sched.c 164.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
30
#include <linux/capability.h>
L
Linus Torvalds 已提交
31 32
#include <linux/completion.h>
#include <linux/kernel_stat.h>
33
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
37
#include <linux/freezer.h>
38
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/times.h>
52
#include <linux/tsacct_kern.h>
53
#include <linux/kprobes.h>
54
#include <linux/delayacct.h>
55
#include <linux/reciprocal_div.h>
L
Linus Torvalds 已提交
56

57
#include <asm/tlb.h>
L
Linus Torvalds 已提交
58 59
#include <asm/unistd.h>

60 61 62 63 64 65 66 67 68 69
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
94 95 96
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
#define ON_RUNQUEUE_WEIGHT	 30
#define CHILD_PENALTY		 95
#define PARENT_PENALTY		100
#define EXIT_WEIGHT		  3
#define PRIO_BONUS_RATIO	 25
#define MAX_BONUS		(MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
#define INTERACTIVE_DELTA	  2
#define MAX_SLEEP_AVG		(DEF_TIMESLICE * MAX_BONUS)
#define STARVATION_LIMIT	(MAX_SLEEP_AVG)
#define NS_MAX_SLEEP_AVG	(JIFFIES_TO_NS(MAX_SLEEP_AVG))

/*
 * If a task is 'interactive' then we reinsert it in the active
 * array after it has expired its current timeslice. (it will not
 * continue to run immediately, it will still roundrobin with
 * other interactive tasks.)
 *
 * This part scales the interactivity limit depending on niceness.
 *
 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
 * Here are a few examples of different nice levels:
 *
 *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
 *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
 *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
 *
 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
 *  priority range a task can explore, a value of '1' means the
 *  task is rated interactive.)
 *
 * Ie. nice +19 tasks can never get 'interactive' enough to be
 * reinserted into the active array. And only heavily CPU-hog nice -20
 * tasks will be expired. Default nice 0 tasks are somewhere between,
 * it takes some effort for them to get interactive, but it's not
 * too hard.
 */

#define CURRENT_BONUS(p) \
	(NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
		MAX_SLEEP_AVG)

#define GRANULARITY	(10 * HZ / 1000 ? : 1)

#ifdef CONFIG_SMP
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
			num_online_cpus())
#else
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
#endif

#define SCALE(v1,v1_max,v2_max) \
	(v1) * (v2_max) / (v1_max)

#define DELTA(p) \
164 165
	(SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
		INTERACTIVE_DELTA)
L
Linus Torvalds 已提交
166 167 168 169 170 171 172 173 174

#define TASK_INTERACTIVE(p) \
	((p)->prio <= (p)->static_prio - DELTA(p))

#define INTERACTIVE_SLEEP(p) \
	(JIFFIES_TO_NS(MAX_SLEEP_AVG * \
		(MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))

#define TASK_PREEMPTS_CURR(p, rq) \
175
	((p)->prio < (rq)->curr->prio)
L
Linus Torvalds 已提交
176 177

#define SCALE_PRIO(x, prio) \
178
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
L
Linus Torvalds 已提交
179

180
static unsigned int static_prio_timeslice(int static_prio)
L
Linus Torvalds 已提交
181
{
182 183
	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
L
Linus Torvalds 已提交
184
	else
185
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
L
Linus Torvalds 已提交
186
}
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

209 210 211 212 213 214 215 216 217
/*
 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
 * to time slice values: [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */

218
static inline unsigned int task_timeslice(struct task_struct *p)
219 220 221 222
{
	return static_prio_timeslice(p->static_prio);
}

223 224 225 226 227 228 229 230 231 232 233 234
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
235
/*
I
Ingo Molnar 已提交
236
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
237
 */
I
Ingo Molnar 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
	u64 load_update_start, load_update_last;
	unsigned long delta_fair, delta_exec, delta_stat;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
280

I
Ingo Molnar 已提交
281 282 283 284 285 286 287 288 289 290
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

/*
 * The prio-array type of the old scheduler:
 */
L
Linus Torvalds 已提交
291 292
struct prio_array {
	unsigned int nr_active;
293
	DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
L
Linus Torvalds 已提交
294 295 296 297 298 299 300 301 302 303
	struct list_head queue[MAX_PRIO];
};

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
304
struct rq {
I
Ingo Molnar 已提交
305
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
306 307 308 309 310 311

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
312
	unsigned long raw_weighted_load;
I
Ingo Molnar 已提交
313 314
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
315
	unsigned char idle_at_tick;
316 317 318
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
319 320 321 322 323 324 325
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
326
#endif
I
Ingo Molnar 已提交
327
	struct rt_rq  rt;
L
Linus Torvalds 已提交
328 329 330 331 332 333 334 335 336 337

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

	unsigned long expired_timestamp;
338
	unsigned long long most_recent_timestamp;
I
Ingo Molnar 已提交
339

340
	struct task_struct *curr, *idle;
341
	unsigned long next_balance;
L
Linus Torvalds 已提交
342
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
343

344
	struct prio_array *active, *expired, arrays[2];
L
Linus Torvalds 已提交
345
	int best_expired_prio;
I
Ingo Molnar 已提交
346 347 348 349 350 351 352 353 354

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
	unsigned int clock_unstable_events;

	struct sched_class *load_balance_class;

L
Linus Torvalds 已提交
355 356 357 358 359 360 361 362
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
363
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
364

365
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
388
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
389 390
};

391
static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
392
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
393

394 395 396 397 398 399 400 401 402
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/*
 * Per-runqueue clock, as finegrained as the platform can give us:
 */
static unsigned long long __rq_clock(struct rq *rq)
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
		if (unlikely(delta > 2*TICK_NSEC)) {
			clock++;
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;

	return clock;
}

static inline unsigned long long rq_clock(struct rq *rq)
{
	int this_cpu = smp_processor_id();

	if (this_cpu == cpu_of(rq))
		return __rq_clock(rq);

	return rq->clock;
}

N
Nick Piggin 已提交
449 450
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
451
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
452 453 454 455
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
456 457
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
458 459 460 461 462 463

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
464 465 466 467 468 469 470 471 472 473 474 475
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
476
#ifndef prepare_arch_switch
477 478 479 480 481 482 483
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
484
static inline int task_running(struct rq *rq, struct task_struct *p)
485 486 487 488
{
	return rq->curr == p;
}

489
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
490 491 492
{
}

493
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
494
{
495 496 497 498
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
499 500 501 502 503 504 505
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

506 507 508 509
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
510
static inline int task_running(struct rq *rq, struct task_struct *p)
511 512 513 514 515 516 517 518
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

519
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

536
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
537 538 539 540 541 542 543 544 545 546 547 548
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
549
#endif
550 551
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
552

553 554 555 556
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
557
static inline struct rq *__task_rq_lock(struct task_struct *p)
558 559
	__acquires(rq->lock)
{
560
	struct rq *rq;
561 562 563 564 565 566 567 568 569 570 571

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
572 573 574 575 576
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
577
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
578 579
	__acquires(rq->lock)
{
580
	struct rq *rq;
L
Linus Torvalds 已提交
581 582 583 584 585 586 587 588 589 590 591 592

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

593
static inline void __task_rq_unlock(struct rq *rq)
594 595 596 597 598
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

599
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
600 601 602 603 604 605
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
606
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
607
 */
608
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
609 610
	__acquires(rq->lock)
{
611
	struct rq *rq;
L
Linus Torvalds 已提交
612 613 614 615 616 617 618 619

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

I
Ingo Molnar 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

672
#include "sched_stats.h"
L
Linus Torvalds 已提交
673

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

/*
 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
 * If static_prio_timeslice() is ever changed to break this assumption then
 * this code will need modification
 */
#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
#define LOAD_WEIGHT(lp) \
	(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
#define PRIO_TO_LOAD_WEIGHT(prio) \
	LOAD_WEIGHT(static_prio_timeslice(prio))
#define RTPRIO_TO_LOAD_WEIGHT(rp) \
	(PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))

696
static void set_load_weight(struct task_struct *p)
697
{
698
	if (task_has_rt_policy(p)) {
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
#ifdef CONFIG_SMP
		if (p == task_rq(p)->migration_thread)
			/*
			 * The migration thread does the actual balancing.
			 * Giving its load any weight will skew balancing
			 * adversely.
			 */
			p->load_weight = 0;
		else
#endif
			p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
	} else
		p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
}

714
static inline void
715
inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
716 717 718 719
{
	rq->raw_weighted_load += p->load_weight;
}

720
static inline void
721
dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
722 723 724 725
{
	rq->raw_weighted_load -= p->load_weight;
}

726
static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
727 728 729 730 731
{
	rq->nr_running++;
	inc_raw_weighted_load(rq, p);
}

732
static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
733 734 735 736 737
{
	rq->nr_running--;
	dec_raw_weighted_load(rq, p);
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
/*
 * Adding/removing a task to/from a priority array:
 */
static void dequeue_task(struct task_struct *p, struct prio_array *array)
{
	array->nr_active--;
	list_del(&p->run_list);
	if (list_empty(array->queue + p->prio))
		__clear_bit(p->prio, array->bitmap);
}

static void enqueue_task(struct task_struct *p, struct prio_array *array)
{
	sched_info_queued(p);
	list_add_tail(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
	array->nr_active++;
	p->array = array;
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
static void requeue_task(struct task_struct *p, struct prio_array *array)
{
	list_move_tail(&p->run_list, array->queue + p->prio);
}

static inline void
enqueue_task_head(struct task_struct *p, struct prio_array *array)
{
	list_add(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
	array->nr_active++;
	p->array = array;
}

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
/*
 * __normal_prio - return the priority that is based on the static
 * priority but is modified by bonuses/penalties.
 *
 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
 * into the -5 ... 0 ... +5 bonus/penalty range.
 *
 * We use 25% of the full 0...39 priority range so that:
 *
 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
 *
 * Both properties are important to certain workloads.
 */

static inline int __normal_prio(struct task_struct *p)
{
	int bonus, prio;

	bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;

	prio = p->static_prio - bonus;
	if (prio < MAX_RT_PRIO)
		prio = MAX_RT_PRIO;
	if (prio > MAX_PRIO-1)
		prio = MAX_PRIO-1;
	return prio;
}

805 806 807 808 809 810 811
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
812
static inline int normal_prio(struct task_struct *p)
813 814 815
{
	int prio;

816
	if (task_has_rt_policy(p))
817 818 819 820 821 822 823 824 825 826 827 828 829
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
830
static int effective_prio(struct task_struct *p)
831 832 833 834 835 836 837 838 839 840 841 842
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
843 844 845
/*
 * __activate_task - move a task to the runqueue.
 */
846
static void __activate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
847
{
848
	struct prio_array *target = rq->active;
849

850
	if (batch_task(p))
851 852
		target = rq->expired;
	enqueue_task(p, target);
853
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
854 855 856 857 858
}

/*
 * __activate_idle_task - move idle task to the _front_ of runqueue.
 */
859
static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
860 861
{
	enqueue_task_head(p, rq->active);
862
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
863 864
}

865 866 867 868
/*
 * Recalculate p->normal_prio and p->prio after having slept,
 * updating the sleep-average too:
 */
869
static int recalc_task_prio(struct task_struct *p, unsigned long long now)
L
Linus Torvalds 已提交
870 871
{
	/* Caller must always ensure 'now >= p->timestamp' */
872
	unsigned long sleep_time = now - p->timestamp;
L
Linus Torvalds 已提交
873

874
	if (batch_task(p))
875
		sleep_time = 0;
L
Linus Torvalds 已提交
876 877 878

	if (likely(sleep_time > 0)) {
		/*
879 880 881
		 * This ceiling is set to the lowest priority that would allow
		 * a task to be reinserted into the active array on timeslice
		 * completion.
L
Linus Torvalds 已提交
882
		 */
883
		unsigned long ceiling = INTERACTIVE_SLEEP(p);
884

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
		if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
			/*
			 * Prevents user tasks from achieving best priority
			 * with one single large enough sleep.
			 */
			p->sleep_avg = ceiling;
			/*
			 * Using INTERACTIVE_SLEEP() as a ceiling places a
			 * nice(0) task 1ms sleep away from promotion, and
			 * gives it 700ms to round-robin with no chance of
			 * being demoted.  This is more than generous, so
			 * mark this sleep as non-interactive to prevent the
			 * on-runqueue bonus logic from intervening should
			 * this task not receive cpu immediately.
			 */
			p->sleep_type = SLEEP_NONINTERACTIVE;
L
Linus Torvalds 已提交
901 902 903 904 905 906
		} else {
			/*
			 * Tasks waking from uninterruptible sleep are
			 * limited in their sleep_avg rise as they
			 * are likely to be waiting on I/O
			 */
907
			if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
908
				if (p->sleep_avg >= ceiling)
L
Linus Torvalds 已提交
909 910
					sleep_time = 0;
				else if (p->sleep_avg + sleep_time >=
911 912 913
					 ceiling) {
						p->sleep_avg = ceiling;
						sleep_time = 0;
L
Linus Torvalds 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926 927
				}
			}

			/*
			 * This code gives a bonus to interactive tasks.
			 *
			 * The boost works by updating the 'average sleep time'
			 * value here, based on ->timestamp. The more time a
			 * task spends sleeping, the higher the average gets -
			 * and the higher the priority boost gets as well.
			 */
			p->sleep_avg += sleep_time;

		}
928 929
		if (p->sleep_avg > NS_MAX_SLEEP_AVG)
			p->sleep_avg = NS_MAX_SLEEP_AVG;
L
Linus Torvalds 已提交
930 931
	}

932
	return effective_prio(p);
L
Linus Torvalds 已提交
933 934 935 936 937 938 939 940
}

/*
 * activate_task - move a task to the runqueue and do priority recalculation
 *
 * Update all the scheduling statistics stuff. (sleep average
 * calculation, priority modifiers, etc.)
 */
941
static void activate_task(struct task_struct *p, struct rq *rq, int local)
L
Linus Torvalds 已提交
942 943 944
{
	unsigned long long now;

945 946 947
	if (rt_task(p))
		goto out;

L
Linus Torvalds 已提交
948 949 950 951
	now = sched_clock();
#ifdef CONFIG_SMP
	if (!local) {
		/* Compensate for drifting sched_clock */
952
		struct rq *this_rq = this_rq();
953 954
		now = (now - this_rq->most_recent_timestamp)
			+ rq->most_recent_timestamp;
L
Linus Torvalds 已提交
955 956 957
	}
#endif

I
Ingo Molnar 已提交
958 959 960 961 962 963 964 965 966 967 968
	/*
	 * Sleep time is in units of nanosecs, so shift by 20 to get a
	 * milliseconds-range estimation of the amount of time that the task
	 * spent sleeping:
	 */
	if (unlikely(prof_on == SLEEP_PROFILING)) {
		if (p->state == TASK_UNINTERRUPTIBLE)
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
				     (now - p->timestamp) >> 20);
	}

969
	p->prio = recalc_task_prio(p, now);
L
Linus Torvalds 已提交
970 971 972 973 974

	/*
	 * This checks to make sure it's not an uninterruptible task
	 * that is now waking up.
	 */
975
	if (p->sleep_type == SLEEP_NORMAL) {
L
Linus Torvalds 已提交
976 977 978 979 980 981 982 983
		/*
		 * Tasks which were woken up by interrupts (ie. hw events)
		 * are most likely of interactive nature. So we give them
		 * the credit of extending their sleep time to the period
		 * of time they spend on the runqueue, waiting for execution
		 * on a CPU, first time around:
		 */
		if (in_interrupt())
984
			p->sleep_type = SLEEP_INTERRUPTED;
L
Linus Torvalds 已提交
985 986 987 988 989
		else {
			/*
			 * Normal first-time wakeups get a credit too for
			 * on-runqueue time, but it will be weighted down:
			 */
990
			p->sleep_type = SLEEP_INTERACTIVE;
L
Linus Torvalds 已提交
991 992 993
		}
	}
	p->timestamp = now;
994
out:
L
Linus Torvalds 已提交
995 996 997 998 999 1000
	__activate_task(p, rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1001
static void deactivate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
1002
{
1003
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1004 1005 1006 1007 1008 1009 1010 1011
	dequeue_task(p, p->array);
	p->array = NULL;
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1012
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1013 1014 1015 1016
{
	return cpu_curr(task_cpu(p)) == p;
}

1017 1018 1019 1020 1021 1022
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->raw_weighted_load;
}

L
Linus Torvalds 已提交
1023
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1024 1025 1026 1027 1028 1029

void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	task_thread_info(p)->cpu = cpu;
}

1030
struct migration_req {
L
Linus Torvalds 已提交
1031 1032
	struct list_head list;

1033
	struct task_struct *task;
L
Linus Torvalds 已提交
1034 1035 1036
	int dest_cpu;

	struct completion done;
1037
};
L
Linus Torvalds 已提交
1038 1039 1040 1041 1042

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1043
static int
1044
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1045
{
1046
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
	if (!p->array && !task_running(rq, p)) {
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1061

L
Linus Torvalds 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1074
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1075 1076
{
	unsigned long flags;
1077
	struct rq *rq;
1078 1079
	struct prio_array *array;
	int running;
L
Linus Torvalds 已提交
1080 1081

repeat:
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1109
	rq = task_rq_lock(p, &flags);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	running = task_running(rq, p);
	array = p->array;
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1121 1122 1123
		cpu_relax();
		goto repeat;
	}
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
	if (unlikely(array)) {
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1159
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1171 1172
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1173 1174 1175 1176
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1177
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1178
{
1179
	struct rq *rq = cpu_rq(cpu);
1180

1181
	if (type == 0)
1182
		return rq->raw_weighted_load;
1183

1184
	return min(rq->cpu_load[type-1], rq->raw_weighted_load);
L
Linus Torvalds 已提交
1185 1186 1187
}

/*
1188 1189
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1190
 */
N
Nick Piggin 已提交
1191
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1192
{
1193
	struct rq *rq = cpu_rq(cpu);
1194

N
Nick Piggin 已提交
1195
	if (type == 0)
1196
		return rq->raw_weighted_load;
1197

1198 1199 1200 1201 1202 1203 1204 1205
	return max(rq->cpu_load[type-1], rq->raw_weighted_load);
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1206
	struct rq *rq = cpu_rq(cpu);
1207 1208
	unsigned long n = rq->nr_running;

1209
	return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1210 1211
}

N
Nick Piggin 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1229 1230 1231 1232
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1249 1250
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1251 1252 1253 1254 1255 1256 1257 1258

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1259
nextgroup:
N
Nick Piggin 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1269
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1270
 */
I
Ingo Molnar 已提交
1271 1272
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1273
{
1274
	cpumask_t tmp;
N
Nick Piggin 已提交
1275 1276 1277 1278
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1279 1280 1281 1282
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1283
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1309

1310
	for_each_domain(cpu, tmp) {
1311 1312 1313 1314 1315
 		/*
 	 	 * If power savings logic is enabled for a domain, stop there.
 	 	 */
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1316 1317
		if (tmp->flags & flag)
			sd = tmp;
1318
	}
N
Nick Piggin 已提交
1319 1320 1321 1322

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1323 1324 1325 1326 1327 1328
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1329 1330 1331

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1332 1333 1334 1335
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1336

1337
		new_cpu = find_idlest_cpu(group, t, cpu);
1338 1339 1340 1341 1342
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1343

1344
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1371
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1372 1373 1374 1375 1376
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1387 1388 1389 1390
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1391
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1392 1393 1394 1395 1396
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
		}
N
Nick Piggin 已提交
1397 1398
		else
			break;
L
Linus Torvalds 已提交
1399 1400 1401 1402
	}
	return cpu;
}
#else
1403
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1423
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1424 1425 1426 1427
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1428
	struct rq *rq;
L
Linus Torvalds 已提交
1429
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1430
	struct sched_domain *sd, *this_sd = NULL;
1431
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

	if (p->array)
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1450 1451
	new_cpu = cpu;

L
Linus Torvalds 已提交
1452 1453 1454
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1455 1456 1457 1458 1459 1460 1461 1462
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1463 1464 1465
		}
	}

N
Nick Piggin 已提交
1466
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1467 1468 1469
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1470
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1471
	 */
N
Nick Piggin 已提交
1472 1473 1474
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1475

1476 1477
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1478 1479
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1480

N
Nick Piggin 已提交
1481 1482
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1483 1484
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1485 1486 1487
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1488

L
Linus Torvalds 已提交
1489
			/*
1490 1491 1492
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1493
			 */
1494
			if (sync)
1495
				tl -= current->load_weight;
1496 1497

			if ((tl <= load &&
1498 1499
				tl + target_load(cpu, idx) <= tl_per_task) ||
				100*(tl + p->load_weight) <= imbalance*load) {
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
		if (p->array)
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
	if (old_state == TASK_UNINTERRUPTIBLE) {
		rq->nr_uninterruptible--;
		/*
		 * Tasks on involuntary sleep don't earn
		 * sleep_avg beyond just interactive state.
		 */
1548
		p->sleep_type = SLEEP_NONINTERACTIVE;
1549
	} else
L
Linus Torvalds 已提交
1550

I
Ingo Molnar 已提交
1551 1552
	/*
	 * Tasks that have marked their sleep as noninteractive get
1553 1554
	 * woken up with their sleep average not weighted in an
	 * interactive way.
I
Ingo Molnar 已提交
1555
	 */
1556 1557 1558 1559 1560
		if (old_state & TASK_NONINTERACTIVE)
			p->sleep_type = SLEEP_NONINTERACTIVE;


	activate_task(p, rq, cpu == this_cpu);
L
Linus Torvalds 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
	if (!sync || cpu != this_cpu) {
		if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);
	}
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1583
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1584 1585 1586 1587 1588 1589
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1590
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1591 1592 1593 1594
{
	return try_to_wake_up(p, state, 0);
}

1595
static void task_running_tick(struct rq *rq, struct task_struct *p);
L
Linus Torvalds 已提交
1596 1597 1598 1599
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
 */
1600
void fastcall sched_fork(struct task_struct *p, int clone_flags)
L
Linus Torvalds 已提交
1601
{
N
Nick Piggin 已提交
1602 1603 1604 1605 1606 1607 1608
	int cpu = get_cpu();

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	set_task_cpu(p, cpu);

L
Linus Torvalds 已提交
1609 1610 1611 1612 1613 1614 1615
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
1616 1617 1618 1619 1620 1621

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

L
Linus Torvalds 已提交
1622 1623
	INIT_LIST_HEAD(&p->run_list);
	p->array = NULL;
1624 1625 1626
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
	if (unlikely(sched_info_on()))
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1627
#endif
1628
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1629 1630
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1631
#ifdef CONFIG_PREEMPT
1632
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1633
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
#endif
	/*
	 * Share the timeslice between parent and child, thus the
	 * total amount of pending timeslices in the system doesn't change,
	 * resulting in more scheduling fairness.
	 */
	local_irq_disable();
	p->time_slice = (current->time_slice + 1) >> 1;
	/*
	 * The remainder of the first timeslice might be recovered by
	 * the parent if the child exits early enough.
	 */
	p->first_time_slice = 1;
	current->time_slice >>= 1;
	p->timestamp = sched_clock();
	if (unlikely(!current->time_slice)) {
		/*
		 * This case is rare, it happens when the parent has only
		 * a single jiffy left from its timeslice. Taking the
		 * runqueue lock is not a problem.
		 */
		current->time_slice = 1;
1656
		task_running_tick(cpu_rq(cpu), current);
N
Nick Piggin 已提交
1657 1658 1659
	}
	local_irq_enable();
	put_cpu();
L
Linus Torvalds 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1669
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1670
{
1671
	struct rq *rq, *this_rq;
L
Linus Torvalds 已提交
1672 1673 1674 1675
	unsigned long flags;
	int this_cpu, cpu;

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1676
	BUG_ON(p->state != TASK_RUNNING);
L
Linus Torvalds 已提交
1677
	this_cpu = smp_processor_id();
N
Nick Piggin 已提交
1678
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

	/*
	 * We decrease the sleep average of forking parents
	 * and children as well, to keep max-interactive tasks
	 * from forking tasks that are max-interactive. The parent
	 * (current) is done further down, under its lock.
	 */
	p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
		CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);

	p->prio = effective_prio(p);

	if (likely(cpu == this_cpu)) {
		if (!(clone_flags & CLONE_VM)) {
			/*
			 * The VM isn't cloned, so we're in a good position to
			 * do child-runs-first in anticipation of an exec. This
			 * usually avoids a lot of COW overhead.
			 */
			if (unlikely(!current->array))
				__activate_task(p, rq);
			else {
				p->prio = current->prio;
1702
				p->normal_prio = current->normal_prio;
L
Linus Torvalds 已提交
1703 1704 1705
				list_add_tail(&p->run_list, &current->run_list);
				p->array = current->array;
				p->array->nr_active++;
1706
				inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
			}
			set_need_resched();
		} else
			/* Run child last */
			__activate_task(p, rq);
		/*
		 * We skip the following code due to cpu == this_cpu
	 	 *
		 *   task_rq_unlock(rq, &flags);
		 *   this_rq = task_rq_lock(current, &flags);
		 */
		this_rq = rq;
	} else {
		this_rq = cpu_rq(this_cpu);

		/*
		 * Not the local CPU - must adjust timestamp. This should
		 * get optimised away in the !CONFIG_SMP case.
		 */
1726 1727
		p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
					+ rq->most_recent_timestamp;
L
Linus Torvalds 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
		__activate_task(p, rq);
		if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);

		/*
		 * Parent and child are on different CPUs, now get the
		 * parent runqueue to update the parent's ->sleep_avg:
		 */
		task_rq_unlock(rq, &flags);
		this_rq = task_rq_lock(current, &flags);
	}
	current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
		PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
	task_rq_unlock(this_rq, &flags);
}

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1756
static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1757 1758 1759 1760 1761
{
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1762 1763
/**
 * finish_task_switch - clean up after a task-switch
1764
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1765 1766
 * @prev: the thread we just switched away from.
 *
1767 1768 1769 1770
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1771 1772 1773 1774 1775 1776
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1777
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1778 1779 1780
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1781
	long prev_state;
L
Linus Torvalds 已提交
1782 1783 1784 1785 1786

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1787
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1788 1789
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1790
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1791 1792 1793 1794 1795
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1796
	prev_state = prev->state;
1797 1798
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
L
Linus Torvalds 已提交
1799 1800
	if (mm)
		mmdrop(mm);
1801
	if (unlikely(prev_state == TASK_DEAD)) {
1802 1803 1804 1805 1806
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
	 	 */
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1807
		put_task_struct(prev);
1808
	}
L
Linus Torvalds 已提交
1809 1810 1811 1812 1813 1814
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1815
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1816 1817
	__releases(rq->lock)
{
1818 1819
	struct rq *rq = this_rq();

1820 1821 1822 1823 1824
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1825 1826 1827 1828 1829 1830 1831 1832
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
1833
static inline struct task_struct *
1834
context_switch(struct rq *rq, struct task_struct *prev,
1835
	       struct task_struct *next)
L
Linus Torvalds 已提交
1836 1837 1838 1839
{
	struct mm_struct *mm = next->mm;
	struct mm_struct *oldmm = prev->active_mm;

1840 1841 1842 1843 1844 1845 1846
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

N
Nick Piggin 已提交
1847
	if (!mm) {
L
Linus Torvalds 已提交
1848 1849 1850 1851 1852 1853
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

N
Nick Piggin 已提交
1854
	if (!prev->mm) {
L
Linus Torvalds 已提交
1855 1856 1857 1858
		prev->active_mm = NULL;
		WARN_ON(rq->prev_mm);
		rq->prev_mm = oldmm;
	}
1859 1860 1861 1862 1863 1864 1865
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1866
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1867
#endif
L
Linus Torvalds 已提交
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

	return prev;
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1896
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1911 1912
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1913

1914
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1924
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1925 1926 1927 1928 1929
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

L
Linus Torvalds 已提交
1945 1946
#ifdef CONFIG_SMP

1947 1948 1949 1950 1951 1952 1953 1954 1955
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
{
	return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
}

L
Linus Torvalds 已提交
1956 1957 1958 1959 1960 1961
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
1962
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1963 1964 1965
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
1966
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
1967 1968 1969 1970
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
1971
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
1987
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2001
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2002 2003 2004 2005
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2006 2007 2008 2009 2010
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2011
	if (unlikely(!spin_trylock(&busiest->lock))) {
2012
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2027
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2028
{
2029
	struct migration_req req;
L
Linus Torvalds 已提交
2030
	unsigned long flags;
2031
	struct rq *rq;
L
Linus Torvalds 已提交
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2042

L
Linus Torvalds 已提交
2043 2044 2045 2046 2047
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2048

L
Linus Torvalds 已提交
2049 2050 2051 2052 2053 2054 2055
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2056 2057
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2058 2059 2060 2061
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2062
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2063
	put_cpu();
N
Nick Piggin 已提交
2064 2065
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2066 2067 2068 2069 2070 2071
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
2072 2073 2074
static void pull_task(struct rq *src_rq, struct prio_array *src_array,
		      struct task_struct *p, struct rq *this_rq,
		      struct prio_array *this_array, int this_cpu)
L
Linus Torvalds 已提交
2075 2076
{
	dequeue_task(p, src_array);
2077
	dec_nr_running(p, src_rq);
L
Linus Torvalds 已提交
2078
	set_task_cpu(p, this_cpu);
2079
	inc_nr_running(p, this_rq);
L
Linus Torvalds 已提交
2080
	enqueue_task(p, this_array);
2081 2082
	p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
				+ this_rq->most_recent_timestamp;
L
Linus Torvalds 已提交
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
	if (TASK_PREEMPTS_CURR(p, this_rq))
		resched_task(this_rq->curr);
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2094
static
2095
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2096
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2097
		     int *all_pinned)
L
Linus Torvalds 已提交
2098 2099 2100 2101 2102 2103 2104 2105 2106
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2107 2108 2109 2110
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2111 2112 2113

	/*
	 * Aggressive migration if:
2114
	 * 1) task is cache cold, or
L
Linus Torvalds 已提交
2115 2116 2117
	 * 2) too many balance attempts have failed.
	 */

2118 2119 2120 2121 2122
	if (sd->nr_balance_failed > sd->cache_nice_tries) {
#ifdef CONFIG_SCHEDSTATS
		if (task_hot(p, rq->most_recent_timestamp, sd))
			schedstat_inc(sd, lb_hot_gained[idle]);
#endif
L
Linus Torvalds 已提交
2123
		return 1;
2124
	}
L
Linus Torvalds 已提交
2125

2126
	if (task_hot(p, rq->most_recent_timestamp, sd))
2127
		return 0;
L
Linus Torvalds 已提交
2128 2129 2130
	return 1;
}

2131
#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2132

L
Linus Torvalds 已提交
2133
/*
2134 2135 2136
 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
 * load from busiest to this_rq, as part of a balancing operation within
 * "domain". Returns the number of tasks moved.
L
Linus Torvalds 已提交
2137 2138 2139
 *
 * Called with both runqueues locked.
 */
2140
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2141
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2142
		      struct sched_domain *sd, enum cpu_idle_type idle,
2143
		      int *all_pinned)
L
Linus Torvalds 已提交
2144
{
2145 2146
	int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
	    best_prio_seen, skip_for_load;
2147
	struct prio_array *array, *dst_array;
L
Linus Torvalds 已提交
2148
	struct list_head *head, *curr;
2149
	struct task_struct *tmp;
2150
	long rem_load_move;
L
Linus Torvalds 已提交
2151

2152
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2153 2154
		goto out;

2155
	rem_load_move = max_load_move;
2156
	pinned = 1;
2157
	this_best_prio = rq_best_prio(this_rq);
2158
	best_prio = rq_best_prio(busiest);
2159 2160 2161
	/*
	 * Enable handling of the case where there is more than one task
	 * with the best priority.   If the current running task is one
2162
	 * of those with prio==best_prio we know it won't be moved
2163 2164 2165
	 * and therefore it's safe to override the skip (based on load) of
	 * any task we find with that prio.
	 */
2166
	best_prio_seen = best_prio == busiest->curr->prio;
2167

L
Linus Torvalds 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
	/*
	 * We first consider expired tasks. Those will likely not be
	 * executed in the near future, and they are most likely to
	 * be cache-cold, thus switching CPUs has the least effect
	 * on them.
	 */
	if (busiest->expired->nr_active) {
		array = busiest->expired;
		dst_array = this_rq->expired;
	} else {
		array = busiest->active;
		dst_array = this_rq->active;
	}

new_array:
	/* Start searching at priority 0: */
	idx = 0;
skip_bitmap:
	if (!idx)
		idx = sched_find_first_bit(array->bitmap);
	else
		idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
	if (idx >= MAX_PRIO) {
		if (array == busiest->expired && busiest->active->nr_active) {
			array = busiest->active;
			dst_array = this_rq->active;
			goto new_array;
		}
		goto out;
	}

	head = array->queue + idx;
	curr = head->prev;
skip_queue:
2202
	tmp = list_entry(curr, struct task_struct, run_list);
L
Linus Torvalds 已提交
2203 2204 2205

	curr = curr->prev;

2206 2207 2208 2209 2210
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
2211 2212
	skip_for_load = tmp->load_weight > rem_load_move;
	if (skip_for_load && idx < this_best_prio)
2213
		skip_for_load = !best_prio_seen && idx == best_prio;
2214
	if (skip_for_load ||
2215
	    !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2216 2217

		best_prio_seen |= idx == best_prio;
L
Linus Torvalds 已提交
2218 2219 2220 2221 2222 2223 2224 2225
		if (curr != head)
			goto skip_queue;
		idx++;
		goto skip_bitmap;
	}

	pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
	pulled++;
2226
	rem_load_move -= tmp->load_weight;
L
Linus Torvalds 已提交
2227

2228 2229 2230 2231 2232
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2233 2234
		if (idx < this_best_prio)
			this_best_prio = idx;
L
Linus Torvalds 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
		if (curr != head)
			goto skip_queue;
		idx++;
		goto skip_bitmap;
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2247 2248 2249

	if (all_pinned)
		*all_pinned = pinned;
L
Linus Torvalds 已提交
2250 2251 2252 2253 2254
	return pulled;
}

/*
 * find_busiest_group finds and returns the busiest CPU group within the
2255 2256
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2257 2258 2259
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2260
		   unsigned long *imbalance, enum cpu_idle_type idle, int *sd_idle,
2261
		   cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2262 2263 2264
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2265
	unsigned long max_pull;
2266 2267
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2268
	int load_idx;
2269 2270 2271 2272 2273 2274
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2275 2276

	max_load = this_load = total_load = total_pwr = 0;
2277 2278
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2279
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2280
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2281
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2282 2283 2284
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2285 2286

	do {
2287
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2288 2289
		int local_group;
		int i;
2290
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2291
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2292 2293 2294

		local_group = cpu_isset(this_cpu, group->cpumask);

2295 2296 2297
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2298
		/* Tally up the load of all CPUs in the group */
2299
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2300 2301

		for_each_cpu_mask(i, group->cpumask) {
2302 2303 2304 2305 2306 2307
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2308

N
Nick Piggin 已提交
2309 2310 2311
			if (*sd_idle && !idle_cpu(i))
				*sd_idle = 0;

L
Linus Torvalds 已提交
2312
			/* Bias balancing toward cpus of our domain */
2313 2314 2315 2316 2317 2318
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2319
				load = target_load(i, load_idx);
2320
			} else
N
Nick Piggin 已提交
2321
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2322 2323

			avg_load += load;
2324 2325
			sum_nr_running += rq->nr_running;
			sum_weighted_load += rq->raw_weighted_load;
L
Linus Torvalds 已提交
2326 2327
		}

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
		 * domains.
		 */
		if (local_group && balance_cpu != this_cpu && balance) {
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2338
		total_load += avg_load;
2339
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2340 2341

		/* Adjust by relative CPU power of the group */
2342 2343
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2344

2345
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2346

L
Linus Torvalds 已提交
2347 2348 2349
		if (local_group) {
			this_load = avg_load;
			this = group;
2350 2351 2352
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2353
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2354 2355
			max_load = avg_load;
			busiest = group;
2356 2357
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2358
		}
2359 2360 2361 2362 2363 2364

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2365
 		if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
 			goto group_next;

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

 		/*
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
 		 */
 		if (!power_savings_balance || sum_nr_running >= group_capacity
		    || !sum_nr_running)
 			goto group_next;

 		/*
		 * Calculate the group which has the least non-idle load.
 		 * This is the group from where we need to pick up the load
 		 * for saving power
 		 */
 		if ((sum_nr_running < min_nr_running) ||
 		    (sum_nr_running == min_nr_running &&
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
 			group_min = group;
 			min_nr_running = sum_nr_running;
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
 		}

 		/*
		 * Calculate the group which is almost near its
 		 * capacity but still has some space to pick up some load
 		 * from other group and save more power
 		 */
2404
 		if (sum_nr_running <= group_capacity - 1) {
2405 2406 2407 2408 2409 2410 2411
 			if (sum_nr_running > leader_nr_running ||
 			    (sum_nr_running == leader_nr_running &&
 			     first_cpu(group->cpumask) >
 			      first_cpu(group_leader->cpumask))) {
 				group_leader = group;
 				leader_nr_running = sum_nr_running;
 			}
2412
		}
2413 2414
group_next:
#endif
L
Linus Torvalds 已提交
2415 2416 2417
		group = group->next;
	} while (group != sd->groups);

2418
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2419 2420 2421 2422 2423 2424 2425 2426
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2427
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2451 2452

	/* Don't want to pull so many tasks that a group would go idle */
2453
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2454

L
Linus Torvalds 已提交
2455
	/* How much load to actually move to equalise the imbalance */
2456 2457
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2458 2459
			/ SCHED_LOAD_SCALE;

2460 2461 2462 2463 2464 2465 2466
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
	if (*imbalance < busiest_load_per_task) {
2467
		unsigned long tmp, pwr_now, pwr_move;
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2479

2480 2481
		if (max_load - this_load >= busiest_load_per_task * imbn) {
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2491 2492 2493 2494
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2495 2496 2497
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2498 2499
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2500
		if (max_load > tmp)
2501
			pwr_move += busiest->__cpu_power *
2502
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2503 2504

		/* Amount of load we'd add */
2505
		if (max_load * busiest->__cpu_power <
2506
				busiest_load_per_task * SCHED_LOAD_SCALE)
2507 2508
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2509
		else
2510 2511 2512 2513
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2514 2515 2516 2517 2518 2519
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2520
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2521 2522 2523 2524 2525
	}

	return busiest;

out_balanced:
2526
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2527
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2528
		goto ret;
L
Linus Torvalds 已提交
2529

2530 2531 2532 2533 2534
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2535
ret:
L
Linus Torvalds 已提交
2536 2537 2538 2539 2540 2541 2542
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2543
static struct rq *
I
Ingo Molnar 已提交
2544
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2545
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2546
{
2547
	struct rq *busiest = NULL, *rq;
2548
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2549 2550 2551
	int i;

	for_each_cpu_mask(i, group->cpumask) {
2552 2553 2554 2555

		if (!cpu_isset(i, *cpus))
			continue;

2556
		rq = cpu_rq(i);
2557

2558
		if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2559
			continue;
L
Linus Torvalds 已提交
2560

2561 2562 2563
		if (rq->raw_weighted_load > max_load) {
			max_load = rq->raw_weighted_load;
			busiest = rq;
L
Linus Torvalds 已提交
2564 2565 2566 2567 2568 2569
		}
	}

	return busiest;
}

2570 2571 2572 2573 2574 2575
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

2576 2577 2578 2579 2580
static inline unsigned long minus_1_or_zero(unsigned long n)
{
	return n > 0 ? n - 1 : 0;
}

L
Linus Torvalds 已提交
2581 2582 2583 2584
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2585
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2586
			struct sched_domain *sd, enum cpu_idle_type idle,
2587
			int *balance)
L
Linus Torvalds 已提交
2588
{
2589
	int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2590 2591
	struct sched_group *group;
	unsigned long imbalance;
2592
	struct rq *busiest;
2593
	cpumask_t cpus = CPU_MASK_ALL;
2594
	unsigned long flags;
N
Nick Piggin 已提交
2595

2596 2597 2598 2599
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2600
	 * portraying it as CPU_NOT_IDLE.
2601
	 */
I
Ingo Molnar 已提交
2602
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2603
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2604
		sd_idle = 1;
L
Linus Torvalds 已提交
2605 2606 2607

	schedstat_inc(sd, lb_cnt[idle]);

2608 2609
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2610 2611
				   &cpus, balance);

2612
	if (*balance == 0)
2613 2614
		goto out_balanced;

L
Linus Torvalds 已提交
2615 2616 2617 2618 2619
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2620
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2621 2622 2623 2624 2625
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2626
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. nr_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
2638
		local_irq_save(flags);
N
Nick Piggin 已提交
2639
		double_rq_lock(this_rq, busiest);
L
Linus Torvalds 已提交
2640
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2641 2642
				      minus_1_or_zero(busiest->nr_running),
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2643
		double_rq_unlock(this_rq, busiest);
2644
		local_irq_restore(flags);
2645

2646 2647 2648 2649 2650 2651
		/*
		 * some other cpu did the load balance for us.
		 */
		if (nr_moved && this_cpu != smp_processor_id())
			resched_cpu(this_cpu);

2652
		/* All tasks on this runqueue were pinned by CPU affinity */
2653 2654 2655 2656
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2657
			goto out_balanced;
2658
		}
L
Linus Torvalds 已提交
2659
	}
2660

L
Linus Torvalds 已提交
2661 2662 2663 2664 2665 2666
	if (!nr_moved) {
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2667
			spin_lock_irqsave(&busiest->lock, flags);
2668 2669 2670 2671 2672

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2673
				spin_unlock_irqrestore(&busiest->lock, flags);
2674 2675 2676 2677
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2678 2679 2680
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2681
				active_balance = 1;
L
Linus Torvalds 已提交
2682
			}
2683
			spin_unlock_irqrestore(&busiest->lock, flags);
2684
			if (active_balance)
L
Linus Torvalds 已提交
2685 2686 2687 2688 2689 2690
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2691
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2692
		}
2693
	} else
L
Linus Torvalds 已提交
2694 2695
		sd->nr_balance_failed = 0;

2696
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2697 2698
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2699 2700 2701 2702 2703 2704 2705 2706 2707
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2708 2709
	}

2710
	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2711
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2712
		return -1;
L
Linus Torvalds 已提交
2713 2714 2715 2716 2717
	return nr_moved;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2718
	sd->nr_balance_failed = 0;
2719 2720

out_one_pinned:
L
Linus Torvalds 已提交
2721
	/* tune up the balancing interval */
2722 2723
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2724 2725
		sd->balance_interval *= 2;

2726
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2727
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2728
		return -1;
L
Linus Torvalds 已提交
2729 2730 2731 2732 2733 2734 2735
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2736
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2737 2738
 * this_rq is locked.
 */
2739
static int
2740
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2741 2742
{
	struct sched_group *group;
2743
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2744 2745
	unsigned long imbalance;
	int nr_moved = 0;
N
Nick Piggin 已提交
2746
	int sd_idle = 0;
2747
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2748

2749 2750 2751 2752
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2753
	 * portraying it as CPU_NOT_IDLE.
2754 2755 2756
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2757
		sd_idle = 1;
L
Linus Torvalds 已提交
2758

I
Ingo Molnar 已提交
2759
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2760
redo:
I
Ingo Molnar 已提交
2761
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2762
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2763
	if (!group) {
I
Ingo Molnar 已提交
2764
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2765
		goto out_balanced;
L
Linus Torvalds 已提交
2766 2767
	}

I
Ingo Molnar 已提交
2768
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2769
				&cpus);
N
Nick Piggin 已提交
2770
	if (!busiest) {
I
Ingo Molnar 已提交
2771
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2772
		goto out_balanced;
L
Linus Torvalds 已提交
2773 2774
	}

N
Nick Piggin 已提交
2775 2776
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2777
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2778 2779 2780 2781 2782 2783

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2784
					minus_1_or_zero(busiest->nr_running),
I
Ingo Molnar 已提交
2785
					imbalance, sd, CPU_NEWLY_IDLE, NULL);
2786
		spin_unlock(&busiest->lock);
2787 2788 2789 2790 2791 2792

		if (!nr_moved) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2793 2794
	}

N
Nick Piggin 已提交
2795
	if (!nr_moved) {
I
Ingo Molnar 已提交
2796
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2797 2798
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2799 2800
			return -1;
	} else
2801
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2802 2803

	return nr_moved;
2804 2805

out_balanced:
I
Ingo Molnar 已提交
2806
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2807
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2808
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2809
		return -1;
2810
	sd->nr_balance_failed = 0;
2811

2812
	return 0;
L
Linus Torvalds 已提交
2813 2814 2815 2816 2817 2818
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2819
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2820 2821
{
	struct sched_domain *sd;
2822 2823
	int pulled_task = 0;
	unsigned long next_balance = jiffies + 60 *  HZ;
L
Linus Torvalds 已提交
2824 2825

	for_each_domain(this_cpu, sd) {
2826 2827 2828 2829 2830 2831
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2832
			/* If we've pulled tasks over stop searching: */
2833
			pulled_task = load_balance_newidle(this_cpu,
2834 2835 2836 2837 2838 2839 2840
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2841
	}
2842 2843 2844 2845 2846 2847
	if (!pulled_task)
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
L
Linus Torvalds 已提交
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2858
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2859
{
2860
	int target_cpu = busiest_rq->push_cpu;
2861 2862
	struct sched_domain *sd;
	struct rq *target_rq;
2863

2864
	/* Is there any task to move? */
2865 2866 2867 2868
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2869 2870

	/*
2871 2872 2873
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2874
	 */
2875
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2876

2877 2878 2879 2880
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2881
	for_each_domain(target_cpu, sd) {
2882
		if ((sd->flags & SD_LOAD_BALANCE) &&
2883
		    cpu_isset(busiest_cpu, sd->span))
2884
				break;
2885
	}
2886

2887 2888
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2889

2890
		if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
I
Ingo Molnar 已提交
2891
			       RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
2892 2893 2894 2895 2896
			       NULL))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2897
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2898 2899
}

2900
static void update_load(struct rq *this_rq)
L
Linus Torvalds 已提交
2901
{
2902
	unsigned long this_load;
2903
	unsigned int i, scale;
L
Linus Torvalds 已提交
2904

2905
	this_load = this_rq->raw_weighted_load;
2906 2907

	/* Update our load: */
2908
	for (i = 0, scale = 1; i < 3; i++, scale += scale) {
2909 2910
		unsigned long old_load, new_load;

2911 2912
		/* scale is effectively 1 << i now, and >> i divides by scale */

N
Nick Piggin 已提交
2913
		old_load = this_rq->cpu_load[i];
2914
		new_load = this_load;
N
Nick Piggin 已提交
2915 2916 2917 2918 2919 2920 2921
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
2922
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
N
Nick Piggin 已提交
2923
	}
2924 2925
}

2926 2927 2928 2929 2930 2931 2932 2933 2934
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2935
/*
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2946
 *
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3003 3004 3005 3006 3007
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
3008
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3009
{
3010 3011
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3012 3013
	unsigned long interval;
	struct sched_domain *sd;
3014
	/* Earliest time when we have to do rebalance again */
3015
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
3016

3017
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3018 3019 3020 3021
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3022
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3023 3024 3025 3026 3027 3028 3029
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;

3030 3031 3032 3033 3034
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3035
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3036
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3037 3038
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3039 3040 3041
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3042
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3043
			}
3044
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3045
		}
3046 3047 3048
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3049 3050
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
3051 3052 3053 3054 3055 3056 3057 3058

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3059
	}
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
	rq->next_balance = next_balance;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
	int local_cpu = smp_processor_id();
	struct rq *local_rq = cpu_rq(local_cpu);
I
Ingo Molnar 已提交
3072
	enum cpu_idle_type idle = local_rq->idle_at_tick ? CPU_IDLE : CPU_NOT_IDLE;
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097

	rebalance_domains(local_cpu, idle);

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
	if (local_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == local_cpu) {
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

		cpu_clear(local_cpu, cpus);
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

I
Ingo Molnar 已提交
3098
			rebalance_domains(balance_cpu, CPU_IDLE);
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167

			rq = cpu_rq(balance_cpu);
			if (time_after(local_rq->next_balance, rq->next_balance))
				local_rq->next_balance = rq->next_balance;
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
static inline void trigger_load_balance(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3168 3169 3170 3171 3172
}
#else
/*
 * on UP we do not need to balance between CPUs:
 */
3173
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3174 3175 3176 3177 3178 3179 3180 3181 3182
{
}
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3183 3184
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3185
 */
3186
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3187 3188
{
	unsigned long flags;
3189 3190
	u64 ns, delta_exec;
	struct rq *rq;
3191

3192 3193 3194 3195 3196 3197 3198 3199
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
		delta_exec = rq_clock(rq) - p->se.exec_start;
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3200

L
Linus Torvalds 已提交
3201 3202 3203
	return ns;
}

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
/*
 * We place interactive tasks back into the active array, if possible.
 *
 * To guarantee that this does not starve expired tasks we ignore the
 * interactivity of a task if the first expired task had to wait more
 * than a 'reasonable' amount of time. This deadline timeout is
 * load-dependent, as the frequency of array switched decreases with
 * increasing number of running tasks. We also ignore the interactivity
 * if a better static_prio task has expired:
 */
3214
static inline int expired_starving(struct rq *rq)
3215 3216 3217 3218 3219 3220 3221 3222 3223
{
	if (rq->curr->static_prio > rq->best_expired_prio)
		return 1;
	if (!STARVATION_LIMIT || !rq->expired_timestamp)
		return 0;
	if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
		return 1;
	return 0;
}
3224

L
Linus Torvalds 已提交
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3256
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3286
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3298
static void task_running_tick(struct rq *rq, struct task_struct *p)
L
Linus Torvalds 已提交
3299 3300
{
	if (p->array != rq->active) {
3301
		/* Task has expired but was not scheduled yet */
L
Linus Torvalds 已提交
3302
		set_tsk_need_resched(p);
3303
		return;
L
Linus Torvalds 已提交
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	}
	spin_lock(&rq->lock);
	/*
	 * The task was running during this tick - update the
	 * time slice counter. Note: we do not update a thread's
	 * priority until it either goes to sleep or uses up its
	 * timeslice. This makes it possible for interactive tasks
	 * to use up their timeslices at their highest priority levels.
	 */
	if (rt_task(p)) {
		/*
		 * RR tasks need a special form of timeslice management.
		 * FIFO tasks have no timeslices.
		 */
		if ((p->policy == SCHED_RR) && !--p->time_slice) {
			p->time_slice = task_timeslice(p);
			p->first_time_slice = 0;
			set_tsk_need_resched(p);

			/* put it at the end of the queue: */
			requeue_task(p, rq->active);
		}
		goto out_unlock;
	}
	if (!--p->time_slice) {
		dequeue_task(p, rq->active);
		set_tsk_need_resched(p);
		p->prio = effective_prio(p);
		p->time_slice = task_timeslice(p);
		p->first_time_slice = 0;

		if (!rq->expired_timestamp)
			rq->expired_timestamp = jiffies;
3337
		if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
L
Linus Torvalds 已提交
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
			enqueue_task(p, rq->expired);
			if (p->static_prio < rq->best_expired_prio)
				rq->best_expired_prio = p->static_prio;
		} else
			enqueue_task(p, rq->active);
	} else {
		/*
		 * Prevent a too long timeslice allowing a task to monopolize
		 * the CPU. We do this by splitting up the timeslice into
		 * smaller pieces.
		 *
		 * Note: this does not mean the task's timeslices expire or
		 * get lost in any way, they just might be preempted by
		 * another task of equal priority. (one with higher
		 * priority would have preempted this task already.) We
		 * requeue this task to the end of the list on this priority
		 * level, which is in essence a round-robin of tasks with
		 * equal priority.
		 *
		 * This only applies to tasks in the interactive
		 * delta range with at least TIMESLICE_GRANULARITY to requeue.
		 */
		if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
			p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
			(p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
			(p->array == rq->active)) {

			requeue_task(p, rq->active);
			set_tsk_need_resched(p);
		}
	}
out_unlock:
	spin_unlock(&rq->lock);
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
}

/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	struct task_struct *p = current;
	int cpu = smp_processor_id();
3384
	int idle_at_tick = idle_cpu(cpu);
3385 3386
	struct rq *rq = cpu_rq(cpu);

3387
	if (!idle_at_tick)
3388
		task_running_tick(rq, p);
3389
#ifdef CONFIG_SMP
3390
	update_load(rq);
3391
	rq->idle_at_tick = idle_at_tick;
3392
	trigger_load_balance(cpu);
3393
#endif
L
Linus Torvalds 已提交
3394 3395 3396 3397 3398 3399 3400 3401 3402
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3403 3404
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3405 3406 3407 3408
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3409 3410
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3411 3412 3413 3414 3415 3416 3417 3418
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3419 3420
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3421 3422 3423
	/*
	 * Is the spinlock portion underflowing?
	 */
3424 3425 3426 3427
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3428 3429 3430 3431 3432 3433
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

3434 3435 3436 3437 3438 3439
static inline int interactive_sleep(enum sleep_type sleep_type)
{
	return (sleep_type == SLEEP_INTERACTIVE ||
		sleep_type == SLEEP_INTERRUPTED);
}

L
Linus Torvalds 已提交
3440 3441 3442 3443 3444
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
3445
	struct task_struct *prev, *next;
3446
	struct prio_array *array;
L
Linus Torvalds 已提交
3447 3448 3449
	struct list_head *queue;
	unsigned long long now;
	unsigned long run_time;
3450
	int cpu, idx, new_prio;
3451
	long *switch_count;
3452
	struct rq *rq;
L
Linus Torvalds 已提交
3453 3454 3455 3456 3457 3458

	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3459 3460 3461 3462
	if (unlikely(in_atomic() && !current->exit_state)) {
		printk(KERN_ERR "BUG: scheduling while atomic: "
			"%s/0x%08x/%d\n",
			current->comm, preempt_count(), current->pid);
3463
		debug_show_held_locks(current);
3464 3465
		if (irqs_disabled())
			print_irqtrace_events(current);
3466
		dump_stack();
L
Linus Torvalds 已提交
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
	}
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

need_resched:
	preempt_disable();
	prev = current;
	release_kernel_lock(prev);
need_resched_nonpreemptible:
	rq = this_rq();

	/*
	 * The idle thread is not allowed to schedule!
	 * Remove this check after it has been exercised a bit.
	 */
	if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
		printk(KERN_ERR "bad: scheduling from the idle thread!\n");
		dump_stack();
	}

	schedstat_inc(rq, sched_cnt);
	now = sched_clock();
3488
	if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
L
Linus Torvalds 已提交
3489
		run_time = now - prev->timestamp;
3490
		if (unlikely((long long)(now - prev->timestamp) < 0))
L
Linus Torvalds 已提交
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
			run_time = 0;
	} else
		run_time = NS_MAX_SLEEP_AVG;

	/*
	 * Tasks charged proportionately less run_time at high sleep_avg to
	 * delay them losing their interactive status
	 */
	run_time /= (CURRENT_BONUS(prev) ? : 1);

	spin_lock_irq(&rq->lock);

	switch_count = &prev->nivcsw;
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		switch_count = &prev->nvcsw;
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
				unlikely(signal_pending(prev))))
			prev->state = TASK_RUNNING;
		else {
			if (prev->state == TASK_UNINTERRUPTIBLE)
				rq->nr_uninterruptible++;
			deactivate_task(prev, rq);
		}
	}

	cpu = smp_processor_id();
	if (unlikely(!rq->nr_running)) {
		idle_balance(cpu, rq);
		if (!rq->nr_running) {
			next = rq->idle;
			rq->expired_timestamp = 0;
			goto switch_tasks;
		}
	}

	array = rq->active;
	if (unlikely(!array->nr_active)) {
		/*
		 * Switch the active and expired arrays.
		 */
		schedstat_inc(rq, sched_switch);
		rq->active = rq->expired;
		rq->expired = array;
		array = rq->active;
		rq->expired_timestamp = 0;
		rq->best_expired_prio = MAX_PRIO;
	}

	idx = sched_find_first_bit(array->bitmap);
	queue = array->queue + idx;
3541
	next = list_entry(queue->next, struct task_struct, run_list);
L
Linus Torvalds 已提交
3542

3543
	if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
L
Linus Torvalds 已提交
3544
		unsigned long long delta = now - next->timestamp;
3545
		if (unlikely((long long)(now - next->timestamp) < 0))
L
Linus Torvalds 已提交
3546 3547
			delta = 0;

3548
		if (next->sleep_type == SLEEP_INTERACTIVE)
L
Linus Torvalds 已提交
3549 3550 3551
			delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;

		array = next->array;
3552 3553 3554 3555 3556 3557
		new_prio = recalc_task_prio(next, next->timestamp + delta);

		if (unlikely(next->prio != new_prio)) {
			dequeue_task(next, array);
			next->prio = new_prio;
			enqueue_task(next, array);
3558
		}
L
Linus Torvalds 已提交
3559
	}
3560
	next->sleep_type = SLEEP_NORMAL;
L
Linus Torvalds 已提交
3561 3562 3563 3564
switch_tasks:
	if (next == rq->idle)
		schedstat_inc(rq, sched_goidle);
	prefetch(next);
3565
	prefetch_stack(next);
L
Linus Torvalds 已提交
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
	clear_tsk_need_resched(prev);
	rcu_qsctr_inc(task_cpu(prev));

	prev->sleep_avg -= run_time;
	if ((long)prev->sleep_avg <= 0)
		prev->sleep_avg = 0;
	prev->timestamp = prev->last_ran = now;

	sched_info_switch(prev, next);
	if (likely(prev != next)) {
3576
		next->timestamp = next->last_ran = now;
L
Linus Torvalds 已提交
3577 3578 3579 3580
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3581
		prepare_task_switch(rq, next);
L
Linus Torvalds 已提交
3582 3583
		prev = context_switch(rq, prev, next);
		barrier();
3584 3585 3586 3587 3588 3589
		/*
		 * this_rq must be evaluated again because prev may have moved
		 * CPUs since it called schedule(), thus the 'rq' on its stack
		 * frame will be invalid.
		 */
		finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
	} else
		spin_unlock_irq(&rq->lock);

	prev = current;
	if (unlikely(reacquire_kernel_lock(prev) < 0))
		goto need_resched_nonpreemptible;
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3604
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3619
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3647
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3659
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3689 3690
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3691
{
3692
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3711 3712 3713
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3714
		if (curr->func(curr, mode, sync, key) &&
3715
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3716 3717 3718 3719 3720 3721 3722 3723 3724
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3725
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3726 3727
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3728
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3747
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3759 3760
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3804

L
Linus Torvalds 已提交
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);


#define	SLEEP_ON_VAR					\
	unsigned long flags;				\
	wait_queue_t wait;				\
	init_waitqueue_entry(&wait, current);

#define SLEEP_ON_HEAD					\
	spin_lock_irqsave(&q->lock,flags);		\
	__add_wait_queue(q, &wait);			\
	spin_unlock(&q->lock);

#define	SLEEP_ON_TAIL					\
	spin_lock_irq(&q->lock);			\
	__remove_wait_queue(q, &wait);			\
	spin_unlock_irqrestore(&q->lock, flags);

void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3951 3952
long fastcall __sched
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

void fastcall __sched sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(sleep_on);

long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}

EXPORT_SYMBOL(sleep_on_timeout);

3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4005
void rt_mutex_setprio(struct task_struct *p, int prio)
4006
{
4007
	struct prio_array *array;
4008
	unsigned long flags;
4009
	struct rq *rq;
4010
	int oldprio;
4011 4012 4013 4014 4015

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4016
	oldprio = p->prio;
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
	array = p->array;
	if (array)
		dequeue_task(p, array);
	p->prio = prio;

	if (array) {
		/*
		 * If changing to an RT priority then queue it
		 * in the active array!
		 */
		if (rt_task(p))
			array = rq->active;
		enqueue_task(p, array);
		/*
		 * Reschedule if we are currently running on this runqueue and
4032 4033
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4034
		 */
4035 4036 4037 4038
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
		} else if (TASK_PREEMPTS_CURR(p, rq))
4039 4040 4041 4042 4043 4044 4045
			resched_task(rq->curr);
	}
	task_rq_unlock(rq, &flags);
}

#endif

4046
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4047
{
4048
	struct prio_array *array;
4049
	int old_prio, delta;
L
Linus Torvalds 已提交
4050
	unsigned long flags;
4051
	struct rq *rq;
L
Linus Torvalds 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
4064
	 * not SCHED_NORMAL/SCHED_BATCH:
L
Linus Torvalds 已提交
4065
	 */
4066
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4067 4068 4069 4070
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
	array = p->array;
4071
	if (array) {
L
Linus Torvalds 已提交
4072
		dequeue_task(p, array);
4073 4074
		dec_raw_weighted_load(rq, p);
	}
L
Linus Torvalds 已提交
4075 4076

	p->static_prio = NICE_TO_PRIO(nice);
4077
	set_load_weight(p);
4078 4079 4080
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4081 4082 4083

	if (array) {
		enqueue_task(p, array);
4084
		inc_raw_weighted_load(rq, p);
L
Linus Torvalds 已提交
4085
		/*
4086 4087
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4088
		 */
4089
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4090 4091 4092 4093 4094 4095 4096
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4097 4098 4099 4100 4101
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4102
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4103
{
4104 4105
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4106

M
Matt Mackall 已提交
4107 4108 4109 4110
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4122
	long nice, retval;
L
Linus Torvalds 已提交
4123 4124 4125 4126 4127 4128

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4129 4130
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4131 4132 4133 4134 4135 4136 4137 4138 4139
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4140 4141 4142
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4161
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4162 4163 4164 4165 4166 4167 4168 4169
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4170
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4189
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4190 4191 4192 4193 4194 4195 4196 4197
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4198
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4199 4200 4201 4202 4203 4204 4205 4206
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
static void __setscheduler(struct task_struct *p, int policy, int prio)
{
	BUG_ON(p->array);
4207

L
Linus Torvalds 已提交
4208 4209
	p->policy = policy;
	p->rt_priority = prio;
4210 4211 4212 4213 4214 4215 4216 4217
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
	/*
	 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
	 */
	if (policy == SCHED_BATCH)
		p->sleep_avg = 0;
4218
	set_load_weight(p);
L
Linus Torvalds 已提交
4219 4220 4221
}

/**
4222
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4223 4224 4225
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4226
 *
4227
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4228
 */
I
Ingo Molnar 已提交
4229 4230
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4231
{
4232
	int retval, oldprio, oldpolicy = -1;
4233
	struct prio_array *array;
L
Linus Torvalds 已提交
4234
	unsigned long flags;
4235
	struct rq *rq;
L
Linus Torvalds 已提交
4236

4237 4238
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4239 4240 4241 4242 4243
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4244 4245
			policy != SCHED_NORMAL && policy != SCHED_BATCH)
		return -EINVAL;
L
Linus Torvalds 已提交
4246 4247
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4248 4249
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
	 * SCHED_BATCH is 0.
L
Linus Torvalds 已提交
4250 4251
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4252
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4253
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4254
		return -EINVAL;
4255
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4256 4257
		return -EINVAL;

4258 4259 4260 4261
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4262
		if (rt_policy(policy)) {
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
			unsigned long rlim_rtprio;
			unsigned long flags;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4280

4281 4282 4283 4284 4285
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4286 4287 4288 4289

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4290 4291 4292 4293 4294
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4295 4296 4297 4298
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4299
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4300 4301 4302
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4303 4304
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
		goto recheck;
	}
	array = p->array;
	if (array)
		deactivate_task(p, rq);
	oldprio = p->prio;
	__setscheduler(p, policy, param->sched_priority);
	if (array) {
		__activate_task(p, rq);
		/*
		 * Reschedule if we are currently running on this runqueue and
4316 4317
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4318
		 */
4319 4320 4321 4322
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
		} else if (TASK_PREEMPTS_CURR(p, rq))
L
Linus Torvalds 已提交
4323 4324
			resched_task(rq->curr);
	}
4325 4326 4327
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4328 4329
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4330 4331 4332 4333
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4334 4335
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4336 4337 4338
{
	struct sched_param lparam;
	struct task_struct *p;
4339
	int retval;
L
Linus Torvalds 已提交
4340 4341 4342 4343 4344

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4345 4346 4347

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4348
	p = find_process_by_pid(pid);
4349 4350 4351
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4352

L
Linus Torvalds 已提交
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4365 4366 4367 4368
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4388
	struct task_struct *p;
L
Linus Torvalds 已提交
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4416
	struct task_struct *p;
L
Linus Torvalds 已提交
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4451 4452
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4453

4454
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4455 4456 4457 4458 4459
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4460
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4477 4478 4479 4480
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4481 4482 4483 4484 4485 4486
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4487
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4528
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4529 4530 4531
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4532
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4533 4534
EXPORT_SYMBOL(cpu_online_map);

4535
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4536
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4537 4538 4539 4540
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4541
	struct task_struct *p;
L
Linus Torvalds 已提交
4542 4543
	int retval;

4544
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4545 4546 4547 4548 4549 4550 4551
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4552 4553 4554 4555
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4556
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4557 4558 4559

out_unlock:
	read_unlock(&tasklist_lock);
4560
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
	if (retval)
		return retval;

	return 0;
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
4595
 * This function yields the current CPU by moving the calling thread
L
Linus Torvalds 已提交
4596 4597 4598 4599 4600
 * to the expired array. If there are no other threads running on this
 * CPU then this function will return.
 */
asmlinkage long sys_sched_yield(void)
{
4601 4602
	struct rq *rq = this_rq_lock();
	struct prio_array *array = current->array, *target = rq->expired;
L
Linus Torvalds 已提交
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614

	schedstat_inc(rq, yld_cnt);
	/*
	 * We implement yielding by moving the task into the expired
	 * queue.
	 *
	 * (special rule: RT tasks will just roundrobin in the active
	 *  array.)
	 */
	if (rt_task(current))
		target = rq->active;

4615
	if (array->nr_active == 1) {
L
Linus Torvalds 已提交
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
		schedstat_inc(rq, yld_act_empty);
		if (!rq->expired->nr_active)
			schedstat_inc(rq, yld_both_empty);
	} else if (!rq->expired->nr_active)
		schedstat_inc(rq, yld_exp_empty);

	if (array != target) {
		dequeue_task(current, array);
		enqueue_task(current, target);
	} else
		/*
		 * requeue_task is cheaper so perform that if possible.
		 */
		requeue_task(current, array);

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4636
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4637 4638 4639 4640 4641 4642 4643 4644
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4645
static void __cond_resched(void)
L
Linus Torvalds 已提交
4646
{
4647 4648 4649
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4650 4651 4652 4653 4654
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4655 4656 4657 4658 4659 4660 4661 4662 4663
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4664 4665
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4681
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4682
{
J
Jan Kara 已提交
4683 4684
	int ret = 0;

L
Linus Torvalds 已提交
4685 4686 4687
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4688
		ret = 1;
L
Linus Torvalds 已提交
4689 4690
		spin_lock(lock);
	}
4691
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4692
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4693 4694 4695
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4696
		ret = 1;
L
Linus Torvalds 已提交
4697 4698
		spin_lock(lock);
	}
J
Jan Kara 已提交
4699
	return ret;
L
Linus Torvalds 已提交
4700 4701 4702 4703 4704 4705 4706
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4707
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4708
		local_bh_enable();
L
Linus Torvalds 已提交
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4720
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4739
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4740

4741
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4742 4743 4744
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4745
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4746 4747 4748 4749 4750
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4751
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4752 4753
	long ret;

4754
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4755 4756 4757
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4758
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4779
	case SCHED_BATCH:
L
Linus Torvalds 已提交
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4803
	case SCHED_BATCH:
L
Linus Torvalds 已提交
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4820
	struct task_struct *p;
L
Linus Torvalds 已提交
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4837
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
L
Linus Torvalds 已提交
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
				0 : task_timeslice(p), &t);
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4848
static const char stat_nam[] = "RSDTtZX";
4849 4850

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4851 4852
{
	unsigned long free = 0;
4853
	unsigned state;
L
Linus Torvalds 已提交
4854 4855

	state = p->state ? __ffs(p->state) + 1 : 0;
4856 4857
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
#if (BITS_PER_LONG == 32)
	if (state == TASK_RUNNING)
		printk(" running ");
	else
		printk(" %08lX ", thread_saved_pc(p));
#else
	if (state == TASK_RUNNING)
		printk("  running task   ");
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4871
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4872 4873
		while (!*n)
			n++;
4874
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4875 4876
	}
#endif
4877
	printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4878 4879 4880 4881 4882 4883 4884 4885 4886
	if (!p->mm)
		printk(" (L-TLB)\n");
	else
		printk(" (NOTLB)\n");

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4887
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4888
{
4889
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4890 4891 4892

#if (BITS_PER_LONG == 32)
	printk("\n"
4893 4894
	       "                         free                        sibling\n");
	printk("  task             PC    stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4895 4896
#else
	printk("\n"
4897 4898
	       "                                 free                        sibling\n");
	printk("  task                 PC        stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4899 4900 4901 4902 4903 4904 4905 4906
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4907
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4908
			show_task(p);
L
Linus Torvalds 已提交
4909 4910
	} while_each_thread(g, p);

4911 4912
	touch_all_softlockup_watchdogs();

L
Linus Torvalds 已提交
4913
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4914 4915 4916 4917 4918
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4919 4920
}

I
Ingo Molnar 已提交
4921 4922 4923 4924 4925
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
	/* nothing yet */
}

4926 4927 4928 4929 4930 4931 4932 4933
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4934
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4935
{
4936
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4937 4938
	unsigned long flags;

4939
	idle->timestamp = sched_clock();
L
Linus Torvalds 已提交
4940 4941
	idle->sleep_avg = 0;
	idle->array = NULL;
4942
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4943 4944 4945 4946 4947 4948
	idle->state = TASK_RUNNING;
	idle->cpus_allowed = cpumask_of_cpu(cpu);
	set_task_cpu(idle, cpu);

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4949 4950 4951
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4952 4953 4954 4955
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4956
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4957
#else
A
Al Viro 已提交
4958
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
#endif
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4975
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4997
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4998
{
4999
	struct migration_req req;
L
Linus Torvalds 已提交
5000
	unsigned long flags;
5001
	struct rq *rq;
5002
	int ret = 0;
L
Linus Torvalds 已提交
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5025

L
Linus Torvalds 已提交
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5038 5039
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5040
 */
5041
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5042
{
5043
	struct rq *rq_dest, *rq_src;
5044
	int ret = 0;
L
Linus Torvalds 已提交
5045 5046

	if (unlikely(cpu_is_offline(dest_cpu)))
5047
		return ret;
L
Linus Torvalds 已提交
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

	set_task_cpu(p, dest_cpu);
	if (p->array) {
		/*
		 * Sync timestamp with rq_dest's before activating.
		 * The same thing could be achieved by doing this step
		 * afterwards, and pretending it was a local activate.
		 * This way is cleaner and logically correct.
		 */
5068 5069
		p->timestamp = p->timestamp - rq_src->most_recent_timestamp
				+ rq_dest->most_recent_timestamp;
L
Linus Torvalds 已提交
5070
		deactivate_task(p, rq_src);
5071
		__activate_task(p, rq_dest);
L
Linus Torvalds 已提交
5072 5073 5074
		if (TASK_PREEMPTS_CURR(p, rq_dest))
			resched_task(rq_dest->curr);
	}
5075
	ret = 1;
L
Linus Torvalds 已提交
5076 5077
out:
	double_rq_unlock(rq_src, rq_dest);
5078
	return ret;
L
Linus Torvalds 已提交
5079 5080 5081 5082 5083 5084 5085
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5086
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5087 5088
{
	int cpu = (long)data;
5089
	struct rq *rq;
L
Linus Torvalds 已提交
5090 5091 5092 5093 5094 5095

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5096
		struct migration_req *req;
L
Linus Torvalds 已提交
5097 5098
		struct list_head *head;

5099
		try_to_freeze();
L
Linus Torvalds 已提交
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5121
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5122 5123
		list_del_init(head->next);

N
Nick Piggin 已提交
5124 5125 5126
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5145 5146 5147 5148
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5149
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5150
{
5151
	unsigned long flags;
L
Linus Torvalds 已提交
5152
	cpumask_t mask;
5153 5154
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5155

5156
restart:
L
Linus Torvalds 已提交
5157 5158
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5159
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5160 5161 5162 5163
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5164
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5165 5166 5167

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5168 5169 5170
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5171
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5172 5173 5174 5175 5176 5177

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5178
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5179 5180
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5181
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5182
	}
5183
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5184
		goto restart;
L
Linus Torvalds 已提交
5185 5186 5187 5188 5189 5190 5191 5192 5193
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5194
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5195
{
5196
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5210
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5211 5212 5213

	write_lock_irq(&tasklist_lock);

5214 5215
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5216 5217
			continue;

5218 5219 5220
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5221 5222 5223 5224 5225 5226

	write_unlock_irq(&tasklist_lock);
}

/* Schedules idle task to be the next runnable task on current CPU.
 * It does so by boosting its priority to highest possible and adding it to
5227
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5228 5229 5230
 */
void sched_idle_next(void)
{
5231
	int this_cpu = smp_processor_id();
5232
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5233 5234 5235 5236
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5237
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5238

5239 5240 5241
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5242 5243 5244 5245
	 */
	spin_lock_irqsave(&rq->lock, flags);

	__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5246 5247

	/* Add idle task to the _front_ of its priority queue: */
L
Linus Torvalds 已提交
5248 5249 5250 5251 5252
	__activate_idle_task(p, rq);

	spin_unlock_irqrestore(&rq->lock, flags);
}

5253 5254
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5268
/* called under rq->lock with disabled interrupts */
5269
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5270
{
5271
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5272 5273

	/* Must be exiting, otherwise would be on tasklist. */
5274
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5275 5276

	/* Cannot have done final schedule yet: would have vanished. */
5277
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5278

5279
	get_task_struct(p);
L
Linus Torvalds 已提交
5280 5281 5282 5283 5284

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5285
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5286
	 */
5287
	spin_unlock(&rq->lock);
5288
	move_task_off_dead_cpu(dead_cpu, p);
5289
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5290

5291
	put_task_struct(p);
L
Linus Torvalds 已提交
5292 5293 5294 5295 5296
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5297
	struct rq *rq = cpu_rq(dead_cpu);
5298
	unsigned int arr, i;
L
Linus Torvalds 已提交
5299 5300 5301 5302

	for (arr = 0; arr < 2; arr++) {
		for (i = 0; i < MAX_PRIO; i++) {
			struct list_head *list = &rq->arrays[arr].queue[i];
5303

L
Linus Torvalds 已提交
5304
			while (!list_empty(list))
5305 5306
				migrate_dead(dead_cpu, list_entry(list->next,
					     struct task_struct, run_list));
L
Linus Torvalds 已提交
5307 5308 5309 5310 5311 5312 5313 5314 5315
		}
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5316 5317
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5318 5319
{
	struct task_struct *p;
5320
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5321
	unsigned long flags;
5322
	struct rq *rq;
L
Linus Torvalds 已提交
5323 5324

	switch (action) {
5325 5326 5327 5328
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5329
	case CPU_UP_PREPARE:
5330
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
		p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
		if (IS_ERR(p))
			return NOTIFY_BAD;
		p->flags |= PF_NOFREEZE;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
		__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5342

L
Linus Torvalds 已提交
5343
	case CPU_ONLINE:
5344
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5345 5346 5347
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5348

L
Linus Torvalds 已提交
5349 5350
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5351
	case CPU_UP_CANCELED_FROZEN:
5352 5353
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5354
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5355 5356
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5357 5358 5359
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5360

L
Linus Torvalds 已提交
5361
	case CPU_DEAD:
5362
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
		deactivate_task(rq->idle, rq);
		rq->idle->static_prio = MAX_PRIO;
		__setscheduler(rq->idle, SCHED_NORMAL, 0);
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5378
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5379 5380 5381
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5382 5383
			struct migration_req *req;

L
Linus Torvalds 已提交
5384
			req = list_entry(rq->migration_queue.next,
5385
					 struct migration_req, list);
L
Linus Torvalds 已提交
5386 5387 5388 5389 5390 5391
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5392 5393 5394
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5395 5396 5397 5398 5399 5400 5401
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5402
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5403 5404 5405 5406 5407 5408 5409
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5410
	int err;
5411 5412

	/* Start one for the boot CPU: */
5413 5414
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5415 5416
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5417

L
Linus Torvalds 已提交
5418 5419 5420 5421 5422
	return 0;
}
#endif

#ifdef CONFIG_SMP
5423 5424 5425 5426 5427

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5428
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5429 5430 5431 5432 5433
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5434 5435 5436 5437 5438
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5458 5459
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5460 5461 5462 5463 5464 5465
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5466 5467
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5468
		if (!cpu_isset(cpu, group->cpumask))
5469 5470
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5483
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5484
				printk("\n");
5485 5486
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5509 5510
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5511 5512 5513

		level++;
		sd = sd->parent;
5514 5515
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5516

5517 5518 5519
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5520 5521 5522 5523

	} while (sd);
}
#else
5524
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5525 5526
#endif

5527
static int sd_degenerate(struct sched_domain *sd)
5528 5529 5530 5531 5532 5533 5534 5535
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5536 5537 5538
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5552 5553
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5572 5573 5574
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5575 5576 5577 5578 5579 5580 5581
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5582 5583 5584 5585
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5586
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5587
{
5588
	struct rq *rq = cpu_rq(cpu);
5589 5590 5591 5592 5593 5594 5595
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5596
		if (sd_parent_degenerate(tmp, parent)) {
5597
			tmp->parent = parent->parent;
5598 5599 5600
			if (parent->parent)
				parent->parent->child = tmp;
		}
5601 5602
	}

5603
	if (sd && sd_degenerate(sd)) {
5604
		sd = sd->parent;
5605 5606 5607
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5608 5609 5610

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5611
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5612 5613 5614
}

/* cpus with isolated domains */
5615
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5633 5634 5635 5636
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5637 5638 5639 5640 5641
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5642
static void
5643 5644 5645
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5646 5647 5648 5649 5650 5651
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5652 5653
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5654 5655 5656 5657 5658 5659
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5660
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5661 5662

		for_each_cpu_mask(j, span) {
5663
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5678
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5679

5680
#ifdef CONFIG_NUMA
5681

5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5734 5735
	cpumask_t span, nodemask;
	int i;
5736 5737 5738 5739 5740 5741 5742 5743 5744 5745

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5746

5747 5748 5749 5750 5751 5752 5753 5754
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5755
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5756

5757
/*
5758
 * SMT sched-domains:
5759
 */
L
Linus Torvalds 已提交
5760 5761
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5762
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5763

5764 5765
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5766
{
5767 5768
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5769 5770 5771 5772
	return cpu;
}
#endif

5773 5774 5775
/*
 * multi-core sched-domains:
 */
5776 5777
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5778
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5779 5780 5781
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5782 5783
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5784
{
5785
	int group;
5786 5787
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5788 5789 5790 5791
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5792 5793
}
#elif defined(CONFIG_SCHED_MC)
5794 5795
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5796
{
5797 5798
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5799 5800 5801 5802
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5803
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5804
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5805

5806 5807
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5808
{
5809
	int group;
5810
#ifdef CONFIG_SCHED_MC
5811
	cpumask_t mask = cpu_coregroup_map(cpu);
5812
	cpus_and(mask, mask, *cpu_map);
5813
	group = first_cpu(mask);
5814
#elif defined(CONFIG_SCHED_SMT)
5815 5816
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5817
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5818
#else
5819
	group = cpu;
L
Linus Torvalds 已提交
5820
#endif
5821 5822 5823
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5824 5825 5826 5827
}

#ifdef CONFIG_NUMA
/*
5828 5829 5830
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5831
 */
5832
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5833
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5834

5835
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5836
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5837

5838 5839
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5840
{
5841 5842 5843 5844 5845 5846 5847 5848 5849
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5850
}
5851

5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5872
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5873 5874 5875 5876 5877
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5878 5879
#endif

5880
#ifdef CONFIG_NUMA
5881 5882 5883
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5884
	int cpu, i;
5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5915 5916 5917 5918 5919
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5920

5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5947 5948
	sd->groups->__cpu_power = 0;

5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5959
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5960 5961 5962 5963 5964 5965 5966 5967
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5968
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5969 5970 5971 5972
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
5973
/*
5974 5975
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
5976
 */
5977
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
5978 5979
{
	int i;
5980
	struct sched_domain *sd;
5981 5982
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
5983
	int sd_allnodes = 0;
5984 5985 5986 5987

	/*
	 * Allocate the per-node list of sched groups
	 */
5988
	sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5989
					   GFP_KERNEL);
5990 5991
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
5992
		return -ENOMEM;
5993 5994 5995
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
5996 5997

	/*
5998
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
5999
	 */
6000
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6001 6002 6003
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6004
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6005 6006

#ifdef CONFIG_NUMA
6007
		if (cpus_weight(*cpu_map)
6008 6009 6010 6011
				> SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6012
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6013
			p = sd;
6014
			sd_allnodes = 1;
6015 6016 6017
		} else
			p = NULL;

L
Linus Torvalds 已提交
6018 6019
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6020 6021
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6022 6023
		if (p)
			p->child = sd;
6024
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6025 6026 6027 6028 6029 6030 6031
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6032 6033
		if (p)
			p->child = sd;
6034
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6035

6036 6037 6038 6039 6040 6041 6042
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6043
		p->child = sd;
6044
		cpu_to_core_group(i, cpu_map, &sd->groups);
6045 6046
#endif

L
Linus Torvalds 已提交
6047 6048 6049 6050 6051
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6052
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6053
		sd->parent = p;
6054
		p->child = sd;
6055
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6056 6057 6058 6059 6060
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6061
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6062
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6063
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6064 6065 6066
		if (i != first_cpu(this_sibling_map))
			continue;

6067
		init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
L
Linus Torvalds 已提交
6068 6069 6070
	}
#endif

6071 6072 6073 6074 6075 6076 6077
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
6078
		init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
6079 6080 6081 6082
	}
#endif


L
Linus Torvalds 已提交
6083 6084 6085 6086
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6087
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6088 6089 6090
		if (cpus_empty(nodemask))
			continue;

6091
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6092 6093 6094 6095
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6096 6097
	if (sd_allnodes)
		init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
6098 6099 6100 6101 6102 6103 6104 6105 6106 6107

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6108 6109
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6110
			continue;
6111
		}
6112 6113 6114 6115

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6116
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6117 6118 6119 6120 6121
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6122 6123 6124 6125 6126 6127
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6128
		sg->__cpu_power = 0;
6129
		sg->cpumask = nodemask;
6130
		sg->next = sg;
6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6149 6150
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6151 6152 6153
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6154
				goto error;
6155
			}
6156
			sg->__cpu_power = 0;
6157
			sg->cpumask = tmp;
6158
			sg->next = prev->next;
6159 6160 6161 6162 6163
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6164 6165 6166
#endif

	/* Calculate CPU power for physical packages and nodes */
6167
#ifdef CONFIG_SCHED_SMT
6168
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6169
		sd = &per_cpu(cpu_domains, i);
6170
		init_sched_groups_power(i, sd);
6171
	}
L
Linus Torvalds 已提交
6172
#endif
6173
#ifdef CONFIG_SCHED_MC
6174
	for_each_cpu_mask(i, *cpu_map) {
6175
		sd = &per_cpu(core_domains, i);
6176
		init_sched_groups_power(i, sd);
6177 6178
	}
#endif
6179

6180
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6181
		sd = &per_cpu(phys_domains, i);
6182
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6183 6184
	}

6185
#ifdef CONFIG_NUMA
6186 6187
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6188

6189 6190
	if (sd_allnodes) {
		struct sched_group *sg;
6191

6192
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6193 6194
		init_numa_sched_groups_power(sg);
	}
6195 6196
#endif

L
Linus Torvalds 已提交
6197
	/* Attach the domains */
6198
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6199 6200 6201
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6202 6203
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6204 6205 6206 6207 6208
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6209 6210 6211

	return 0;

6212
#ifdef CONFIG_NUMA
6213 6214 6215
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6216
#endif
L
Linus Torvalds 已提交
6217
}
6218 6219 6220
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6221
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6222 6223
{
	cpumask_t cpu_default_map;
6224
	int err;
L
Linus Torvalds 已提交
6225

6226 6227 6228 6229 6230 6231 6232
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6233 6234 6235
	err = build_sched_domains(&cpu_default_map);

	return err;
6236 6237 6238
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6239
{
6240
	free_sched_groups(cpu_map);
6241
}
L
Linus Torvalds 已提交
6242

6243 6244 6245 6246
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6247
static void detach_destroy_domains(const cpumask_t *cpu_map)
6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6265
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6266 6267
{
	cpumask_t change_map;
6268
	int err = 0;
6269 6270 6271 6272 6273 6274 6275 6276

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6277 6278 6279 6280 6281
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6282 6283
}

6284 6285 6286 6287 6288
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

6289
	mutex_lock(&sched_hotcpu_mutex);
6290 6291
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6292
	mutex_unlock(&sched_hotcpu_mutex);
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6317

6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6337 6338
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6351 6352
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6353 6354 6355 6356 6357 6358 6359
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6360 6361 6362
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6363
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6364 6365 6366 6367 6368 6369 6370
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6371
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6372
	case CPU_DOWN_PREPARE:
6373
	case CPU_DOWN_PREPARE_FROZEN:
6374
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6375 6376 6377
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6378
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6379
	case CPU_DOWN_FAILED:
6380
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6381
	case CPU_ONLINE:
6382
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6383
	case CPU_DEAD:
6384
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6385 6386 6387 6388 6389 6390 6391 6392 6393
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6394
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6395 6396 6397 6398 6399 6400

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6401 6402
	cpumask_t non_isolated_cpus;

6403
	mutex_lock(&sched_hotcpu_mutex);
6404
	arch_init_sched_domains(&cpu_online_map);
6405
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6406 6407
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6408
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6409 6410
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6411 6412 6413 6414

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6426

L
Linus Torvalds 已提交
6427 6428 6429 6430 6431 6432 6433 6434
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

void __init sched_init(void)
{
	int i, j, k;
6435
	int highest_cpu = 0;
L
Linus Torvalds 已提交
6436

6437
	for_each_possible_cpu(i) {
6438 6439
		struct prio_array *array;
		struct rq *rq;
L
Linus Torvalds 已提交
6440 6441 6442

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6443
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6444
		rq->nr_running = 0;
L
Linus Torvalds 已提交
6445 6446 6447 6448 6449
		rq->active = rq->arrays;
		rq->expired = rq->arrays + 1;
		rq->best_expired_prio = MAX_PRIO;

#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6450
		rq->sd = NULL;
N
Nick Piggin 已提交
6451 6452
		for (j = 1; j < 3; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6453 6454
		rq->active_balance = 0;
		rq->push_cpu = 0;
6455
		rq->cpu = i;
L
Linus Torvalds 已提交
6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

		for (j = 0; j < 2; j++) {
			array = rq->arrays + j;
			for (k = 0; k < MAX_PRIO; k++) {
				INIT_LIST_HEAD(array->queue + k);
				__clear_bit(k, array->bitmap);
			}
			// delimiter for bitsearch
			__set_bit(MAX_PRIO, array->bitmap);
		}
6470
		highest_cpu = i;
L
Linus Torvalds 已提交
6471 6472
	}

6473
	set_load_weight(&init_task);
6474

6475
#ifdef CONFIG_SMP
6476
	nr_cpu_ids = highest_cpu + 1;
6477 6478 6479
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6480 6481 6482 6483
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6502
#ifdef in_atomic
L
Linus Torvalds 已提交
6503 6504 6505 6506 6507 6508 6509
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6510
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6511 6512 6513
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6514
		debug_show_held_locks(current);
6515 6516
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6527
	struct prio_array *array;
6528
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6529
	unsigned long flags;
6530
	struct rq *rq;
L
Linus Torvalds 已提交
6531 6532

	read_lock_irq(&tasklist_lock);
6533 6534

	do_each_thread(g, p) {
L
Linus Torvalds 已提交
6535 6536 6537
		if (!rt_task(p))
			continue;

6538 6539
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549

		array = p->array;
		if (array)
			deactivate_task(p, task_rq(p));
		__setscheduler(p, SCHED_NORMAL, 0);
		if (array) {
			__activate_task(p, task_rq(p));
			resched_task(rq->curr);
		}

6550 6551
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6552 6553
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6554 6555 6556 6557
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6576
struct task_struct *curr_task(int cpu)
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6596
void set_curr_task(int cpu, struct task_struct *p)
6597 6598 6599 6600 6601
{
	cpu_curr(cpu) = p;
}

#endif