sched.c 164.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
L
Linus Torvalds 已提交
64

65
#include <asm/tlb.h>
L
Linus Torvalds 已提交
66

67 68 69 70 71 72 73 74 75 76
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
101 102 103
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
104 105 106 107 108 109 110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
135 136 137
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

138
/*
I
Ingo Molnar 已提交
139
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 141
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
142
static unsigned int static_prio_timeslice(int static_prio)
143
{
I
Ingo Molnar 已提交
144 145 146 147 148 149 150
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
165
/*
I
Ingo Molnar 已提交
166
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
167
 */
I
Ingo Molnar 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
	u64 load_update_start, load_update_last;
	unsigned long delta_fair, delta_exec, delta_stat;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
210

I
Ingo Molnar 已提交
211 212 213 214 215 216 217
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
218 219 220 221 222 223 224
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
225
struct rq {
I
Ingo Molnar 已提交
226
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
227 228 229 230 231 232

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
233 234
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235
	unsigned char idle_at_tick;
236 237 238
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
239 240 241 242 243 244 245
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
246
#endif
I
Ingo Molnar 已提交
247
	struct rt_rq  rt;
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

257
	struct task_struct *curr, *idle;
258
	unsigned long next_balance;
L
Linus Torvalds 已提交
259
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
260 261 262 263 264 265 266

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
	unsigned int clock_unstable_events;

L
Linus Torvalds 已提交
267 268 269 270 271 272 273 274
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
275
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
276

277
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
300
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
301 302
};

303
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
304
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
305

I
Ingo Molnar 已提交
306 307 308 309 310
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

311 312 313 314 315 316 317 318 319
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
/*
 * Per-runqueue clock, as finegrained as the platform can give us:
 */
static unsigned long long __rq_clock(struct rq *rq)
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
		if (unlikely(delta > 2*TICK_NSEC)) {
			clock++;
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;

	return clock;
}

static inline unsigned long long rq_clock(struct rq *rq)
{
	int this_cpu = smp_processor_id();

	if (this_cpu == cpu_of(rq))
		return __rq_clock(rq);

	return rq->clock;
}

N
Nick Piggin 已提交
366 367
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
368
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
369 370 371 372
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
373 374
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
375 376 377 378 379 380

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

381 382 383 384 385 386 387 388 389
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;

390 391 392
	local_irq_save(flags);
	now = rq_clock(cpu_rq(cpu));
	local_irq_restore(flags);
393 394 395 396

	return now;
}

I
Ingo Molnar 已提交
397 398 399 400 401 402 403 404 405 406 407 408
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
409
#ifndef prepare_arch_switch
410 411 412 413 414 415 416
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
417
static inline int task_running(struct rq *rq, struct task_struct *p)
418 419 420 421
{
	return rq->curr == p;
}

422
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
423 424 425
{
}

426
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
427
{
428 429 430 431
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
432 433 434 435 436 437 438
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

439 440 441 442
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
443
static inline int task_running(struct rq *rq, struct task_struct *p)
444 445 446 447 448 449 450 451
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

452
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

469
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
470 471 472 473 474 475 476 477 478 479 480 481
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
482
#endif
483 484
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
485

486 487 488 489
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
490
static inline struct rq *__task_rq_lock(struct task_struct *p)
491 492
	__acquires(rq->lock)
{
493
	struct rq *rq;
494 495 496 497 498 499 500 501 502 503 504

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
505 506 507 508 509
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
510
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
511 512
	__acquires(rq->lock)
{
513
	struct rq *rq;
L
Linus Torvalds 已提交
514 515 516 517 518 519 520 521 522 523 524 525

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

526
static inline void __task_rq_unlock(struct rq *rq)
527 528 529 530 531
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

532
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
533 534 535 536 537 538
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
539
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
540
 */
541
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
542 543
	__acquires(rq->lock)
{
544
	struct rq *rq;
L
Linus Torvalds 已提交
545 546 547 548 549 550 551 552

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

553 554 555 556 557 558 559 560 561 562 563 564 565 566
/*
 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
 */
void sched_clock_unstable_event(void)
{
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(current, &flags);
	rq->prev_clock_raw = sched_clock();
	rq->clock_unstable_events++;
	task_rq_unlock(rq, &flags);
}

I
Ingo Molnar 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
static u64 div64_likely32(u64 divident, unsigned long divisor)
{
#if BITS_PER_LONG == 32
	if (likely(divident <= 0xffffffffULL))
		return (u32)divident / divisor;
	do_div(divident, divisor);

	return divident;
#else
	return divident / divisor;
#endif
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

static inline unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
		lw->inv_weight = WMULT_CONST / lw->weight;

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST)) {
		tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
				>> (WMULT_SHIFT/2);
	} else {
		tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
	}

660
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

static void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static void __update_curr_load(struct rq *rq, struct load_stat *ls)
{
	if (rq->curr != rq->idle && ls->load.weight) {
		ls->delta_exec += ls->delta_stat;
		ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
		ls->delta_stat = 0;
	}
}

/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
 * total load (rq->ls.load.weight) on the runqueue, while
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
 * This function is called /before/ updating rq->ls.load
 * and when switching tasks.
 */
static void update_curr_load(struct rq *rq, u64 now)
{
	struct load_stat *ls = &rq->ls;
	u64 start;

	start = ls->load_update_start;
	ls->load_update_start = now;
	ls->delta_stat += now - start;
	/*
	 * Stagger updates to ls->delta_fair. Very frequent updates
	 * can be expensive.
	 */
	if (ls->delta_stat >= sysctl_sched_stat_granularity)
		__update_curr_load(rq, ls);
}

721 722 723 724 725 726 727 728 729
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
730 731 732 733 734 735 736 737 738 739 740
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
741 742 743
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
744 745 746 747 748 749 750 751 752
 */
static const int prio_to_weight[40] = {
/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
/* -10 */  9537,  7629,  6103,  4883,  3906,  3125,  2500,  2000,  1600,  1280,
/*   0 */  NICE_0_LOAD /* 1024 */,
/*   1 */          819,   655,   524,   419,   336,   268,   215,   172,   137,
/*  10 */   110,    87,    70,    56,    45,    36,    29,    23,    18,    15,
};

753 754 755 756 757 758 759
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
760
static const u32 prio_to_wmult[40] = {
761 762 763 764 765 766 767 768
/* -20 */     48356,     60446,     75558,     94446,    118058,
/* -15 */    147573,    184467,    230589,    288233,    360285,
/* -10 */    450347,    562979,    703746,    879575,   1099582,
/*  -5 */   1374389,   1717986,   2147483,   2684354,   3355443,
/*   0 */   4194304,   5244160,   6557201,   8196502,  10250518,
/*   5 */  12782640,  16025997,  19976592,  24970740,  31350126,
/*  10 */  39045157,  49367440,  61356675,  76695844,  95443717,
/*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
769
};
770

771
static inline void
I
Ingo Molnar 已提交
772
inc_load(struct rq *rq, const struct task_struct *p, u64 now)
773
{
I
Ingo Molnar 已提交
774 775
	update_curr_load(rq, now);
	update_load_add(&rq->ls.load, p->se.load.weight);
776 777
}

778
static inline void
I
Ingo Molnar 已提交
779
dec_load(struct rq *rq, const struct task_struct *p, u64 now)
780
{
I
Ingo Molnar 已提交
781 782
	update_curr_load(rq, now);
	update_load_sub(&rq->ls.load, p->se.load.weight);
783 784
}

I
Ingo Molnar 已提交
785
static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
786 787
{
	rq->nr_running++;
I
Ingo Molnar 已提交
788
	inc_load(rq, p, now);
789 790
}

I
Ingo Molnar 已提交
791
static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
792 793
{
	rq->nr_running--;
I
Ingo Molnar 已提交
794
	dec_load(rq, p, now);
795 796
}

I
Ingo Molnar 已提交
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator);

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

827 828
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
829 830 831
	task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
	p->se.wait_runtime = 0;

832
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
833 834 835 836
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
837

I
Ingo Molnar 已提交
838 839 840 841 842 843 844 845
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
846

I
Ingo Molnar 已提交
847 848
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
849 850
}

I
Ingo Molnar 已提交
851 852
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
853
{
I
Ingo Molnar 已提交
854 855 856
	sched_info_queued(p);
	p->sched_class->enqueue_task(rq, p, wakeup, now);
	p->se.on_rq = 1;
857 858
}

I
Ingo Molnar 已提交
859 860
static void
dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
861
{
I
Ingo Molnar 已提交
862 863
	p->sched_class->dequeue_task(rq, p, sleep, now);
	p->se.on_rq = 0;
864 865
}

866
/*
I
Ingo Molnar 已提交
867
 * __normal_prio - return the priority that is based on the static prio
868 869 870
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
871
	return p->static_prio;
872 873
}

874 875 876 877 878 879 880
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
881
static inline int normal_prio(struct task_struct *p)
882 883 884
{
	int prio;

885
	if (task_has_rt_policy(p))
886 887 888 889 890 891 892 893 894 895 896 897 898
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
899
static int effective_prio(struct task_struct *p)
900 901 902 903 904 905 906 907 908 909 910 911
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
912
/*
I
Ingo Molnar 已提交
913
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
914
 */
I
Ingo Molnar 已提交
915
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
916
{
I
Ingo Molnar 已提交
917
	u64 now = rq_clock(rq);
918

I
Ingo Molnar 已提交
919 920
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
921

I
Ingo Molnar 已提交
922 923
	enqueue_task(rq, p, wakeup, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
924 925 926
}

/*
I
Ingo Molnar 已提交
927
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
928
 */
I
Ingo Molnar 已提交
929
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
930
{
I
Ingo Molnar 已提交
931
	u64 now = rq_clock(rq);
L
Linus Torvalds 已提交
932

I
Ingo Molnar 已提交
933 934
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
935

I
Ingo Molnar 已提交
936 937
	enqueue_task(rq, p, 0, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
938 939 940 941 942
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
I
Ingo Molnar 已提交
943
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
944
{
I
Ingo Molnar 已提交
945 946 947 948 949 950 951
	u64 now = rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep, now);
	dec_nr_running(p, rq, now);
L
Linus Torvalds 已提交
952 953 954 955 956 957
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
958
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
959 960 961 962
{
	return cpu_curr(task_cpu(p)) == p;
}

963 964 965
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
I
Ingo Molnar 已提交
966 967 968 969 970 971 972 973 974
	return cpu_rq(cpu)->ls.load.weight;
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
975 976
}

L
Linus Torvalds 已提交
977
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
978

I
Ingo Molnar 已提交
979
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
980
{
I
Ingo Molnar 已提交
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
	u64 clock_offset, fair_clock_offset;

	clock_offset = old_rq->clock - new_rq->clock;
	fair_clock_offset = old_rq->cfs.fair_clock -
						 new_rq->cfs.fair_clock;
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
	if (p->se.wait_start_fair)
		p->se.wait_start_fair -= fair_clock_offset;
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
	if (p->se.sleep_start_fair)
		p->se.sleep_start_fair -= fair_clock_offset;

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1000 1001
}

1002
struct migration_req {
L
Linus Torvalds 已提交
1003 1004
	struct list_head list;

1005
	struct task_struct *task;
L
Linus Torvalds 已提交
1006 1007 1008
	int dest_cpu;

	struct completion done;
1009
};
L
Linus Torvalds 已提交
1010 1011 1012 1013 1014

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1015
static int
1016
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1017
{
1018
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1019 1020 1021 1022 1023

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1024
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1025 1026 1027 1028 1029 1030 1031 1032
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1033

L
Linus Torvalds 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1046
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1047 1048
{
	unsigned long flags;
I
Ingo Molnar 已提交
1049
	int running, on_rq;
1050
	struct rq *rq;
L
Linus Torvalds 已提交
1051 1052

repeat:
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1080
	rq = task_rq_lock(p, &flags);
1081
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1082
	on_rq = p->se.on_rq;
1083 1084 1085 1086 1087 1088 1089 1090 1091
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1092 1093 1094
		cpu_relax();
		goto repeat;
	}
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1105
	if (unlikely(on_rq)) {
1106 1107 1108 1109 1110 1111 1112 1113 1114
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1130
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1142 1143
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1144 1145 1146 1147
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1148
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1149
{
1150
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1151
	unsigned long total = weighted_cpuload(cpu);
1152

1153
	if (type == 0)
I
Ingo Molnar 已提交
1154
		return total;
1155

I
Ingo Molnar 已提交
1156
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1157 1158 1159
}

/*
1160 1161
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1162
 */
N
Nick Piggin 已提交
1163
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1164
{
1165
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1166
	unsigned long total = weighted_cpuload(cpu);
1167

N
Nick Piggin 已提交
1168
	if (type == 0)
I
Ingo Molnar 已提交
1169
		return total;
1170

I
Ingo Molnar 已提交
1171
	return max(rq->cpu_load[type-1], total);
1172 1173 1174 1175 1176 1177 1178
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1179
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1180
	unsigned long total = weighted_cpuload(cpu);
1181 1182
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1183
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1184 1185
}

N
Nick Piggin 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1203 1204 1205 1206
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1223 1224
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1225 1226 1227 1228 1229 1230 1231 1232

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1233
nextgroup:
N
Nick Piggin 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1243
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1244
 */
I
Ingo Molnar 已提交
1245 1246
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1247
{
1248
	cpumask_t tmp;
N
Nick Piggin 已提交
1249 1250 1251 1252
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1253 1254 1255 1256
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1257
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1283

1284
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1285 1286 1287
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1288 1289
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1290 1291
		if (tmp->flags & flag)
			sd = tmp;
1292
	}
N
Nick Piggin 已提交
1293 1294 1295 1296

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1297 1298 1299 1300 1301 1302
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1303 1304 1305

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1306 1307 1308 1309
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1310

1311
		new_cpu = find_idlest_cpu(group, t, cpu);
1312 1313 1314 1315 1316
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1317

1318
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1345
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1346 1347 1348 1349 1350
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1361 1362 1363 1364
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1365
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1366 1367 1368 1369
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1370
		} else {
N
Nick Piggin 已提交
1371
			break;
I
Ingo Molnar 已提交
1372
		}
L
Linus Torvalds 已提交
1373 1374 1375 1376
	}
	return cpu;
}
#else
1377
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1397
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1398 1399 1400 1401
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1402
	struct rq *rq;
L
Linus Torvalds 已提交
1403
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1404
	struct sched_domain *sd, *this_sd = NULL;
1405
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1406 1407 1408 1409 1410 1411 1412 1413
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1414
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1424 1425
	new_cpu = cpu;

L
Linus Torvalds 已提交
1426 1427 1428
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1429 1430 1431 1432 1433 1434 1435 1436
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1437 1438 1439
		}
	}

N
Nick Piggin 已提交
1440
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1441 1442 1443
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1444
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1445
	 */
N
Nick Piggin 已提交
1446 1447 1448
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1449

1450 1451
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1452 1453
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1454

N
Nick Piggin 已提交
1455 1456
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1457 1458
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1459 1460 1461
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1462

L
Linus Torvalds 已提交
1463
			/*
1464 1465 1466
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1467
			 */
1468
			if (sync)
I
Ingo Molnar 已提交
1469
				tl -= current->se.load.weight;
1470 1471

			if ((tl <= load &&
1472
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1473
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1507
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1508 1509 1510 1511 1512 1513 1514 1515
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1516
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1517 1518 1519 1520 1521 1522 1523 1524
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1525 1526
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1537
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1538 1539 1540 1541 1542 1543
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1544
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1545 1546 1547 1548 1549 1550 1551
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.wait_start_fair		= 0;
	p->se.wait_start		= 0;
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
	p->se.delta_exec		= 0;
	p->se.delta_fair_run		= 0;
	p->se.delta_fair_sleep		= 0;
	p->se.wait_runtime		= 0;
	p->se.sum_wait_runtime		= 0;
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.sleep_start_fair		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
	p->se.wait_max			= 0;
	p->se.wait_runtime_overruns	= 0;
	p->se.wait_runtime_underruns	= 0;
N
Nick Piggin 已提交
1576

I
Ingo Molnar 已提交
1577 1578
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1579

1580 1581 1582 1583
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1584 1585 1586 1587 1588 1589 1590
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1606 1607 1608 1609 1610 1611

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1612
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1613
	if (likely(sched_info_on()))
1614
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1615
#endif
1616
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1617 1618
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1619
#ifdef CONFIG_PREEMPT
1620
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1621
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1622
#endif
N
Nick Piggin 已提交
1623
	put_cpu();
L
Linus Torvalds 已提交
1624 1625
}

I
Ingo Molnar 已提交
1626 1627 1628 1629 1630 1631
/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
unsigned int __read_mostly sysctl_sched_child_runs_first = 1;

L
Linus Torvalds 已提交
1632 1633 1634 1635 1636 1637 1638
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1639
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1640 1641
{
	unsigned long flags;
I
Ingo Molnar 已提交
1642 1643
	struct rq *rq;
	int this_cpu;
L
Linus Torvalds 已提交
1644 1645

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1646
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1647
	this_cpu = smp_processor_id(); /* parent's CPU */
L
Linus Torvalds 已提交
1648 1649 1650

	p->prio = effective_prio(p);

I
Ingo Molnar 已提交
1651 1652 1653
	if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
			task_cpu(p) != this_cpu || !current->se.on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1654 1655
	} else {
		/*
I
Ingo Molnar 已提交
1656 1657
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1658
		 */
I
Ingo Molnar 已提交
1659
		p->sched_class->task_new(rq, p);
L
Linus Torvalds 已提交
1660
	}
I
Ingo Molnar 已提交
1661 1662
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1663 1664
}

1665 1666 1667
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1668 1669
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1670 1671 1672 1673 1674 1675 1676 1677 1678
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1679
 * @notifier: notifier struct to unregister
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1723 1724 1725
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1726
 * @prev: the current task that is being switched out
1727 1728 1729 1730 1731 1732 1733 1734 1735
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1736 1737 1738
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1739
{
1740
	fire_sched_out_preempt_notifiers(prev, next);
1741 1742 1743 1744
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1745 1746
/**
 * finish_task_switch - clean up after a task-switch
1747
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1748 1749
 * @prev: the thread we just switched away from.
 *
1750 1751 1752 1753
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1754 1755 1756 1757 1758 1759
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1760
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1761 1762 1763
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1764
	long prev_state;
L
Linus Torvalds 已提交
1765 1766 1767 1768 1769

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1770
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1771 1772
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1773
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1774 1775 1776 1777 1778
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1779
	prev_state = prev->state;
1780 1781
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1782
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1783 1784
	if (mm)
		mmdrop(mm);
1785
	if (unlikely(prev_state == TASK_DEAD)) {
1786 1787 1788
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1789
		 */
1790
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1791
		put_task_struct(prev);
1792
	}
L
Linus Torvalds 已提交
1793 1794 1795 1796 1797 1798
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1799
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1800 1801
	__releases(rq->lock)
{
1802 1803
	struct rq *rq = this_rq();

1804 1805 1806 1807 1808
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1809 1810 1811 1812 1813 1814 1815 1816
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1817
static inline void
1818
context_switch(struct rq *rq, struct task_struct *prev,
1819
	       struct task_struct *next)
L
Linus Torvalds 已提交
1820
{
I
Ingo Molnar 已提交
1821
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1822

1823
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1824 1825
	mm = next->mm;
	oldmm = prev->active_mm;
1826 1827 1828 1829 1830 1831 1832
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1833
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1834 1835 1836 1837 1838 1839
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1840
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1841 1842 1843
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1844 1845 1846 1847 1848 1849 1850
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1851
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1852
#endif
L
Linus Torvalds 已提交
1853 1854 1855 1856

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1857 1858 1859 1860 1861 1862 1863
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1887
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1902 1903
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1904

1905
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1906 1907 1908 1909 1910 1911 1912 1913 1914
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1915
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1916 1917 1918 1919 1920
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1936
/*
I
Ingo Molnar 已提交
1937 1938
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1939
 */
I
Ingo Molnar 已提交
1940
static void update_cpu_load(struct rq *this_rq)
1941
{
I
Ingo Molnar 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
	u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
	unsigned long total_load = this_rq->ls.load.weight;
	unsigned long this_load =  total_load;
	struct load_stat *ls = &this_rq->ls;
	u64 now = __rq_clock(this_rq);
	int i, scale;

	this_rq->nr_load_updates++;
	if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
		goto do_avg;

	/* Update delta_fair/delta_exec fields first */
	update_curr_load(this_rq, now);

	fair_delta64 = ls->delta_fair + 1;
	ls->delta_fair = 0;

	exec_delta64 = ls->delta_exec + 1;
	ls->delta_exec = 0;

	sample_interval64 = now - ls->load_update_last;
	ls->load_update_last = now;

	if ((s64)sample_interval64 < (s64)TICK_NSEC)
		sample_interval64 = TICK_NSEC;

	if (exec_delta64 > sample_interval64)
		exec_delta64 = sample_interval64;

	idle_delta64 = sample_interval64 - exec_delta64;

	tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
	tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);

	this_load = (unsigned long)tmp64;

do_avg:

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;

		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
1991 1992
}

I
Ingo Molnar 已提交
1993 1994
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
1995 1996 1997 1998 1999 2000
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2001
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2002 2003 2004
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2005
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2006 2007 2008 2009
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2010
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2026
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2040
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2041 2042 2043 2044
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2045 2046 2047 2048 2049
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2050
	if (unlikely(!spin_trylock(&busiest->lock))) {
2051
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2066
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2067
{
2068
	struct migration_req req;
L
Linus Torvalds 已提交
2069
	unsigned long flags;
2070
	struct rq *rq;
L
Linus Torvalds 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2081

L
Linus Torvalds 已提交
2082 2083 2084 2085 2086
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2087

L
Linus Torvalds 已提交
2088 2089 2090 2091 2092 2093 2094
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2095 2096
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2097 2098 2099 2100
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2101
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2102
	put_cpu();
N
Nick Piggin 已提交
2103 2104
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2105 2106 2107 2108 2109 2110
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2111 2112
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2113
{
I
Ingo Molnar 已提交
2114
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2115
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2116
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2117 2118 2119 2120
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2121
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2122 2123 2124 2125 2126
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2127
static
2128
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2129
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2130
		     int *all_pinned)
L
Linus Torvalds 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2140 2141 2142 2143
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2144 2145

	/*
I
Ingo Molnar 已提交
2146
	 * Aggressive migration if too many balance attempts have failed:
L
Linus Torvalds 已提交
2147
	 */
I
Ingo Molnar 已提交
2148
	if (sd->nr_balance_failed > sd->cache_nice_tries)
L
Linus Torvalds 已提交
2149 2150 2151 2152 2153
		return 1;

	return 1;
}

I
Ingo Molnar 已提交
2154
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2155
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2156
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2157 2158 2159
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2160
{
I
Ingo Molnar 已提交
2161 2162 2163
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2164

2165
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2166 2167
		goto out;

2168 2169
	pinned = 1;

L
Linus Torvalds 已提交
2170
	/*
I
Ingo Molnar 已提交
2171
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2172
	 */
I
Ingo Molnar 已提交
2173 2174 2175
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2176
		goto out;
2177 2178 2179 2180 2181
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2182 2183 2184 2185
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
	if (skip_for_load && p->prio < this_best_prio)
		skip_for_load = !best_prio_seen && p->prio == best_prio;
2186
	if (skip_for_load ||
I
Ingo Molnar 已提交
2187
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2188

I
Ingo Molnar 已提交
2189 2190 2191
		best_prio_seen |= p->prio == best_prio;
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2192 2193
	}

I
Ingo Molnar 已提交
2194
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2195
	pulled++;
I
Ingo Molnar 已提交
2196
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2197

2198 2199 2200 2201 2202
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
I
Ingo Molnar 已提交
2203 2204 2205 2206
		if (p->prio < this_best_prio)
			this_best_prio = p->prio;
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2207 2208 2209 2210 2211 2212 2213 2214
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2215 2216 2217

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2218
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2219 2220 2221
	return pulled;
}

I
Ingo Molnar 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
/*
 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
 * load from busiest to this_rq, as part of a balancing operation within
 * "domain". Returns the number of tasks moved.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;

	do {
		nr_moved = class->load_balance(this_rq, this_cpu, busiest,
				max_nr_move, (unsigned long)rem_load_move,
				sd, idle, all_pinned, &load_moved);
		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;
		class = class->next;
	} while (class && max_nr_move && rem_load_move > 0);

	return total_nr_moved;
}

L
Linus Torvalds 已提交
2251 2252
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2253 2254
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2255 2256 2257
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2258 2259
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2260 2261 2262
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2263
	unsigned long max_pull;
2264 2265
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2266
	int load_idx;
2267 2268 2269 2270 2271 2272
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2273 2274

	max_load = this_load = total_load = total_pwr = 0;
2275 2276
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2277
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2278
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2279
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2280 2281 2282
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2283 2284

	do {
2285
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2286 2287
		int local_group;
		int i;
2288
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2289
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2290 2291 2292

		local_group = cpu_isset(this_cpu, group->cpumask);

2293 2294 2295
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2296
		/* Tally up the load of all CPUs in the group */
2297
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2298 2299

		for_each_cpu_mask(i, group->cpumask) {
2300 2301 2302 2303 2304 2305
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2306

2307
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2308 2309
				*sd_idle = 0;

L
Linus Torvalds 已提交
2310
			/* Bias balancing toward cpus of our domain */
2311 2312 2313 2314 2315 2316
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2317
				load = target_load(i, load_idx);
2318
			} else
N
Nick Piggin 已提交
2319
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2320 2321

			avg_load += load;
2322
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2323
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2324 2325
		}

2326 2327 2328
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2329 2330
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2331
		 */
2332 2333
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2334 2335 2336 2337
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2338
		total_load += avg_load;
2339
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2340 2341

		/* Adjust by relative CPU power of the group */
2342 2343
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2344

2345
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2346

L
Linus Torvalds 已提交
2347 2348 2349
		if (local_group) {
			this_load = avg_load;
			this = group;
2350 2351 2352
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2353
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2354 2355
			max_load = avg_load;
			busiest = group;
2356 2357
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2358
		}
2359 2360 2361 2362 2363 2364

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2365 2366 2367
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2368 2369 2370 2371 2372 2373 2374 2375 2376

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2377
		/*
2378 2379
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2380 2381
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2382
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2383
			goto group_next;
2384

I
Ingo Molnar 已提交
2385
		/*
2386
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2387 2388 2389 2390 2391
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2392 2393
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2394 2395
			group_min = group;
			min_nr_running = sum_nr_running;
2396 2397
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2398
		}
2399

I
Ingo Molnar 已提交
2400
		/*
2401
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2413
		}
2414 2415
group_next:
#endif
L
Linus Torvalds 已提交
2416 2417 2418
		group = group->next;
	} while (group != sd->groups);

2419
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2420 2421 2422 2423 2424 2425 2426 2427
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2428
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2452 2453

	/* Don't want to pull so many tasks that a group would go idle */
2454
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2455

L
Linus Torvalds 已提交
2456
	/* How much load to actually move to equalise the imbalance */
2457 2458
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2459 2460
			/ SCHED_LOAD_SCALE;

2461 2462 2463 2464 2465 2466
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
I
Ingo Molnar 已提交
2467
	if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2468
		unsigned long tmp, pwr_now, pwr_move;
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2480

I
Ingo Molnar 已提交
2481 2482
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2483
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2493 2494 2495 2496
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2497 2498 2499
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2500 2501
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2502
		if (max_load > tmp)
2503
			pwr_move += busiest->__cpu_power *
2504
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2505 2506

		/* Amount of load we'd add */
2507
		if (max_load * busiest->__cpu_power <
2508
				busiest_load_per_task * SCHED_LOAD_SCALE)
2509 2510
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2511
		else
2512 2513 2514 2515
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2516 2517 2518 2519 2520 2521
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2522
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2523 2524 2525 2526 2527
	}

	return busiest;

out_balanced:
2528
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2529
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2530
		goto ret;
L
Linus Torvalds 已提交
2531

2532 2533 2534 2535 2536
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2537
ret:
L
Linus Torvalds 已提交
2538 2539 2540 2541 2542 2543 2544
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2545
static struct rq *
I
Ingo Molnar 已提交
2546
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2547
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2548
{
2549
	struct rq *busiest = NULL, *rq;
2550
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2551 2552 2553
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2554
		unsigned long wl;
2555 2556 2557 2558

		if (!cpu_isset(i, *cpus))
			continue;

2559
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2560
		wl = weighted_cpuload(i);
2561

I
Ingo Molnar 已提交
2562
		if (rq->nr_running == 1 && wl > imbalance)
2563
			continue;
L
Linus Torvalds 已提交
2564

I
Ingo Molnar 已提交
2565 2566
		if (wl > max_load) {
			max_load = wl;
2567
			busiest = rq;
L
Linus Torvalds 已提交
2568 2569 2570 2571 2572 2573
		}
	}

	return busiest;
}

2574 2575 2576 2577 2578 2579
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

2580 2581 2582 2583 2584
static inline unsigned long minus_1_or_zero(unsigned long n)
{
	return n > 0 ? n - 1 : 0;
}

L
Linus Torvalds 已提交
2585 2586 2587 2588
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2589
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2590
			struct sched_domain *sd, enum cpu_idle_type idle,
2591
			int *balance)
L
Linus Torvalds 已提交
2592
{
2593
	int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2594 2595
	struct sched_group *group;
	unsigned long imbalance;
2596
	struct rq *busiest;
2597
	cpumask_t cpus = CPU_MASK_ALL;
2598
	unsigned long flags;
N
Nick Piggin 已提交
2599

2600 2601 2602
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2603
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2604
	 * portraying it as CPU_NOT_IDLE.
2605
	 */
I
Ingo Molnar 已提交
2606
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2607
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2608
		sd_idle = 1;
L
Linus Torvalds 已提交
2609 2610 2611

	schedstat_inc(sd, lb_cnt[idle]);

2612 2613
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2614 2615
				   &cpus, balance);

2616
	if (*balance == 0)
2617 2618
		goto out_balanced;

L
Linus Torvalds 已提交
2619 2620 2621 2622 2623
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2624
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2625 2626 2627 2628 2629
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2630
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. nr_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
2642
		local_irq_save(flags);
N
Nick Piggin 已提交
2643
		double_rq_lock(this_rq, busiest);
L
Linus Torvalds 已提交
2644
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2645 2646
				      minus_1_or_zero(busiest->nr_running),
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2647
		double_rq_unlock(this_rq, busiest);
2648
		local_irq_restore(flags);
2649

2650 2651 2652 2653 2654 2655
		/*
		 * some other cpu did the load balance for us.
		 */
		if (nr_moved && this_cpu != smp_processor_id())
			resched_cpu(this_cpu);

2656
		/* All tasks on this runqueue were pinned by CPU affinity */
2657 2658 2659 2660
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2661
			goto out_balanced;
2662
		}
L
Linus Torvalds 已提交
2663
	}
2664

L
Linus Torvalds 已提交
2665 2666 2667 2668 2669 2670
	if (!nr_moved) {
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2671
			spin_lock_irqsave(&busiest->lock, flags);
2672 2673 2674 2675 2676

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2677
				spin_unlock_irqrestore(&busiest->lock, flags);
2678 2679 2680 2681
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2682 2683 2684
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2685
				active_balance = 1;
L
Linus Torvalds 已提交
2686
			}
2687
			spin_unlock_irqrestore(&busiest->lock, flags);
2688
			if (active_balance)
L
Linus Torvalds 已提交
2689 2690 2691 2692 2693 2694
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2695
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2696
		}
2697
	} else
L
Linus Torvalds 已提交
2698 2699
		sd->nr_balance_failed = 0;

2700
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2701 2702
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2703 2704 2705 2706 2707 2708 2709 2710 2711
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2712 2713
	}

2714
	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2715
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2716
		return -1;
L
Linus Torvalds 已提交
2717 2718 2719 2720 2721
	return nr_moved;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2722
	sd->nr_balance_failed = 0;
2723 2724

out_one_pinned:
L
Linus Torvalds 已提交
2725
	/* tune up the balancing interval */
2726 2727
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2728 2729
		sd->balance_interval *= 2;

2730
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2731
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2732
		return -1;
L
Linus Torvalds 已提交
2733 2734 2735 2736 2737 2738 2739
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2740
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2741 2742
 * this_rq is locked.
 */
2743
static int
2744
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2745 2746
{
	struct sched_group *group;
2747
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2748 2749
	unsigned long imbalance;
	int nr_moved = 0;
N
Nick Piggin 已提交
2750
	int sd_idle = 0;
2751
	int all_pinned = 0;
2752
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2753

2754 2755 2756 2757
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2758
	 * portraying it as CPU_NOT_IDLE.
2759 2760 2761
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2762
		sd_idle = 1;
L
Linus Torvalds 已提交
2763

I
Ingo Molnar 已提交
2764
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2765
redo:
I
Ingo Molnar 已提交
2766
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2767
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2768
	if (!group) {
I
Ingo Molnar 已提交
2769
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2770
		goto out_balanced;
L
Linus Torvalds 已提交
2771 2772
	}

I
Ingo Molnar 已提交
2773
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2774
				&cpus);
N
Nick Piggin 已提交
2775
	if (!busiest) {
I
Ingo Molnar 已提交
2776
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2777
		goto out_balanced;
L
Linus Torvalds 已提交
2778 2779
	}

N
Nick Piggin 已提交
2780 2781
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2782
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2783 2784 2785 2786 2787 2788

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2789
					minus_1_or_zero(busiest->nr_running),
2790 2791
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2792
		spin_unlock(&busiest->lock);
2793

2794
		if (unlikely(all_pinned)) {
2795 2796 2797 2798
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2799 2800
	}

N
Nick Piggin 已提交
2801
	if (!nr_moved) {
I
Ingo Molnar 已提交
2802
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2803 2804
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2805 2806
			return -1;
	} else
2807
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2808 2809

	return nr_moved;
2810 2811

out_balanced:
I
Ingo Molnar 已提交
2812
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2813
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2814
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2815
		return -1;
2816
	sd->nr_balance_failed = 0;
2817

2818
	return 0;
L
Linus Torvalds 已提交
2819 2820 2821 2822 2823 2824
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2825
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2826 2827
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2828 2829
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2830 2831

	for_each_domain(this_cpu, sd) {
2832 2833 2834 2835 2836 2837
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2838
			/* If we've pulled tasks over stop searching: */
2839
			pulled_task = load_balance_newidle(this_cpu,
2840 2841 2842 2843 2844 2845 2846
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2847
	}
I
Ingo Molnar 已提交
2848
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2849 2850 2851 2852 2853
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2854
	}
L
Linus Torvalds 已提交
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2865
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2866
{
2867
	int target_cpu = busiest_rq->push_cpu;
2868 2869
	struct sched_domain *sd;
	struct rq *target_rq;
2870

2871
	/* Is there any task to move? */
2872 2873 2874 2875
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2876 2877

	/*
2878 2879 2880
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2881
	 */
2882
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2883

2884 2885 2886 2887
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2888
	for_each_domain(target_cpu, sd) {
2889
		if ((sd->flags & SD_LOAD_BALANCE) &&
2890
		    cpu_isset(busiest_cpu, sd->span))
2891
				break;
2892
	}
2893

2894 2895
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2896

2897
		if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2898
			       ULONG_MAX, sd, CPU_IDLE, NULL))
2899 2900 2901 2902
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2903
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2904 2905
}

2906 2907 2908 2909 2910 2911 2912 2913 2914
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2915
/*
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2926
 *
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
2983 2984 2985 2986 2987
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
2988
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
2989
{
2990 2991
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
2992 2993
	unsigned long interval;
	struct sched_domain *sd;
2994
	/* Earliest time when we have to do rebalance again */
2995
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
2996

2997
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
2998 2999 3000 3001
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3002
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3003 3004 3005 3006 3007 3008
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3009 3010 3011
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3012

3013 3014 3015 3016 3017
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3018
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3019
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3020 3021
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3022 3023 3024
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3025
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3026
			}
3027
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3028
		}
3029 3030 3031
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3032 3033
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
3034 3035 3036 3037 3038 3039 3040 3041

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3042
	}
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
	rq->next_balance = next_balance;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3053 3054 3055 3056
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3057

I
Ingo Molnar 已提交
3058
	rebalance_domains(this_cpu, idle);
3059 3060 3061 3062 3063 3064 3065

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3066 3067
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3068 3069 3070 3071
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3072
		cpu_clear(this_cpu, cpus);
3073 3074 3075 3076 3077 3078 3079 3080 3081
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

I
Ingo Molnar 已提交
3082
			rebalance_domains(balance_cpu, SCHED_IDLE);
3083 3084

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3085 3086
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3099
static inline void trigger_load_balance(struct rq *rq, int cpu)
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3151
}
I
Ingo Molnar 已提交
3152 3153 3154

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3155 3156 3157
/*
 * on UP we do not need to balance between CPUs:
 */
3158
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3159 3160
{
}
I
Ingo Molnar 已提交
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator)
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3175 3176 3177 3178 3179 3180 3181
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3182 3183
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3184
 */
3185
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3186 3187
{
	unsigned long flags;
3188 3189
	u64 ns, delta_exec;
	struct rq *rq;
3190

3191 3192 3193 3194 3195 3196 3197 3198
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
		delta_exec = rq_clock(rq) - p->se.exec_start;
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3199

L
Linus Torvalds 已提交
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3234
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3264
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3287 3288 3289 3290 3291 3292 3293
	struct task_struct *curr = rq->curr;

	spin_lock(&rq->lock);
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	update_cpu_load(rq);
	spin_unlock(&rq->lock);
3294

3295
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3296 3297
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3298
#endif
L
Linus Torvalds 已提交
3299 3300 3301 3302 3303 3304 3305 3306 3307
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3308 3309
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3310 3311 3312 3313
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3314 3315
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3316 3317 3318 3319 3320 3321 3322 3323
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3324 3325
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3326 3327 3328
	/*
	 * Is the spinlock portion underflowing?
	 */
3329 3330 3331 3332
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3333 3334 3335 3336 3337 3338 3339
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3340
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3341
 */
I
Ingo Molnar 已提交
3342
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3343
{
I
Ingo Molnar 已提交
3344 3345 3346 3347 3348 3349 3350
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3351

I
Ingo Molnar 已提交
3352 3353 3354 3355 3356
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3357 3358 3359 3360 3361
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3362 3363 3364
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3365 3366
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3378 3379

	/*
I
Ingo Molnar 已提交
3380 3381
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3382
	 */
I
Ingo Molnar 已提交
3383 3384 3385 3386
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
		p = fair_sched_class.pick_next_task(rq, now);
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3387 3388
	}

I
Ingo Molnar 已提交
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
	class = sched_class_highest;
	for ( ; ; ) {
		p = class->pick_next_task(rq, now);
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3401

I
Ingo Molnar 已提交
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	u64 now;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3425 3426

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3427
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3428 3429 3430

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3431
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3432
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3433 3434
		} else {
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3435
		}
I
Ingo Molnar 已提交
3436
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3437 3438
	}

I
Ingo Molnar 已提交
3439
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3440 3441
		idle_balance(cpu, rq);

I
Ingo Molnar 已提交
3442 3443 3444
	now = __rq_clock(rq);
	prev->sched_class->put_prev_task(rq, prev, now);
	next = pick_next_task(rq, prev, now);
L
Linus Torvalds 已提交
3445 3446

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3447

L
Linus Torvalds 已提交
3448 3449 3450 3451 3452
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3453
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3454 3455 3456
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3457 3458 3459
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3460
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3461
	}
L
Linus Torvalds 已提交
3462 3463 3464 3465 3466 3467 3468 3469
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3470
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3485
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3513
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3525
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3555 3556
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3557
{
3558
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3577 3578 3579
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3580
		if (curr->func(curr, mode, sync, key) &&
3581
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3582 3583 3584 3585 3586 3587 3588 3589 3590
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3591
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3592 3593
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3594
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3613
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3625 3626
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3670

L
Linus Torvalds 已提交
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3789 3790 3791 3792 3793
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3794
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3795
}
L
Linus Torvalds 已提交
3796

I
Ingo Molnar 已提交
3797 3798 3799 3800 3801 3802 3803
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3804

I
Ingo Molnar 已提交
3805
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3806
{
I
Ingo Molnar 已提交
3807 3808 3809 3810
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3811 3812 3813

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3814
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3815
	schedule();
I
Ingo Molnar 已提交
3816
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3817 3818 3819
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3820
long __sched
I
Ingo Molnar 已提交
3821
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3822
{
I
Ingo Molnar 已提交
3823 3824 3825 3826
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3827 3828 3829

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3830
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3831
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3832
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3833 3834 3835 3836 3837

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3838
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3839
{
I
Ingo Molnar 已提交
3840 3841 3842 3843
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3844 3845 3846

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3847
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3848
	schedule();
I
Ingo Molnar 已提交
3849
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3850 3851 3852
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3853
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3854
{
I
Ingo Molnar 已提交
3855 3856 3857 3858
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3859 3860 3861

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3862
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3863
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3864
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3865 3866 3867 3868 3869

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3882
void rt_mutex_setprio(struct task_struct *p, int prio)
3883 3884
{
	unsigned long flags;
I
Ingo Molnar 已提交
3885
	int oldprio, on_rq;
3886
	struct rq *rq;
I
Ingo Molnar 已提交
3887
	u64 now;
3888 3889 3890 3891

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3892
	now = rq_clock(rq);
3893

3894
	oldprio = p->prio;
I
Ingo Molnar 已提交
3895 3896 3897 3898 3899 3900 3901 3902 3903
	on_rq = p->se.on_rq;
	if (on_rq)
		dequeue_task(rq, p, 0, now);

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3904 3905
	p->prio = prio;

I
Ingo Molnar 已提交
3906 3907
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
3908 3909
		/*
		 * Reschedule if we are currently running on this runqueue and
3910 3911
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3912
		 */
3913 3914 3915
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3916 3917 3918
		} else {
			check_preempt_curr(rq, p);
		}
3919 3920 3921 3922 3923 3924
	}
	task_rq_unlock(rq, &flags);
}

#endif

3925
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3926
{
I
Ingo Molnar 已提交
3927
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3928
	unsigned long flags;
3929
	struct rq *rq;
I
Ingo Molnar 已提交
3930
	u64 now;
L
Linus Torvalds 已提交
3931 3932 3933 3934 3935 3936 3937 3938

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3939
	now = rq_clock(rq);
L
Linus Torvalds 已提交
3940 3941 3942 3943
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3944
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3945
	 */
3946
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3947 3948 3949
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3950 3951 3952 3953
	on_rq = p->se.on_rq;
	if (on_rq) {
		dequeue_task(rq, p, 0, now);
		dec_load(rq, p, now);
3954
	}
L
Linus Torvalds 已提交
3955 3956

	p->static_prio = NICE_TO_PRIO(nice);
3957
	set_load_weight(p);
3958 3959 3960
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3961

I
Ingo Molnar 已提交
3962 3963 3964
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
		inc_load(rq, p, now);
L
Linus Torvalds 已提交
3965
		/*
3966 3967
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3968
		 */
3969
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3970 3971 3972 3973 3974 3975 3976
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3977 3978 3979 3980 3981
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3982
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3983
{
3984 3985
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3986

M
Matt Mackall 已提交
3987 3988 3989 3990
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4002
	long nice, retval;
L
Linus Torvalds 已提交
4003 4004 4005 4006 4007 4008

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4009 4010
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4011 4012 4013 4014 4015 4016 4017 4018 4019
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4020 4021 4022
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4041
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4042 4043 4044 4045 4046 4047 4048 4049
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4050
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4069
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4070 4071 4072 4073 4074 4075 4076 4077
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4078
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4079 4080 4081 4082 4083
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4084 4085
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4086
{
I
Ingo Molnar 已提交
4087
	BUG_ON(p->se.on_rq);
4088

L
Linus Torvalds 已提交
4089
	p->policy = policy;
I
Ingo Molnar 已提交
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4102
	p->rt_priority = prio;
4103 4104 4105
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4106
	set_load_weight(p);
L
Linus Torvalds 已提交
4107 4108 4109
}

/**
4110
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4111 4112 4113
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4114
 *
4115
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4116
 */
I
Ingo Molnar 已提交
4117 4118
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4119
{
I
Ingo Molnar 已提交
4120
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4121
	unsigned long flags;
4122
	struct rq *rq;
L
Linus Torvalds 已提交
4123

4124 4125
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4126 4127 4128 4129 4130
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4131 4132
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4133
		return -EINVAL;
L
Linus Torvalds 已提交
4134 4135
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4136 4137
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4138 4139
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4140
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4141
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4142
		return -EINVAL;
4143
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4144 4145
		return -EINVAL;

4146 4147 4148 4149
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4150
		if (rt_policy(policy)) {
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4167 4168 4169 4170 4171 4172
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4173

4174 4175 4176 4177 4178
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4179 4180 4181 4182

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4183 4184 4185 4186 4187
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4188 4189 4190 4191
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4192
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4193 4194 4195
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4196 4197
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4198 4199
		goto recheck;
	}
I
Ingo Molnar 已提交
4200 4201 4202
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
L
Linus Torvalds 已提交
4203
	oldprio = p->prio;
I
Ingo Molnar 已提交
4204 4205 4206
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4207 4208
		/*
		 * Reschedule if we are currently running on this runqueue and
4209 4210
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4211
		 */
4212 4213 4214
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4215 4216 4217
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4218
	}
4219 4220 4221
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4222 4223
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4224 4225 4226 4227
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4228 4229
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4230 4231 4232
{
	struct sched_param lparam;
	struct task_struct *p;
4233
	int retval;
L
Linus Torvalds 已提交
4234 4235 4236 4237 4238

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4239 4240 4241

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4242
	p = find_process_by_pid(pid);
4243 4244 4245
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4246

L
Linus Torvalds 已提交
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4259 4260 4261 4262
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4282
	struct task_struct *p;
L
Linus Torvalds 已提交
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4310
	struct task_struct *p;
L
Linus Torvalds 已提交
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4345 4346
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4347

4348
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4349 4350 4351 4352 4353
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4354
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4371 4372 4373 4374
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4375 4376 4377 4378 4379 4380
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4381
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4422
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4423 4424 4425
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4426
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4427 4428
EXPORT_SYMBOL(cpu_online_map);

4429
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4430
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4431 4432 4433 4434
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4435
	struct task_struct *p;
L
Linus Torvalds 已提交
4436 4437
	int retval;

4438
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4439 4440 4441 4442 4443 4444 4445
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4446 4447 4448 4449
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4450
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4451 4452 4453

out_unlock:
	read_unlock(&tasklist_lock);
4454
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
	if (retval)
		return retval;

	return 0;
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4489 4490
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4491 4492 4493
 */
asmlinkage long sys_sched_yield(void)
{
4494
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4495 4496

	schedstat_inc(rq, yld_cnt);
I
Ingo Molnar 已提交
4497
	if (unlikely(rq->nr_running == 1))
L
Linus Torvalds 已提交
4498
		schedstat_inc(rq, yld_act_empty);
I
Ingo Molnar 已提交
4499 4500
	else
		current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4501 4502 4503 4504 4505 4506

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4507
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4508 4509 4510 4511 4512 4513 4514 4515
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4516
static void __cond_resched(void)
L
Linus Torvalds 已提交
4517
{
4518 4519 4520
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4521 4522 4523 4524 4525
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4526 4527 4528 4529 4530 4531 4532 4533 4534
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4535 4536
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4552
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4553
{
J
Jan Kara 已提交
4554 4555
	int ret = 0;

L
Linus Torvalds 已提交
4556 4557 4558
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4559
		ret = 1;
L
Linus Torvalds 已提交
4560 4561
		spin_lock(lock);
	}
4562
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4563
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4564 4565 4566
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4567
		ret = 1;
L
Linus Torvalds 已提交
4568 4569
		spin_lock(lock);
	}
J
Jan Kara 已提交
4570
	return ret;
L
Linus Torvalds 已提交
4571 4572 4573 4574 4575 4576 4577
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4578
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4579
		local_bh_enable();
L
Linus Torvalds 已提交
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4591
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4610
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4611

4612
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4613 4614 4615
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4616
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4617 4618 4619 4620 4621
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4622
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4623 4624
	long ret;

4625
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4626 4627 4628
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4629
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4650
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4651
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4675
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4676
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4693
	struct task_struct *p;
L
Linus Torvalds 已提交
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4710
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4711
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4712 4713 4714 4715 4716 4717 4718 4719 4720
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4721
static const char stat_nam[] = "RSDTtZX";
4722 4723

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4724 4725
{
	unsigned long free = 0;
4726
	unsigned state;
L
Linus Torvalds 已提交
4727 4728

	state = p->state ? __ffs(p->state) + 1 : 0;
4729 4730
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4731
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4732
	if (state == TASK_RUNNING)
4733
		printk(" running  ");
L
Linus Torvalds 已提交
4734
	else
4735
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4736 4737
#else
	if (state == TASK_RUNNING)
4738
		printk("  running task    ");
L
Linus Torvalds 已提交
4739 4740 4741 4742 4743
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4744
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4745 4746
		while (!*n)
			n++;
4747
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4748 4749
	}
#endif
4750
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4751 4752 4753 4754 4755

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4756
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4757
{
4758
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4759

4760 4761 4762
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4763
#else
4764 4765
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4766 4767 4768 4769 4770 4771 4772 4773
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4774
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4775
			show_task(p);
L
Linus Torvalds 已提交
4776 4777
	} while_each_thread(g, p);

4778 4779
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4780 4781 4782
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4783
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4784 4785 4786 4787 4788
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4789 4790
}

I
Ingo Molnar 已提交
4791 4792
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4793
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4794 4795
}

4796 4797 4798 4799 4800 4801 4802 4803
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4804
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4805
{
4806
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4807 4808
	unsigned long flags;

I
Ingo Molnar 已提交
4809 4810 4811
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4812
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4813
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4814
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4815 4816 4817

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4818 4819 4820
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4821 4822 4823 4824
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4825
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4826
#else
A
Al Viro 已提交
4827
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4828
#endif
I
Ingo Molnar 已提交
4829 4830 4831 4832
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
4856
	const unsigned long gran_limit = 100000000;
I
Ingo Molnar 已提交
4857 4858 4859 4860 4861 4862 4863 4864 4865

	sysctl_sched_granularity *= factor;
	if (sysctl_sched_granularity > gran_limit)
		sysctl_sched_granularity = gran_limit;

	sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
	sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
}

L
Linus Torvalds 已提交
4866 4867 4868 4869
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4870
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4892
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4893
{
4894
	struct migration_req req;
L
Linus Torvalds 已提交
4895
	unsigned long flags;
4896
	struct rq *rq;
4897
	int ret = 0;
L
Linus Torvalds 已提交
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4920

L
Linus Torvalds 已提交
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4933 4934
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4935
 */
4936
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4937
{
4938
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4939
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4940 4941

	if (unlikely(cpu_is_offline(dest_cpu)))
4942
		return ret;
L
Linus Torvalds 已提交
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4955 4956 4957
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq_src, p, 0);
L
Linus Torvalds 已提交
4958
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4959 4960 4961
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4962
	}
4963
	ret = 1;
L
Linus Torvalds 已提交
4964 4965
out:
	double_rq_unlock(rq_src, rq_dest);
4966
	return ret;
L
Linus Torvalds 已提交
4967 4968 4969 4970 4971 4972 4973
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4974
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4975 4976
{
	int cpu = (long)data;
4977
	struct rq *rq;
L
Linus Torvalds 已提交
4978 4979 4980 4981 4982 4983

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
4984
		struct migration_req *req;
L
Linus Torvalds 已提交
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5007
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5008 5009
		list_del_init(head->next);

N
Nick Piggin 已提交
5010 5011 5012
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5031 5032 5033 5034
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5035
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5036
{
5037
	unsigned long flags;
L
Linus Torvalds 已提交
5038
	cpumask_t mask;
5039 5040
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5041

5042
restart:
L
Linus Torvalds 已提交
5043 5044
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5045
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5046 5047 5048 5049
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5050
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5051 5052 5053

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5054 5055 5056
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5057
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5058 5059 5060 5061 5062 5063

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5064
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5065 5066
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5067
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5068
	}
5069
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5070
		goto restart;
L
Linus Torvalds 已提交
5071 5072 5073 5074 5075 5076 5077 5078 5079
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5080
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5081
{
5082
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5096
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5097 5098 5099

	write_lock_irq(&tasklist_lock);

5100 5101
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5102 5103
			continue;

5104 5105 5106
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5107 5108 5109 5110

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5111 5112
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5113
 * It does so by boosting its priority to highest possible and adding it to
5114
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5115 5116 5117
 */
void sched_idle_next(void)
{
5118
	int this_cpu = smp_processor_id();
5119
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5120 5121 5122 5123
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5124
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5125

5126 5127 5128
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5129 5130 5131
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5132
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5133 5134

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5135
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5136 5137 5138 5139

	spin_unlock_irqrestore(&rq->lock, flags);
}

5140 5141
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5155
/* called under rq->lock with disabled interrupts */
5156
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5157
{
5158
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5159 5160

	/* Must be exiting, otherwise would be on tasklist. */
5161
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5162 5163

	/* Cannot have done final schedule yet: would have vanished. */
5164
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5165

5166
	get_task_struct(p);
L
Linus Torvalds 已提交
5167 5168 5169 5170 5171

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5172
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5173
	 */
5174
	spin_unlock(&rq->lock);
5175
	move_task_off_dead_cpu(dead_cpu, p);
5176
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5177

5178
	put_task_struct(p);
L
Linus Torvalds 已提交
5179 5180 5181 5182 5183
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5184
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5185
	struct task_struct *next;
5186

I
Ingo Molnar 已提交
5187 5188 5189 5190 5191 5192 5193
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
		next = pick_next_task(rq, rq->curr, rq_clock(rq));
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5194

L
Linus Torvalds 已提交
5195 5196 5197 5198
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
	{CTL_UNNUMBERED, "sched_domain", NULL, 0, 0755, NULL, },
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
	{CTL_UNNUMBERED, "kernel", NULL, 0, 0755, sd_ctl_dir, },
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
set_table_entry(struct ctl_table *entry, int ctl_name,
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->ctl_name = ctl_name;
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
	struct ctl_table *table = sd_alloc_ctl_entry(14);

	set_table_entry(&table[0], 1, "min_interval", &sd->min_interval,
		sizeof(long), 0644, proc_doulongvec_minmax);
	set_table_entry(&table[1], 2, "max_interval", &sd->max_interval,
		sizeof(long), 0644, proc_doulongvec_minmax);
	set_table_entry(&table[2], 3, "busy_idx", &sd->busy_idx,
		sizeof(int), 0644, proc_dointvec_minmax);
	set_table_entry(&table[3], 4, "idle_idx", &sd->idle_idx,
		sizeof(int), 0644, proc_dointvec_minmax);
	set_table_entry(&table[4], 5, "newidle_idx", &sd->newidle_idx,
		sizeof(int), 0644, proc_dointvec_minmax);
	set_table_entry(&table[5], 6, "wake_idx", &sd->wake_idx,
		sizeof(int), 0644, proc_dointvec_minmax);
	set_table_entry(&table[6], 7, "forkexec_idx", &sd->forkexec_idx,
		sizeof(int), 0644, proc_dointvec_minmax);
	set_table_entry(&table[7], 8, "busy_factor", &sd->busy_factor,
		sizeof(int), 0644, proc_dointvec_minmax);
	set_table_entry(&table[8], 9, "imbalance_pct", &sd->imbalance_pct,
		sizeof(int), 0644, proc_dointvec_minmax);
	set_table_entry(&table[10], 11, "cache_nice_tries",
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
	set_table_entry(&table[12], 13, "flags", &sd->flags,
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->ctl_name = i + 1;
		entry->procname = kstrdup(buf, GFP_KERNEL);
		entry->mode = 0755;
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->ctl_name = i + 1;
		entry->procname = kstrdup(buf, GFP_KERNEL);
		entry->mode = 0755;
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5315 5316 5317 5318
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5319 5320
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5321 5322
{
	struct task_struct *p;
5323
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5324
	unsigned long flags;
5325
	struct rq *rq;
L
Linus Torvalds 已提交
5326 5327

	switch (action) {
5328 5329 5330 5331
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5332
	case CPU_UP_PREPARE:
5333
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5334
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5335 5336 5337 5338 5339
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5340
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5341 5342 5343
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5344

L
Linus Torvalds 已提交
5345
	case CPU_ONLINE:
5346
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5347 5348 5349
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5350

L
Linus Torvalds 已提交
5351 5352
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5353
	case CPU_UP_CANCELED_FROZEN:
5354 5355
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5356
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5357 5358
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5359 5360 5361
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5362

L
Linus Torvalds 已提交
5363
	case CPU_DEAD:
5364
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5365 5366 5367 5368 5369 5370
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5371
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5372
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5373 5374
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5375 5376 5377 5378 5379 5380
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5381
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5382 5383 5384
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5385 5386
			struct migration_req *req;

L
Linus Torvalds 已提交
5387
			req = list_entry(rq->migration_queue.next,
5388
					 struct migration_req, list);
L
Linus Torvalds 已提交
5389 5390 5391 5392 5393 5394
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5395 5396 5397
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5398 5399 5400 5401 5402 5403 5404
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5405
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5406 5407 5408 5409 5410 5411 5412
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5413
	int err;
5414 5415

	/* Start one for the boot CPU: */
5416 5417
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5418 5419
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5420

L
Linus Torvalds 已提交
5421 5422 5423 5424 5425
	return 0;
}
#endif

#ifdef CONFIG_SMP
5426 5427 5428 5429 5430

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5431
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5432 5433 5434 5435 5436
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5437 5438 5439 5440 5441
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5461 5462
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5463 5464 5465 5466 5467 5468
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5469 5470
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5471
		if (!cpu_isset(cpu, group->cpumask))
5472 5473
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5486
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5487
				printk("\n");
5488 5489
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5512 5513
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5514 5515 5516

		level++;
		sd = sd->parent;
5517 5518
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5519

5520 5521 5522
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5523 5524 5525 5526

	} while (sd);
}
#else
5527
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5528 5529
#endif

5530
static int sd_degenerate(struct sched_domain *sd)
5531 5532 5533 5534 5535 5536 5537 5538
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5539 5540 5541
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5555 5556
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5575 5576 5577
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5578 5579 5580 5581 5582 5583 5584
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5585 5586 5587 5588
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5589
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5590
{
5591
	struct rq *rq = cpu_rq(cpu);
5592 5593 5594 5595 5596 5597 5598
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5599
		if (sd_parent_degenerate(tmp, parent)) {
5600
			tmp->parent = parent->parent;
5601 5602 5603
			if (parent->parent)
				parent->parent->child = tmp;
		}
5604 5605
	}

5606
	if (sd && sd_degenerate(sd)) {
5607
		sd = sd->parent;
5608 5609 5610
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5611 5612 5613

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5614
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5615 5616 5617
}

/* cpus with isolated domains */
5618
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5636 5637 5638 5639
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5640 5641 5642 5643 5644
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5645
static void
5646 5647 5648
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5649 5650 5651 5652 5653 5654
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5655 5656
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5657 5658 5659 5660 5661 5662
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5663
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5664 5665

		for_each_cpu_mask(j, span) {
5666
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5681
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5682

5683
#ifdef CONFIG_NUMA
5684

5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5737 5738
	cpumask_t span, nodemask;
	int i;
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5749

5750 5751 5752 5753 5754 5755 5756 5757
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5758
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5759

5760
/*
5761
 * SMT sched-domains:
5762
 */
L
Linus Torvalds 已提交
5763 5764
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5765
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5766

5767 5768
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5769
{
5770 5771
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5772 5773 5774 5775
	return cpu;
}
#endif

5776 5777 5778
/*
 * multi-core sched-domains:
 */
5779 5780
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5781
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5782 5783 5784
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5785 5786
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5787
{
5788
	int group;
5789 5790
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5791 5792 5793 5794
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5795 5796
}
#elif defined(CONFIG_SCHED_MC)
5797 5798
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5799
{
5800 5801
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5802 5803 5804 5805
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5806
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5807
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5808

5809 5810
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5811
{
5812
	int group;
5813
#ifdef CONFIG_SCHED_MC
5814
	cpumask_t mask = cpu_coregroup_map(cpu);
5815
	cpus_and(mask, mask, *cpu_map);
5816
	group = first_cpu(mask);
5817
#elif defined(CONFIG_SCHED_SMT)
5818 5819
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5820
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5821
#else
5822
	group = cpu;
L
Linus Torvalds 已提交
5823
#endif
5824 5825 5826
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5827 5828 5829 5830
}

#ifdef CONFIG_NUMA
/*
5831 5832 5833
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5834
 */
5835
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5836
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5837

5838
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5839
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5840

5841 5842
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5843
{
5844 5845 5846 5847 5848 5849 5850 5851 5852
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5853
}
5854

5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5875
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5876 5877 5878 5879 5880
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5881 5882
#endif

5883
#ifdef CONFIG_NUMA
5884 5885 5886
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5887
	int cpu, i;
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5918 5919 5920 5921 5922
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5923

5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5950 5951
	sd->groups->__cpu_power = 0;

5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5962
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5963 5964 5965 5966 5967 5968 5969 5970
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5971
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5972 5973 5974 5975
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
5976
/*
5977 5978
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
5979
 */
5980
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
5981 5982
{
	int i;
5983 5984
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
5985
	int sd_allnodes = 0;
5986 5987 5988 5989

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
5990
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5991
					   GFP_KERNEL);
5992 5993
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
5994
		return -ENOMEM;
5995 5996 5997
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
5998 5999

	/*
6000
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6001
	 */
6002
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6003 6004 6005
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6006
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6007 6008

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6009 6010
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6011 6012 6013
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6014
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6015
			p = sd;
6016
			sd_allnodes = 1;
6017 6018 6019
		} else
			p = NULL;

L
Linus Torvalds 已提交
6020 6021
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6022 6023
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6024 6025
		if (p)
			p->child = sd;
6026
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6027 6028 6029 6030 6031 6032 6033
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6034 6035
		if (p)
			p->child = sd;
6036
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6037

6038 6039 6040 6041 6042 6043 6044
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6045
		p->child = sd;
6046
		cpu_to_core_group(i, cpu_map, &sd->groups);
6047 6048
#endif

L
Linus Torvalds 已提交
6049 6050 6051 6052 6053
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6054
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6055
		sd->parent = p;
6056
		p->child = sd;
6057
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6058 6059 6060 6061 6062
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6063
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6064
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6065
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6066 6067 6068
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6069 6070
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6071 6072 6073
	}
#endif

6074 6075 6076 6077 6078 6079 6080
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6081 6082
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6083 6084 6085
	}
#endif

L
Linus Torvalds 已提交
6086 6087 6088 6089
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6090
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6091 6092 6093
		if (cpus_empty(nodemask))
			continue;

6094
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6095 6096 6097 6098
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6099
	if (sd_allnodes)
I
Ingo Molnar 已提交
6100 6101
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6102 6103 6104 6105 6106 6107 6108 6109 6110 6111

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6112 6113
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6114
			continue;
6115
		}
6116 6117 6118 6119

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6120
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6121 6122 6123 6124 6125
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6126 6127 6128
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6129

6130 6131 6132
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6133
		sg->__cpu_power = 0;
6134
		sg->cpumask = nodemask;
6135
		sg->next = sg;
6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6154 6155
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6156 6157 6158
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6159
				goto error;
6160
			}
6161
			sg->__cpu_power = 0;
6162
			sg->cpumask = tmp;
6163
			sg->next = prev->next;
6164 6165 6166 6167 6168
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6169 6170 6171
#endif

	/* Calculate CPU power for physical packages and nodes */
6172
#ifdef CONFIG_SCHED_SMT
6173
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6174 6175
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6176
		init_sched_groups_power(i, sd);
6177
	}
L
Linus Torvalds 已提交
6178
#endif
6179
#ifdef CONFIG_SCHED_MC
6180
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6181 6182
		struct sched_domain *sd = &per_cpu(core_domains, i);

6183
		init_sched_groups_power(i, sd);
6184 6185
	}
#endif
6186

6187
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6188 6189
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6190
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6191 6192
	}

6193
#ifdef CONFIG_NUMA
6194 6195
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6196

6197 6198
	if (sd_allnodes) {
		struct sched_group *sg;
6199

6200
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6201 6202
		init_numa_sched_groups_power(sg);
	}
6203 6204
#endif

L
Linus Torvalds 已提交
6205
	/* Attach the domains */
6206
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6207 6208 6209
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6210 6211
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6212 6213 6214 6215 6216
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6217 6218 6219

	return 0;

6220
#ifdef CONFIG_NUMA
6221 6222 6223
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6224
#endif
L
Linus Torvalds 已提交
6225
}
6226 6227 6228
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6229
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6230 6231
{
	cpumask_t cpu_default_map;
6232
	int err;
L
Linus Torvalds 已提交
6233

6234 6235 6236 6237 6238 6239 6240
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6241 6242 6243
	err = build_sched_domains(&cpu_default_map);

	return err;
6244 6245 6246
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6247
{
6248
	free_sched_groups(cpu_map);
6249
}
L
Linus Torvalds 已提交
6250

6251 6252 6253 6254
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6255
static void detach_destroy_domains(const cpumask_t *cpu_map)
6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6273
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6274 6275
{
	cpumask_t change_map;
6276
	int err = 0;
6277 6278 6279 6280 6281 6282 6283 6284

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6285 6286 6287 6288 6289
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6290 6291
}

6292 6293 6294 6295 6296
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

6297
	mutex_lock(&sched_hotcpu_mutex);
6298 6299
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6300
	mutex_unlock(&sched_hotcpu_mutex);
6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6325

6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6345 6346
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6359 6360
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6361 6362 6363 6364 6365 6366 6367
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6368 6369 6370
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6371
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6372 6373 6374 6375 6376 6377 6378
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6379
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6380
	case CPU_DOWN_PREPARE:
6381
	case CPU_DOWN_PREPARE_FROZEN:
6382
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6383 6384 6385
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6386
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6387
	case CPU_DOWN_FAILED:
6388
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6389
	case CPU_ONLINE:
6390
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6391
	case CPU_DEAD:
6392
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6393 6394 6395 6396 6397 6398 6399 6400 6401
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6402
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6403 6404 6405 6406 6407 6408

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6409 6410
	cpumask_t non_isolated_cpus;

6411
	mutex_lock(&sched_hotcpu_mutex);
6412
	arch_init_sched_domains(&cpu_online_map);
6413
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6414 6415
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6416
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6417 6418
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6419

6420 6421
	init_sched_domain_sysctl();

6422 6423 6424
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6425
	sched_init_granularity();
L
Linus Torvalds 已提交
6426 6427 6428 6429
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6430
	sched_init_granularity();
L
Linus Torvalds 已提交
6431 6432 6433 6434 6435 6436 6437
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6438

L
Linus Torvalds 已提交
6439 6440 6441 6442 6443
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6444 6445 6446 6447 6448 6449 6450 6451 6452
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->fair_clock = 1;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6453 6454
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6455
	u64 now = sched_clock();
6456
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6457 6458 6459 6460 6461 6462 6463 6464
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6465

6466
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6467
		struct rt_prio_array *array;
6468
		struct rq *rq;
L
Linus Torvalds 已提交
6469 6470 6471

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6472
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6473
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6474 6475 6476 6477 6478 6479 6480 6481
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
		rq->ls.load_update_last = now;
		rq->ls.load_update_start = now;
L
Linus Torvalds 已提交
6482

I
Ingo Molnar 已提交
6483 6484
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6485
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6486
		rq->sd = NULL;
L
Linus Torvalds 已提交
6487
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6488
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6489
		rq->push_cpu = 0;
6490
		rq->cpu = i;
L
Linus Torvalds 已提交
6491 6492 6493 6494 6495
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6496 6497 6498 6499
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6500
		}
6501
		highest_cpu = i;
I
Ingo Molnar 已提交
6502 6503
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6504 6505
	}

6506
	set_load_weight(&init_task);
6507

6508 6509 6510 6511
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6512
#ifdef CONFIG_SMP
6513
	nr_cpu_ids = highest_cpu + 1;
6514 6515 6516
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6517 6518 6519 6520
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6534 6535 6536 6537
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6538 6539 6540 6541 6542
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6543
#ifdef in_atomic
L
Linus Torvalds 已提交
6544 6545 6546 6547 6548 6549 6550
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6551
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6552 6553 6554
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6555
		debug_show_held_locks(current);
6556 6557
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6558 6559 6560 6561 6562 6563 6564 6565 6566 6567
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6568
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6569
	unsigned long flags;
6570
	struct rq *rq;
I
Ingo Molnar 已提交
6571
	int on_rq;
L
Linus Torvalds 已提交
6572 6573

	read_lock_irq(&tasklist_lock);
6574
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592
		p->se.fair_key			= 0;
		p->se.wait_runtime		= 0;
		p->se.wait_start_fair		= 0;
		p->se.wait_start		= 0;
		p->se.exec_start		= 0;
		p->se.sleep_start		= 0;
		p->se.sleep_start_fair		= 0;
		p->se.block_start		= 0;
		task_rq(p)->cfs.fair_clock	= 0;
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6593
			continue;
I
Ingo Molnar 已提交
6594
		}
L
Linus Torvalds 已提交
6595

6596 6597
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6598 6599 6600 6601 6602 6603 6604
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6605

I
Ingo Molnar 已提交
6606 6607 6608 6609 6610 6611
		on_rq = p->se.on_rq;
		if (on_rq)
			deactivate_task(task_rq(p), p, 0);
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
			activate_task(task_rq(p), p, 0);
L
Linus Torvalds 已提交
6612 6613
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6614 6615 6616
#ifdef CONFIG_SMP
 out_unlock:
#endif
6617 6618
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6619 6620
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6621 6622 6623 6624
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6643
struct task_struct *curr_task(int cpu)
6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6663
void set_curr_task(int cpu, struct task_struct *p)
6664 6665 6666 6667 6668
{
	cpu_curr(cpu) = p;
}

#endif