 16,
454
	SCHED_FEAT_PREEMPT_RESTRICT	= 32,
I
Ingo Molnar 已提交
455 456 457
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
458 459 460 461 462 463
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
		SCHED_FEAT_APPROX_AVG		* 0 |
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
		SCHED_FEAT_PREEMPT_RESTRICT	* 1;
I
Ingo Molnar 已提交
464 465 466

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

467 468 469 470 471 472 473 474
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
475
	struct rq *rq;
476

477
	local_irq_save(flags);
I
Ingo Molnar 已提交
478 479 480
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
481
	local_irq_restore(flags);
482 483 484

	return now;
}
P
Paul E. McKenney 已提交
485
EXPORT_SYMBOL_GPL(cpu_clock);
486

L
Linus Torvalds 已提交
487
#ifndef prepare_arch_switch
488 489 490 491 492 493 494
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
495
static inline int task_running(struct rq *rq, struct task_struct *p)
496 497 498 499
{
	return rq->curr == p;
}

500
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
501 502 503
{
}

504
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
505
{
506 507 508 509
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
510 511 512 513 514 515 516
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

517 518 519 520
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
521
static inline int task_running(struct rq *rq, struct task_struct *p)
522 523 524 525 526 527 528 529
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

530
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

547
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
548 549 550 551 552 553 554 555 556 557 558 559
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
560
#endif
561 562
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
563

564 565 566 567
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
568
static inline struct rq *__task_rq_lock(struct task_struct *p)
569 570
	__acquires(rq->lock)
{
571 572 573 574 575
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
576 577 578 579
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
580 581 582 583 584
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
585
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
586 587
	__acquires(rq->lock)
{
588
	struct rq *rq;
L
Linus Torvalds 已提交
589

590 591 592 593 594 595
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
596 597 598 599
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
600
static void __task_rq_unlock(struct rq *rq)
601 602 603 604 605
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

606
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
607 608 609 610 611 612
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
613
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
614
 */
A
Alexey Dobriyan 已提交
615
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
616 617
	__acquires(rq->lock)
{
618
	struct rq *rq;
L
Linus Torvalds 已提交
619 620 621 622 623 624 625 626

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

627
/*
628
 * We are going deep-idle (irqs are disabled):
629
 */
630
void sched_clock_idle_sleep_event(void)
631
{
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
648

649 650 651 652 653 654 655 656 657 658 659
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
660
}
661
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
662

I
Ingo Molnar 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

715 716 717 718 719 720 721 722
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
723 724 725
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
726
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
727

728
static unsigned long
729 730 731 732 733 734
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
735
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
736 737 738 739 740

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
741
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
742
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
743 744
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
745
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
746

747
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
748 749 750 751 752 753 754 755
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

756
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
757 758 759 760
{
	lw->weight += inc;
}

761
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
762 763 764 765
{
	lw->weight -= dec;
}

766 767 768 769 770 771 772 773 774
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
775 776 777 778 779 780 781 782 783 784 785
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
786 787 788
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
789 790
 */
static const int prio_to_weight[40] = {
791 792 793 794 795 796 797 798
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
799 800
};

801 802 803 804 805 806 807
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
808
static const u32 prio_to_wmult[40] = {
809 810 811 812 813 814 815 816
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
817
};
818

I
Ingo Molnar 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
836
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
837 838 839

#include "sched_stats.h"
#include "sched_idletask.c"
840 841
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
842 843 844 845 846 847
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

848 849 850 851
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
852
 * total load (rq->load.weight) on the runqueue, while
853 854 855 856 857 858 859
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
860
 * This function is called /before/ updating rq->load
861 862
 * and when switching tasks.
 */
863
static inline void inc_load(struct rq *rq, const struct task_struct *p)
864
{
865
	update_load_add(&rq->load, p->se.load.weight);
866 867
}

868
static inline void dec_load(struct rq *rq, const struct task_struct *p)
869
{
870
	update_load_sub(&rq->load, p->se.load.weight);
871 872
}

873
static void inc_nr_running(struct task_struct *p, struct rq *rq)
874 875
{
	rq->nr_running++;
876
	inc_load(rq, p);
877 878
}

879
static void dec_nr_running(struct task_struct *p, struct rq *rq)
880 881
{
	rq->nr_running--;
882
	dec_load(rq, p);
883 884
}

885 886 887
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
888 889 890 891
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
892

I
Ingo Molnar 已提交
893 894 895 896 897 898 899 900
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
901

I
Ingo Molnar 已提交
902 903
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
904 905
}

906
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
907
{
I
Ingo Molnar 已提交
908
	sched_info_queued(p);
909
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
910
	p->se.on_rq = 1;
911 912
}

913
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
914
{
915
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
916
	p->se.on_rq = 0;
917 918
}

919
/*
I
Ingo Molnar 已提交
920
 * __normal_prio - return the priority that is based on the static prio
921 922 923
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
924
	return p->static_prio;
925 926
}

927 928 929 930 931 932 933
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
934
static inline int normal_prio(struct task_struct *p)
935 936 937
{
	int prio;

938
	if (task_has_rt_policy(p))
939 940 941 942 943 944 945 946 947 948 949 950 951
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
952
static int effective_prio(struct task_struct *p)
953 954 955 956 957 958 959 960 961 962 963 964
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
965
/*
I
Ingo Molnar 已提交
966
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
967
 */
I
Ingo Molnar 已提交
968
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
969
{
I
Ingo Molnar 已提交
970 971
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
972

973
	enqueue_task(rq, p, wakeup);
974
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
975 976 977 978 979
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
980
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
981
{
I
Ingo Molnar 已提交
982 983 984
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

985
	dequeue_task(rq, p, sleep);
986
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
987 988 989 990 991 992
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
993
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
994 995 996 997
{
	return cpu_curr(task_cpu(p)) == p;
}

998 999 1000
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1001
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1002 1003 1004 1005 1006 1007 1008
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
#endif
S
Srivatsa Vaddagiri 已提交
1009
	set_task_cfs_rq(p);
1010 1011
}

L
Linus Torvalds 已提交
1012
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1013

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1025 1026 1027 1028 1029
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1030 1031 1032 1033 1034 1035
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1036
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1037
{
I
Ingo Molnar 已提交
1038 1039
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1040 1041
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1042
	u64 clock_offset;
I
Ingo Molnar 已提交
1043 1044

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1045 1046 1047 1048

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1049 1050 1051 1052
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1053 1054 1055 1056 1057
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1058
#endif
1059 1060
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1061 1062

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1063 1064
}

1065
struct migration_req {
L
Linus Torvalds 已提交
1066 1067
	struct list_head list;

1068
	struct task_struct *task;
L
Linus Torvalds 已提交
1069 1070 1071
	int dest_cpu;

	struct completion done;
1072
};
L
Linus Torvalds 已提交
1073 1074 1075 1076 1077

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1078
static int
1079
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1080
{
1081
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1082 1083 1084 1085 1086

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1087
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1088 1089 1090 1091 1092 1093 1094 1095
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1096

L
Linus Torvalds 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1109
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1110 1111
{
	unsigned long flags;
I
Ingo Molnar 已提交
1112
	int running, on_rq;
1113
	struct rq *rq;
L
Linus Torvalds 已提交
1114

1115 1116 1117 1118 1119 1120 1121 1122
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1123

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1137

1138 1139 1140 1141 1142 1143 1144 1145 1146
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1172

1173 1174 1175 1176 1177 1178 1179
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1195
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1207 1208
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1209 1210 1211 1212
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1213
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1214
{
1215
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1216
	unsigned long total = weighted_cpuload(cpu);
1217

1218
	if (type == 0)
I
Ingo Molnar 已提交
1219
		return total;
1220

I
Ingo Molnar 已提交
1221
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1222 1223 1224
}

/*
1225 1226
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1227
 */
A
Alexey Dobriyan 已提交
1228
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1229
{
1230
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1231
	unsigned long total = weighted_cpuload(cpu);
1232

N
Nick Piggin 已提交
1233
	if (type == 0)
I
Ingo Molnar 已提交
1234
		return total;
1235

I
Ingo Molnar 已提交
1236
	return max(rq->cpu_load[type-1], total);
1237 1238 1239 1240 1241 1242 1243
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1244
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1245
	unsigned long total = weighted_cpuload(cpu);
1246 1247
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1248
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1249 1250
}

N
Nick Piggin 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1268 1269
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1270
			continue;
1271

N
Nick Piggin 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1288 1289
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1290 1291 1292 1293 1294 1295 1296 1297

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1298
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1299 1300 1301 1302 1303 1304 1305

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1306
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1307
 */
I
Ingo Molnar 已提交
1308 1309
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1310
{
1311
	cpumask_t tmp;
N
Nick Piggin 已提交
1312 1313 1314 1315
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1316 1317 1318 1319
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1320
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1346

1347
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1348 1349 1350
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1351 1352
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1353 1354
		if (tmp->flags & flag)
			sd = tmp;
1355
	}
N
Nick Piggin 已提交
1356 1357 1358 1359

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1360 1361 1362 1363 1364 1365
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1366 1367 1368

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1369 1370 1371 1372
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1373

1374
		new_cpu = find_idlest_cpu(group, t, cpu);
1375 1376 1377 1378 1379
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1380

1381
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1408
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1409 1410 1411 1412 1413
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1424 1425 1426 1427
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1428
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1429
			for_each_cpu_mask(i, tmp) {
1430 1431 1432 1433 1434
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1435
					return i;
1436
				}
L
Linus Torvalds 已提交
1437
			}
I
Ingo Molnar 已提交
1438
		} else {
N
Nick Piggin 已提交
1439
			break;
I
Ingo Molnar 已提交
1440
		}
L
Linus Torvalds 已提交
1441 1442 1443 1444
	}
	return cpu;
}
#else
1445
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1465
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1466
{
1467
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1468 1469
	unsigned long flags;
	long old_state;
1470
	struct rq *rq;
L
Linus Torvalds 已提交
1471
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1472
	struct sched_domain *sd, *this_sd = NULL;
1473
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1474 1475 1476 1477 1478 1479 1480 1481
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1482
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1483 1484 1485
		goto out_running;

	cpu = task_cpu(p);
1486
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1487 1488 1489 1490 1491 1492
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1493 1494
	new_cpu = cpu;

1495
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1496 1497
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1498 1499 1500 1501 1502 1503 1504 1505
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1506 1507 1508
		}
	}

N
Nick Piggin 已提交
1509
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1510 1511 1512
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1513
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1514
	 */
N
Nick Piggin 已提交
1515 1516 1517
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1518

1519 1520
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1521 1522
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1523

N
Nick Piggin 已提交
1524 1525
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1526 1527
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1528 1529
			unsigned long tl_per_task;

I
Ingo Molnar 已提交
1530 1531 1532 1533 1534 1535
			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

1536
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1537
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1538

L
Linus Torvalds 已提交
1539
			/*
1540 1541 1542
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1543
			 */
1544
			if (sync)
I
Ingo Molnar 已提交
1545
				tl -= current->se.load.weight;
1546 1547

			if ((tl <= load &&
1548
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1549
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1550 1551 1552 1553 1554 1555
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1556
				schedstat_inc(p, se.nr_wakeups_affine);
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1568
				schedstat_inc(p, se.nr_wakeups_passive);
1569 1570
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1585
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1586 1587 1588 1589 1590 1591 1592 1593
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1594 1595 1596 1597 1598 1599 1600 1601 1602
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1603
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1604
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1605
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1616
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1617 1618 1619 1620 1621 1622
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1623
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1624 1625 1626 1627 1628 1629 1630
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1631 1632 1633 1634 1635 1636 1637
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1638
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1639 1640 1641

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1642 1643 1644 1645 1646 1647
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1648
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1649
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1650
#endif
N
Nick Piggin 已提交
1651

I
Ingo Molnar 已提交
1652 1653
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1654

1655 1656 1657 1658
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1659 1660 1661 1662 1663 1664 1665
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1680
	set_task_cpu(p, cpu);
1681 1682 1683 1684 1685

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1686 1687
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1688

1689
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1690
	if (likely(sched_info_on()))
1691
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1692
#endif
1693
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1694 1695
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1696
#ifdef CONFIG_PREEMPT
1697
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1698
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1699
#endif
N
Nick Piggin 已提交
1700
	put_cpu();
L
Linus Torvalds 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1710
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1711 1712
{
	unsigned long flags;
I
Ingo Molnar 已提交
1713
	struct rq *rq;
L
Linus Torvalds 已提交
1714 1715

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1716
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1717
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1718 1719 1720

	p->prio = effective_prio(p);

1721
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1722
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1723 1724
	} else {
		/*
I
Ingo Molnar 已提交
1725 1726
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1727
		 */
1728
		p->sched_class->task_new(rq, p);
1729
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1730
	}
I
Ingo Molnar 已提交
1731 1732
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1733 1734
}

1735 1736 1737
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1738 1739
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1740 1741 1742 1743 1744 1745 1746 1747 1748
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1749
 * @notifier: notifier struct to unregister
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1793 1794 1795
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1796
 * @prev: the current task that is being switched out
1797 1798 1799 1800 1801 1802 1803 1804 1805
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1806 1807 1808
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1809
{
1810
	fire_sched_out_preempt_notifiers(prev, next);
1811 1812 1813 1814
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1815 1816
/**
 * finish_task_switch - clean up after a task-switch
1817
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1818 1819
 * @prev: the thread we just switched away from.
 *
1820 1821 1822 1823
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1824 1825 1826 1827 1828 1829
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1830
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1831 1832 1833
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1834
	long prev_state;
L
Linus Torvalds 已提交
1835 1836 1837 1838 1839

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1840
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1841 1842
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1843
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1844 1845 1846 1847 1848
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1849
	prev_state = prev->state;
1850 1851
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1852
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1853 1854
	if (mm)
		mmdrop(mm);
1855
	if (unlikely(prev_state == TASK_DEAD)) {
1856 1857 1858
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1859
		 */
1860
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1861
		put_task_struct(prev);
1862
	}
L
Linus Torvalds 已提交
1863 1864 1865 1866 1867 1868
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1869
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1870 1871
	__releases(rq->lock)
{
1872 1873
	struct rq *rq = this_rq();

1874 1875 1876 1877 1878
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1879
	if (current->set_child_tid)
1880
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1881 1882 1883 1884 1885 1886
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1887
static inline void
1888
context_switch(struct rq *rq, struct task_struct *prev,
1889
	       struct task_struct *next)
L
Linus Torvalds 已提交
1890
{
I
Ingo Molnar 已提交
1891
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1892

1893
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1894 1895
	mm = next->mm;
	oldmm = prev->active_mm;
1896 1897 1898 1899 1900 1901 1902
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1903
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1904 1905 1906 1907 1908 1909
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1910
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1911 1912 1913
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1914 1915 1916 1917 1918 1919 1920
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1921
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1922
#endif
L
Linus Torvalds 已提交
1923 1924 1925 1926

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1927 1928 1929 1930 1931 1932 1933
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1957
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1972 1973
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1974

1975
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1985
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1986 1987 1988 1989 1990
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2006
/*
I
Ingo Molnar 已提交
2007 2008
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2009
 */
I
Ingo Molnar 已提交
2010
static void update_cpu_load(struct rq *this_rq)
2011
{
2012
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2025 2026 2027 2028 2029 2030 2031
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2032 2033
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2034 2035
}

I
Ingo Molnar 已提交
2036 2037
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2038 2039 2040 2041 2042 2043
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2044
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2045 2046 2047
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2048
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2049 2050 2051 2052
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2053
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2054 2055 2056 2057 2058 2059 2060
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2061 2062
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2063 2064 2065 2066 2067 2068 2069 2070
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2071
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2085
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2086 2087 2088 2089
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2090 2091 2092 2093 2094
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2095
	if (unlikely(!spin_trylock(&busiest->lock))) {
2096
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2111
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2112
{
2113
	struct migration_req req;
L
Linus Torvalds 已提交
2114
	unsigned long flags;
2115
	struct rq *rq;
L
Linus Torvalds 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2126

L
Linus Torvalds 已提交
2127 2128 2129 2130 2131
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2132

L
Linus Torvalds 已提交
2133 2134 2135 2136 2137 2138 2139
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2140 2141
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2142 2143 2144 2145
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2146
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2147
	put_cpu();
N
Nick Piggin 已提交
2148 2149
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2150 2151 2152 2153 2154 2155
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2156 2157
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2158
{
2159
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2160
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2161
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2162 2163 2164 2165
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2166
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2167 2168 2169 2170 2171
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2172
static
2173
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2174
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2175
		     int *all_pinned)
L
Linus Torvalds 已提交
2176 2177 2178 2179 2180 2181 2182
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2183 2184
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2185
		return 0;
2186
	}
2187 2188
	*all_pinned = 0;

2189 2190
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2191
		return 0;
2192
	}
L
Linus Torvalds 已提交
2193

2194 2195 2196 2197 2198 2199
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2200 2201
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2202
#ifdef CONFIG_SCHEDSTATS
2203
		if (task_hot(p, rq->clock, sd)) {
2204
			schedstat_inc(sd, lb_hot_gained[idle]);
2205 2206
			schedstat_inc(p, se.nr_forced_migrations);
		}
2207 2208 2209 2210
#endif
		return 1;
	}

2211 2212
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2213
		return 0;
2214
	}
L
Linus Torvalds 已提交
2215 2216 2217
	return 1;
}

I
Ingo Molnar 已提交
2218
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2219
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2220
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2221
		      int *all_pinned, unsigned long *load_moved,
2222
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2223
{
I
Ingo Molnar 已提交
2224 2225 2226
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2227

2228
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2229 2230
		goto out;

2231 2232
	pinned = 1;

L
Linus Torvalds 已提交
2233
	/*
I
Ingo Molnar 已提交
2234
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2235
	 */
I
Ingo Molnar 已提交
2236 2237 2238
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2239
		goto out;
2240 2241 2242 2243 2244
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2245 2246
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2247
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2248 2249 2250
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2251 2252
	}

I
Ingo Molnar 已提交
2253
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2254
	pulled++;
I
Ingo Molnar 已提交
2255
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2256

2257 2258 2259 2260 2261
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2262 2263
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2264 2265
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2266 2267 2268 2269 2270 2271 2272 2273
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2274 2275 2276

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2277
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2278 2279 2280
	return pulled;
}

I
Ingo Molnar 已提交
2281
/*
P
Peter Williams 已提交
2282 2283 2284
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2285 2286 2287 2288
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2289
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2290 2291 2292
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2293
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2294
	unsigned long total_load_moved = 0;
2295
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2296 2297

	do {
P
Peter Williams 已提交
2298 2299 2300
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2301
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2302
		class = class->next;
P
Peter Williams 已提交
2303
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2304

P
Peter Williams 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2318
	const struct sched_class *class;
2319
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2320 2321 2322

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2323 2324
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2325 2326 2327
			return 1;

	return 0;
I
Ingo Molnar 已提交
2328 2329
}

L
Linus Torvalds 已提交
2330 2331
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2332 2333
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2334 2335 2336
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2337 2338
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2339 2340 2341
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2342
	unsigned long max_pull;
2343 2344
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2345
	int load_idx, group_imb = 0;
2346 2347 2348 2349 2350 2351
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2352 2353

	max_load = this_load = total_load = total_pwr = 0;
2354 2355
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2356
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2357
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2358
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2359 2360 2361
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2362 2363

	do {
2364
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2365 2366
		int local_group;
		int i;
2367
		int __group_imb = 0;
2368
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2369
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2370 2371 2372

		local_group = cpu_isset(this_cpu, group->cpumask);

2373 2374 2375
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2376
		/* Tally up the load of all CPUs in the group */
2377
		sum_weighted_load = sum_nr_running = avg_load = 0;
2378 2379
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2380 2381

		for_each_cpu_mask(i, group->cpumask) {
2382 2383 2384 2385 2386 2387
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2388

2389
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2390 2391
				*sd_idle = 0;

L
Linus Torvalds 已提交
2392
			/* Bias balancing toward cpus of our domain */
2393 2394 2395 2396 2397 2398
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2399
				load = target_load(i, load_idx);
2400
			} else {
N
Nick Piggin 已提交
2401
				load = source_load(i, load_idx);
2402 2403 2404 2405 2406
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2407 2408

			avg_load += load;
2409
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2410
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2411 2412
		}

2413 2414 2415
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2416 2417
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2418
		 */
2419 2420
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2421 2422 2423 2424
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2425
		total_load += avg_load;
2426
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2427 2428

		/* Adjust by relative CPU power of the group */
2429 2430
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2431

2432 2433 2434
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2435
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2436

L
Linus Torvalds 已提交
2437 2438 2439
		if (local_group) {
			this_load = avg_load;
			this = group;
2440 2441 2442
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2443
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2444 2445
			max_load = avg_load;
			busiest = group;
2446 2447
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2448
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2449
		}
2450 2451 2452 2453 2454 2455

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2456 2457 2458
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2459 2460 2461 2462 2463 2464 2465 2466 2467

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2468
		/*
2469 2470
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2471 2472
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2473
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2474
			goto group_next;
2475

I
Ingo Molnar 已提交
2476
		/*
2477
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2478 2479 2480 2481 2482
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2483 2484
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2485 2486
			group_min = group;
			min_nr_running = sum_nr_running;
2487 2488
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2489
		}
2490

I
Ingo Molnar 已提交
2491
		/*
2492
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2504
		}
2505 2506
group_next:
#endif
L
Linus Torvalds 已提交
2507 2508 2509
		group = group->next;
	} while (group != sd->groups);

2510
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2511 2512 2513 2514 2515 2516 2517 2518
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2519
	busiest_load_per_task /= busiest_nr_running;
2520 2521 2522
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2546 2547

	/* Don't want to pull so many tasks that a group would go idle */
2548
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2549

L
Linus Torvalds 已提交
2550
	/* How much load to actually move to equalise the imbalance */
2551 2552
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2553 2554
			/ SCHED_LOAD_SCALE;

2555 2556 2557 2558 2559 2560
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2561
	if (*imbalance < busiest_load_per_task) {
2562
		unsigned long tmp, pwr_now, pwr_move;
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2574

I
Ingo Molnar 已提交
2575 2576
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2577
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2587 2588 2589 2590
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2591 2592 2593
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2594 2595
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2596
		if (max_load > tmp)
2597
			pwr_move += busiest->__cpu_power *
2598
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2599 2600

		/* Amount of load we'd add */
2601
		if (max_load * busiest->__cpu_power <
2602
				busiest_load_per_task * SCHED_LOAD_SCALE)
2603 2604
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2605
		else
2606 2607 2608 2609
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2610 2611 2612
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2613 2614
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2615 2616 2617 2618 2619
	}

	return busiest;

out_balanced:
2620
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2621
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2622
		goto ret;
L
Linus Torvalds 已提交
2623

2624 2625 2626 2627 2628
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2629
ret:
L
Linus Torvalds 已提交
2630 2631 2632 2633 2634 2635 2636
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2637
static struct rq *
I
Ingo Molnar 已提交
2638
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2639
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2640
{
2641
	struct rq *busiest = NULL, *rq;
2642
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2643 2644 2645
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2646
		unsigned long wl;
2647 2648 2649 2650

		if (!cpu_isset(i, *cpus))
			continue;

2651
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2652
		wl = weighted_cpuload(i);
2653

I
Ingo Molnar 已提交
2654
		if (rq->nr_running == 1 && wl > imbalance)
2655
			continue;
L
Linus Torvalds 已提交
2656

I
Ingo Molnar 已提交
2657 2658
		if (wl > max_load) {
			max_load = wl;
2659
			busiest = rq;
L
Linus Torvalds 已提交
2660 2661 2662 2663 2664 2665
		}
	}

	return busiest;
}

2666 2667 2668 2669 2670 2671
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2672 2673 2674 2675
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2676
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2677
			struct sched_domain *sd, enum cpu_idle_type idle,
2678
			int *balance)
L
Linus Torvalds 已提交
2679
{
P
Peter Williams 已提交
2680
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2681 2682
	struct sched_group *group;
	unsigned long imbalance;
2683
	struct rq *busiest;
2684
	cpumask_t cpus = CPU_MASK_ALL;
2685
	unsigned long flags;
N
Nick Piggin 已提交
2686

2687 2688 2689
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2690
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2691
	 * portraying it as CPU_NOT_IDLE.
2692
	 */
I
Ingo Molnar 已提交
2693
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2694
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2695
		sd_idle = 1;
L
Linus Torvalds 已提交
2696

2697
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2698

2699 2700
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2701 2702
				   &cpus, balance);

2703
	if (*balance == 0)
2704 2705
		goto out_balanced;

L
Linus Torvalds 已提交
2706 2707 2708 2709 2710
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2711
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2712 2713 2714 2715 2716
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2717
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2718 2719 2720

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2721
	ld_moved = 0;
L
Linus Torvalds 已提交
2722 2723 2724 2725
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2726
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2727 2728
		 * correctly treated as an imbalance.
		 */
2729
		local_irq_save(flags);
N
Nick Piggin 已提交
2730
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2731
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2732
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2733
		double_rq_unlock(this_rq, busiest);
2734
		local_irq_restore(flags);
2735

2736 2737 2738
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2739
		if (ld_moved && this_cpu != smp_processor_id())
2740 2741
			resched_cpu(this_cpu);

2742
		/* All tasks on this runqueue were pinned by CPU affinity */
2743 2744 2745 2746
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2747
			goto out_balanced;
2748
		}
L
Linus Torvalds 已提交
2749
	}
2750

P
Peter Williams 已提交
2751
	if (!ld_moved) {
L
Linus Torvalds 已提交
2752 2753 2754 2755 2756
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2757
			spin_lock_irqsave(&busiest->lock, flags);
2758 2759 2760 2761 2762

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2763
				spin_unlock_irqrestore(&busiest->lock, flags);
2764 2765 2766 2767
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2768 2769 2770
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2771
				active_balance = 1;
L
Linus Torvalds 已提交
2772
			}
2773
			spin_unlock_irqrestore(&busiest->lock, flags);
2774
			if (active_balance)
L
Linus Torvalds 已提交
2775 2776 2777 2778 2779 2780
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2781
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2782
		}
2783
	} else
L
Linus Torvalds 已提交
2784 2785
		sd->nr_balance_failed = 0;

2786
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2787 2788
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2789 2790 2791 2792 2793 2794 2795 2796 2797
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2798 2799
	}

P
Peter Williams 已提交
2800
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2801
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2802
		return -1;
P
Peter Williams 已提交
2803
	return ld_moved;
L
Linus Torvalds 已提交
2804 2805 2806 2807

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2808
	sd->nr_balance_failed = 0;
2809 2810

out_one_pinned:
L
Linus Torvalds 已提交
2811
	/* tune up the balancing interval */
2812 2813
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2814 2815
		sd->balance_interval *= 2;

2816
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2817
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2818
		return -1;
L
Linus Torvalds 已提交
2819 2820 2821 2822 2823 2824 2825
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2826
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2827 2828
 * this_rq is locked.
 */
2829
static int
2830
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2831 2832
{
	struct sched_group *group;
2833
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2834
	unsigned long imbalance;
P
Peter Williams 已提交
2835
	int ld_moved = 0;
N
Nick Piggin 已提交
2836
	int sd_idle = 0;
2837
	int all_pinned = 0;
2838
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2839

2840 2841 2842 2843
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2844
	 * portraying it as CPU_NOT_IDLE.
2845 2846 2847
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2848
		sd_idle = 1;
L
Linus Torvalds 已提交
2849

2850
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2851
redo:
I
Ingo Molnar 已提交
2852
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2853
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2854
	if (!group) {
I
Ingo Molnar 已提交
2855
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2856
		goto out_balanced;
L
Linus Torvalds 已提交
2857 2858
	}

I
Ingo Molnar 已提交
2859
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2860
				&cpus);
N
Nick Piggin 已提交
2861
	if (!busiest) {
I
Ingo Molnar 已提交
2862
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2863
		goto out_balanced;
L
Linus Torvalds 已提交
2864 2865
	}

N
Nick Piggin 已提交
2866 2867
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2868
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2869

P
Peter Williams 已提交
2870
	ld_moved = 0;
2871 2872 2873
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2874 2875
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2876
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2877 2878
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2879
		spin_unlock(&busiest->lock);
2880

2881
		if (unlikely(all_pinned)) {
2882 2883 2884 2885
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2886 2887
	}

P
Peter Williams 已提交
2888
	if (!ld_moved) {
I
Ingo Molnar 已提交
2889
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2890 2891
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2892 2893
			return -1;
	} else
2894
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2895

P
Peter Williams 已提交
2896
	return ld_moved;
2897 2898

out_balanced:
I
Ingo Molnar 已提交
2899
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2900
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2901
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2902
		return -1;
2903
	sd->nr_balance_failed = 0;
2904

2905
	return 0;
L
Linus Torvalds 已提交
2906 2907 2908 2909 2910 2911
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2912
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2913 2914
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2915 2916
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2917 2918

	for_each_domain(this_cpu, sd) {
2919 2920 2921 2922 2923 2924
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2925
			/* If we've pulled tasks over stop searching: */
2926
			pulled_task = load_balance_newidle(this_cpu,
2927 2928 2929 2930 2931 2932 2933
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2934
	}
I
Ingo Molnar 已提交
2935
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2936 2937 2938 2939 2940
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2941
	}
L
Linus Torvalds 已提交
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2952
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2953
{
2954
	int target_cpu = busiest_rq->push_cpu;
2955 2956
	struct sched_domain *sd;
	struct rq *target_rq;
2957

2958
	/* Is there any task to move? */
2959 2960 2961 2962
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2963 2964

	/*
2965 2966 2967
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2968
	 */
2969
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2970

2971 2972
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2973 2974
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2975 2976

	/* Search for an sd spanning us and the target CPU. */
2977
	for_each_domain(target_cpu, sd) {
2978
		if ((sd->flags & SD_LOAD_BALANCE) &&
2979
		    cpu_isset(busiest_cpu, sd->span))
2980
				break;
2981
	}
2982

2983
	if (likely(sd)) {
2984
		schedstat_inc(sd, alb_count);
2985

P
Peter Williams 已提交
2986 2987
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2988 2989 2990 2991
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2992
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2993 2994
}

2995 2996 2997 2998 2999 3000 3001 3002 3003
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3004
/*
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3015
 *
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3072 3073 3074 3075 3076
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3077
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3078
{
3079 3080
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3081 3082
	unsigned long interval;
	struct sched_domain *sd;
3083
	/* Earliest time when we have to do rebalance again */
3084
	unsigned long next_balance = jiffies + 60*HZ;
3085
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3086

3087
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3088 3089 3090 3091
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3092
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3093 3094 3095 3096 3097 3098
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3099 3100 3101
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3102

3103 3104 3105 3106 3107
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3108
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3109
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3110 3111
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3112 3113 3114
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3115
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3116
			}
3117
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3118
		}
3119 3120 3121
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3122
		if (time_after(next_balance, sd->last_balance + interval)) {
3123
			next_balance = sd->last_balance + interval;
3124 3125
			update_next_balance = 1;
		}
3126 3127 3128 3129 3130 3131 3132 3133

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3134
	}
3135 3136 3137 3138 3139 3140 3141 3142

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3143 3144 3145 3146 3147 3148 3149 3150 3151
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3152 3153 3154 3155
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3156

I
Ingo Molnar 已提交
3157
	rebalance_domains(this_cpu, idle);
3158 3159 3160 3161 3162 3163 3164

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3165 3166
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3167 3168 3169 3170
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3171
		cpu_clear(this_cpu, cpus);
3172 3173 3174 3175 3176 3177 3178 3179 3180
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3181
			rebalance_domains(balance_cpu, CPU_IDLE);
3182 3183

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3184 3185
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3198
static inline void trigger_load_balance(struct rq *rq, int cpu)
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3250
}
I
Ingo Molnar 已提交
3251 3252 3253

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3254 3255 3256
/*
 * on UP we do not need to balance between CPUs:
 */
3257
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3258 3259
{
}
I
Ingo Molnar 已提交
3260 3261 3262 3263 3264 3265

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3266
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3267 3268 3269 3270 3271 3272
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3273 3274 3275 3276 3277 3278 3279
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3280 3281
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3282
 */
3283
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3284 3285
{
	unsigned long flags;
3286 3287
	u64 ns, delta_exec;
	struct rq *rq;
3288

3289 3290 3291
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3292 3293
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3294 3295 3296 3297
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3298

L
Linus Torvalds 已提交
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;
3312
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3313 3314 3315

	p->utime = cputime_add(p->utime, cputime);

3316 3317 3318
	if (p != rq->idle)
		cpuacct_charge(p, cputime);

L
Linus Torvalds 已提交
3319 3320 3321 3322 3323 3324 3325 3326
	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
void account_guest_time(struct task_struct *p, cputime_t cputime)
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3366
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3367 3368
	cputime64_t tmp;

3369 3370 3371 3372 3373 3374
	if (p->flags & PF_VCPU) {
		account_guest_time(p, cputime);
		p->flags &= ~PF_VCPU;
		return;
	}

L
Linus Torvalds 已提交
3375 3376 3377 3378 3379 3380 3381 3382
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3383
	else if (p != rq->idle) {
L
Linus Torvalds 已提交
3384
		cpustat->system = cputime64_add(cpustat->system, tmp);
3385 3386
		cpuacct_charge(p, cputime);
	} else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3387 3388 3389 3390 3391 3392 3393
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3405 3406 3407 3408 3409 3410 3411 3412 3413
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3414
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3415 3416 3417 3418 3419 3420 3421

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3422
	} else {
L
Linus Torvalds 已提交
3423
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
3424 3425
		cpuacct_charge(p, -tmp);
	}
L
Linus Torvalds 已提交
3426 3427
}

3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3439
	struct task_struct *curr = rq->curr;
3440
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3441 3442

	spin_lock(&rq->lock);
3443
	__update_rq_clock(rq);
3444 3445 3446 3447 3448 3449
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3450
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3451 3452 3453
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3454

3455
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3456 3457
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3458
#endif
L
Linus Torvalds 已提交
3459 3460 3461 3462 3463 3464 3465 3466 3467
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3468 3469
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3470 3471 3472 3473
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3474 3475
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3476 3477 3478 3479 3480 3481 3482 3483
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3484 3485
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3486 3487 3488
	/*
	 * Is the spinlock portion underflowing?
	 */
3489 3490 3491 3492
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3493 3494 3495 3496 3497 3498 3499
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3500
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3501
 */
I
Ingo Molnar 已提交
3502
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3503
{
I
Ingo Molnar 已提交
3504
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3505
		prev->comm, preempt_count(), task_pid_nr(prev));
I
Ingo Molnar 已提交
3506 3507 3508 3509 3510
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3511

I
Ingo Molnar 已提交
3512 3513 3514 3515 3516
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3517 3518 3519 3520 3521
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3522 3523 3524
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3525 3526
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3527
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3528 3529
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3530 3531
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3532 3533
	}
#endif
I
Ingo Molnar 已提交
3534 3535 3536 3537 3538 3539
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3540
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3541
{
3542
	const struct sched_class *class;
I
Ingo Molnar 已提交
3543
	struct task_struct *p;
L
Linus Torvalds 已提交
3544 3545

	/*
I
Ingo Molnar 已提交
3546 3547
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3548
	 */
I
Ingo Molnar 已提交
3549
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3550
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3551 3552
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3553 3554
	}

I
Ingo Molnar 已提交
3555 3556
	class = sched_class_highest;
	for ( ; ; ) {
3557
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3558 3559 3560 3561 3562 3563 3564 3565 3566
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3567

I
Ingo Molnar 已提交
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3590

3591 3592 3593 3594
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3595
	__update_rq_clock(rq);
3596 3597
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3598 3599 3600

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3601
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3602
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3603
		} else {
3604
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3605
		}
I
Ingo Molnar 已提交
3606
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3607 3608
	}

I
Ingo Molnar 已提交
3609
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3610 3611
		idle_balance(cpu, rq);

3612
	prev->sched_class->put_prev_task(rq, prev);
3613
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3614 3615

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3616

L
Linus Torvalds 已提交
3617 3618 3619 3620 3621
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3622
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3623 3624 3625
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3626 3627 3628
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3629
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3630
	}
L
Linus Torvalds 已提交
3631 3632 3633 3634 3635 3636 3637 3638
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3639
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3654
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3655 3656
		return;

3657 3658 3659 3660 3661 3662 3663 3664
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3665
#ifdef CONFIG_PREEMPT_BKL
3666 3667
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3668
#endif
3669
		schedule();
L
Linus Torvalds 已提交
3670
#ifdef CONFIG_PREEMPT_BKL
3671
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3672
#endif
3673
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3674

3675 3676 3677 3678 3679 3680
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3681 3682 3683 3684
}
EXPORT_SYMBOL(preempt_schedule);

/*
3685
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3697
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3698 3699
	BUG_ON(ti->preempt_count || !irqs_disabled());

3700 3701 3702 3703 3704 3705 3706 3707
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3708
#ifdef CONFIG_PREEMPT_BKL
3709 3710
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3711
#endif
3712 3713 3714
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3715
#ifdef CONFIG_PREEMPT_BKL
3716
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3717
#endif
3718
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3719

3720 3721 3722 3723 3724 3725
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3726 3727 3728 3729
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3730 3731
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3732
{
3733
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3749
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3750

3751
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3752 3753
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3754
		if (curr->func(curr, mode, sync, key) &&
3755
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3756 3757 3758 3759 3760 3761 3762 3763 3764
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3765
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3766 3767
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3768
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3787
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3799 3800
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3841 3842
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3843 3844 3845 3846 3847 3848 3849
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3850 3851 3852 3853 3854 3855
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3856 3857 3858 3859 3860
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3861
				return timeout;
L
Linus Torvalds 已提交
3862 3863 3864 3865 3866 3867 3868 3869
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3870 3871
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3872 3873 3874 3875
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3876
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3877
	spin_unlock_irq(&x->wait.lock);
3878 3879
	return timeout;
}
L
Linus Torvalds 已提交
3880

3881 3882 3883
void fastcall __sched wait_for_completion(struct completion *x)
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3884
}
3885
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3886 3887

unsigned long fastcall __sched
3888
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3889
{
3890
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3891
}
3892
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3893

3894
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3895
{
3896 3897 3898 3899
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3900
}
3901
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3902

3903 3904 3905
unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3906
{
3907
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3908
}
3909
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3910

3911 3912
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3913
{
I
Ingo Molnar 已提交
3914 3915 3916 3917
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3918

3919
	__set_current_state(state);
L
Linus Torvalds 已提交
3920

3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3935 3936 3937
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3938
long __sched
I
Ingo Molnar 已提交
3939
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3940
{
3941
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3942 3943 3944
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3945
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3946
{
3947
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3948 3949 3950
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3951
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3952
{
3953
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3954 3955 3956
}
EXPORT_SYMBOL(sleep_on_timeout);

3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3969
void rt_mutex_setprio(struct task_struct *p, int prio)
3970 3971
{
	unsigned long flags;
3972
	int oldprio, on_rq, running;
3973
	struct rq *rq;
3974 3975 3976 3977

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3978
	update_rq_clock(rq);
3979

3980
	oldprio = p->prio;
I
Ingo Molnar 已提交
3981
	on_rq = p->se.on_rq;
3982 3983
	running = task_running(rq, p);
	if (on_rq) {
3984
		dequeue_task(rq, p, 0);
3985 3986 3987
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
3988 3989 3990 3991 3992 3993

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3994 3995
	p->prio = prio;

I
Ingo Molnar 已提交
3996
	if (on_rq) {
3997 3998
		if (running)
			p->sched_class->set_curr_task(rq);
3999
		enqueue_task(rq, p, 0);
4000 4001
		/*
		 * Reschedule if we are currently running on this runqueue and
4002 4003
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4004
		 */
4005
		if (running) {
4006 4007
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4008 4009 4010
		} else {
			check_preempt_curr(rq, p);
		}
4011 4012 4013 4014 4015 4016
	}
	task_rq_unlock(rq, &flags);
}

#endif

4017
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4018
{
I
Ingo Molnar 已提交
4019
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4020
	unsigned long flags;
4021
	struct rq *rq;
L
Linus Torvalds 已提交
4022 4023 4024 4025 4026 4027 4028 4029

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4030
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4031 4032 4033 4034
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4035
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4036
	 */
4037
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4038 4039 4040
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4041 4042
	on_rq = p->se.on_rq;
	if (on_rq) {
4043
		dequeue_task(rq, p, 0);
4044
		dec_load(rq, p);
4045
	}
L
Linus Torvalds 已提交
4046 4047

	p->static_prio = NICE_TO_PRIO(nice);
4048
	set_load_weight(p);
4049 4050 4051
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4052

I
Ingo Molnar 已提交
4053
	if (on_rq) {
4054
		enqueue_task(rq, p, 0);
4055
		inc_load(rq, p);
L
Linus Torvalds 已提交
4056
		/*
4057 4058
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4059
		 */
4060
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4061 4062 4063 4064 4065 4066 4067
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4068 4069 4070 4071 4072
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4073
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4074
{
4075 4076
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4077

M
Matt Mackall 已提交
4078 4079 4080 4081
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4093
	long nice, retval;
L
Linus Torvalds 已提交
4094 4095 4096 4097 4098 4099

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4100 4101
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4102 4103 4104 4105 4106 4107 4108 4109 4110
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4111 4112 4113
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4132
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4133 4134 4135 4136 4137 4138 4139 4140
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4141
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4160
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4161 4162 4163 4164 4165 4166 4167 4168
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4169
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4170
{
4171
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4172 4173 4174
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4175 4176
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4177
{
I
Ingo Molnar 已提交
4178
	BUG_ON(p->se.on_rq);
4179

L
Linus Torvalds 已提交
4180
	p->policy = policy;
I
Ingo Molnar 已提交
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4193
	p->rt_priority = prio;
4194 4195 4196
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4197
	set_load_weight(p);
L
Linus Torvalds 已提交
4198 4199 4200
}

/**
4201
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4202 4203 4204
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4205
 *
4206
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4207
 */
I
Ingo Molnar 已提交
4208 4209
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4210
{
4211
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4212
	unsigned long flags;
4213
	struct rq *rq;
L
Linus Torvalds 已提交
4214

4215 4216
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4217 4218 4219 4220 4221
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4222 4223
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4224
		return -EINVAL;
L
Linus Torvalds 已提交
4225 4226
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4227 4228
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4229 4230
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4231
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4232
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4233
		return -EINVAL;
4234
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4235 4236
		return -EINVAL;

4237 4238 4239 4240
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4241
		if (rt_policy(policy)) {
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4258 4259 4260 4261 4262 4263
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4264

4265 4266 4267 4268 4269
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4270 4271 4272 4273

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4274 4275 4276 4277 4278
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4279 4280 4281 4282
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4283
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4284 4285 4286
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4287 4288
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4289 4290
		goto recheck;
	}
I
Ingo Molnar 已提交
4291
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4292
	on_rq = p->se.on_rq;
4293 4294
	running = task_running(rq, p);
	if (on_rq) {
4295
		deactivate_task(rq, p, 0);
4296 4297 4298
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4299

L
Linus Torvalds 已提交
4300
	oldprio = p->prio;
I
Ingo Molnar 已提交
4301
	__setscheduler(rq, p, policy, param->sched_priority);
4302

I
Ingo Molnar 已提交
4303
	if (on_rq) {
4304 4305
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4306
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4307 4308
		/*
		 * Reschedule if we are currently running on this runqueue and
4309 4310
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4311
		 */
4312
		if (running) {
4313 4314
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4315 4316 4317
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4318
	}
4319 4320 4321
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4322 4323
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4324 4325 4326 4327
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4328 4329
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4330 4331 4332
{
	struct sched_param lparam;
	struct task_struct *p;
4333
	int retval;
L
Linus Torvalds 已提交
4334 4335 4336 4337 4338

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4339 4340 4341

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4342
	p = find_process_by_pid(pid);
4343 4344 4345
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4346

L
Linus Torvalds 已提交
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4359 4360 4361 4362
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4382
	struct task_struct *p;
4383
	int retval;
L
Linus Torvalds 已提交
4384 4385

	if (pid < 0)
4386
		return -EINVAL;
L
Linus Torvalds 已提交
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4408
	struct task_struct *p;
4409
	int retval;
L
Linus Torvalds 已提交
4410 4411

	if (!param || pid < 0)
4412
		return -EINVAL;
L
Linus Torvalds 已提交
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4442 4443
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4444

4445
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4446 4447 4448 4449 4450
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4451
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4468 4469 4470 4471
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4472 4473
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4474
 again:
L
Linus Torvalds 已提交
4475 4476
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4489 4490
out_unlock:
	put_task_struct(p);
4491
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4532
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4533 4534 4535
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4536
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4537 4538
EXPORT_SYMBOL(cpu_online_map);

4539
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4540
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4541 4542 4543 4544
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4545
	struct task_struct *p;
L
Linus Torvalds 已提交
4546 4547
	int retval;

4548
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4549 4550 4551 4552 4553 4554 4555
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4556 4557 4558 4559
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4560
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4561 4562 4563

out_unlock:
	read_unlock(&tasklist_lock);
4564
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4565

4566
	return retval;
L
Linus Torvalds 已提交
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4597 4598
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4599 4600 4601
 */
asmlinkage long sys_sched_yield(void)
{
4602
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4603

4604
	schedstat_inc(rq, yld_count);
4605
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4606 4607 4608 4609 4610 4611

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4612
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4613 4614 4615 4616 4617 4618 4619 4620
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4621
static void __cond_resched(void)
L
Linus Torvalds 已提交
4622
{
4623 4624 4625
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4626 4627 4628 4629 4630
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4631 4632 4633 4634 4635 4636 4637 4638 4639
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4640 4641
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4657
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4658
{
J
Jan Kara 已提交
4659 4660
	int ret = 0;

L
Linus Torvalds 已提交
4661 4662 4663
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4664
		ret = 1;
L
Linus Torvalds 已提交
4665 4666
		spin_lock(lock);
	}
4667
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4668
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4669 4670 4671
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4672
		ret = 1;
L
Linus Torvalds 已提交
4673 4674
		spin_lock(lock);
	}
J
Jan Kara 已提交
4675
	return ret;
L
Linus Torvalds 已提交
4676 4677 4678 4679 4680 4681 4682
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4683
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4684
		local_bh_enable();
L
Linus Torvalds 已提交
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4696
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4715
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4716

4717
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4718 4719 4720
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4721
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4722 4723 4724 4725 4726
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4727
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4728 4729
	long ret;

4730
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4731 4732 4733
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4734
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4755
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4756
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4780
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4781
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4798
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4799
	unsigned int time_slice;
4800
	int retval;
L
Linus Torvalds 已提交
4801 4802 4803
	struct timespec t;

	if (pid < 0)
4804
		return -EINVAL;
L
Linus Torvalds 已提交
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

D
Dmitry Adamushko 已提交
4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
	if (p->policy == SCHED_FIFO)
		time_slice = 0;
	else if (p->policy == SCHED_RR)
		time_slice = DEF_TIMESLICE;
	else {
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
		time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4829
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4830
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4831 4832
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4833

L
Linus Torvalds 已提交
4834 4835 4836 4837 4838
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4839
static const char stat_nam[] = "RSDTtZX";
4840 4841

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4842 4843
{
	unsigned long free = 0;
4844
	unsigned state;
L
Linus Torvalds 已提交
4845 4846

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
4847
	printk(KERN_INFO "%-13.13s %c", p->comm,
4848
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4849
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4850
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4851
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4852
	else
I
Ingo Molnar 已提交
4853
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4854 4855
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4856
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4857
	else
I
Ingo Molnar 已提交
4858
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4859 4860 4861
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4862
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4863 4864
		while (!*n)
			n++;
4865
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4866 4867
	}
#endif
4868 4869
	printk(KERN_CONT "%5lu %5d %6d\n", free,
		task_pid_nr(p), task_pid_nr(p->parent));
L
Linus Torvalds 已提交
4870 4871 4872 4873 4874

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4875
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4876
{
4877
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4878

4879 4880 4881
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4882
#else
4883 4884
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4885 4886 4887 4888 4889 4890 4891 4892
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4893
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4894
			show_task(p);
L
Linus Torvalds 已提交
4895 4896
	} while_each_thread(g, p);

4897 4898
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4899 4900 4901
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4902
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4903 4904 4905 4906 4907
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4908 4909
}

I
Ingo Molnar 已提交
4910 4911
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4912
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4913 4914
}

4915 4916 4917 4918 4919 4920 4921 4922
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4923
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4924
{
4925
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4926 4927
	unsigned long flags;

I
Ingo Molnar 已提交
4928 4929 4930
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4931
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4932
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4933
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4934 4935 4936

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4937 4938 4939
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4940 4941 4942 4943
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4944
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4945
#else
A
Al Viro 已提交
4946
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4947
#endif
I
Ingo Molnar 已提交
4948 4949 4950 4951
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4967
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4989
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4990
{
4991
	struct migration_req req;
L
Linus Torvalds 已提交
4992
	unsigned long flags;
4993
	struct rq *rq;
4994
	int ret = 0;
L
Linus Torvalds 已提交
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5017

L
Linus Torvalds 已提交
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5030 5031
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5032
 */
5033
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5034
{
5035
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5036
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5037 5038

	if (unlikely(cpu_is_offline(dest_cpu)))
5039
		return ret;
L
Linus Torvalds 已提交
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5052
	on_rq = p->se.on_rq;
5053
	if (on_rq)
5054
		deactivate_task(rq_src, p, 0);
5055

L
Linus Torvalds 已提交
5056
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5057 5058 5059
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5060
	}
5061
	ret = 1;
L
Linus Torvalds 已提交
5062 5063
out:
	double_rq_unlock(rq_src, rq_dest);
5064
	return ret;
L
Linus Torvalds 已提交
5065 5066 5067 5068 5069 5070 5071
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5072
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5073 5074
{
	int cpu = (long)data;
5075
	struct rq *rq;
L
Linus Torvalds 已提交
5076 5077 5078 5079 5080 5081

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5082
		struct migration_req *req;
L
Linus Torvalds 已提交
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5105
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5106 5107
		list_del_init(head->next);

N
Nick Piggin 已提交
5108 5109 5110
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5140 5141 5142 5143
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5144
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5145
{
5146
	unsigned long flags;
L
Linus Torvalds 已提交
5147
	cpumask_t mask;
5148 5149
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5150

5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5163 5164 5165 5166 5167 5168 5169 5170
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
			 * cpuset_cpus_allowed() will not block.  It must be
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5171
			rq = task_rq_lock(p, &flags);
5172
			p->cpus_allowed = cpus_allowed;
5173 5174
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5175

5176 5177 5178 5179 5180 5181 5182 5183
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
			if (p->mm && printk_ratelimit())
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
5184
			       task_pid_nr(p), p->comm, dead_cpu);
5185
		}
5186
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5187 5188 5189 5190 5191 5192 5193 5194 5195
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5196
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5197
{
5198
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5212
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5213

5214
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5215

5216 5217
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5218 5219
			continue;

5220 5221 5222
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5223

5224
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5225 5226
}

A
Alexey Dobriyan 已提交
5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
/*
 * activate_idle_task - move idle task to the _front_ of runqueue.
 */
static void activate_idle_task(struct task_struct *p, struct rq *rq)
{
	update_rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;

	enqueue_task(rq, p, 0);
	inc_nr_running(p, rq);
}

I
Ingo Molnar 已提交
5241 5242
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5243
 * It does so by boosting its priority to highest possible and adding it to
5244
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5245 5246 5247
 */
void sched_idle_next(void)
{
5248
	int this_cpu = smp_processor_id();
5249
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5250 5251 5252 5253
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5254
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5255

5256 5257 5258
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5259 5260 5261
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5262
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5263 5264

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5265
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5266 5267 5268 5269

	spin_unlock_irqrestore(&rq->lock, flags);
}

5270 5271
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5285
/* called under rq->lock with disabled interrupts */
5286
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5287
{
5288
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5289 5290

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5291
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5292 5293

	/* Cannot have done final schedule yet: would have vanished. */
5294
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5295

5296
	get_task_struct(p);
L
Linus Torvalds 已提交
5297 5298 5299 5300 5301 5302

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
	 */
5303
	spin_unlock_irq(&rq->lock);
5304
	move_task_off_dead_cpu(dead_cpu, p);
5305
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5306

5307
	put_task_struct(p);
L
Linus Torvalds 已提交
5308 5309 5310 5311 5312
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5313
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5314
	struct task_struct *next;
5315

I
Ingo Molnar 已提交
5316 5317 5318
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5319
		update_rq_clock(rq);
5320
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5321 5322 5323
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5324

L
Linus Torvalds 已提交
5325 5326 5327 5328
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5329 5330 5331
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5332 5333
	{
		.procname	= "sched_domain",
5334
		.mode		= 0555,
5335
	},
5336 5337 5338 5339
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5340
	{
5341
		.ctl_name	= CTL_KERN,
5342
		.procname	= "kernel",
5343
		.mode		= 0555,
5344 5345
		.child		= sd_ctl_dir,
	},
5346 5347 5348 5349 5350 5351
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5352
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5353 5354 5355 5356

	return entry;
}

5357 5358
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5359
	struct ctl_table *entry;
5360

5361 5362 5363 5364 5365 5366 5367
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
	 * will always be set.  In the lowest directory the names are
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5368 5369
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5370 5371 5372
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5373 5374 5375 5376 5377

	kfree(*tablep);
	*tablep = NULL;
}

5378
static void
5379
set_table_entry(struct ctl_table *entry,
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5393
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5394

5395 5396 5397
	if (table == NULL)
		return NULL;

5398
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5399
		sizeof(long), 0644, proc_doulongvec_minmax);
5400
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5401
		sizeof(long), 0644, proc_doulongvec_minmax);
5402
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5403
		sizeof(int), 0644, proc_dointvec_minmax);
5404
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5405
		sizeof(int), 0644, proc_dointvec_minmax);
5406
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5407
		sizeof(int), 0644, proc_dointvec_minmax);
5408
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5409
		sizeof(int), 0644, proc_dointvec_minmax);
5410
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5411
		sizeof(int), 0644, proc_dointvec_minmax);
5412
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5413
		sizeof(int), 0644, proc_dointvec_minmax);
5414
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5415
		sizeof(int), 0644, proc_dointvec_minmax);
5416
	set_table_entry(&table[9], "cache_nice_tries",
5417 5418
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5419
	set_table_entry(&table[10], "flags", &sd->flags,
5420
		sizeof(int), 0644, proc_dointvec_minmax);
5421
	/* &table[11] is terminator */
5422 5423 5424 5425

	return table;
}

I
Ingo Molnar 已提交
5426
static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
5427 5428 5429 5430 5431 5432 5433 5434 5435
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5436 5437
	if (table == NULL)
		return NULL;
5438 5439 5440 5441 5442

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5443
		entry->mode = 0555;
5444 5445 5446 5447 5448 5449 5450 5451
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5452
static void register_sched_domain_sysctl(void)
5453 5454 5455 5456 5457
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5458 5459 5460
	if (entry == NULL)
		return;

5461 5462
	sd_ctl_dir[0].child = entry;

5463
	for_each_online_cpu(i) {
5464 5465
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5466
		entry->mode = 0555;
5467
		entry->child = sd_alloc_ctl_cpu_table(i);
5468
		entry++;
5469 5470 5471
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5472 5473 5474 5475 5476 5477 5478

static void unregister_sched_domain_sysctl(void)
{
	unregister_sysctl_table(sd_sysctl_header);
	sd_sysctl_header = NULL;
	sd_free_ctl_entry(&sd_ctl_dir[0].child);
}
5479
#else
5480 5481 5482 5483
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5484 5485 5486 5487
{
}
#endif

L
Linus Torvalds 已提交
5488 5489 5490 5491
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5492 5493
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5494 5495
{
	struct task_struct *p;
5496
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5497
	unsigned long flags;
5498
	struct rq *rq;
L
Linus Torvalds 已提交
5499 5500

	switch (action) {
5501 5502 5503 5504
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5505
	case CPU_UP_PREPARE:
5506
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5507
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5508 5509 5510 5511 5512
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5513
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5514 5515 5516
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5517

L
Linus Torvalds 已提交
5518
	case CPU_ONLINE:
5519
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5520 5521 5522
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5523

L
Linus Torvalds 已提交
5524 5525
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5526
	case CPU_UP_CANCELED_FROZEN:
5527 5528
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5529
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5530 5531
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5532 5533 5534
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5535

L
Linus Torvalds 已提交
5536
	case CPU_DEAD:
5537
	case CPU_DEAD_FROZEN:
5538
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5539 5540 5541 5542 5543
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5544
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5545
		update_rq_clock(rq);
5546
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5547
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5548 5549
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5550
		migrate_dead_tasks(cpu);
5551
		spin_unlock_irq(&rq->lock);
5552
		cpuset_unlock();
L
Linus Torvalds 已提交
5553 5554 5555 5556
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5557
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5558 5559 5560
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5561 5562
			struct migration_req *req;

L
Linus Torvalds 已提交
5563
			req = list_entry(rq->migration_queue.next,
5564
					 struct migration_req, list);
L
Linus Torvalds 已提交
5565 5566 5567 5568 5569 5570
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5571 5572 5573
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5574 5575 5576 5577 5578 5579 5580
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5581
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5582 5583 5584 5585 5586 5587 5588
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5589
	int err;
5590 5591

	/* Start one for the boot CPU: */
5592 5593
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5594 5595
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5596

L
Linus Torvalds 已提交
5597 5598 5599 5600 5601
	return 0;
}
#endif

#ifdef CONFIG_SMP
5602 5603 5604 5605 5606

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5607
#ifdef CONFIG_SCHED_DEBUG
L
Linus Torvalds 已提交
5608 5609 5610 5611
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5612 5613 5614 5615 5616
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5636 5637
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5638 5639 5640 5641 5642 5643
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5644 5645
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5646
		if (!cpu_isset(cpu, group->cpumask))
5647 5648
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5661
			if (!group->__cpu_power) {
I
Ingo Molnar 已提交
5662
				printk(KERN_CONT "\n");
5663 5664
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
5665
				break;
L
Linus Torvalds 已提交
5666 5667 5668
			}

			if (!cpus_weight(group->cpumask)) {
I
Ingo Molnar 已提交
5669
				printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5670
				printk(KERN_ERR "ERROR: empty group\n");
5671
				break;
L
Linus Torvalds 已提交
5672 5673 5674
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
5675
				printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5676
				printk(KERN_ERR "ERROR: repeated CPUs\n");
5677
				break;
L
Linus Torvalds 已提交
5678 5679 5680 5681 5682
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
I
Ingo Molnar 已提交
5683
			printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5684 5685 5686

			group = group->next;
		} while (group != sd->groups);
I
Ingo Molnar 已提交
5687
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5688 5689

		if (!cpus_equal(sd->span, groupmask))
5690 5691
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5692 5693 5694

		level++;
		sd = sd->parent;
5695 5696
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5697

5698 5699 5700
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5701 5702 5703 5704

	} while (sd);
}
#else
5705
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5706 5707
#endif

5708
static int sd_degenerate(struct sched_domain *sd)
5709 5710 5711 5712 5713 5714 5715 5716
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5717 5718 5719
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5733 5734
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5753 5754 5755
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5756 5757 5758 5759 5760 5761 5762
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5763 5764 5765 5766
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5767
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5768
{
5769
	struct rq *rq = cpu_rq(cpu);
5770 5771 5772 5773 5774 5775 5776
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5777
		if (sd_parent_degenerate(tmp, parent)) {
5778
			tmp->parent = parent->parent;
5779 5780 5781
			if (parent->parent)
				parent->parent->child = tmp;
		}
5782 5783
	}

5784
	if (sd && sd_degenerate(sd)) {
5785
		sd = sd->parent;
5786 5787 5788
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5789 5790 5791

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5792
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5793 5794 5795
}

/* cpus with isolated domains */
5796
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5811
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5812 5813

/*
5814 5815 5816 5817
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5818 5819 5820 5821 5822
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5823
static void
5824 5825 5826
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5827 5828 5829 5830 5831 5832
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5833 5834
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5835 5836 5837 5838 5839 5840
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5841
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5842 5843

		for_each_cpu_mask(j, span) {
5844
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5859
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5860

5861
#ifdef CONFIG_NUMA
5862

5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5915 5916
	cpumask_t span, nodemask;
	int i;
5917 5918 5919 5920 5921 5922 5923 5924 5925 5926

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5927

5928 5929 5930 5931 5932 5933 5934 5935
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5936
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5937

5938
/*
5939
 * SMT sched-domains:
5940
 */
L
Linus Torvalds 已提交
5941 5942
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5943
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5944

5945 5946
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5947
{
5948 5949
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5950 5951 5952 5953
	return cpu;
}
#endif

5954 5955 5956
/*
 * multi-core sched-domains:
 */
5957 5958
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5959
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5960 5961 5962
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5963 5964
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5965
{
5966
	int group;
5967
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5968
	cpus_and(mask, mask, *cpu_map);
5969 5970 5971 5972
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5973 5974
}
#elif defined(CONFIG_SCHED_MC)
5975 5976
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5977
{
5978 5979
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5980 5981 5982 5983
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5984
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5985
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5986

5987 5988
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5989
{
5990
	int group;
5991
#ifdef CONFIG_SCHED_MC
5992
	cpumask_t mask = cpu_coregroup_map(cpu);
5993
	cpus_and(mask, mask, *cpu_map);
5994
	group = first_cpu(mask);
5995
#elif defined(CONFIG_SCHED_SMT)
5996
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5997
	cpus_and(mask, mask, *cpu_map);
5998
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5999
#else
6000
	group = cpu;
L
Linus Torvalds 已提交
6001
#endif
6002 6003 6004
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6005 6006 6007 6008
}

#ifdef CONFIG_NUMA
/*
6009 6010 6011
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6012
 */
6013
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6014
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6015

6016
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6017
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6018

6019 6020
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6021
{
6022 6023 6024 6025 6026 6027 6028 6029 6030
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6031
}
6032

6033 6034 6035 6036 6037 6038 6039
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6040 6041 6042
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6043

6044 6045 6046 6047 6048 6049 6050 6051
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6052

6053 6054 6055 6056
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6057
}
L
Linus Torvalds 已提交
6058 6059
#endif

6060
#ifdef CONFIG_NUMA
6061 6062 6063
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6064
	int cpu, i;
6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6095 6096 6097 6098 6099
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6100

6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6127 6128
	sd->groups->__cpu_power = 0;

6129 6130 6131 6132 6133 6134 6135 6136 6137 6138
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6139
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6140 6141 6142 6143 6144 6145 6146 6147
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6148
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6149 6150 6151 6152
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6153
/*
6154 6155
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6156
 */
6157
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6158 6159
{
	int i;
6160 6161
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6162
	int sd_allnodes = 0;
6163 6164 6165 6166

	/*
	 * Allocate the per-node list of sched groups
	 */
6167
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6168
					   GFP_KERNEL);
6169 6170
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6171
		return -ENOMEM;
6172 6173 6174
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6175 6176

	/*
6177
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6178
	 */
6179
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6180 6181 6182
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6183
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6184 6185

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6186 6187
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6188 6189 6190
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6191
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6192
			p = sd;
6193
			sd_allnodes = 1;
6194 6195 6196
		} else
			p = NULL;

L
Linus Torvalds 已提交
6197 6198
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6199 6200
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6201 6202
		if (p)
			p->child = sd;
6203
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6204 6205 6206 6207 6208 6209 6210
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6211 6212
		if (p)
			p->child = sd;
6213
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6214

6215 6216 6217 6218 6219 6220 6221
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6222
		p->child = sd;
6223
		cpu_to_core_group(i, cpu_map, &sd->groups);
6224 6225
#endif

L
Linus Torvalds 已提交
6226 6227 6228 6229
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6230
		sd->span = per_cpu(cpu_sibling_map, i);
6231
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6232
		sd->parent = p;
6233
		p->child = sd;
6234
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6235 6236 6237 6238 6239
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6240
	for_each_cpu_mask(i, *cpu_map) {
6241
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6242
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6243 6244 6245
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6246 6247
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6248 6249 6250
	}
#endif

6251 6252 6253 6254 6255 6256 6257
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6258 6259
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6260 6261 6262
	}
#endif

L
Linus Torvalds 已提交
6263 6264 6265 6266
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6267
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6268 6269 6270
		if (cpus_empty(nodemask))
			continue;

6271
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6272 6273 6274 6275
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6276
	if (sd_allnodes)
I
Ingo Molnar 已提交
6277 6278
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6279 6280 6281 6282 6283 6284 6285 6286 6287 6288

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6289 6290
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6291
			continue;
6292
		}
6293 6294 6295 6296

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6297
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6298 6299 6300 6301 6302
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6303 6304 6305
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6306

6307 6308 6309
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6310
		sg->__cpu_power = 0;
6311
		sg->cpumask = nodemask;
6312
		sg->next = sg;
6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6331 6332
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6333 6334 6335
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6336
				goto error;
6337
			}
6338
			sg->__cpu_power = 0;
6339
			sg->cpumask = tmp;
6340
			sg->next = prev->next;
6341 6342 6343 6344 6345
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6346 6347 6348
#endif

	/* Calculate CPU power for physical packages and nodes */
6349
#ifdef CONFIG_SCHED_SMT
6350
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6351 6352
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6353
		init_sched_groups_power(i, sd);
6354
	}
L
Linus Torvalds 已提交
6355
#endif
6356
#ifdef CONFIG_SCHED_MC
6357
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6358 6359
		struct sched_domain *sd = &per_cpu(core_domains, i);

6360
		init_sched_groups_power(i, sd);
6361 6362
	}
#endif
6363

6364
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6365 6366
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6367
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6368 6369
	}

6370
#ifdef CONFIG_NUMA
6371 6372
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6373

6374 6375
	if (sd_allnodes) {
		struct sched_group *sg;
6376

6377
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6378 6379
		init_numa_sched_groups_power(sg);
	}
6380 6381
#endif

L
Linus Torvalds 已提交
6382
	/* Attach the domains */
6383
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6384 6385 6386
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6387 6388
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6389 6390 6391 6392 6393
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6394 6395 6396

	return 0;

6397
#ifdef CONFIG_NUMA
6398 6399 6400
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6401
#endif
L
Linus Torvalds 已提交
6402
}
P
Paul Jackson 已提交
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6414 6415
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6416 6417
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6418
 */
6419
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6420
{
P
Paul Jackson 已提交
6421 6422 6423 6424 6425
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6426
	register_sched_domain_sysctl();
P
Paul Jackson 已提交
6427
	return build_sched_domains(doms_cur);
6428 6429 6430
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6431
{
6432
	free_sched_groups(cpu_map);
6433
}
L
Linus Torvalds 已提交
6434

6435 6436 6437 6438
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6439
static void detach_destroy_domains(const cpumask_t *cpu_map)
6440 6441 6442
{
	int i;

6443 6444
	unregister_sched_domain_sysctl();

6445 6446 6447 6448 6449 6450
	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512
/*
 * Partition sched domains as specified by the 'ndoms_new'
 * cpumasks in the array doms_new[] of cpumasks.  This compares
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
 * The masks don't intersect (don't overlap.)  We should setup one
 * sched domain for each mask.  CPUs not in any of the cpumasks will
 * not be load balanced.  If the same cpumask appears both in the
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
 * The passed in 'doms_new' should be kmalloc'd.  This routine takes
 * ownership of it and will kfree it when done with it.  If the caller
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
}

6513
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6514
static int arch_reinit_sched_domains(void)
6515 6516 6517
{
	int err;

6518
	mutex_lock(&sched_hotcpu_mutex);
6519 6520
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6521
	mutex_unlock(&sched_hotcpu_mutex);
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6548 6549
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6550 6551 6552
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6553 6554
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6555 6556 6557 6558 6559 6560 6561
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6562 6563
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6564 6565 6566
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6587 6588
#endif

L
Linus Torvalds 已提交
6589 6590 6591
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6592
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6593 6594 6595 6596 6597 6598 6599
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6600
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6601
	case CPU_DOWN_PREPARE:
6602
	case CPU_DOWN_PREPARE_FROZEN:
6603
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6604 6605 6606
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6607
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6608
	case CPU_DOWN_FAILED:
6609
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6610
	case CPU_ONLINE:
6611
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6612
	case CPU_DEAD:
6613
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6614 6615 6616 6617 6618 6619 6620 6621 6622
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6623
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6624 6625 6626 6627 6628 6629

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6630 6631
	cpumask_t non_isolated_cpus;

6632
	mutex_lock(&sched_hotcpu_mutex);
6633
	arch_init_sched_domains(&cpu_online_map);
6634
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6635 6636
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6637
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6638 6639
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6640 6641 6642 6643

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6655

L
Linus Torvalds 已提交
6656 6657 6658 6659 6660
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6661
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6662 6663 6664 6665 6666
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6667
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6668 6669
}

L
Linus Torvalds 已提交
6670 6671
void __init sched_init(void)
{
6672
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6673 6674
	int i, j;

6675
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6676
		struct rt_prio_array *array;
6677
		struct rq *rq;
L
Linus Torvalds 已提交
6678 6679 6680

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6681
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6682
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6683 6684 6685 6686
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6687 6688 6689 6690 6691 6692 6693
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6694
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6695
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6696 6697
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6698 6699 6700
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6701
			se->load.weight = init_task_group_load;
6702
			se->load.inv_weight =
6703
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6704 6705
			se->parent = NULL;
		}
6706
		init_task_group.shares = init_task_group_load;
6707
		spin_lock_init(&init_task_group.lock);
I
Ingo Molnar 已提交
6708
#endif
L
Linus Torvalds 已提交
6709

I
Ingo Molnar 已提交
6710 6711
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6712
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6713
		rq->sd = NULL;
L
Linus Torvalds 已提交
6714
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6715
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6716
		rq->push_cpu = 0;
6717
		rq->cpu = i;
L
Linus Torvalds 已提交
6718 6719 6720 6721 6722
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6723 6724 6725 6726
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6727
		}
6728
		highest_cpu = i;
I
Ingo Molnar 已提交
6729 6730
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6731 6732
	}

6733
	set_load_weight(&init_task);
6734

6735 6736 6737 6738
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6739
#ifdef CONFIG_SMP
6740
	nr_cpu_ids = highest_cpu + 1;
6741 6742 6743
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6744 6745 6746 6747
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6761 6762 6763 6764
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6765 6766 6767 6768 6769
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6770
#ifdef in_atomic
L
Linus Torvalds 已提交
6771 6772 6773 6774 6775 6776 6777
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6778
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6779 6780 6781
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6782
		debug_show_held_locks(current);
6783 6784
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6785 6786 6787 6788 6789 6790 6791 6792
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6807 6808
void normalize_rt_tasks(void)
{
6809
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6810
	unsigned long flags;
6811
	struct rq *rq;
L
Linus Torvalds 已提交
6812 6813

	read_lock_irq(&tasklist_lock);
6814
	do_each_thread(g, p) {
6815 6816 6817 6818 6819 6820
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6821 6822
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6823 6824 6825
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6826
#endif
I
Ingo Molnar 已提交
6827 6828 6829 6830 6831 6832 6833 6834 6835
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6836
			continue;
I
Ingo Molnar 已提交
6837
		}
L
Linus Torvalds 已提交
6838

6839 6840
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6841

6842
		normalize_task(rq, p);
6843

6844 6845
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6846 6847
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6848 6849 6850 6851
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6870
struct task_struct *curr_task(int cpu)
6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6890
void set_curr_task(int cpu, struct task_struct *p)
6891 6892 6893 6894 6895
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6896 6897 6898 6899

#ifdef CONFIG_FAIR_GROUP_SCHED

/* allocate runqueue etc for a new task group */
6900
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
6901
{
6902
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6903 6904
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
6905
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
6906 6907 6908 6909 6910 6911
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6912
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6913 6914
	if (!tg->cfs_rq)
		goto err;
6915
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6916 6917 6918 6919
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
6920
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

6947 6948 6949 6950 6951
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
S
Srivatsa Vaddagiri 已提交
6952

6953
	tg->shares = NICE_0_LOAD;
6954
	spin_lock_init(&tg->lock);
S
Srivatsa Vaddagiri 已提交
6955

6956
	return tg;
S
Srivatsa Vaddagiri 已提交
6957 6958 6959

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6960
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
6961
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
6962
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
6963 6964
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
6965 6966 6967
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
6968 6969 6970 6971

	return ERR_PTR(-ENOMEM);
}

6972 6973
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6974
{
6975
	struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6976
	struct task_group *tg = cfs_rq->tg;
S
Srivatsa Vaddagiri 已提交
6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

6994
/* Destroy runqueue etc associated with a task group */
6995
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6996
{
6997 6998
	struct cfs_rq *cfs_rq;
	int i;
S
Srivatsa Vaddagiri 已提交
6999

7000 7001 7002 7003 7004 7005 7006 7007 7008
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	cfs_rq = tg->cfs_rq[0];

	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&cfs_rq->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
7009 7010
}

7011
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7012 7013 7014
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7015 7016
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	if (tsk->sched_class != &fair_sched_class)
		goto done;

	update_rq_clock(rq);

	running = task_running(rq, tsk);
	on_rq = tsk->se.on_rq;

7032
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7033
		dequeue_task(rq, tsk, 0);
7034 7035 7036
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7037 7038 7039

	set_task_cfs_rq(tsk);

7040 7041 7042
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7043
		enqueue_task(rq, tsk, 0);
7044
	}
S
Srivatsa Vaddagiri 已提交
7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

7071
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7072 7073 7074
{
	int i;

7075
	spin_lock(&tg->lock);
7076
	if (tg->shares == shares)
7077
		goto done;
S
Srivatsa Vaddagiri 已提交
7078

7079
	tg->shares = shares;
S
Srivatsa Vaddagiri 已提交
7080
	for_each_possible_cpu(i)
7081
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
7082

7083 7084
done:
	spin_unlock(&tg->lock);
7085
	return 0;
S
Srivatsa Vaddagiri 已提交
7086 7087
}

7088 7089 7090 7091 7092
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
7093
#endif	/* CONFIG_FAIR_GROUP_SCHED */