sched.c 240.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

127
#ifdef CONFIG_SMP
128 129 130

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

151 152
static inline int rt_policy(int policy)
{
153
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 155 156 157 158 159 160 161 162
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
163
/*
I
Ingo Molnar 已提交
164
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
165
 */
I
Ingo Molnar 已提交
166 167 168 169 170
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

171
struct rt_bandwidth {
I
Ingo Molnar 已提交
172 173 174 175 176
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
210 211
	spin_lock_init(&rt_b->rt_runtime_lock);

212 213 214 215 216
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

217 218 219
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
220 221 222 223 224 225
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

226
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 228 229 230 231 232 233 234 235 236 237 238
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 240
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
241 242 243 244 245 246 247 248 249 250 251
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

252 253 254 255 256 257
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

258
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
259

260 261
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
262 263
struct cfs_rq;

P
Peter Zijlstra 已提交
264 265
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
266
/* task group related information */
267
struct task_group {
268
#ifdef CONFIG_CGROUP_SCHED
269 270
	struct cgroup_subsys_state css;
#endif
271

272 273 274 275
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

276
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
277 278 279 280 281
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
282 283 284 285 286 287
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

288
	struct rt_bandwidth rt_bandwidth;
289
#endif
290

291
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
292
	struct list_head list;
P
Peter Zijlstra 已提交
293 294 295 296

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
297 298
};

D
Dhaval Giani 已提交
299
#ifdef CONFIG_USER_SCHED
300

301 302 303 304 305 306
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

307 308 309 310 311 312 313
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

314
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
315 316 317 318
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319
#endif /* CONFIG_FAIR_GROUP_SCHED */
320 321 322 323

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
325
#else /* !CONFIG_USER_SCHED */
326
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
327
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
328

329
/* task_group_lock serializes add/remove of task groups and also changes to
330 331
 * a task group's cpu shares.
 */
332
static DEFINE_SPINLOCK(task_group_lock);
333

334 335 336 337 338 339 340
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

341 342 343
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
344
#else /* !CONFIG_USER_SCHED */
345
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
346
#endif /* CONFIG_USER_SCHED */
347

348
/*
349 350 351 352
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
353 354 355
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
356
#define MIN_SHARES	2
357
#define MAX_SHARES	(1UL << 18)
358

359 360 361
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
362
/* Default task group.
I
Ingo Molnar 已提交
363
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
364
 */
365
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
366 367

/* return group to which a task belongs */
368
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
369
{
370
	struct task_group *tg;
371

372
#ifdef CONFIG_USER_SCHED
373 374 375
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
376
#elif defined(CONFIG_CGROUP_SCHED)
377 378
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
379
#else
I
Ingo Molnar 已提交
380
	tg = &init_task_group;
381
#endif
382
	return tg;
S
Srivatsa Vaddagiri 已提交
383 384 385
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
386
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
387
{
388
#ifdef CONFIG_FAIR_GROUP_SCHED
389 390
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
391
#endif
P
Peter Zijlstra 已提交
392

393
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
394 395
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
396
#endif
S
Srivatsa Vaddagiri 已提交
397 398 399 400
}

#else

401 402 403 404 405 406 407
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
408
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
409 410 411 412
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
413

414
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
415

I
Ingo Molnar 已提交
416 417 418 419 420 421
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
422
	u64 min_vruntime;
I
Ingo Molnar 已提交
423 424 425

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
426 427 428 429 430 431

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
432 433
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
434
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
435

P
Peter Zijlstra 已提交
436
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
437

438
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
439 440
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
441 442
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
443 444 445 446 447 448
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
449 450
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
451 452 453

#ifdef CONFIG_SMP
	/*
454
	 * the part of load.weight contributed by tasks
455
	 */
456
	unsigned long task_weight;
457

458 459 460 461 462 463 464
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
465

466 467 468 469
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
470 471 472 473 474

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
475
#endif
I
Ingo Molnar 已提交
476 477
#endif
};
L
Linus Torvalds 已提交
478

I
Ingo Molnar 已提交
479 480 481
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
482
	unsigned long rt_nr_running;
483
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
484 485
	struct {
		int curr; /* highest queued rt task prio */
486
#ifdef CONFIG_SMP
487
		int next; /* next highest */
488
#endif
489
	} highest_prio;
P
Peter Zijlstra 已提交
490
#endif
P
Peter Zijlstra 已提交
491
#ifdef CONFIG_SMP
492
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
493
	int overloaded;
494
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
495
#endif
P
Peter Zijlstra 已提交
496
	int rt_throttled;
P
Peter Zijlstra 已提交
497
	u64 rt_time;
P
Peter Zijlstra 已提交
498
	u64 rt_runtime;
I
Ingo Molnar 已提交
499
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
500
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
501

502
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
503 504
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
505 506 507 508 509
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
510 511
};

G
Gregory Haskins 已提交
512 513 514 515
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
516 517
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
518 519 520 521 522 523
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
524 525
	cpumask_var_t span;
	cpumask_var_t online;
526

I
Ingo Molnar 已提交
527
	/*
528 529 530
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
531
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
532
	atomic_t rto_count;
533 534 535
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
536 537 538 539 540 541 542 543
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
544 545
};

546 547 548 549
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
550 551 552 553
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
554 555 556 557 558 559 560
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
561
struct rq {
562 563
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
564 565 566 567 568 569

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
570 571
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
572
#ifdef CONFIG_NO_HZ
573
	unsigned long last_tick_seen;
574 575
	unsigned char in_nohz_recently;
#endif
576 577
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
578 579 580 581
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
582 583
	struct rt_rq rt;

I
Ingo Molnar 已提交
584
#ifdef CONFIG_FAIR_GROUP_SCHED
585 586
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
587 588
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
589
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
590 591 592 593 594 595 596 597 598 599
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

600
	struct task_struct *curr, *idle;
601
	unsigned long next_balance;
L
Linus Torvalds 已提交
602
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
603

604
	u64 clock;
I
Ingo Molnar 已提交
605

L
Linus Torvalds 已提交
606 607 608
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
609
	struct root_domain *rd;
L
Linus Torvalds 已提交
610 611
	struct sched_domain *sd;

612
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
613 614 615
	/* For active balancing */
	int active_balance;
	int push_cpu;
616 617
	/* cpu of this runqueue: */
	int cpu;
618
	int online;
L
Linus Torvalds 已提交
619

620
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
621

622
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
623 624 625
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
626
#ifdef CONFIG_SCHED_HRTICK
627 628 629 630
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
631 632 633
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
634 635 636
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
637 638
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
639 640

	/* sys_sched_yield() stats */
641
	unsigned int yld_count;
L
Linus Torvalds 已提交
642 643

	/* schedule() stats */
644 645 646
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
647 648

	/* try_to_wake_up() stats */
649 650
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
651 652

	/* BKL stats */
653
	unsigned int bkl_count;
L
Linus Torvalds 已提交
654 655 656
#endif
};

657
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
658

659
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
660
{
661
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
662 663
}

664 665 666 667 668 669 670 671 672
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
673 674
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
675
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
676 677 678 679
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
680 681
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
682 683 684 685 686 687

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

688 689 690 691 692
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
693 694 695 696 697 698 699 700 701
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
720 721 722
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
723 724 725 726

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
727
enum {
P
Peter Zijlstra 已提交
728
#include "sched_features.h"
I
Ingo Molnar 已提交
729 730
};

P
Peter Zijlstra 已提交
731 732 733 734 735
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
736
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
737 738 739 740 741 742 743 744 745
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

746
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
747 748 749 750 751 752
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
753
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
754 755 756 757
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
758 759 760
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
761
	}
L
Li Zefan 已提交
762
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
763

L
Li Zefan 已提交
764
	return 0;
P
Peter Zijlstra 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
784
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
809 810 811 812 813
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
814
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
815 816 817 818 819
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
834

835 836 837 838 839 840
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
841 842
/*
 * ratelimit for updating the group shares.
843
 * default: 0.25ms
P
Peter Zijlstra 已提交
844
 */
845
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
846

847 848 849 850 851 852 853
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
854
/*
P
Peter Zijlstra 已提交
855
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
856 857
 * default: 1s
 */
P
Peter Zijlstra 已提交
858
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
859

860 861
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
862 863 864 865 866
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
867

868 869 870 871 872 873 874
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
875
	if (sysctl_sched_rt_runtime < 0)
876 877 878 879
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
880

L
Linus Torvalds 已提交
881
#ifndef prepare_arch_switch
882 883 884 885 886 887
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

888 889 890 891 892
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

893
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
894
static inline int task_running(struct rq *rq, struct task_struct *p)
895
{
896
	return task_current(rq, p);
897 898
}

899
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
900 901 902
{
}

903
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
904
{
905 906 907 908
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
909 910 911 912 913 914 915
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

916 917 918 919
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
920
static inline int task_running(struct rq *rq, struct task_struct *p)
921 922 923 924
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
925
	return task_current(rq, p);
926 927 928
#endif
}

929
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

946
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
947 948 949 950 951 952 953 954 955 956 957 958
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
959
#endif
960 961
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
962

963 964 965 966
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
967
static inline struct rq *__task_rq_lock(struct task_struct *p)
968 969
	__acquires(rq->lock)
{
970 971 972 973 974
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
975 976 977 978
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
979 980
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
981
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
982 983
 * explicitly disabling preemption.
 */
984
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
985 986
	__acquires(rq->lock)
{
987
	struct rq *rq;
L
Linus Torvalds 已提交
988

989 990 991 992 993 994
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
995 996 997 998
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

999 1000 1001 1002 1003 1004 1005 1006
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1007
static void __task_rq_unlock(struct rq *rq)
1008 1009 1010 1011 1012
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1013
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1014 1015 1016 1017 1018 1019
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1020
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1021
 */
A
Alexey Dobriyan 已提交
1022
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1023 1024
	__acquires(rq->lock)
{
1025
	struct rq *rq;
L
Linus Torvalds 已提交
1026 1027 1028 1029 1030 1031 1032 1033

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1055
	if (!cpu_active(cpu_of(rq)))
1056
		return 0;
P
Peter Zijlstra 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1077
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1078 1079 1080 1081 1082 1083
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1084
#ifdef CONFIG_SMP
1085 1086 1087 1088
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1089
{
1090
	struct rq *rq = arg;
1091

1092 1093 1094 1095
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1096 1097
}

1098 1099 1100 1101 1102 1103
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1104
{
1105 1106
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1107

1108
	hrtimer_set_expires(timer, time);
1109 1110 1111 1112 1113 1114 1115

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1130
		hrtick_clear(cpu_rq(cpu));
1131 1132 1133 1134 1135 1136
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1137
static __init void init_hrtick(void)
1138 1139 1140
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1151

A
Andrew Morton 已提交
1152
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1153 1154
{
}
1155
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1156

1157
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1158
{
1159 1160
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1161

1162 1163 1164 1165
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1166

1167 1168
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1169
}
A
Andrew Morton 已提交
1170
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1171 1172 1173 1174 1175 1176 1177 1178
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1179 1180 1181
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1182
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1183

I
Ingo Molnar 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1197
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1198 1199 1200 1201 1202
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1203
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1204 1205
		return;

1206
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1262
	set_tsk_need_resched(rq->idle);
1263 1264 1265 1266 1267 1268

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1269
#endif /* CONFIG_NO_HZ */
1270

1271
#else /* !CONFIG_SMP */
1272
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1273 1274
{
	assert_spin_locked(&task_rq(p)->lock);
1275
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1276
}
1277
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1278

1279 1280 1281 1282 1283 1284 1285 1286
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1287 1288 1289
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1290
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1291

1292 1293 1294
/*
 * delta *= weight / lw
 */
1295
static unsigned long
1296 1297 1298 1299 1300
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1301 1302 1303 1304 1305 1306 1307
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1308 1309 1310 1311 1312

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1313
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1314
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1315 1316
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1317
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1318

1319
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1320 1321
}

1322
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1323 1324
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1325
	lw->inv_weight = 0;
1326 1327
}

1328
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1329 1330
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1331
	lw->inv_weight = 0;
1332 1333
}

1334 1335 1336 1337
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1338
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1339 1340 1341 1342
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1343 1344
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1354 1355 1356
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1357 1358
 */
static const int prio_to_weight[40] = {
1359 1360 1361 1362 1363 1364 1365 1366
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1367 1368
};

1369 1370 1371 1372 1373 1374 1375
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1376
static const u32 prio_to_wmult[40] = {
1377 1378 1379 1380 1381 1382 1383 1384
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1385
};
1386

I
Ingo Molnar 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1412

1413 1414 1415 1416 1417 1418
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1429
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1430
typedef int (*tg_visitor)(struct task_group *, void *);
1431 1432 1433 1434 1435

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1436
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1437 1438
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1439
	int ret;
1440 1441 1442 1443

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1444 1445 1446
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1447 1448 1449 1450 1451 1452 1453
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1454 1455 1456
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1457 1458 1459 1460 1461

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1462
out_unlock:
1463
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1464 1465

	return ret;
1466 1467
}

P
Peter Zijlstra 已提交
1468 1469 1470
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1471
}
P
Peter Zijlstra 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1482
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1483

1484 1485
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1486 1487
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1488 1489 1490 1491 1492

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1493 1494 1495 1496 1497 1498 1499

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1500 1501
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1502
{
1503 1504 1505
	unsigned long shares;
	unsigned long rq_weight;

1506
	if (!tg->se[cpu])
1507 1508
		return;

1509
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1510

1511 1512 1513 1514 1515 1516
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1517
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1518
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1519

1520 1521 1522 1523
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1524

1525
		spin_lock_irqsave(&rq->lock, flags);
1526
		tg->cfs_rq[cpu]->shares = shares;
1527

1528 1529 1530
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1531
}
1532 1533

/*
1534 1535 1536
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1537
 */
P
Peter Zijlstra 已提交
1538
static int tg_shares_up(struct task_group *tg, void *data)
1539
{
1540
	unsigned long weight, rq_weight = 0;
1541
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1542
	struct sched_domain *sd = data;
1543
	int i;
1544

1545
	for_each_cpu(i, sched_domain_span(sd)) {
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1557
		shares += tg->cfs_rq[i]->shares;
1558 1559
	}

1560 1561 1562 1563 1564
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1565

1566
	for_each_cpu(i, sched_domain_span(sd))
1567
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1568 1569

	return 0;
1570 1571 1572
}

/*
1573 1574 1575
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1576
 */
P
Peter Zijlstra 已提交
1577
static int tg_load_down(struct task_group *tg, void *data)
1578
{
1579
	unsigned long load;
P
Peter Zijlstra 已提交
1580
	long cpu = (long)data;
1581

1582 1583 1584 1585 1586 1587 1588
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1589

1590
	tg->cfs_rq[cpu]->h_load = load;
1591

P
Peter Zijlstra 已提交
1592
	return 0;
1593 1594
}

1595
static void update_shares(struct sched_domain *sd)
1596
{
P
Peter Zijlstra 已提交
1597 1598 1599 1600 1601
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1602
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1603
	}
1604 1605
}

1606 1607 1608 1609 1610 1611 1612
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1613
static void update_h_load(long cpu)
1614
{
P
Peter Zijlstra 已提交
1615
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1616 1617 1618 1619
}

#else

1620
static inline void update_shares(struct sched_domain *sd)
1621 1622 1623
{
}

1624 1625 1626 1627
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1628 1629
#endif

1630 1631
#ifdef CONFIG_PREEMPT

1632
/*
1633 1634 1635 1636 1637 1638
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1639
 */
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1694 1695 1696 1697 1698 1699
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1700 1701
#endif

V
Vegard Nossum 已提交
1702
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1703 1704
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1705
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1706 1707 1708
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1709
#endif
1710

I
Ingo Molnar 已提交
1711 1712
#include "sched_stats.h"
#include "sched_idletask.c"
1713 1714
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1715 1716 1717 1718 1719
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1720 1721
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1722

1723
static void inc_nr_running(struct rq *rq)
1724 1725 1726 1727
{
	rq->nr_running++;
}

1728
static void dec_nr_running(struct rq *rq)
1729 1730 1731 1732
{
	rq->nr_running--;
}

1733 1734 1735
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1736 1737 1738 1739
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1740

I
Ingo Molnar 已提交
1741 1742 1743 1744 1745 1746 1747 1748
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1749

I
Ingo Molnar 已提交
1750 1751
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1752 1753
}

1754 1755 1756 1757 1758 1759
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1760
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1761
{
P
Peter Zijlstra 已提交
1762 1763 1764
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1765
	sched_info_queued(p);
1766
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1767
	p->se.on_rq = 1;
1768 1769
}

1770
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1771
{
P
Peter Zijlstra 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1781 1782
	}

1783
	sched_info_dequeued(p);
1784
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1785
	p->se.on_rq = 0;
1786 1787
}

1788
/*
I
Ingo Molnar 已提交
1789
 * __normal_prio - return the priority that is based on the static prio
1790 1791 1792
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1793
	return p->static_prio;
1794 1795
}

1796 1797 1798 1799 1800 1801 1802
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1803
static inline int normal_prio(struct task_struct *p)
1804 1805 1806
{
	int prio;

1807
	if (task_has_rt_policy(p))
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1821
static int effective_prio(struct task_struct *p)
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1834
/*
I
Ingo Molnar 已提交
1835
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1836
 */
I
Ingo Molnar 已提交
1837
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1838
{
1839
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1840
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1841

1842
	enqueue_task(rq, p, wakeup);
1843
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1844 1845 1846 1847 1848
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1849
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1850
{
1851
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1852 1853
		rq->nr_uninterruptible++;

1854
	dequeue_task(rq, p, sleep);
1855
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1856 1857 1858 1859 1860 1861
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1862
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1863 1864 1865 1866
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1867 1868
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1869
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1870
#ifdef CONFIG_SMP
1871 1872 1873 1874 1875 1876
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1877 1878
	task_thread_info(p)->cpu = cpu;
#endif
1879 1880
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1893
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1894

1895 1896 1897 1898 1899 1900
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1901 1902 1903
/*
 * Is this task likely cache-hot:
 */
1904
static int
1905 1906 1907 1908
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1909 1910 1911
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1912 1913 1914
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1915 1916
		return 1;

1917 1918 1919
	if (p->sched_class != &fair_sched_class)
		return 0;

1920 1921 1922 1923 1924
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1925 1926 1927 1928 1929 1930
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1931
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1932
{
I
Ingo Molnar 已提交
1933 1934
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1935 1936
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1937
	u64 clock_offset;
I
Ingo Molnar 已提交
1938 1939

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1940

1941 1942
	trace_sched_migrate_task(p, task_cpu(p), new_cpu);

I
Ingo Molnar 已提交
1943 1944 1945
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1946 1947 1948 1949
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1950 1951 1952 1953 1954
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1955
#endif
1956 1957
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1958 1959

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1960 1961
}

1962
struct migration_req {
L
Linus Torvalds 已提交
1963 1964
	struct list_head list;

1965
	struct task_struct *task;
L
Linus Torvalds 已提交
1966 1967 1968
	int dest_cpu;

	struct completion done;
1969
};
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1975
static int
1976
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1977
{
1978
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1979 1980 1981 1982 1983

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1984
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1985 1986 1987 1988 1989 1990 1991 1992
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1993

L
Linus Torvalds 已提交
1994 1995 1996 1997 1998 1999
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2000 2001 2002 2003 2004 2005 2006
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2007 2008 2009 2010 2011 2012
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2013
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2014 2015
{
	unsigned long flags;
I
Ingo Molnar 已提交
2016
	int running, on_rq;
R
Roland McGrath 已提交
2017
	unsigned long ncsw;
2018
	struct rq *rq;
L
Linus Torvalds 已提交
2019

2020 2021 2022 2023 2024 2025 2026 2027
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2028

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2040 2041 2042
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2043
			cpu_relax();
R
Roland McGrath 已提交
2044
		}
2045

2046 2047 2048 2049 2050 2051
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2052
		trace_sched_wait_task(rq, p);
2053 2054
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2055
		ncsw = 0;
2056
		if (!match_state || p->state == match_state)
2057
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2058
		task_rq_unlock(rq, &flags);
2059

R
Roland McGrath 已提交
2060 2061 2062 2063 2064 2065
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2076

2077 2078 2079 2080 2081
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2082
		 * So if it was still runnable (but just not actively
2083 2084 2085 2086 2087 2088 2089
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2090

2091 2092 2093 2094 2095 2096 2097
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2098 2099

	return ncsw;
L
Linus Torvalds 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2115
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2127 2128
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2129 2130 2131 2132
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2133
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2134
{
2135
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2136
	unsigned long total = weighted_cpuload(cpu);
2137

2138
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2139
		return total;
2140

I
Ingo Molnar 已提交
2141
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2142 2143 2144
}

/*
2145 2146
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2147
 */
A
Alexey Dobriyan 已提交
2148
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2149
{
2150
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2151
	unsigned long total = weighted_cpuload(cpu);
2152

2153
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2154
		return total;
2155

I
Ingo Molnar 已提交
2156
	return max(rq->cpu_load[type-1], total);
2157 2158
}

N
Nick Piggin 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2176
		/* Skip over this group if it has no CPUs allowed */
2177 2178
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2179
			continue;
2180

2181 2182
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2183 2184 2185 2186

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2187
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2198 2199
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2200 2201 2202 2203 2204 2205 2206 2207

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2208
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2209 2210 2211 2212 2213 2214 2215

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2216
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2217
 */
I
Ingo Molnar 已提交
2218
static int
2219
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2220 2221 2222 2223 2224
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2225
	/* Traverse only the allowed CPUs */
2226
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2227
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2253

2254
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2255 2256 2257
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2258 2259
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2260 2261
		if (tmp->flags & flag)
			sd = tmp;
2262
	}
N
Nick Piggin 已提交
2263

2264 2265 2266
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2267 2268
	while (sd) {
		struct sched_group *group;
2269 2270 2271 2272 2273 2274
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2275 2276

		group = find_idlest_group(sd, t, cpu);
2277 2278 2279 2280
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2281

2282
		new_cpu = find_idlest_cpu(group, t, cpu);
2283 2284 2285 2286 2287
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2288

2289
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2290
		cpu = new_cpu;
2291
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2292 2293
		sd = NULL;
		for_each_domain(cpu, tmp) {
2294
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2321
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2322
{
2323
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2324 2325
	unsigned long flags;
	long old_state;
2326
	struct rq *rq;
L
Linus Torvalds 已提交
2327

2328 2329 2330
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2331
#ifdef CONFIG_SMP
2332
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2333 2334 2335 2336 2337 2338
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2339
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2340 2341 2342 2343 2344 2345 2346
				update_shares(sd);
				break;
			}
		}
	}
#endif

2347
	smp_wmb();
L
Linus Torvalds 已提交
2348
	rq = task_rq_lock(p, &flags);
2349
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2350 2351 2352 2353
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2354
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2355 2356 2357
		goto out_running;

	cpu = task_cpu(p);
2358
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2359 2360 2361 2362 2363 2364
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2365 2366 2367
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2368 2369 2370 2371 2372 2373
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2374
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2375 2376 2377 2378 2379 2380
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2381 2382 2383 2384 2385 2386 2387
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2388
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2389 2390 2391 2392 2393
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2394
#endif /* CONFIG_SCHEDSTATS */
2395

L
Linus Torvalds 已提交
2396 2397
out_activate:
#endif /* CONFIG_SMP */
2398 2399 2400 2401 2402 2403 2404 2405 2406
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2407
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2408 2409
	success = 1;

P
Peter Zijlstra 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2426
out_running:
2427
	trace_sched_wakeup(rq, p, success);
2428
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2429

L
Linus Torvalds 已提交
2430
	p->state = TASK_RUNNING;
2431 2432 2433 2434
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2435 2436 2437 2438 2439 2440
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2441
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2442
{
2443
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2444 2445 2446
}
EXPORT_SYMBOL(wake_up_process);

2447
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2448 2449 2450 2451 2452 2453 2454
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2455 2456 2457 2458 2459 2460 2461
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2462
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2463 2464
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2465 2466
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2467 2468 2469

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2470 2471 2472 2473 2474 2475
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2476
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2477
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2478
#endif
N
Nick Piggin 已提交
2479

P
Peter Zijlstra 已提交
2480
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2481
	p->se.on_rq = 0;
2482
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2483

2484 2485 2486 2487
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2488 2489 2490 2491 2492 2493 2494
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2509
	set_task_cpu(p, cpu);
2510 2511 2512 2513 2514

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2515 2516
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2517

2518
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2519
	if (likely(sched_info_on()))
2520
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2521
#endif
2522
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2523 2524
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2525
#ifdef CONFIG_PREEMPT
2526
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2527
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2528
#endif
2529 2530
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2531
	put_cpu();
L
Linus Torvalds 已提交
2532 2533 2534 2535 2536 2537 2538 2539 2540
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2541
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2542 2543
{
	unsigned long flags;
I
Ingo Molnar 已提交
2544
	struct rq *rq;
L
Linus Torvalds 已提交
2545 2546

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2547
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2548
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2549 2550 2551

	p->prio = effective_prio(p);

2552
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2553
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2554 2555
	} else {
		/*
I
Ingo Molnar 已提交
2556 2557
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2558
		 */
2559
		p->sched_class->task_new(rq, p);
2560
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2561
	}
2562
	trace_sched_wakeup_new(rq, p, 1);
2563
	check_preempt_curr(rq, p, 0);
2564 2565 2566 2567
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2568
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2569 2570
}

2571 2572 2573
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2574
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2575
 * @notifier: notifier struct to register
2576 2577 2578 2579 2580 2581 2582 2583 2584
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2585
 * @notifier: notifier struct to unregister
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2615
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2627
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2628

2629 2630 2631
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2632
 * @prev: the current task that is being switched out
2633 2634 2635 2636 2637 2638 2639 2640 2641
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2642 2643 2644
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2645
{
2646
	fire_sched_out_preempt_notifiers(prev, next);
2647 2648 2649 2650
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2651 2652
/**
 * finish_task_switch - clean up after a task-switch
2653
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2654 2655
 * @prev: the thread we just switched away from.
 *
2656 2657 2658 2659
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2660 2661
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2662
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2663 2664 2665
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2666
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2667 2668 2669
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2670
	long prev_state;
2671 2672 2673 2674 2675 2676
#ifdef CONFIG_SMP
	int post_schedule = 0;

	if (current->sched_class->needs_post_schedule)
		post_schedule = current->sched_class->needs_post_schedule(rq);
#endif
L
Linus Torvalds 已提交
2677 2678 2679 2680 2681

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2682
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2683 2684
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2685
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2686 2687 2688 2689 2690
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2691
	prev_state = prev->state;
2692 2693
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2694
#ifdef CONFIG_SMP
2695
	if (post_schedule)
2696 2697
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2698

2699
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2700 2701
	if (mm)
		mmdrop(mm);
2702
	if (unlikely(prev_state == TASK_DEAD)) {
2703 2704 2705
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2706
		 */
2707
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2708
		put_task_struct(prev);
2709
	}
L
Linus Torvalds 已提交
2710 2711 2712 2713 2714 2715
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2716
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2717 2718
	__releases(rq->lock)
{
2719 2720
	struct rq *rq = this_rq();

2721 2722 2723 2724 2725
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2726
	if (current->set_child_tid)
2727
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2728 2729 2730 2731 2732 2733
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2734
static inline void
2735
context_switch(struct rq *rq, struct task_struct *prev,
2736
	       struct task_struct *next)
L
Linus Torvalds 已提交
2737
{
I
Ingo Molnar 已提交
2738
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2739

2740
	prepare_task_switch(rq, prev, next);
2741
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2742 2743
	mm = next->mm;
	oldmm = prev->active_mm;
2744 2745 2746 2747 2748 2749 2750
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2751
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2752 2753 2754 2755 2756 2757
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2758
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2759 2760 2761
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2762 2763 2764 2765 2766 2767 2768
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2769
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2770
#endif
L
Linus Torvalds 已提交
2771 2772 2773 2774

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2775 2776 2777 2778 2779 2780 2781
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2805
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2820 2821
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2822

2823
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2833
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2834 2835 2836 2837 2838
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2854
/*
I
Ingo Molnar 已提交
2855 2856
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2857
 */
I
Ingo Molnar 已提交
2858
static void update_cpu_load(struct rq *this_rq)
2859
{
2860
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2873 2874 2875 2876 2877 2878 2879
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2880 2881
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2882 2883
}

I
Ingo Molnar 已提交
2884 2885
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2886 2887 2888 2889 2890 2891
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2892
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2893 2894 2895
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2896
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2897 2898 2899 2900
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2901
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2902
			spin_lock(&rq1->lock);
2903
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2904 2905
		} else {
			spin_lock(&rq2->lock);
2906
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2907 2908
		}
	}
2909 2910
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2911 2912 2913 2914 2915 2916 2917 2918
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2919
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2933
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2934 2935
 * the cpu_allowed mask is restored.
 */
2936
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2937
{
2938
	struct migration_req req;
L
Linus Torvalds 已提交
2939
	unsigned long flags;
2940
	struct rq *rq;
L
Linus Torvalds 已提交
2941 2942

	rq = task_rq_lock(p, &flags);
2943
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2944
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2945 2946 2947 2948 2949 2950
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2951

L
Linus Torvalds 已提交
2952 2953 2954 2955 2956
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2957

L
Linus Torvalds 已提交
2958 2959 2960 2961 2962 2963 2964
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2965 2966
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2967 2968 2969 2970
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2971
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2972
	put_cpu();
N
Nick Piggin 已提交
2973 2974
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2975 2976 2977 2978 2979 2980
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2981 2982
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2983
{
2984
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2985
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2986
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2987 2988 2989 2990
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2991
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2992 2993 2994 2995 2996
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2997
static
2998
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2999
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3000
		     int *all_pinned)
L
Linus Torvalds 已提交
3001
{
3002
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3003 3004 3005 3006 3007 3008
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3009
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3010
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3011
		return 0;
3012
	}
3013 3014
	*all_pinned = 0;

3015 3016
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3017
		return 0;
3018
	}
L
Linus Torvalds 已提交
3019

3020 3021 3022 3023 3024 3025
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3026 3027 3028
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3029
#ifdef CONFIG_SCHEDSTATS
3030
		if (tsk_cache_hot) {
3031
			schedstat_inc(sd, lb_hot_gained[idle]);
3032 3033
			schedstat_inc(p, se.nr_forced_migrations);
		}
3034 3035 3036 3037
#endif
		return 1;
	}

3038
	if (tsk_cache_hot) {
3039
		schedstat_inc(p, se.nr_failed_migrations_hot);
3040
		return 0;
3041
	}
L
Linus Torvalds 已提交
3042 3043 3044
	return 1;
}

3045 3046 3047 3048 3049
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3050
{
3051
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3052 3053
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3054

3055
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3056 3057
		goto out;

3058 3059
	pinned = 1;

L
Linus Torvalds 已提交
3060
	/*
I
Ingo Molnar 已提交
3061
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3062
	 */
I
Ingo Molnar 已提交
3063 3064
	p = iterator->start(iterator->arg);
next:
3065
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3066
		goto out;
3067 3068

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3069 3070 3071
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3072 3073
	}

I
Ingo Molnar 已提交
3074
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3075
	pulled++;
I
Ingo Molnar 已提交
3076
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3077

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3088
	/*
3089
	 * We only want to steal up to the prescribed amount of weighted load.
3090
	 */
3091
	if (rem_load_move > 0) {
3092 3093
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3094 3095
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3096 3097 3098
	}
out:
	/*
3099
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3100 3101 3102 3103
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3104 3105 3106

	if (all_pinned)
		*all_pinned = pinned;
3107 3108

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3109 3110
}

I
Ingo Molnar 已提交
3111
/*
P
Peter Williams 已提交
3112 3113 3114
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3115 3116 3117 3118
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3119
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3120 3121 3122
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3123
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3124
	unsigned long total_load_moved = 0;
3125
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3126 3127

	do {
P
Peter Williams 已提交
3128 3129
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3130
				max_load_move - total_load_moved,
3131
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3132
		class = class->next;
3133

3134 3135 3136 3137 3138 3139
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3140 3141
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3142
#endif
P
Peter Williams 已提交
3143
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3144

P
Peter Williams 已提交
3145 3146 3147
	return total_load_moved > 0;
}

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3184
	const struct sched_class *class;
P
Peter Williams 已提交
3185 3186

	for (class = sched_class_highest; class; class = class->next)
3187
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3188 3189 3190
			return 1;

	return 0;
I
Ingo Molnar 已提交
3191
}
3192
/********** Helpers for find_busiest_group ************************/
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
/**
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
#endif
};
3224

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
/**
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};

3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367


/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

	if (local_group)
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;

	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);

		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;

		/* Bias balancing toward cpus of our domain */
		if (local_group) {
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
		}

		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);

		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}

	/* Adjust by relative CPU power of the group */
	sgs->avg_load = sg_div_cpu_power(group,
			sgs->group_load * SCHED_LOAD_SCALE);


	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	avg_load_per_task = sg_div_cpu_power(group,
			sum_avg_load_per_task * SCHED_LOAD_SCALE);

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

	sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;

}
I
Ingo Molnar 已提交
3368

3369 3370 3371 3372 3373 3374 3375 3376 3377
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3378
 */
3379 3380 3381 3382
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3383
{
3384
	struct sched_group *group = sd->groups;
3385
	struct sg_lb_stats sgs;
3386 3387
	int load_idx;

3388
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
3400
#endif
3401
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3402 3403 3404 3405

	do {
		int local_group;

3406 3407
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3408
		memset(&sgs, 0, sizeof(sgs));
3409 3410
		update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3411

3412 3413
		if (local_group && balance && !(*balance))
			return;
3414

3415 3416
		sds->total_load += sgs.group_load;
		sds->total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3417 3418

		if (local_group) {
3419 3420 3421 3422 3423
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3424 3425
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3426 3427 3428 3429 3430
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
L
Linus Torvalds 已提交
3431
		}
3432 3433

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3434 3435

		if (!sds->power_savings_balance)
I
Ingo Molnar 已提交
3436
			goto group_next;
3437 3438 3439 3440 3441

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
3442
		if (local_group &&
3443 3444 3445
			(sds->this_nr_running >= sgs.group_capacity ||
			!sds->this_nr_running))
			sds->power_savings_balance = 0;
3446

I
Ingo Molnar 已提交
3447
		/*
3448 3449
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3450
		 */
3451
		if (!sds->power_savings_balance ||
3452 3453
			sgs.sum_nr_running >= sgs.group_capacity ||
			!sgs.sum_nr_running)
I
Ingo Molnar 已提交
3454
			goto group_next;
3455

I
Ingo Molnar 已提交
3456
		/*
3457
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3458 3459 3460
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
3461 3462
		if ((sgs.sum_nr_running < sds->min_nr_running) ||
		    (sgs.sum_nr_running == sds->min_nr_running &&
3463
		     group_first_cpu(group) >
3464 3465 3466 3467
			group_first_cpu(sds->group_min))) {
			sds->group_min = group;
			sds->min_nr_running = sgs.sum_nr_running;
			sds->min_load_per_task = sgs.sum_weighted_load /
3468
						sgs.sum_nr_running;
I
Ingo Molnar 已提交
3469
		}
3470

I
Ingo Molnar 已提交
3471
		/*
3472
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3473 3474 3475
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
3476
		if (sgs.sum_nr_running > sgs.group_capacity - 1)
3477 3478
			goto group_next;

3479 3480
		if (sgs.sum_nr_running > sds->leader_nr_running ||
		    (sgs.sum_nr_running == sds->leader_nr_running &&
3481
		     group_first_cpu(group) <
3482 3483 3484
			group_first_cpu(sds->group_leader))) {
			sds->group_leader = group;
			sds->leader_nr_running = sgs.sum_nr_running;
3485
		}
3486 3487
group_next:
#endif
L
Linus Torvalds 已提交
3488 3489 3490
		group = group->next;
	} while (group != sd->groups);

3491
}
3492 3493 3494

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3495 3496
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);

	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

	pwr_now += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = sg_div_cpu_power(sds->busiest,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->__cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = sg_div_cpu_power(sds->this,
			sds->max_load * sds->busiest->__cpu_power);
	else
		tmp = sg_div_cpu_power(sds->this,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	pwr_move += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (sds->max_load < sds->avg_load) {
		*imbalance = 0;
		return fix_small_imbalance(sds, this_cpu, imbalance);
	}

	/* Don't want to pull so many tasks that a group would go idle */
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);

	/* How much load to actually move to equalise the imbalance */
	*imbalance = min(max_pull * sds->busiest->__cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->__cpu_power)
			/ SCHED_LOAD_SCALE;

	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);

}
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
/******* find_busiest_group() helpers end here *********************/

/*
 * find_busiest_group finds and returns the busiest CPU group within the
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;

	memset(&sds, 0, sizeof(sds));

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

	if (balance && !(*balance))
		goto ret;

3624 3625
	if (!sds.busiest || sds.this_load >= sds.max_load
		|| sds.busiest_nr_running == 0)
L
Linus Torvalds 已提交
3626 3627
		goto out_balanced;

3628
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3629

3630 3631
	if (sds.this_load >= sds.avg_load ||
			100*sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3632 3633
		goto out_balanced;

3634 3635 3636 3637
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
3638

L
Linus Torvalds 已提交
3639 3640 3641 3642 3643 3644 3645 3646
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3647
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3648 3649
	 * appear as very large values with unsigned longs.
	 */
3650
	if (sds.max_load <= sds.busiest_load_per_task)
3651 3652
		goto out_balanced;

3653 3654
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
3655
	return sds.busiest;
L
Linus Torvalds 已提交
3656 3657

out_balanced:
3658
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3659
	if (!sds.power_savings_balance)
3660
		goto ret;
L
Linus Torvalds 已提交
3661

3662
	if (sds.this != sds.group_leader || sds.group_leader == sds.group_min)
3663 3664
		goto ret;

3665
	*imbalance = sds.min_load_per_task;
3666 3667
	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3668
			group_first_cpu(sds.group_leader);
3669
	}
3670
	return sds.group_min;
3671

3672
#endif
3673
ret:
L
Linus Torvalds 已提交
3674 3675 3676 3677 3678 3679 3680
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3681
static struct rq *
I
Ingo Molnar 已提交
3682
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3683
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3684
{
3685
	struct rq *busiest = NULL, *rq;
3686
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3687 3688
	int i;

3689
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3690
		unsigned long wl;
3691

3692
		if (!cpumask_test_cpu(i, cpus))
3693 3694
			continue;

3695
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3696
		wl = weighted_cpuload(i);
3697

I
Ingo Molnar 已提交
3698
		if (rq->nr_running == 1 && wl > imbalance)
3699
			continue;
L
Linus Torvalds 已提交
3700

I
Ingo Molnar 已提交
3701 3702
		if (wl > max_load) {
			max_load = wl;
3703
			busiest = rq;
L
Linus Torvalds 已提交
3704 3705 3706 3707 3708 3709
		}
	}

	return busiest;
}

3710 3711 3712 3713 3714 3715
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3716 3717 3718 3719
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3720
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3721
			struct sched_domain *sd, enum cpu_idle_type idle,
3722
			int *balance, struct cpumask *cpus)
L
Linus Torvalds 已提交
3723
{
P
Peter Williams 已提交
3724
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3725 3726
	struct sched_group *group;
	unsigned long imbalance;
3727
	struct rq *busiest;
3728
	unsigned long flags;
N
Nick Piggin 已提交
3729

3730
	cpumask_setall(cpus);
3731

3732 3733 3734
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3735
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3736
	 * portraying it as CPU_NOT_IDLE.
3737
	 */
I
Ingo Molnar 已提交
3738
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3739
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3740
		sd_idle = 1;
L
Linus Torvalds 已提交
3741

3742
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3743

3744
redo:
3745
	update_shares(sd);
3746
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3747
				   cpus, balance);
3748

3749
	if (*balance == 0)
3750 3751
		goto out_balanced;

L
Linus Torvalds 已提交
3752 3753 3754 3755 3756
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3757
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3758 3759 3760 3761 3762
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3763
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3764 3765 3766

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3767
	ld_moved = 0;
L
Linus Torvalds 已提交
3768 3769 3770 3771
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3772
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3773 3774
		 * correctly treated as an imbalance.
		 */
3775
		local_irq_save(flags);
N
Nick Piggin 已提交
3776
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3777
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3778
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3779
		double_rq_unlock(this_rq, busiest);
3780
		local_irq_restore(flags);
3781

3782 3783 3784
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3785
		if (ld_moved && this_cpu != smp_processor_id())
3786 3787
			resched_cpu(this_cpu);

3788
		/* All tasks on this runqueue were pinned by CPU affinity */
3789
		if (unlikely(all_pinned)) {
3790 3791
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3792
				goto redo;
3793
			goto out_balanced;
3794
		}
L
Linus Torvalds 已提交
3795
	}
3796

P
Peter Williams 已提交
3797
	if (!ld_moved) {
L
Linus Torvalds 已提交
3798 3799 3800 3801 3802
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3803
			spin_lock_irqsave(&busiest->lock, flags);
3804 3805 3806 3807

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
3808 3809
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
3810
				spin_unlock_irqrestore(&busiest->lock, flags);
3811 3812 3813 3814
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3815 3816 3817
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3818
				active_balance = 1;
L
Linus Torvalds 已提交
3819
			}
3820
			spin_unlock_irqrestore(&busiest->lock, flags);
3821
			if (active_balance)
L
Linus Torvalds 已提交
3822 3823 3824 3825 3826 3827
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3828
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3829
		}
3830
	} else
L
Linus Torvalds 已提交
3831 3832
		sd->nr_balance_failed = 0;

3833
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3834 3835
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3836 3837 3838 3839 3840 3841 3842 3843 3844
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3845 3846
	}

P
Peter Williams 已提交
3847
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3848
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3849 3850 3851
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3852 3853 3854 3855

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3856
	sd->nr_balance_failed = 0;
3857 3858

out_one_pinned:
L
Linus Torvalds 已提交
3859
	/* tune up the balancing interval */
3860 3861
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3862 3863
		sd->balance_interval *= 2;

3864
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3865
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3866 3867 3868 3869
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3870 3871
	if (ld_moved)
		update_shares(sd);
3872
	return ld_moved;
L
Linus Torvalds 已提交
3873 3874 3875 3876 3877 3878
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3879
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3880 3881
 * this_rq is locked.
 */
3882
static int
3883
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3884
			struct cpumask *cpus)
L
Linus Torvalds 已提交
3885 3886
{
	struct sched_group *group;
3887
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3888
	unsigned long imbalance;
P
Peter Williams 已提交
3889
	int ld_moved = 0;
N
Nick Piggin 已提交
3890
	int sd_idle = 0;
3891
	int all_pinned = 0;
3892

3893
	cpumask_setall(cpus);
N
Nick Piggin 已提交
3894

3895 3896 3897 3898
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3899
	 * portraying it as CPU_NOT_IDLE.
3900 3901 3902
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3903
		sd_idle = 1;
L
Linus Torvalds 已提交
3904

3905
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3906
redo:
3907
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3908
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3909
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3910
	if (!group) {
I
Ingo Molnar 已提交
3911
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3912
		goto out_balanced;
L
Linus Torvalds 已提交
3913 3914
	}

3915
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3916
	if (!busiest) {
I
Ingo Molnar 已提交
3917
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3918
		goto out_balanced;
L
Linus Torvalds 已提交
3919 3920
	}

N
Nick Piggin 已提交
3921 3922
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3923
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3924

P
Peter Williams 已提交
3925
	ld_moved = 0;
3926 3927 3928
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3929 3930
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3931
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3932 3933
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3934
		double_unlock_balance(this_rq, busiest);
3935

3936
		if (unlikely(all_pinned)) {
3937 3938
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3939 3940
				goto redo;
		}
3941 3942
	}

P
Peter Williams 已提交
3943
	if (!ld_moved) {
3944
		int active_balance = 0;
3945

I
Ingo Molnar 已提交
3946
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3947 3948
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3949
			return -1;
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
3986
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
3999 4000 4001 4002
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4003 4004
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4005
		spin_lock(&this_rq->lock);
4006

N
Nick Piggin 已提交
4007
	} else
4008
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4009

4010
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4011
	return ld_moved;
4012 4013

out_balanced:
I
Ingo Molnar 已提交
4014
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4015
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4016
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4017
		return -1;
4018
	sd->nr_balance_failed = 0;
4019

4020
	return 0;
L
Linus Torvalds 已提交
4021 4022 4023 4024 4025 4026
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4027
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4028 4029
{
	struct sched_domain *sd;
4030
	int pulled_task = 0;
I
Ingo Molnar 已提交
4031
	unsigned long next_balance = jiffies + HZ;
4032 4033 4034 4035
	cpumask_var_t tmpmask;

	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
4036 4037

	for_each_domain(this_cpu, sd) {
4038 4039 4040 4041 4042 4043
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4044
			/* If we've pulled tasks over stop searching: */
4045
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4046
							   sd, tmpmask);
4047 4048 4049 4050 4051 4052

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4053
	}
I
Ingo Molnar 已提交
4054
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4055 4056 4057 4058 4059
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4060
	}
4061
	free_cpumask_var(tmpmask);
L
Linus Torvalds 已提交
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4072
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4073
{
4074
	int target_cpu = busiest_rq->push_cpu;
4075 4076
	struct sched_domain *sd;
	struct rq *target_rq;
4077

4078
	/* Is there any task to move? */
4079 4080 4081 4082
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4083 4084

	/*
4085
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4086
	 * we need to fix it. Originally reported by
4087
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4088
	 */
4089
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4090

4091 4092
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4093 4094
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4095 4096

	/* Search for an sd spanning us and the target CPU. */
4097
	for_each_domain(target_cpu, sd) {
4098
		if ((sd->flags & SD_LOAD_BALANCE) &&
4099
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4100
				break;
4101
	}
4102

4103
	if (likely(sd)) {
4104
		schedstat_inc(sd, alb_count);
4105

P
Peter Williams 已提交
4106 4107
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4108 4109 4110 4111
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4112
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4113 4114
}

4115 4116 4117
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4118
	cpumask_var_t cpu_mask;
4119 4120 4121 4122
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4123
/*
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4134
 *
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4150 4151 4152 4153 4154 4155 4156 4157
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4158 4159
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4160

4161 4162 4163
			return 0;
		}

4164 4165
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4166
		/* time for ilb owner also to sleep */
4167
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
4180
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4181 4182
			return 0;

4183
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4196 4197 4198 4199 4200
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4201
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4202
{
4203 4204
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4205 4206
	unsigned long interval;
	struct sched_domain *sd;
4207
	/* Earliest time when we have to do rebalance again */
4208
	unsigned long next_balance = jiffies + 60*HZ;
4209
	int update_next_balance = 0;
4210
	int need_serialize;
4211 4212 4213 4214 4215
	cpumask_var_t tmp;

	/* Fails alloc?  Rebalancing probably not a priority right now. */
	if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
4216

4217
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4218 4219 4220 4221
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4222
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4223 4224 4225 4226 4227 4228
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4229 4230 4231
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4232
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4233

4234
		if (need_serialize) {
4235 4236 4237 4238
			if (!spin_trylock(&balancing))
				goto out;
		}

4239
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4240
			if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
4241 4242
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4243 4244 4245
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4246
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4247
			}
4248
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4249
		}
4250
		if (need_serialize)
4251 4252
			spin_unlock(&balancing);
out:
4253
		if (time_after(next_balance, sd->last_balance + interval)) {
4254
			next_balance = sd->last_balance + interval;
4255 4256
			update_next_balance = 1;
		}
4257 4258 4259 4260 4261 4262 4263 4264

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4265
	}
4266 4267 4268 4269 4270 4271 4272 4273

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4274 4275

	free_cpumask_var(tmp);
4276 4277 4278 4279 4280 4281 4282 4283 4284
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4285 4286 4287 4288
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4289

I
Ingo Molnar 已提交
4290
	rebalance_domains(this_cpu, idle);
4291 4292 4293 4294 4295 4296 4297

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4298 4299
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4300 4301 4302
		struct rq *rq;
		int balance_cpu;

4303 4304 4305 4306
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4307 4308 4309 4310 4311 4312 4313 4314
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4315
			rebalance_domains(balance_cpu, CPU_IDLE);
4316 4317

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4318 4319
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4320 4321 4322 4323 4324
		}
	}
#endif
}

4325 4326 4327 4328 4329
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4330 4331 4332 4333 4334 4335 4336
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4337
static inline void trigger_load_balance(struct rq *rq, int cpu)
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4349
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
4362
			int ilb = cpumask_first(nohz.cpu_mask);
4363

4364
			if (ilb < nr_cpu_ids)
4365 4366 4367 4368 4369 4370 4371 4372 4373
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4374
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4375 4376 4377 4378 4379 4380 4381 4382 4383
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4384
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4385 4386
		return;
#endif
4387 4388 4389
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4390
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4391
}
I
Ingo Molnar 已提交
4392 4393 4394

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4395 4396 4397
/*
 * on UP we do not need to balance between CPUs:
 */
4398
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4399 4400
{
}
I
Ingo Molnar 已提交
4401

L
Linus Torvalds 已提交
4402 4403 4404 4405 4406 4407 4408
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4409 4410
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4411
 */
4412
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4413 4414
{
	unsigned long flags;
4415
	struct rq *rq;
4416
	u64 ns = 0;
4417

4418
	rq = task_rq_lock(p, &flags);
4419

4420
	if (task_current(rq, p)) {
4421 4422
		u64 delta_exec;

I
Ingo Molnar 已提交
4423 4424
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4425
		if ((s64)delta_exec > 0)
4426
			ns = delta_exec;
4427
	}
4428

4429
	task_rq_unlock(rq, &flags);
4430

L
Linus Torvalds 已提交
4431 4432 4433 4434 4435 4436 4437
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4438
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4439
 */
4440 4441
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4442 4443 4444 4445
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4446
	/* Add user time to process. */
L
Linus Torvalds 已提交
4447
	p->utime = cputime_add(p->utime, cputime);
4448
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4449
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4450 4451 4452 4453 4454 4455 4456

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4457 4458
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4459 4460
}

4461 4462 4463 4464
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4465
 * @cputime_scaled: cputime scaled by cpu frequency
4466
 */
4467 4468
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4469 4470 4471 4472 4473 4474
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4475
	/* Add guest time to process. */
4476
	p->utime = cputime_add(p->utime, cputime);
4477
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4478
	account_group_user_time(p, cputime);
4479 4480
	p->gtime = cputime_add(p->gtime, cputime);

4481
	/* Add guest time to cpustat. */
4482 4483 4484 4485
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4486 4487 4488 4489 4490
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4491
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4492 4493
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4494
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4495 4496 4497 4498
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4499
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4500
		account_guest_time(p, cputime, cputime_scaled);
4501 4502
		return;
	}
4503

4504
	/* Add system time to process. */
L
Linus Torvalds 已提交
4505
	p->stime = cputime_add(p->stime, cputime);
4506
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4507
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4508 4509 4510 4511 4512 4513 4514 4515

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4516 4517
		cpustat->system = cputime64_add(cpustat->system, tmp);

L
Linus Torvalds 已提交
4518 4519 4520 4521
	/* Account for system time used */
	acct_update_integrals(p);
}

4522
/*
L
Linus Torvalds 已提交
4523 4524
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
4525
 */
4526
void account_steal_time(cputime_t cputime)
4527
{
4528 4529 4530 4531
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4532 4533
}

L
Linus Torvalds 已提交
4534
/*
4535 4536
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
4537
 */
4538
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
4539 4540
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4541
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
4542
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4543

4544 4545 4546 4547
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
4548 4549
}

4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
	else if (p != rq->idle)
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
4589 4590
}

4591 4592
#endif

4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4663
	struct task_struct *curr = rq->curr;
4664 4665

	sched_clock_tick();
I
Ingo Molnar 已提交
4666 4667

	spin_lock(&rq->lock);
4668
	update_rq_clock(rq);
4669
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4670
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4671
	spin_unlock(&rq->lock);
4672

4673
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4674 4675
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4676
#endif
L
Linus Torvalds 已提交
4677 4678
}

4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4691

4692
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4693
{
4694
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4695 4696 4697
	/*
	 * Underflow?
	 */
4698 4699
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4700
#endif
L
Linus Torvalds 已提交
4701
	preempt_count() += val;
4702
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4703 4704 4705
	/*
	 * Spinlock count overflowing soon?
	 */
4706 4707
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4708 4709 4710
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4711 4712 4713
}
EXPORT_SYMBOL(add_preempt_count);

4714
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4715
{
4716
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4717 4718 4719
	/*
	 * Underflow?
	 */
4720
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4721
		return;
L
Linus Torvalds 已提交
4722 4723 4724
	/*
	 * Is the spinlock portion underflowing?
	 */
4725 4726 4727
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4728
#endif
4729

4730 4731
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4732 4733 4734 4735 4736 4737 4738
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4739
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4740
 */
I
Ingo Molnar 已提交
4741
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4742
{
4743 4744 4745 4746 4747
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4748
	debug_show_held_locks(prev);
4749
	print_modules();
I
Ingo Molnar 已提交
4750 4751
	if (irqs_disabled())
		print_irqtrace_events(prev);
4752 4753 4754 4755 4756

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4757
}
L
Linus Torvalds 已提交
4758

I
Ingo Molnar 已提交
4759 4760 4761 4762 4763
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4764
	/*
I
Ingo Molnar 已提交
4765
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4766 4767 4768
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4769
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4770 4771
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4772 4773
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4774
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4775 4776
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4777 4778
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4779 4780
	}
#endif
I
Ingo Molnar 已提交
4781 4782
}

M
Mike Galbraith 已提交
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
4805 4806 4807 4808
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4809
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
4810
{
4811
	const struct sched_class *class;
I
Ingo Molnar 已提交
4812
	struct task_struct *p;
L
Linus Torvalds 已提交
4813 4814

	/*
I
Ingo Molnar 已提交
4815 4816
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4817
	 */
I
Ingo Molnar 已提交
4818
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4819
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4820 4821
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4822 4823
	}

I
Ingo Molnar 已提交
4824 4825
	class = sched_class_highest;
	for ( ; ; ) {
4826
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4827 4828 4829 4830 4831 4832 4833 4834 4835
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4836

I
Ingo Molnar 已提交
4837 4838 4839 4840 4841 4842
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4843
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4844
	struct rq *rq;
4845
	int cpu;
I
Ingo Molnar 已提交
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4859

4860
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4861
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4862

4863
	spin_lock_irq(&rq->lock);
4864
	update_rq_clock(rq);
4865
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4866 4867

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4868
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4869
			prev->state = TASK_RUNNING;
4870
		else
4871
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4872
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4873 4874
	}

4875 4876 4877 4878
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4879

I
Ingo Molnar 已提交
4880
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4881 4882
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
4883
	put_prev_task(rq, prev);
4884
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
4885 4886

	if (likely(prev != next)) {
4887 4888
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4889 4890 4891 4892
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4893
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4894 4895 4896 4897 4898 4899
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4900 4901 4902
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4903
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4904
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4905

L
Linus Torvalds 已提交
4906 4907 4908 4909 4910 4911 4912 4913
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4914
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4915
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4916 4917 4918 4919 4920
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4921

L
Linus Torvalds 已提交
4922 4923
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4924
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4925
	 */
N
Nick Piggin 已提交
4926
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4927 4928
		return;

4929 4930 4931 4932
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4933

4934 4935 4936 4937 4938
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4939
	} while (need_resched());
L
Linus Torvalds 已提交
4940 4941 4942 4943
}
EXPORT_SYMBOL(preempt_schedule);

/*
4944
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4945 4946 4947 4948 4949 4950 4951
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4952

4953
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4954 4955
	BUG_ON(ti->preempt_count || !irqs_disabled());

4956 4957 4958 4959 4960 4961
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4962

4963 4964 4965 4966 4967
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4968
	} while (need_resched());
L
Linus Torvalds 已提交
4969 4970 4971 4972
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4973 4974
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4975
{
4976
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4977 4978 4979 4980
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4981 4982
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4983 4984 4985
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4986
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4987 4988
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4989 4990
void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
4991
{
4992
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4993

4994
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4995 4996
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4997
		if (curr->func(curr, mode, sync, key) &&
4998
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4999 5000 5001 5002 5003 5004 5005 5006 5007
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5008
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
5009
 */
5010
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5011
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5024
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5025 5026 5027 5028 5029
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
5030
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
5042
void
I
Ingo Molnar 已提交
5043
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5060 5061 5062 5063 5064 5065 5066 5067 5068
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
5069
void complete(struct completion *x)
L
Linus Torvalds 已提交
5070 5071 5072 5073 5074
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5075
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5076 5077 5078 5079
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5080 5081 5082 5083 5084 5085
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
5086
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5087 5088 5089 5090 5091
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5092
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5093 5094 5095 5096
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5097 5098
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5099 5100 5101 5102 5103 5104 5105
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5106
			if (signal_pending_state(state, current)) {
5107 5108
				timeout = -ERESTARTSYS;
				break;
5109 5110
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5111 5112 5113
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5114
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5115
		__remove_wait_queue(&x->wait, &wait);
5116 5117
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5118 5119
	}
	x->done--;
5120
	return timeout ?: 1;
L
Linus Torvalds 已提交
5121 5122
}

5123 5124
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5125 5126 5127 5128
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5129
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5130
	spin_unlock_irq(&x->wait.lock);
5131 5132
	return timeout;
}
L
Linus Torvalds 已提交
5133

5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5144
void __sched wait_for_completion(struct completion *x)
5145 5146
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5147
}
5148
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5149

5150 5151 5152 5153 5154 5155 5156 5157 5158
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5159
unsigned long __sched
5160
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5161
{
5162
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5163
}
5164
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5165

5166 5167 5168 5169 5170 5171 5172
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5173
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5174
{
5175 5176 5177 5178
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5179
}
5180
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5181

5182 5183 5184 5185 5186 5187 5188 5189
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5190
unsigned long __sched
5191 5192
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5193
{
5194
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5195
}
5196
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5197

5198 5199 5200 5201 5202 5203 5204
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5205 5206 5207 5208 5209 5210 5211 5212 5213
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5260 5261
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5262
{
I
Ingo Molnar 已提交
5263 5264 5265 5266
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5267

5268
	__set_current_state(state);
L
Linus Torvalds 已提交
5269

5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5284 5285 5286
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5287
long __sched
I
Ingo Molnar 已提交
5288
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5289
{
5290
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5291 5292 5293
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5294
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5295
{
5296
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5297 5298 5299
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5300
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5301
{
5302
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5303 5304 5305
}
EXPORT_SYMBOL(sleep_on_timeout);

5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5318
void rt_mutex_setprio(struct task_struct *p, int prio)
5319 5320
{
	unsigned long flags;
5321
	int oldprio, on_rq, running;
5322
	struct rq *rq;
5323
	const struct sched_class *prev_class = p->sched_class;
5324 5325 5326 5327

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5328
	update_rq_clock(rq);
5329

5330
	oldprio = p->prio;
I
Ingo Molnar 已提交
5331
	on_rq = p->se.on_rq;
5332
	running = task_current(rq, p);
5333
	if (on_rq)
5334
		dequeue_task(rq, p, 0);
5335 5336
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5337 5338 5339 5340 5341 5342

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5343 5344
	p->prio = prio;

5345 5346
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5347
	if (on_rq) {
5348
		enqueue_task(rq, p, 0);
5349 5350

		check_class_changed(rq, p, prev_class, oldprio, running);
5351 5352 5353 5354 5355 5356
	}
	task_rq_unlock(rq, &flags);
}

#endif

5357
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5358
{
I
Ingo Molnar 已提交
5359
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5360
	unsigned long flags;
5361
	struct rq *rq;
L
Linus Torvalds 已提交
5362 5363 5364 5365 5366 5367 5368 5369

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5370
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5371 5372 5373 5374
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5375
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5376
	 */
5377
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5378 5379 5380
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5381
	on_rq = p->se.on_rq;
5382
	if (on_rq)
5383
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5384 5385

	p->static_prio = NICE_TO_PRIO(nice);
5386
	set_load_weight(p);
5387 5388 5389
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5390

I
Ingo Molnar 已提交
5391
	if (on_rq) {
5392
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5393
		/*
5394 5395
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5396
		 */
5397
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5398 5399 5400 5401 5402 5403 5404
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5405 5406 5407 5408 5409
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5410
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5411
{
5412 5413
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5414

M
Matt Mackall 已提交
5415 5416 5417 5418
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5419 5420 5421 5422 5423 5424 5425 5426 5427
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5428
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5429
{
5430
	long nice, retval;
L
Linus Torvalds 已提交
5431 5432 5433 5434 5435 5436

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5437 5438
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5439 5440 5441
	if (increment > 40)
		increment = 40;

5442
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
5443 5444 5445 5446 5447
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5448 5449 5450
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5469
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5470 5471 5472 5473 5474 5475 5476 5477
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5478
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5479 5480 5481
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5482
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5497
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5498 5499 5500 5501 5502 5503 5504 5505
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5506
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5507
{
5508
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5509 5510 5511
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5512 5513
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5514
{
I
Ingo Molnar 已提交
5515
	BUG_ON(p->se.on_rq);
5516

L
Linus Torvalds 已提交
5517
	p->policy = policy;
I
Ingo Molnar 已提交
5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5530
	p->rt_priority = prio;
5531 5532 5533
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5534
	set_load_weight(p);
L
Linus Torvalds 已提交
5535 5536
}

5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

5553 5554
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5555
{
5556
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5557
	unsigned long flags;
5558
	const struct sched_class *prev_class = p->sched_class;
5559
	struct rq *rq;
L
Linus Torvalds 已提交
5560

5561 5562
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5563 5564 5565 5566 5567
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5568 5569
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5570
		return -EINVAL;
L
Linus Torvalds 已提交
5571 5572
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5573 5574
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5575 5576
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5577
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5578
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5579
		return -EINVAL;
5580
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5581 5582
		return -EINVAL;

5583 5584 5585
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5586
	if (user && !capable(CAP_SYS_NICE)) {
5587
		if (rt_policy(policy)) {
5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5604 5605 5606 5607 5608 5609
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5610

5611
		/* can't change other user's priorities */
5612
		if (!check_same_owner(p))
5613 5614
			return -EPERM;
	}
L
Linus Torvalds 已提交
5615

5616
	if (user) {
5617
#ifdef CONFIG_RT_GROUP_SCHED
5618 5619 5620 5621
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5622 5623
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5624
			return -EPERM;
5625 5626
#endif

5627 5628 5629 5630 5631
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5632 5633 5634 5635 5636
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5637 5638 5639 5640
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5641
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5642 5643 5644
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5645 5646
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5647 5648
		goto recheck;
	}
I
Ingo Molnar 已提交
5649
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5650
	on_rq = p->se.on_rq;
5651
	running = task_current(rq, p);
5652
	if (on_rq)
5653
		deactivate_task(rq, p, 0);
5654 5655
	if (running)
		p->sched_class->put_prev_task(rq, p);
5656

L
Linus Torvalds 已提交
5657
	oldprio = p->prio;
I
Ingo Molnar 已提交
5658
	__setscheduler(rq, p, policy, param->sched_priority);
5659

5660 5661
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5662 5663
	if (on_rq) {
		activate_task(rq, p, 0);
5664 5665

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5666
	}
5667 5668 5669
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5670 5671
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5672 5673
	return 0;
}
5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5688 5689
EXPORT_SYMBOL_GPL(sched_setscheduler);

5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5707 5708
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5709 5710 5711
{
	struct sched_param lparam;
	struct task_struct *p;
5712
	int retval;
L
Linus Torvalds 已提交
5713 5714 5715 5716 5717

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5718 5719 5720

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5721
	p = find_process_by_pid(pid);
5722 5723 5724
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5725

L
Linus Torvalds 已提交
5726 5727 5728 5729 5730 5731 5732 5733 5734
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5735 5736
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5737
{
5738 5739 5740 5741
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5742 5743 5744 5745 5746 5747 5748 5749
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5750
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5751 5752 5753 5754 5755 5756 5757 5758
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5759
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5760
{
5761
	struct task_struct *p;
5762
	int retval;
L
Linus Torvalds 已提交
5763 5764

	if (pid < 0)
5765
		return -EINVAL;
L
Linus Torvalds 已提交
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5784
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5785 5786
{
	struct sched_param lp;
5787
	struct task_struct *p;
5788
	int retval;
L
Linus Torvalds 已提交
5789 5790

	if (!param || pid < 0)
5791
		return -EINVAL;
L
Linus Torvalds 已提交
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5818
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5819
{
5820
	cpumask_var_t cpus_allowed, new_mask;
5821 5822
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5823

5824
	get_online_cpus();
L
Linus Torvalds 已提交
5825 5826 5827 5828 5829
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5830
		put_online_cpus();
L
Linus Torvalds 已提交
5831 5832 5833 5834 5835
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5836
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5837 5838 5839 5840 5841
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

5842 5843 5844 5845 5846 5847 5848 5849
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5850
	retval = -EPERM;
5851
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
5852 5853
		goto out_unlock;

5854 5855 5856 5857
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5858 5859
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
5860
 again:
5861
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5862

P
Paul Menage 已提交
5863
	if (!retval) {
5864 5865
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5866 5867 5868 5869 5870
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5871
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5872 5873 5874
			goto again;
		}
	}
L
Linus Torvalds 已提交
5875
out_unlock:
5876 5877 5878 5879
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5880
	put_task_struct(p);
5881
	put_online_cpus();
L
Linus Torvalds 已提交
5882 5883 5884 5885
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5886
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5887
{
5888 5889 5890 5891 5892
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5893 5894 5895 5896 5897 5898 5899 5900 5901
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5902 5903
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5904
{
5905
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5906 5907
	int retval;

5908 5909
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5910

5911 5912 5913 5914 5915
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5916 5917
}

5918
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5919
{
5920
	struct task_struct *p;
L
Linus Torvalds 已提交
5921 5922
	int retval;

5923
	get_online_cpus();
L
Linus Torvalds 已提交
5924 5925 5926 5927 5928 5929 5930
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5931 5932 5933 5934
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5935
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
5936 5937 5938

out_unlock:
	read_unlock(&tasklist_lock);
5939
	put_online_cpus();
L
Linus Torvalds 已提交
5940

5941
	return retval;
L
Linus Torvalds 已提交
5942 5943 5944 5945 5946 5947 5948 5949
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5950 5951
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5952 5953
{
	int ret;
5954
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5955

5956
	if (len < cpumask_size())
L
Linus Torvalds 已提交
5957 5958
		return -EINVAL;

5959 5960
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5961

5962 5963 5964 5965 5966 5967 5968 5969
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5970

5971
	return ret;
L
Linus Torvalds 已提交
5972 5973 5974 5975 5976
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5977 5978
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5979
 */
5980
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5981
{
5982
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5983

5984
	schedstat_inc(rq, yld_count);
5985
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5986 5987 5988 5989 5990 5991

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5992
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5993 5994 5995 5996 5997 5998 5999 6000
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
6001
static void __cond_resched(void)
L
Linus Torvalds 已提交
6002
{
6003 6004 6005
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
6006 6007 6008 6009 6010
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
6011 6012 6013 6014 6015 6016 6017
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

6018
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6019
{
6020 6021
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
6022 6023 6024 6025 6026
		__cond_resched();
		return 1;
	}
	return 0;
}
6027
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6028 6029 6030 6031 6032

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6033
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6034 6035 6036
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
6037
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6038
{
N
Nick Piggin 已提交
6039
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
6040 6041
	int ret = 0;

N
Nick Piggin 已提交
6042
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6043
		spin_unlock(lock);
N
Nick Piggin 已提交
6044 6045 6046 6047
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6048
		ret = 1;
L
Linus Torvalds 已提交
6049 6050
		spin_lock(lock);
	}
J
Jan Kara 已提交
6051
	return ret;
L
Linus Torvalds 已提交
6052 6053 6054 6055 6056 6057 6058
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

6059
	if (need_resched() && system_state == SYSTEM_RUNNING) {
6060
		local_bh_enable();
L
Linus Torvalds 已提交
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
6072
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6083
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6084 6085 6086 6087 6088 6089 6090
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6091
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6092

6093
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6094 6095 6096
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
6097
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6098 6099 6100 6101 6102
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6103
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6104 6105
	long ret;

6106
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6107 6108 6109
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
6110
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6111 6112 6113 6114 6115 6116 6117 6118 6119 6120
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6121
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6122 6123 6124 6125 6126 6127 6128 6129 6130
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6131
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6132
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6146
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6147 6148 6149 6150 6151 6152 6153 6154 6155
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6156
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6157
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6171
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6172
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6173
{
6174
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6175
	unsigned int time_slice;
6176
	int retval;
L
Linus Torvalds 已提交
6177 6178 6179
	struct timespec t;

	if (pid < 0)
6180
		return -EINVAL;
L
Linus Torvalds 已提交
6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6192 6193 6194 6195 6196 6197
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6198
		time_slice = DEF_TIMESLICE;
6199
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6200 6201 6202 6203 6204
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6205 6206
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6207 6208
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6209
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6210
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6211 6212
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6213

L
Linus Torvalds 已提交
6214 6215 6216 6217 6218
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6219
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6220

6221
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6222 6223
{
	unsigned long free = 0;
6224
	unsigned state;
L
Linus Torvalds 已提交
6225 6226

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6227
	printk(KERN_INFO "%-13.13s %c", p->comm,
6228
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6229
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6230
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6231
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6232
	else
I
Ingo Molnar 已提交
6233
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6234 6235
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6236
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6237
	else
I
Ingo Molnar 已提交
6238
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6239 6240 6241
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
6242
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
6243 6244
		while (!*n)
			n++;
6245
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
6246 6247
	}
#endif
6248
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
6249
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
6250

6251
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6252 6253
}

I
Ingo Molnar 已提交
6254
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6255
{
6256
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6257

6258 6259 6260
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6261
#else
6262 6263
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6264 6265 6266 6267 6268 6269 6270 6271
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6272
		if (!state_filter || (p->state & state_filter))
6273
			sched_show_task(p);
L
Linus Torvalds 已提交
6274 6275
	} while_each_thread(g, p);

6276 6277
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6278 6279 6280
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6281
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6282 6283 6284 6285 6286
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6287 6288
}

I
Ingo Molnar 已提交
6289 6290
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6291
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6292 6293
}

6294 6295 6296 6297 6298 6299 6300 6301
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6302
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6303
{
6304
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6305 6306
	unsigned long flags;

6307 6308
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6309 6310 6311
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6312
	idle->prio = idle->normal_prio = MAX_PRIO;
6313
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6314
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6315 6316

	rq->curr = rq->idle = idle;
6317 6318 6319
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6320 6321 6322
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6323 6324 6325
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6326
	task_thread_info(idle)->preempt_count = 0;
6327
#endif
I
Ingo Molnar 已提交
6328 6329 6330 6331
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6332
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6333 6334 6335 6336 6337 6338 6339
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6340
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6341
 */
6342
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6343

I
Ingo Molnar 已提交
6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6367 6368

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6369 6370
}

L
Linus Torvalds 已提交
6371 6372 6373 6374
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6375
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6394
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6395 6396
 * call is not atomic; no spinlocks may be held.
 */
6397
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6398
{
6399
	struct migration_req req;
L
Linus Torvalds 已提交
6400
	unsigned long flags;
6401
	struct rq *rq;
6402
	int ret = 0;
L
Linus Torvalds 已提交
6403 6404

	rq = task_rq_lock(p, &flags);
6405
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6406 6407 6408 6409
		ret = -EINVAL;
		goto out;
	}

6410
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6411
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6412 6413 6414 6415
		ret = -EINVAL;
		goto out;
	}

6416
	if (p->sched_class->set_cpus_allowed)
6417
		p->sched_class->set_cpus_allowed(p, new_mask);
6418
	else {
6419 6420
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6421 6422
	}

L
Linus Torvalds 已提交
6423
	/* Can the task run on the task's current CPU? If so, we're done */
6424
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6425 6426
		goto out;

R
Rusty Russell 已提交
6427
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6428 6429 6430 6431 6432 6433 6434 6435 6436
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6437

L
Linus Torvalds 已提交
6438 6439
	return ret;
}
6440
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6441 6442

/*
I
Ingo Molnar 已提交
6443
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6444 6445 6446 6447 6448 6449
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6450 6451
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6452
 */
6453
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6454
{
6455
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6456
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6457

6458
	if (unlikely(!cpu_active(dest_cpu)))
6459
		return ret;
L
Linus Torvalds 已提交
6460 6461 6462 6463 6464 6465 6466

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6467
		goto done;
L
Linus Torvalds 已提交
6468
	/* Affinity changed (again). */
6469
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6470
		goto fail;
L
Linus Torvalds 已提交
6471

I
Ingo Molnar 已提交
6472
	on_rq = p->se.on_rq;
6473
	if (on_rq)
6474
		deactivate_task(rq_src, p, 0);
6475

L
Linus Torvalds 已提交
6476
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6477 6478
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6479
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6480
	}
L
Linus Torvalds 已提交
6481
done:
6482
	ret = 1;
L
Linus Torvalds 已提交
6483
fail:
L
Linus Torvalds 已提交
6484
	double_rq_unlock(rq_src, rq_dest);
6485
	return ret;
L
Linus Torvalds 已提交
6486 6487 6488 6489 6490 6491 6492
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6493
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6494 6495
{
	int cpu = (long)data;
6496
	struct rq *rq;
L
Linus Torvalds 已提交
6497 6498 6499 6500 6501 6502

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6503
		struct migration_req *req;
L
Linus Torvalds 已提交
6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6526
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6527 6528
		list_del_init(head->next);

N
Nick Piggin 已提交
6529 6530 6531
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6561
/*
6562
 * Figure out where task on dead CPU should go, use force if necessary.
6563
 */
6564
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6565
{
6566
	int dest_cpu;
6567
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
6584

6585 6586 6587 6588 6589 6590 6591 6592 6593
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
6594
		}
6595 6596 6597 6598 6599 6600
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
6601 6602 6603 6604 6605 6606 6607 6608 6609
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6610
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6611
{
R
Rusty Russell 已提交
6612
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6626
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6627

6628
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6629

6630 6631
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6632 6633
			continue;

6634 6635 6636
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6637

6638
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6639 6640
}

I
Ingo Molnar 已提交
6641 6642
/*
 * Schedules idle task to be the next runnable task on current CPU.
6643 6644
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6645 6646 6647
 */
void sched_idle_next(void)
{
6648
	int this_cpu = smp_processor_id();
6649
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6650 6651 6652 6653
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6654
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6655

6656 6657 6658
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6659 6660 6661
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6662
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6663

6664 6665
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6666 6667 6668 6669

	spin_unlock_irqrestore(&rq->lock, flags);
}

6670 6671
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6685
/* called under rq->lock with disabled interrupts */
6686
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6687
{
6688
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6689 6690

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6691
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6692 6693

	/* Cannot have done final schedule yet: would have vanished. */
6694
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6695

6696
	get_task_struct(p);
L
Linus Torvalds 已提交
6697 6698 6699

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6700
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6701 6702
	 * fine.
	 */
6703
	spin_unlock_irq(&rq->lock);
6704
	move_task_off_dead_cpu(dead_cpu, p);
6705
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6706

6707
	put_task_struct(p);
L
Linus Torvalds 已提交
6708 6709 6710 6711 6712
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6713
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6714
	struct task_struct *next;
6715

I
Ingo Molnar 已提交
6716 6717 6718
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6719
		update_rq_clock(rq);
6720
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
6721 6722
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6723
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6724
		migrate_dead(dead_cpu, next);
6725

L
Linus Torvalds 已提交
6726 6727 6728 6729
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6730 6731 6732
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6733 6734
	{
		.procname	= "sched_domain",
6735
		.mode		= 0555,
6736
	},
I
Ingo Molnar 已提交
6737
	{0, },
6738 6739 6740
};

static struct ctl_table sd_ctl_root[] = {
6741
	{
6742
		.ctl_name	= CTL_KERN,
6743
		.procname	= "kernel",
6744
		.mode		= 0555,
6745 6746
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6747
	{0, },
6748 6749 6750 6751 6752
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6753
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6754 6755 6756 6757

	return entry;
}

6758 6759
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6760
	struct ctl_table *entry;
6761

6762 6763 6764
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6765
	 * will always be set. In the lowest directory the names are
6766 6767 6768
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6769 6770
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6771 6772 6773
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6774 6775 6776 6777 6778

	kfree(*tablep);
	*tablep = NULL;
}

6779
static void
6780
set_table_entry(struct ctl_table *entry,
6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6794
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6795

6796 6797 6798
	if (table == NULL)
		return NULL;

6799
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6800
		sizeof(long), 0644, proc_doulongvec_minmax);
6801
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6802
		sizeof(long), 0644, proc_doulongvec_minmax);
6803
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6804
		sizeof(int), 0644, proc_dointvec_minmax);
6805
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6806
		sizeof(int), 0644, proc_dointvec_minmax);
6807
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6808
		sizeof(int), 0644, proc_dointvec_minmax);
6809
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6810
		sizeof(int), 0644, proc_dointvec_minmax);
6811
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6812
		sizeof(int), 0644, proc_dointvec_minmax);
6813
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6814
		sizeof(int), 0644, proc_dointvec_minmax);
6815
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6816
		sizeof(int), 0644, proc_dointvec_minmax);
6817
	set_table_entry(&table[9], "cache_nice_tries",
6818 6819
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6820
	set_table_entry(&table[10], "flags", &sd->flags,
6821
		sizeof(int), 0644, proc_dointvec_minmax);
6822 6823 6824
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6825 6826 6827 6828

	return table;
}

6829
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6830 6831 6832 6833 6834 6835 6836 6837 6838
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6839 6840
	if (table == NULL)
		return NULL;
6841 6842 6843 6844 6845

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6846
		entry->mode = 0555;
6847 6848 6849 6850 6851 6852 6853 6854
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6855
static void register_sched_domain_sysctl(void)
6856 6857 6858 6859 6860
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6861 6862 6863
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6864 6865 6866
	if (entry == NULL)
		return;

6867
	for_each_online_cpu(i) {
6868 6869
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6870
		entry->mode = 0555;
6871
		entry->child = sd_alloc_ctl_cpu_table(i);
6872
		entry++;
6873
	}
6874 6875

	WARN_ON(sd_sysctl_header);
6876 6877
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6878

6879
/* may be called multiple times per register */
6880 6881
static void unregister_sched_domain_sysctl(void)
{
6882 6883
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6884
	sd_sysctl_header = NULL;
6885 6886
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6887
}
6888
#else
6889 6890 6891 6892
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6893 6894 6895 6896
{
}
#endif

6897 6898 6899 6900 6901
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6902
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6922
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6923 6924 6925 6926
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6927 6928 6929 6930
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6931 6932
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6933 6934
{
	struct task_struct *p;
6935
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6936
	unsigned long flags;
6937
	struct rq *rq;
L
Linus Torvalds 已提交
6938 6939

	switch (action) {
6940

L
Linus Torvalds 已提交
6941
	case CPU_UP_PREPARE:
6942
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6943
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6944 6945 6946 6947 6948
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6949
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6950 6951 6952
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6953

L
Linus Torvalds 已提交
6954
	case CPU_ONLINE:
6955
	case CPU_ONLINE_FROZEN:
6956
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6957
		wake_up_process(cpu_rq(cpu)->migration_thread);
6958 6959 6960 6961 6962

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6963
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6964 6965

			set_rq_online(rq);
6966 6967
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6968
		break;
6969

L
Linus Torvalds 已提交
6970 6971
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6972
	case CPU_UP_CANCELED_FROZEN:
6973 6974
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6975
		/* Unbind it from offline cpu so it can run. Fall thru. */
6976
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
6977
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6978 6979 6980
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6981

L
Linus Torvalds 已提交
6982
	case CPU_DEAD:
6983
	case CPU_DEAD_FROZEN:
6984
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6985 6986 6987 6988 6989
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6990
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6991
		update_rq_clock(rq);
6992
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6993
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6994 6995
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6996
		migrate_dead_tasks(cpu);
6997
		spin_unlock_irq(&rq->lock);
6998
		cpuset_unlock();
L
Linus Torvalds 已提交
6999 7000 7001
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
7002 7003 7004 7005 7006
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7007 7008
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7009 7010
			struct migration_req *req;

L
Linus Torvalds 已提交
7011
			req = list_entry(rq->migration_queue.next,
7012
					 struct migration_req, list);
L
Linus Torvalds 已提交
7013
			list_del_init(&req->list);
B
Brian King 已提交
7014
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7015
			complete(&req->done);
B
Brian King 已提交
7016
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7017 7018 7019
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7020

7021 7022
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7023 7024 7025 7026
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7027
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7028
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7029 7030 7031
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7032 7033 7034 7035 7036 7037 7038 7039
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
7040
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7041 7042 7043 7044
	.notifier_call = migration_call,
	.priority = 10
};

7045
static int __init migration_init(void)
L
Linus Torvalds 已提交
7046 7047
{
	void *cpu = (void *)(long)smp_processor_id();
7048
	int err;
7049 7050

	/* Start one for the boot CPU: */
7051 7052
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7053 7054
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7055 7056

	return err;
L
Linus Torvalds 已提交
7057
}
7058
early_initcall(migration_init);
L
Linus Torvalds 已提交
7059 7060 7061
#endif

#ifdef CONFIG_SMP
7062

7063
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7064

7065
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7066
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7067
{
I
Ingo Molnar 已提交
7068
	struct sched_group *group = sd->groups;
7069
	char str[256];
L
Linus Torvalds 已提交
7070

R
Rusty Russell 已提交
7071
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7072
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7073 7074 7075 7076 7077 7078 7079 7080 7081

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7082 7083
	}

7084
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7085

7086
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7087 7088 7089
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7090
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7091 7092 7093
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7094

I
Ingo Molnar 已提交
7095
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7096
	do {
I
Ingo Molnar 已提交
7097 7098 7099
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7100 7101 7102
			break;
		}

I
Ingo Molnar 已提交
7103 7104 7105 7106 7107 7108
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7109

7110
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7111 7112 7113 7114
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7115

7116
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7117 7118 7119 7120
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7121

7122
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7123

R
Rusty Russell 已提交
7124
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
I
Ingo Molnar 已提交
7125
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
7126

I
Ingo Molnar 已提交
7127 7128 7129
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7130

7131
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7132
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7133

7134 7135
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7136 7137 7138 7139
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7140

I
Ingo Molnar 已提交
7141 7142
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7143
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7144
	int level = 0;
L
Linus Torvalds 已提交
7145

I
Ingo Molnar 已提交
7146 7147 7148 7149
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7150

I
Ingo Molnar 已提交
7151 7152
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7153
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7154 7155 7156 7157
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7158
	for (;;) {
7159
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7160
			break;
L
Linus Torvalds 已提交
7161 7162
		level++;
		sd = sd->parent;
7163
		if (!sd)
I
Ingo Molnar 已提交
7164 7165
			break;
	}
7166
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7167
}
7168
#else /* !CONFIG_SCHED_DEBUG */
7169
# define sched_domain_debug(sd, cpu) do { } while (0)
7170
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7171

7172
static int sd_degenerate(struct sched_domain *sd)
7173
{
7174
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7175 7176 7177 7178 7179 7180
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7181 7182 7183
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7197 7198
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7199 7200 7201 7202 7203 7204
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7205
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7217 7218 7219
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7220 7221
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7222 7223 7224 7225 7226 7227 7228
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7229 7230
static void free_rootdomain(struct root_domain *rd)
{
7231 7232
	cpupri_cleanup(&rd->cpupri);

7233 7234 7235 7236 7237 7238
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7239 7240
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7241
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7242 7243 7244 7245 7246
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7247
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7248

7249
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7250
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7251

7252
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7253

I
Ingo Molnar 已提交
7254 7255 7256 7257 7258 7259 7260
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7261 7262 7263 7264 7265
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7266 7267
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7268
		set_rq_online(rq);
G
Gregory Haskins 已提交
7269 7270

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7271 7272 7273

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7274 7275
}

L
Li Zefan 已提交
7276
static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7277 7278 7279
{
	memset(rd, 0, sizeof(*rd));

7280 7281 7282 7283
	if (bootmem) {
		alloc_bootmem_cpumask_var(&def_root_domain.span);
		alloc_bootmem_cpumask_var(&def_root_domain.online);
		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7284
		cpupri_init(&rd->cpupri, true);
7285 7286 7287 7288
		return 0;
	}

	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7289
		goto out;
7290 7291 7292 7293
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_online;
7294

7295 7296
	if (cpupri_init(&rd->cpupri, false) != 0)
		goto free_rto_mask;
7297
	return 0;
7298

7299 7300
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7301 7302 7303 7304
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7305
out:
7306
	return -ENOMEM;
G
Gregory Haskins 已提交
7307 7308 7309 7310
}

static void init_defrootdomain(void)
{
7311 7312
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7313 7314 7315
	atomic_set(&def_root_domain.refcount, 1);
}

7316
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7317 7318 7319 7320 7321 7322 7323
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7324 7325 7326 7327
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7328 7329 7330 7331

	return rd;
}

L
Linus Torvalds 已提交
7332
/*
I
Ingo Molnar 已提交
7333
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7334 7335
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7336 7337
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7338
{
7339
	struct rq *rq = cpu_rq(cpu);
7340 7341 7342
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7343
	for (tmp = sd; tmp; ) {
7344 7345 7346
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7347

7348
		if (sd_parent_degenerate(tmp, parent)) {
7349
			tmp->parent = parent->parent;
7350 7351
			if (parent->parent)
				parent->parent->child = tmp;
7352 7353
		} else
			tmp = tmp->parent;
7354 7355
	}

7356
	if (sd && sd_degenerate(sd)) {
7357
		sd = sd->parent;
7358 7359 7360
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7361 7362 7363

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7364
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7365
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7366 7367 7368
}

/* cpus with isolated domains */
7369
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7370 7371 7372 7373

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7374
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7375 7376 7377
	return 1;
}

I
Ingo Molnar 已提交
7378
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7379 7380

/*
7381 7382
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7383 7384
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7385 7386 7387 7388 7389
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7390
static void
7391 7392 7393
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7394
					struct sched_group **sg,
7395 7396
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7397 7398 7399 7400
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7401
	cpumask_clear(covered);
7402

7403
	for_each_cpu(i, span) {
7404
		struct sched_group *sg;
7405
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7406 7407
		int j;

7408
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7409 7410
			continue;

7411
		cpumask_clear(sched_group_cpus(sg));
7412
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7413

7414
		for_each_cpu(j, span) {
7415
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7416 7417
				continue;

7418
			cpumask_set_cpu(j, covered);
7419
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7420 7421 7422 7423 7424 7425 7426 7427 7428 7429
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7430
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7431

7432
#ifdef CONFIG_NUMA
7433

7434 7435 7436 7437 7438
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7439
 * Find the next node to include in a given scheduling domain. Simply
7440 7441 7442 7443
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7444
static int find_next_best_node(int node, nodemask_t *used_nodes)
7445 7446 7447 7448 7449
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7450
	for (i = 0; i < nr_node_ids; i++) {
7451
		/* Start at @node */
7452
		n = (node + i) % nr_node_ids;
7453 7454 7455 7456 7457

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7458
		if (node_isset(n, *used_nodes))
7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7470
	node_set(best_node, *used_nodes);
7471 7472 7473 7474 7475 7476
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7477
 * @span: resulting cpumask
7478
 *
I
Ingo Molnar 已提交
7479
 * Given a node, construct a good cpumask for its sched_domain to span. It
7480 7481 7482
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7483
static void sched_domain_node_span(int node, struct cpumask *span)
7484
{
7485
	nodemask_t used_nodes;
7486
	int i;
7487

7488
	cpumask_clear(span);
7489
	nodes_clear(used_nodes);
7490

7491
	cpumask_or(span, span, cpumask_of_node(node));
7492
	node_set(node, used_nodes);
7493 7494

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7495
		int next_node = find_next_best_node(node, &used_nodes);
7496

7497
		cpumask_or(span, span, cpumask_of_node(next_node));
7498 7499
	}
}
7500
#endif /* CONFIG_NUMA */
7501

7502
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7503

7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
 * for nr_cpu_ids < CONFIG_NR_CPUS.
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

7519
/*
7520
 * SMT sched-domains:
7521
 */
L
Linus Torvalds 已提交
7522
#ifdef CONFIG_SCHED_SMT
7523 7524
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7525

I
Ingo Molnar 已提交
7526
static int
7527 7528
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
7529
{
7530
	if (sg)
7531
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
7532 7533
	return cpu;
}
7534
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7535

7536 7537 7538
/*
 * multi-core sched-domains:
 */
7539
#ifdef CONFIG_SCHED_MC
7540 7541
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7542
#endif /* CONFIG_SCHED_MC */
7543 7544

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7545
static int
7546 7547
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
7548
{
7549
	int group;
7550

7551 7552
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
7553
	if (sg)
7554
		*sg = &per_cpu(sched_group_core, group).sg;
7555
	return group;
7556 7557
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7558
static int
7559 7560
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
7561
{
7562
	if (sg)
7563
		*sg = &per_cpu(sched_group_core, cpu).sg;
7564 7565 7566 7567
	return cpu;
}
#endif

7568 7569
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7570

I
Ingo Molnar 已提交
7571
static int
7572 7573
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
7574
{
7575
	int group;
7576
#ifdef CONFIG_SCHED_MC
7577
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7578
	group = cpumask_first(mask);
7579
#elif defined(CONFIG_SCHED_SMT)
7580 7581
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
7582
#else
7583
	group = cpu;
L
Linus Torvalds 已提交
7584
#endif
7585
	if (sg)
7586
		*sg = &per_cpu(sched_group_phys, group).sg;
7587
	return group;
L
Linus Torvalds 已提交
7588 7589 7590 7591
}

#ifdef CONFIG_NUMA
/*
7592 7593 7594
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7595
 */
7596
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7597
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7598

7599
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7600
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7601

7602 7603 7604
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
7605
{
7606 7607
	int group;

7608
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7609
	group = cpumask_first(nodemask);
7610 7611

	if (sg)
7612
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7613
	return group;
L
Linus Torvalds 已提交
7614
}
7615

7616 7617 7618 7619 7620 7621 7622
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7623
	do {
7624
		for_each_cpu(j, sched_group_cpus(sg)) {
7625
			struct sched_domain *sd;
7626

7627
			sd = &per_cpu(phys_domains, j).sd;
7628
			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7629 7630 7631 7632 7633 7634
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7635

7636 7637 7638 7639
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7640
}
7641
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7642

7643
#ifdef CONFIG_NUMA
7644
/* Free memory allocated for various sched_group structures */
7645 7646
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7647
{
7648
	int cpu, i;
7649

7650
	for_each_cpu(cpu, cpu_map) {
7651 7652 7653 7654 7655 7656
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7657
		for (i = 0; i < nr_node_ids; i++) {
7658 7659
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7660
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7661
			if (cpumask_empty(nodemask))
7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7678
#else /* !CONFIG_NUMA */
7679 7680
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7681 7682
{
}
7683
#endif /* CONFIG_NUMA */
7684

7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

7706
	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7707 7708 7709 7710
		return;

	child = sd->child;

7711 7712
	sd->groups->__cpu_power = 0;

7713 7714 7715 7716 7717 7718 7719 7720 7721 7722
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7723
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7724 7725 7726 7727 7728 7729 7730 7731
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7732
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7733 7734 7735 7736
		group = group->next;
	} while (group != child->groups);
}

7737 7738 7739 7740 7741
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7742 7743 7744 7745 7746 7747
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7748
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7749

7750 7751 7752 7753 7754
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7755
	sd->level = SD_LV_##type;				\
7756
	SD_INIT_NAME(sd, type);					\
7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

7771 7772 7773 7774
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7775 7776 7777 7778 7779 7780
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7806
/*
7807 7808
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7809
 */
7810
static int __build_sched_domains(const struct cpumask *cpu_map,
7811
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7812
{
7813
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
7814
	struct root_domain *rd;
7815 7816
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
7817
#ifdef CONFIG_NUMA
7818
	cpumask_var_t domainspan, covered, notcovered;
7819
	struct sched_group **sched_group_nodes = NULL;
7820
	int sd_allnodes = 0;
7821

7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
7842 7843 7844
	/*
	 * Allocate the per-node list of sched groups
	 */
7845
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7846
				    GFP_KERNEL);
7847 7848
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7849
		goto free_tmpmask;
7850 7851
	}
#endif
L
Linus Torvalds 已提交
7852

7853
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7854 7855
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7856
		goto free_sched_groups;
G
Gregory Haskins 已提交
7857 7858
	}

7859
#ifdef CONFIG_NUMA
7860
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7861 7862
#endif

L
Linus Torvalds 已提交
7863
	/*
7864
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7865
	 */
7866
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7867 7868
		struct sched_domain *sd = NULL, *p;

7869
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
7870 7871

#ifdef CONFIG_NUMA
7872 7873
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7874
			sd = &per_cpu(allnodes_domains, i).sd;
7875
			SD_INIT(sd, ALLNODES);
7876
			set_domain_attribute(sd, attr);
7877
			cpumask_copy(sched_domain_span(sd), cpu_map);
7878
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7879
			p = sd;
7880
			sd_allnodes = 1;
7881 7882 7883
		} else
			p = NULL;

7884
		sd = &per_cpu(node_domains, i).sd;
7885
		SD_INIT(sd, NODE);
7886
		set_domain_attribute(sd, attr);
7887
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7888
		sd->parent = p;
7889 7890
		if (p)
			p->child = sd;
7891 7892
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7893 7894 7895
#endif

		p = sd;
7896
		sd = &per_cpu(phys_domains, i).sd;
7897
		SD_INIT(sd, CPU);
7898
		set_domain_attribute(sd, attr);
7899
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
7900
		sd->parent = p;
7901 7902
		if (p)
			p->child = sd;
7903
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7904

7905 7906
#ifdef CONFIG_SCHED_MC
		p = sd;
7907
		sd = &per_cpu(core_domains, i).sd;
7908
		SD_INIT(sd, MC);
7909
		set_domain_attribute(sd, attr);
7910 7911
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
7912
		sd->parent = p;
7913
		p->child = sd;
7914
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7915 7916
#endif

L
Linus Torvalds 已提交
7917 7918
#ifdef CONFIG_SCHED_SMT
		p = sd;
7919
		sd = &per_cpu(cpu_domains, i).sd;
7920
		SD_INIT(sd, SIBLING);
7921
		set_domain_attribute(sd, attr);
7922 7923
		cpumask_and(sched_domain_span(sd),
			    &per_cpu(cpu_sibling_map, i), cpu_map);
L
Linus Torvalds 已提交
7924
		sd->parent = p;
7925
		p->child = sd;
7926
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7927 7928 7929 7930 7931
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7932
	for_each_cpu(i, cpu_map) {
7933 7934 7935
		cpumask_and(this_sibling_map,
			    &per_cpu(cpu_sibling_map, i), cpu_map);
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
7936 7937
			continue;

I
Ingo Molnar 已提交
7938
		init_sched_build_groups(this_sibling_map, cpu_map,
7939 7940
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7941 7942 7943
	}
#endif

7944 7945
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7946
	for_each_cpu(i, cpu_map) {
7947
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7948
		if (i != cpumask_first(this_core_map))
7949
			continue;
7950

I
Ingo Molnar 已提交
7951
		init_sched_build_groups(this_core_map, cpu_map,
7952 7953
					&cpu_to_core_group,
					send_covered, tmpmask);
7954 7955 7956
	}
#endif

L
Linus Torvalds 已提交
7957
	/* Set up physical groups */
7958
	for (i = 0; i < nr_node_ids; i++) {
7959
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7960
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
7961 7962
			continue;

7963 7964 7965
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7966 7967 7968 7969
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7970 7971 7972 7973 7974
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7975

7976
	for (i = 0; i < nr_node_ids; i++) {
7977 7978 7979 7980
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

7981
		cpumask_clear(covered);
7982
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7983
		if (cpumask_empty(nodemask)) {
7984
			sched_group_nodes[i] = NULL;
7985
			continue;
7986
		}
7987

7988
		sched_domain_node_span(i, domainspan);
7989
		cpumask_and(domainspan, domainspan, cpu_map);
7990

7991 7992
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
7993 7994 7995 7996 7997
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7998
		sched_group_nodes[i] = sg;
7999
		for_each_cpu(j, nodemask) {
8000
			struct sched_domain *sd;
I
Ingo Molnar 已提交
8001

8002
			sd = &per_cpu(node_domains, j).sd;
8003 8004
			sd->groups = sg;
		}
8005
		sg->__cpu_power = 0;
8006
		cpumask_copy(sched_group_cpus(sg), nodemask);
8007
		sg->next = sg;
8008
		cpumask_or(covered, covered, nodemask);
8009 8010
		prev = sg;

8011 8012
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
8013

8014 8015 8016 8017
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
8018 8019
				break;

8020
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8021
			if (cpumask_empty(tmpmask))
8022 8023
				continue;

8024 8025
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
8026
					  GFP_KERNEL, i);
8027 8028 8029
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
8030
				goto error;
8031
			}
8032
			sg->__cpu_power = 0;
8033
			cpumask_copy(sched_group_cpus(sg), tmpmask);
8034
			sg->next = prev->next;
8035
			cpumask_or(covered, covered, tmpmask);
8036 8037 8038 8039
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
8040 8041 8042
#endif

	/* Calculate CPU power for physical packages and nodes */
8043
#ifdef CONFIG_SCHED_SMT
8044
	for_each_cpu(i, cpu_map) {
8045
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
8046

8047
		init_sched_groups_power(i, sd);
8048
	}
L
Linus Torvalds 已提交
8049
#endif
8050
#ifdef CONFIG_SCHED_MC
8051
	for_each_cpu(i, cpu_map) {
8052
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
8053

8054
		init_sched_groups_power(i, sd);
8055 8056
	}
#endif
8057

8058
	for_each_cpu(i, cpu_map) {
8059
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
8060

8061
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8062 8063
	}

8064
#ifdef CONFIG_NUMA
8065
	for (i = 0; i < nr_node_ids; i++)
8066
		init_numa_sched_groups_power(sched_group_nodes[i]);
8067

8068 8069
	if (sd_allnodes) {
		struct sched_group *sg;
8070

8071
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8072
								tmpmask);
8073 8074
		init_numa_sched_groups_power(sg);
	}
8075 8076
#endif

L
Linus Torvalds 已提交
8077
	/* Attach the domains */
8078
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8079 8080
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
8081
		sd = &per_cpu(cpu_domains, i).sd;
8082
#elif defined(CONFIG_SCHED_MC)
8083
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8084
#else
8085
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8086
#endif
G
Gregory Haskins 已提交
8087
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
8088
	}
8089

8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
8118

8119
#ifdef CONFIG_NUMA
8120
error:
8121
	free_sched_groups(cpu_map, tmpmask);
8122
	free_rootdomain(rd);
8123
	goto free_tmpmask;
8124
#endif
L
Linus Torvalds 已提交
8125
}
P
Paul Jackson 已提交
8126

8127
static int build_sched_domains(const struct cpumask *cpu_map)
8128 8129 8130 8131
{
	return __build_sched_domains(cpu_map, NULL);
}

8132
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8133
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8134 8135
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8136 8137 8138

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8139 8140
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8141
 */
8142
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8143

8144 8145 8146 8147 8148 8149
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8150
{
8151
	return 0;
8152 8153
}

8154
/*
I
Ingo Molnar 已提交
8155
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8156 8157
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8158
 */
8159
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8160
{
8161 8162
	int err;

8163
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8164
	ndoms_cur = 1;
8165
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8166
	if (!doms_cur)
8167
		doms_cur = fallback_doms;
8168
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8169
	dattr_cur = NULL;
8170
	err = build_sched_domains(doms_cur);
8171
	register_sched_domain_sysctl();
8172 8173

	return err;
8174 8175
}

8176 8177
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8178
{
8179
	free_sched_groups(cpu_map, tmpmask);
8180
}
L
Linus Torvalds 已提交
8181

8182 8183 8184 8185
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8186
static void detach_destroy_domains(const struct cpumask *cpu_map)
8187
{
8188 8189
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8190 8191
	int i;

8192
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8193
		cpu_attach_domain(NULL, &def_root_domain, i);
8194
	synchronize_sched();
8195
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8196 8197
}

8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8214 8215
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8216
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8217 8218 8219
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8220
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8221 8222 8223
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8224 8225 8226
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8227 8228
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8229 8230 8231 8232
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8233
 *
8234
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8235 8236
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8237
 *
P
Paul Jackson 已提交
8238 8239
 * Call with hotplug lock held
 */
8240 8241
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8242
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8243
{
8244
	int i, j, n;
8245
	int new_topology;
P
Paul Jackson 已提交
8246

8247
	mutex_lock(&sched_domains_mutex);
8248

8249 8250 8251
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8252 8253 8254
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8255
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8256 8257 8258

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8259
		for (j = 0; j < n && !new_topology; j++) {
8260
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8261
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8262 8263 8264 8265 8266 8267 8268 8269
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8270 8271
	if (doms_new == NULL) {
		ndoms_cur = 0;
8272
		doms_new = fallback_doms;
8273
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8274
		WARN_ON_ONCE(dattr_new);
8275 8276
	}

P
Paul Jackson 已提交
8277 8278
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8279
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8280
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8281
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8282 8283 8284
				goto match2;
		}
		/* no match - add a new doms_new */
8285 8286
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8287 8288 8289 8290 8291
match2:
		;
	}

	/* Remember the new sched domains */
8292
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8293
		kfree(doms_cur);
8294
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8295
	doms_cur = doms_new;
8296
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8297
	ndoms_cur = ndoms_new;
8298 8299

	register_sched_domain_sysctl();
8300

8301
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8302 8303
}

8304
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8305
static void arch_reinit_sched_domains(void)
8306
{
8307
	get_online_cpus();
8308 8309 8310 8311

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8312
	rebuild_sched_domains();
8313
	put_online_cpus();
8314 8315 8316 8317
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8318
	unsigned int level = 0;
8319

8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8331 8332 8333
		return -EINVAL;

	if (smt)
8334
		sched_smt_power_savings = level;
8335
	else
8336
		sched_mc_power_savings = level;
8337

8338
	arch_reinit_sched_domains();
8339

8340
	return count;
8341 8342 8343
}

#ifdef CONFIG_SCHED_MC
8344 8345
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8346 8347 8348
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8349
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8350
					    const char *buf, size_t count)
8351 8352 8353
{
	return sched_power_savings_store(buf, count, 0);
}
8354 8355 8356
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8357 8358 8359
#endif

#ifdef CONFIG_SCHED_SMT
8360 8361
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8362 8363 8364
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8365
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8366
					     const char *buf, size_t count)
8367 8368 8369
{
	return sched_power_savings_store(buf, count, 1);
}
8370 8371
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8372 8373 8374
		   sched_smt_power_savings_store);
#endif

8375
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8391
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8392

8393
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8394
/*
8395 8396
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8397 8398 8399
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8400 8401 8402 8403 8404 8405
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8406
		partition_sched_domains(1, NULL, NULL);
8407 8408 8409 8410 8411 8412 8413 8414 8415 8416
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8417
{
P
Peter Zijlstra 已提交
8418 8419
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8420 8421
	switch (action) {
	case CPU_DOWN_PREPARE:
8422
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8423
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8424 8425 8426
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8427
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8428
	case CPU_ONLINE:
8429
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8430
		enable_runtime(cpu_rq(cpu));
8431 8432
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8433 8434 8435 8436 8437 8438 8439
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8440 8441 8442
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8443

8444 8445 8446 8447 8448
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8449
	get_online_cpus();
8450
	mutex_lock(&sched_domains_mutex);
8451 8452 8453 8454
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8455
	mutex_unlock(&sched_domains_mutex);
8456
	put_online_cpus();
8457 8458

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8459 8460
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8461 8462 8463 8464 8465
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8466
	init_hrtick();
8467 8468

	/* Move init over to a non-isolated CPU */
8469
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8470
		BUG();
I
Ingo Molnar 已提交
8471
	sched_init_granularity();
8472
	free_cpumask_var(non_isolated_cpus);
8473 8474

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8475
	init_sched_rt_class();
L
Linus Torvalds 已提交
8476 8477 8478 8479
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8480
	sched_init_granularity();
L
Linus Torvalds 已提交
8481 8482 8483 8484 8485 8486 8487 8488 8489 8490
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8491
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8492 8493
{
	cfs_rq->tasks_timeline = RB_ROOT;
8494
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8495 8496 8497
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8498
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8499 8500
}

P
Peter Zijlstra 已提交
8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8514
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8515
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
8516
#ifdef CONFIG_SMP
8517
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
8518 8519
#endif
#endif
P
Peter Zijlstra 已提交
8520 8521 8522
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
8523
	plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
8524 8525 8526 8527
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8528 8529
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8530

8531
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8532
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8533 8534
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8535 8536
}

P
Peter Zijlstra 已提交
8537
#ifdef CONFIG_FAIR_GROUP_SCHED
8538 8539 8540
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8541
{
8542
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8543 8544 8545 8546 8547 8548 8549
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8550 8551 8552 8553
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8554 8555 8556 8557 8558
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8559 8560
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8561
	se->load.inv_weight = 0;
8562
	se->parent = parent;
P
Peter Zijlstra 已提交
8563
}
8564
#endif
P
Peter Zijlstra 已提交
8565

8566
#ifdef CONFIG_RT_GROUP_SCHED
8567 8568 8569
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8570
{
8571 8572
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8573 8574 8575 8576
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8577
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8578 8579 8580 8581
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8582 8583 8584
	if (!rt_se)
		return;

8585 8586 8587 8588 8589
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8590
	rt_se->my_q = rt_rq;
8591
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8592 8593 8594 8595
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8596 8597
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8598
	int i, j;
8599 8600 8601 8602 8603 8604 8605
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8606 8607 8608
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8609 8610 8611 8612 8613 8614
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8615
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8616 8617 8618 8619 8620 8621 8622

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8623 8624 8625 8626 8627 8628 8629

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8630 8631
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8632 8633 8634 8635 8636
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8637 8638 8639 8640 8641 8642 8643 8644
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8645 8646
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8647
	}
I
Ingo Molnar 已提交
8648

G
Gregory Haskins 已提交
8649 8650 8651 8652
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8653 8654 8655 8656 8657 8658
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8659 8660 8661
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8662 8663
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8664

8665
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8666
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8667 8668 8669 8670 8671 8672
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8673 8674
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8675

8676
	for_each_possible_cpu(i) {
8677
		struct rq *rq;
L
Linus Torvalds 已提交
8678 8679 8680

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8681
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8682
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8683
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8684
#ifdef CONFIG_FAIR_GROUP_SCHED
8685
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8686
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8707
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8708
#elif defined CONFIG_USER_SCHED
8709 8710
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8722
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8723
				&per_cpu(init_cfs_rq, i),
8724 8725
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8726

8727
#endif
D
Dhaval Giani 已提交
8728 8729 8730
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8731
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8732
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8733
#ifdef CONFIG_CGROUP_SCHED
8734
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8735
#elif defined CONFIG_USER_SCHED
8736
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8737
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8738
				&per_cpu(init_rt_rq, i),
8739 8740
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8741
#endif
I
Ingo Molnar 已提交
8742
#endif
L
Linus Torvalds 已提交
8743

I
Ingo Molnar 已提交
8744 8745
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8746
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8747
		rq->sd = NULL;
G
Gregory Haskins 已提交
8748
		rq->rd = NULL;
L
Linus Torvalds 已提交
8749
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8750
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8751
		rq->push_cpu = 0;
8752
		rq->cpu = i;
8753
		rq->online = 0;
L
Linus Torvalds 已提交
8754 8755
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8756
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8757
#endif
P
Peter Zijlstra 已提交
8758
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8759 8760 8761
		atomic_set(&rq->nr_iowait, 0);
	}

8762
	set_load_weight(&init_task);
8763

8764 8765 8766 8767
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8768
#ifdef CONFIG_SMP
8769
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8770 8771
#endif

8772 8773 8774 8775
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8789 8790 8791 8792
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8793

8794 8795
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
	alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8796
#ifdef CONFIG_SMP
8797 8798 8799
#ifdef CONFIG_NO_HZ
	alloc_bootmem_cpumask_var(&nohz.cpu_mask);
#endif
8800
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
8801
#endif /* SMP */
8802

8803
	scheduler_running = 1;
L
Linus Torvalds 已提交
8804 8805 8806 8807 8808
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8809
#ifdef in_atomic
L
Linus Torvalds 已提交
8810 8811
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8831 8832 8833 8834 8835 8836
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8837 8838 8839
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8840

8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8852 8853
void normalize_rt_tasks(void)
{
8854
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8855
	unsigned long flags;
8856
	struct rq *rq;
L
Linus Torvalds 已提交
8857

8858
	read_lock_irqsave(&tasklist_lock, flags);
8859
	do_each_thread(g, p) {
8860 8861 8862 8863 8864 8865
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8866 8867
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8868 8869 8870
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8871
#endif
I
Ingo Molnar 已提交
8872 8873 8874 8875 8876 8877 8878 8879

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8880
			continue;
I
Ingo Molnar 已提交
8881
		}
L
Linus Torvalds 已提交
8882

8883
		spin_lock(&p->pi_lock);
8884
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8885

8886
		normalize_task(rq, p);
8887

8888
		__task_rq_unlock(rq);
8889
		spin_unlock(&p->pi_lock);
8890 8891
	} while_each_thread(g, p);

8892
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8893 8894 8895
}

#endif /* CONFIG_MAGIC_SYSRQ */
8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8914
struct task_struct *curr_task(int cpu)
8915 8916 8917 8918 8919 8920 8921 8922 8923 8924
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8925 8926
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8927 8928 8929 8930 8931 8932 8933
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8934
void set_curr_task(int cpu, struct task_struct *p)
8935 8936 8937 8938 8939
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8940

8941 8942
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8957 8958
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8959 8960
{
	struct cfs_rq *cfs_rq;
8961
	struct sched_entity *se;
8962
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8963 8964
	int i;

8965
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8966 8967
	if (!tg->cfs_rq)
		goto err;
8968
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8969 8970
	if (!tg->se)
		goto err;
8971 8972

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8973 8974

	for_each_possible_cpu(i) {
8975
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8976

8977 8978
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8979 8980 8981
		if (!cfs_rq)
			goto err;

8982 8983
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8984 8985 8986
		if (!se)
			goto err;

8987
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9006
#else /* !CONFG_FAIR_GROUP_SCHED */
9007 9008 9009 9010
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9011 9012
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9024
#endif /* CONFIG_FAIR_GROUP_SCHED */
9025 9026

#ifdef CONFIG_RT_GROUP_SCHED
9027 9028 9029 9030
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9031 9032
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9044 9045
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9046 9047
{
	struct rt_rq *rt_rq;
9048
	struct sched_rt_entity *rt_se;
9049 9050 9051
	struct rq *rq;
	int i;

9052
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9053 9054
	if (!tg->rt_rq)
		goto err;
9055
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9056 9057 9058
	if (!tg->rt_se)
		goto err;

9059 9060
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9061 9062 9063 9064

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9065 9066
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9067 9068
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9069

9070 9071
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9072 9073
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9074

9075
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9076 9077
	}

9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9094
#else /* !CONFIG_RT_GROUP_SCHED */
9095 9096 9097 9098
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9099 9100
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9112
#endif /* CONFIG_RT_GROUP_SCHED */
9113

9114
#ifdef CONFIG_GROUP_SCHED
9115 9116 9117 9118 9119 9120 9121 9122
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9123
struct task_group *sched_create_group(struct task_group *parent)
9124 9125 9126 9127 9128 9129 9130 9131 9132
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9133
	if (!alloc_fair_sched_group(tg, parent))
9134 9135
		goto err;

9136
	if (!alloc_rt_sched_group(tg, parent))
9137 9138
		goto err;

9139
	spin_lock_irqsave(&task_group_lock, flags);
9140
	for_each_possible_cpu(i) {
9141 9142
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9143
	}
P
Peter Zijlstra 已提交
9144
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9145 9146 9147 9148 9149

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9150
	list_add_rcu(&tg->siblings, &parent->children);
9151
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9152

9153
	return tg;
S
Srivatsa Vaddagiri 已提交
9154 9155

err:
P
Peter Zijlstra 已提交
9156
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9157 9158 9159
	return ERR_PTR(-ENOMEM);
}

9160
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9161
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9162 9163
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9164
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9165 9166
}

9167
/* Destroy runqueue etc associated with a task group */
9168
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9169
{
9170
	unsigned long flags;
9171
	int i;
S
Srivatsa Vaddagiri 已提交
9172

9173
	spin_lock_irqsave(&task_group_lock, flags);
9174
	for_each_possible_cpu(i) {
9175 9176
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9177
	}
P
Peter Zijlstra 已提交
9178
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9179
	list_del_rcu(&tg->siblings);
9180
	spin_unlock_irqrestore(&task_group_lock, flags);
9181 9182

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9183
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9184 9185
}

9186
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9187 9188 9189
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9190 9191
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9192 9193 9194 9195 9196 9197 9198 9199 9200
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9201
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9202 9203
	on_rq = tsk->se.on_rq;

9204
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9205
		dequeue_task(rq, tsk, 0);
9206 9207
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9208

P
Peter Zijlstra 已提交
9209
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9210

P
Peter Zijlstra 已提交
9211 9212 9213 9214 9215
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9216 9217 9218
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9219
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9220 9221 9222

	task_rq_unlock(rq, &flags);
}
9223
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9224

9225
#ifdef CONFIG_FAIR_GROUP_SCHED
9226
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9227 9228 9229 9230 9231
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9232
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9233 9234 9235
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9236
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9237

9238
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9239
		enqueue_entity(cfs_rq, se, 0);
9240
}
9241

9242 9243 9244 9245 9246 9247 9248 9249 9250
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9251 9252
}

9253 9254
static DEFINE_MUTEX(shares_mutex);

9255
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9256 9257
{
	int i;
9258
	unsigned long flags;
9259

9260 9261 9262 9263 9264 9265
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9266 9267
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9268 9269
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9270

9271
	mutex_lock(&shares_mutex);
9272
	if (tg->shares == shares)
9273
		goto done;
S
Srivatsa Vaddagiri 已提交
9274

9275
	spin_lock_irqsave(&task_group_lock, flags);
9276 9277
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9278
	list_del_rcu(&tg->siblings);
9279
	spin_unlock_irqrestore(&task_group_lock, flags);
9280 9281 9282 9283 9284 9285 9286 9287

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9288
	tg->shares = shares;
9289 9290 9291 9292 9293
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9294
		set_se_shares(tg->se[i], shares);
9295
	}
S
Srivatsa Vaddagiri 已提交
9296

9297 9298 9299 9300
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9301
	spin_lock_irqsave(&task_group_lock, flags);
9302 9303
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9304
	list_add_rcu(&tg->siblings, &tg->parent->children);
9305
	spin_unlock_irqrestore(&task_group_lock, flags);
9306
done:
9307
	mutex_unlock(&shares_mutex);
9308
	return 0;
S
Srivatsa Vaddagiri 已提交
9309 9310
}

9311 9312 9313 9314
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9315
#endif
9316

9317
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9318
/*
P
Peter Zijlstra 已提交
9319
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9320
 */
P
Peter Zijlstra 已提交
9321 9322 9323 9324 9325
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9326
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9327

P
Peter Zijlstra 已提交
9328
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9329 9330
}

P
Peter Zijlstra 已提交
9331 9332
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9333
{
P
Peter Zijlstra 已提交
9334
	struct task_struct *g, *p;
9335

P
Peter Zijlstra 已提交
9336 9337 9338 9339
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9340

P
Peter Zijlstra 已提交
9341 9342
	return 0;
}
9343

P
Peter Zijlstra 已提交
9344 9345 9346 9347 9348
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9349

P
Peter Zijlstra 已提交
9350 9351 9352 9353 9354 9355
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9356

P
Peter Zijlstra 已提交
9357 9358
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9359

P
Peter Zijlstra 已提交
9360 9361 9362
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9363 9364
	}

9365 9366 9367 9368 9369 9370 9371
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

9372 9373 9374 9375 9376
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9377

9378 9379 9380
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9381 9382
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9383

P
Peter Zijlstra 已提交
9384
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9385

9386 9387 9388 9389 9390
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9391

9392 9393 9394
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9395 9396 9397
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9398

P
Peter Zijlstra 已提交
9399 9400 9401 9402
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9403

P
Peter Zijlstra 已提交
9404
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9405
	}
P
Peter Zijlstra 已提交
9406

P
Peter Zijlstra 已提交
9407 9408 9409 9410
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9411 9412
}

P
Peter Zijlstra 已提交
9413
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9414
{
P
Peter Zijlstra 已提交
9415 9416 9417 9418 9419 9420 9421
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9422 9423
}

9424 9425
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9426
{
P
Peter Zijlstra 已提交
9427
	int i, err = 0;
P
Peter Zijlstra 已提交
9428 9429

	mutex_lock(&rt_constraints_mutex);
9430
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
9431 9432
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
9433
		goto unlock;
P
Peter Zijlstra 已提交
9434 9435

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9436 9437
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
9438 9439 9440 9441 9442 9443 9444 9445 9446

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
9447
 unlock:
9448
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
9449 9450 9451
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
9452 9453
}

9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9466 9467 9468 9469
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9470
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9471 9472
		return -1;

9473
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9474 9475 9476
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9477 9478 9479 9480 9481 9482 9483 9484

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9485 9486 9487
	if (rt_period == 0)
		return -EINVAL;

9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9502
	u64 runtime, period;
9503 9504
	int ret = 0;

9505 9506 9507
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9508 9509 9510 9511 9512 9513 9514 9515
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9516

9517
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9518
	read_lock(&tasklist_lock);
9519
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9520
	read_unlock(&tasklist_lock);
9521 9522 9523 9524
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9525 9526 9527 9528 9529 9530 9531 9532 9533 9534

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

9535
#else /* !CONFIG_RT_GROUP_SCHED */
9536 9537
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9538 9539 9540
	unsigned long flags;
	int i;

9541 9542 9543
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9544 9545 9546 9547 9548 9549 9550 9551 9552 9553
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9554 9555
	return 0;
}
9556
#endif /* CONFIG_RT_GROUP_SCHED */
9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9587

9588
#ifdef CONFIG_CGROUP_SCHED
9589 9590

/* return corresponding task_group object of a cgroup */
9591
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9592
{
9593 9594
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9595 9596 9597
}

static struct cgroup_subsys_state *
9598
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9599
{
9600
	struct task_group *tg, *parent;
9601

9602
	if (!cgrp->parent) {
9603 9604 9605 9606
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9607 9608
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9609 9610 9611 9612 9613 9614
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9615 9616
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9617
{
9618
	struct task_group *tg = cgroup_tg(cgrp);
9619 9620 9621 9622

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9623 9624 9625
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9626
{
9627
#ifdef CONFIG_RT_GROUP_SCHED
9628
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9629 9630
		return -EINVAL;
#else
9631 9632 9633
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9634
#endif
9635 9636 9637 9638 9639

	return 0;
}

static void
9640
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9641 9642 9643 9644 9645
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9646
#ifdef CONFIG_FAIR_GROUP_SCHED
9647
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9648
				u64 shareval)
9649
{
9650
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9651 9652
}

9653
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9654
{
9655
	struct task_group *tg = cgroup_tg(cgrp);
9656 9657 9658

	return (u64) tg->shares;
}
9659
#endif /* CONFIG_FAIR_GROUP_SCHED */
9660

9661
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9662
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9663
				s64 val)
P
Peter Zijlstra 已提交
9664
{
9665
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9666 9667
}

9668
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9669
{
9670
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9671
}
9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9683
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9684

9685
static struct cftype cpu_files[] = {
9686
#ifdef CONFIG_FAIR_GROUP_SCHED
9687 9688
	{
		.name = "shares",
9689 9690
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9691
	},
9692 9693
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9694
	{
P
Peter Zijlstra 已提交
9695
		.name = "rt_runtime_us",
9696 9697
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9698
	},
9699 9700
	{
		.name = "rt_period_us",
9701 9702
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9703
	},
9704
#endif
9705 9706 9707 9708
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9709
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9710 9711 9712
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9713 9714 9715 9716 9717 9718 9719
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9720 9721 9722
	.early_init	= 1,
};

9723
#endif	/* CONFIG_CGROUP_SCHED */
9724 9725 9726 9727 9728 9729 9730 9731 9732 9733

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9734
/* track cpu usage of a group of tasks and its child groups */
9735 9736 9737 9738
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
9739
	struct cpuacct *parent;
9740 9741 9742 9743 9744
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9745
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9746
{
9747
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9760
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

9773 9774 9775
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9776 9777 9778 9779
	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9780
static void
9781
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9782
{
9783
	struct cpuacct *ca = cgroup_ca(cgrp);
9784 9785 9786 9787 9788

	free_percpu(ca->cpuusage);
	kfree(ca);
}

9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

9824
/* return total cpu usage (in nanoseconds) of a group */
9825
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9826
{
9827
	struct cpuacct *ca = cgroup_ca(cgrp);
9828 9829 9830
	u64 totalcpuusage = 0;
	int i;

9831 9832
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9833 9834 9835 9836

	return totalcpuusage;
}

9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9849 9850
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9851 9852 9853 9854 9855

out:
	return err;
}

9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9871 9872 9873
static struct cftype files[] = {
	{
		.name = "usage",
9874 9875
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9876
	},
9877 9878 9879 9880 9881
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},

9882 9883
};

9884
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9885
{
9886
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9887 9888 9889 9890 9891 9892 9893 9894 9895 9896
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9897
	int cpu;
9898

L
Li Zefan 已提交
9899
	if (unlikely(!cpuacct_subsys.active))
9900 9901
		return;

9902
	cpu = task_cpu(tsk);
9903 9904
	ca = task_ca(tsk);

9905 9906
	for (; ca; ca = ca->parent) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918
		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */