sched.c 209.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
L
Linus Torvalds 已提交
71

72
#include <asm/tlb.h>
73
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
74

75 76 77 78 79 80 81
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
82
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
83 84
}

L
Linus Torvalds 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
104
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
105
 */
106
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
107

I
Ingo Molnar 已提交
108 109 110
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
111 112 113
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
114
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
115 116 117
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
118

119 120 121 122 123
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

145 146 147 148 149 150 151 152 153 154 155 156
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
157
/*
I
Ingo Molnar 已提交
158
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
159
 */
I
Ingo Molnar 已提交
160 161 162 163 164
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

165
struct rt_bandwidth {
I
Ingo Molnar 已提交
166 167 168 169 170
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
204 205
	spin_lock_init(&rt_b->rt_runtime_lock);

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

243
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
244

245 246
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
247 248
struct cfs_rq;

P
Peter Zijlstra 已提交
249 250
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
251
/* task group related information */
252
struct task_group {
253
#ifdef CONFIG_CGROUP_SCHED
254 255
	struct cgroup_subsys_state css;
#endif
256 257

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
258 259 260 261 262
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
263 264 265 266 267 268
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

269
	struct rt_bandwidth rt_bandwidth;
270
#endif
271

272
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
273
	struct list_head list;
S
Srivatsa Vaddagiri 已提交
274 275
};

D
Dhaval Giani 已提交
276
#ifdef CONFIG_USER_SCHED
277
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
278 279 280 281
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
282 283 284 285 286 287
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
#endif
D
Dhaval Giani 已提交
288
#endif
P
Peter Zijlstra 已提交
289

290
/* task_group_lock serializes add/remove of task groups and also changes to
291 292
 * a task group's cpu shares.
 */
293
static DEFINE_SPINLOCK(task_group_lock);
294

295 296 297
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

298 299 300 301 302 303 304 305 306 307
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
308
/* Default task group.
I
Ingo Molnar 已提交
309
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
310
 */
311
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
312 313

/* return group to which a task belongs */
314
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
315
{
316
	struct task_group *tg;
317

318
#ifdef CONFIG_USER_SCHED
319
	tg = p->user->tg;
320
#elif defined(CONFIG_CGROUP_SCHED)
321 322
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
323
#else
I
Ingo Molnar 已提交
324
	tg = &init_task_group;
325
#endif
326
	return tg;
S
Srivatsa Vaddagiri 已提交
327 328 329
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
330
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
331
{
332
#ifdef CONFIG_FAIR_GROUP_SCHED
333 334
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
335
#endif
P
Peter Zijlstra 已提交
336

337
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
338 339
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
340
#endif
S
Srivatsa Vaddagiri 已提交
341 342
}

343 344 345 346 347 348 349 350 351 352
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
353 354
#else

P
Peter Zijlstra 已提交
355
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
356 357
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
358

359
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
360

I
Ingo Molnar 已提交
361 362 363 364 365 366
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
367
	u64 min_vruntime;
I
Ingo Molnar 已提交
368 369 370 371 372 373 374

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
375
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
376 377 378

	unsigned long nr_spread_over;

379
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
380 381
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
382 383
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
384 385 386 387 388 389
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
390 391
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
392 393
#endif
};
L
Linus Torvalds 已提交
394

I
Ingo Molnar 已提交
395 396 397
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
398
	unsigned long rt_nr_running;
399
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
400 401
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
402
#ifdef CONFIG_SMP
403
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
404
	int overloaded;
P
Peter Zijlstra 已提交
405
#endif
P
Peter Zijlstra 已提交
406
	int rt_throttled;
P
Peter Zijlstra 已提交
407
	u64 rt_time;
P
Peter Zijlstra 已提交
408
	u64 rt_runtime;
I
Ingo Molnar 已提交
409
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
410
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
411

412
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
413 414
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
415 416 417 418 419
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
420 421
};

G
Gregory Haskins 已提交
422 423 424 425
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
426 427
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
428 429 430 431 432 433 434 435
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
436

I
Ingo Molnar 已提交
437
	/*
438 439 440 441
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
442
	atomic_t rto_count;
G
Gregory Haskins 已提交
443 444
};

445 446 447 448
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
449 450 451 452
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
453 454 455 456 457 458 459
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
460
struct rq {
461 462
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
463 464 465 466 467 468

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
469 470
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
471
	unsigned char idle_at_tick;
472
#ifdef CONFIG_NO_HZ
473
	unsigned long last_tick_seen;
474 475
	unsigned char in_nohz_recently;
#endif
476 477
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
478 479 480 481
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
482 483
	struct rt_rq rt;

I
Ingo Molnar 已提交
484
#ifdef CONFIG_FAIR_GROUP_SCHED
485 486
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
487 488
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
489
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
490 491 492 493 494 495 496 497 498 499
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

500
	struct task_struct *curr, *idle;
501
	unsigned long next_balance;
L
Linus Torvalds 已提交
502
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
503 504 505 506

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

507
	unsigned int clock_warps, clock_overflows, clock_underflows;
508 509
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
510
	u64 tick_timestamp;
I
Ingo Molnar 已提交
511

L
Linus Torvalds 已提交
512 513 514
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
515
	struct root_domain *rd;
L
Linus Torvalds 已提交
516 517 518 519 520
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
521 522
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
523

524
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
525 526 527
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
528 529 530 531 532 533
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
534 535 536 537 538
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
539 540 541 542
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
543 544

	/* schedule() stats */
545 546 547
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
548 549

	/* try_to_wake_up() stats */
550 551
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
552 553

	/* BKL stats */
554
	unsigned int bkl_count;
L
Linus Torvalds 已提交
555
#endif
556
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
557 558
};

559
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
560

I
Ingo Molnar 已提交
561 562 563 564 565
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

566 567 568 569 570 571 572 573 574
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
#ifdef CONFIG_NO_HZ
static inline bool nohz_on(int cpu)
{
	return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
}

static inline u64 max_skipped_ticks(struct rq *rq)
{
	return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
}

static inline void update_last_tick_seen(struct rq *rq)
{
	rq->last_tick_seen = jiffies;
}
#else
static inline u64 max_skipped_ticks(struct rq *rq)
{
	return 1;
}

static inline void update_last_tick_seen(struct rq *rq)
{
}
#endif

I
Ingo Molnar 已提交
601
/*
I
Ingo Molnar 已提交
602 603
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
604
 */
I
Ingo Molnar 已提交
605
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
606 607 608 609 610 611
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
612 613 614
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
615 616 617 618 619 620 621 622 623 624
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
625 626 627 628 629 630
		u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
		u64 max_time = rq->tick_timestamp + max_jump;

		if (unlikely(clock + delta > max_time)) {
			if (clock < max_time)
				clock = max_time;
631 632
			else
				clock++;
I
Ingo Molnar 已提交
633 634 635 636 637 638 639 640 641 642
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
643
}
I
Ingo Molnar 已提交
644

I
Ingo Molnar 已提交
645 646 647 648
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
649 650
}

N
Nick Piggin 已提交
651 652
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
653
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
654 655 656 657
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
658 659
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
660 661 662 663 664 665

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
679
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
680 681
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
682 683
	SCHED_FEAT_AFFINE_WAKEUPS	= 8,
	SCHED_FEAT_CACHE_HOT_BUDDY	= 16,
I
Ingo Molnar 已提交
684 685 686
	SCHED_FEAT_SYNC_WAKEUPS		= 32,
	SCHED_FEAT_HRTICK		= 64,
	SCHED_FEAT_DOUBLE_TICK		= 128,
P
Peter Zijlstra 已提交
687
	SCHED_FEAT_NORMALIZED_SLEEPER	= 256,
I
Ingo Molnar 已提交
688 689 690
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
691
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
692
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
693
		SCHED_FEAT_START_DEBIT		* 1 |
I
Ingo Molnar 已提交
694 695
		SCHED_FEAT_AFFINE_WAKEUPS	* 1 |
		SCHED_FEAT_CACHE_HOT_BUDDY	* 1 |
I
Ingo Molnar 已提交
696
		SCHED_FEAT_SYNC_WAKEUPS		* 1 |
P
Peter Zijlstra 已提交
697
		SCHED_FEAT_HRTICK		* 1 |
P
Peter Zijlstra 已提交
698 699
		SCHED_FEAT_DOUBLE_TICK		* 0 |
		SCHED_FEAT_NORMALIZED_SLEEPER	* 1;
I
Ingo Molnar 已提交
700 701 702

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

703 704 705 706 707 708
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
709
/*
P
Peter Zijlstra 已提交
710
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
711 712
 * default: 1s
 */
P
Peter Zijlstra 已提交
713
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
714

715 716
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
717 718 719 720 721
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
722

723 724 725 726 727 728 729 730 731 732 733 734
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
735

736 737 738 739 740
static const unsigned long long time_sync_thresh = 100000;

static DEFINE_PER_CPU(unsigned long long, time_offset);
static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);

741
/*
742 743 744 745
 * Global lock which we take every now and then to synchronize
 * the CPUs time. This method is not warp-safe, but it's good
 * enough to synchronize slowly diverging time sources and thus
 * it's good enough for tracing:
746
 */
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
static DEFINE_SPINLOCK(time_sync_lock);
static unsigned long long prev_global_time;

static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
{
	unsigned long flags;

	spin_lock_irqsave(&time_sync_lock, flags);

	if (time < prev_global_time) {
		per_cpu(time_offset, cpu) += prev_global_time - time;
		time = prev_global_time;
	} else {
		prev_global_time = time;
	}

	spin_unlock_irqrestore(&time_sync_lock, flags);

	return time;
}

static unsigned long long __cpu_clock(int cpu)
769 770 771
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
772
	struct rq *rq;
773

774 775 776 777
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
778 779 780 781 782 783
	if (unlikely(!scheduler_running))
		return 0;

	local_irq_save(flags);
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
I
Ingo Molnar 已提交
784
	now = rq->clock;
785
	local_irq_restore(flags);
786 787 788

	return now;
}
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806

/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long prev_cpu_time, time, delta_time;

	prev_cpu_time = per_cpu(prev_cpu_time, cpu);
	time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
	delta_time = time-prev_cpu_time;

	if (unlikely(delta_time > time_sync_thresh))
		time = __sync_cpu_clock(time, cpu);

	return time;
}
P
Paul E. McKenney 已提交
807
EXPORT_SYMBOL_GPL(cpu_clock);
808

L
Linus Torvalds 已提交
809
#ifndef prepare_arch_switch
810 811 812 813 814 815
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

816 817 818 819 820
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

821
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
822
static inline int task_running(struct rq *rq, struct task_struct *p)
823
{
824
	return task_current(rq, p);
825 826
}

827
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
828 829 830
{
}

831
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
832
{
833 834 835 836
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
837 838 839 840 841 842 843
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

844 845 846 847
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
848
static inline int task_running(struct rq *rq, struct task_struct *p)
849 850 851 852
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
853
	return task_current(rq, p);
854 855 856
#endif
}

857
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

874
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
875 876 877 878 879 880 881 882 883 884 885 886
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
887
#endif
888 889
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
890

891 892 893 894
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
895
static inline struct rq *__task_rq_lock(struct task_struct *p)
896 897
	__acquires(rq->lock)
{
898 899 900 901 902
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
903 904 905 906
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
907 908
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
909
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
910 911
 * explicitly disabling preemption.
 */
912
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
913 914
	__acquires(rq->lock)
{
915
	struct rq *rq;
L
Linus Torvalds 已提交
916

917 918 919 920 921 922
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
923 924 925 926
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
927
static void __task_rq_unlock(struct rq *rq)
928 929 930 931 932
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

933
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
934 935 936 937 938 939
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
940
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
941
 */
A
Alexey Dobriyan 已提交
942
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
943 944
	__acquires(rq->lock)
{
945
	struct rq *rq;
L
Linus Torvalds 已提交
946 947 948 949 950 951 952 953

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

954
/*
955
 * We are going deep-idle (irqs are disabled):
956
 */
957
void sched_clock_idle_sleep_event(void)
958
{
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
975

976 977 978 979 980 981 982 983 984 985 986
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
987
	touch_softlockup_watchdog();
988
}
989
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
990

P
Peter Zijlstra 已提交
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

static inline void init_rq_hrtick(struct rq *rq)
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
#endif

I
Ingo Molnar 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1171
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1172 1173 1174 1175 1176
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1177
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1178 1179
		return;

P
Peter Zijlstra 已提交
1180
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
#endif

I
Ingo Molnar 已提交
1245
#else
P
Peter Zijlstra 已提交
1246
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1247 1248
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1249
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1250 1251 1252
}
#endif

1253 1254 1255 1256 1257 1258 1259 1260
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1261 1262 1263
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1264
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1265

1266
static unsigned long
1267 1268 1269 1270 1271 1272
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
1273
		lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
1274 1275 1276 1277 1278

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1279
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1280
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1281 1282
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1283
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1284

1285
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1286 1287 1288 1289 1290 1291 1292 1293
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

1294
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1295 1296
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1297
	lw->inv_weight = 0;
1298 1299
}

1300
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1301 1302
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1303
	lw->inv_weight = 0;
1304 1305
}

1306 1307 1308 1309
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1310
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1311 1312 1313 1314
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1326 1327 1328
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1329 1330
 */
static const int prio_to_weight[40] = {
1331 1332 1333 1334 1335 1336 1337 1338
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1339 1340
};

1341 1342 1343 1344 1345 1346 1347
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1348
static const u32 prio_to_wmult[40] = {
1349 1350 1351 1352 1353 1354 1355 1356
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1357
};
1358

I
Ingo Molnar 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1384

1385 1386 1387 1388 1389 1390
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1391 1392 1393 1394 1395 1396 1397
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1398 1399
#include "sched_stats.h"
#include "sched_idletask.c"
1400 1401
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1402 1403 1404 1405 1406 1407
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
static inline void inc_load(struct rq *rq, const struct task_struct *p)
{
	update_load_add(&rq->load, p->se.load.weight);
}

static inline void dec_load(struct rq *rq, const struct task_struct *p)
{
	update_load_sub(&rq->load, p->se.load.weight);
}

static void inc_nr_running(struct task_struct *p, struct rq *rq)
1419 1420
{
	rq->nr_running++;
1421
	inc_load(rq, p);
1422 1423
}

1424
static void dec_nr_running(struct task_struct *p, struct rq *rq)
1425 1426
{
	rq->nr_running--;
1427
	dec_load(rq, p);
1428 1429
}

1430 1431 1432
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1433 1434 1435 1436
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1437

I
Ingo Molnar 已提交
1438 1439 1440 1441 1442 1443 1444 1445
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1446

I
Ingo Molnar 已提交
1447 1448
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1449 1450
}

1451
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1452
{
I
Ingo Molnar 已提交
1453
	sched_info_queued(p);
1454
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1455
	p->se.on_rq = 1;
1456 1457
}

1458
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1459
{
1460
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1461
	p->se.on_rq = 0;
1462 1463
}

1464
/*
I
Ingo Molnar 已提交
1465
 * __normal_prio - return the priority that is based on the static prio
1466 1467 1468
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1469
	return p->static_prio;
1470 1471
}

1472 1473 1474 1475 1476 1477 1478
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1479
static inline int normal_prio(struct task_struct *p)
1480 1481 1482
{
	int prio;

1483
	if (task_has_rt_policy(p))
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1497
static int effective_prio(struct task_struct *p)
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1510
/*
I
Ingo Molnar 已提交
1511
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1512
 */
I
Ingo Molnar 已提交
1513
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1514
{
1515
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1516
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1517

1518
	enqueue_task(rq, p, wakeup);
1519
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1520 1521 1522 1523 1524
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1525
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1526
{
1527
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1528 1529
		rq->nr_uninterruptible++;

1530
	dequeue_task(rq, p, sleep);
1531
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1532 1533 1534 1535 1536 1537
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1538
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1539 1540 1541 1542
{
	return cpu_curr(task_cpu(p)) == p;
}

1543 1544 1545
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1546
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1547 1548 1549 1550
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1551
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1552
#ifdef CONFIG_SMP
1553 1554 1555 1556 1557 1558
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1559 1560
	task_thread_info(p)->cpu = cpu;
#endif
1561 1562
}

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1575
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1576

1577 1578 1579
/*
 * Is this task likely cache-hot:
 */
1580
static int
1581 1582 1583 1584
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1585 1586 1587
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1588
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1589 1590
		return 1;

1591 1592 1593
	if (p->sched_class != &fair_sched_class)
		return 0;

1594 1595 1596 1597 1598
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1599 1600 1601 1602 1603 1604
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1605
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1606
{
I
Ingo Molnar 已提交
1607 1608
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1609 1610
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1611
	u64 clock_offset;
I
Ingo Molnar 已提交
1612 1613

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1614 1615 1616 1617

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1618 1619 1620 1621
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1622 1623 1624 1625 1626
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1627
#endif
1628 1629
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1630 1631

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1632 1633
}

1634
struct migration_req {
L
Linus Torvalds 已提交
1635 1636
	struct list_head list;

1637
	struct task_struct *task;
L
Linus Torvalds 已提交
1638 1639 1640
	int dest_cpu;

	struct completion done;
1641
};
L
Linus Torvalds 已提交
1642 1643 1644 1645 1646

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1647
static int
1648
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1649
{
1650
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1651 1652 1653 1654 1655

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1656
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1657 1658 1659 1660 1661 1662 1663 1664
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1665

L
Linus Torvalds 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1678
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1679 1680
{
	unsigned long flags;
I
Ingo Molnar 已提交
1681
	int running, on_rq;
1682
	struct rq *rq;
L
Linus Torvalds 已提交
1683

1684 1685 1686 1687 1688 1689 1690 1691
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1692

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1706

1707 1708 1709 1710 1711 1712 1713 1714 1715
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1716

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1727

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1741

1742 1743 1744 1745 1746 1747 1748
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1764
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1776 1777
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1778 1779 1780 1781
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1782
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1783
{
1784
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1785
	unsigned long total = weighted_cpuload(cpu);
1786

1787
	if (type == 0)
I
Ingo Molnar 已提交
1788
		return total;
1789

I
Ingo Molnar 已提交
1790
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1791 1792 1793
}

/*
1794 1795
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1796
 */
A
Alexey Dobriyan 已提交
1797
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1798
{
1799
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1800
	unsigned long total = weighted_cpuload(cpu);
1801

N
Nick Piggin 已提交
1802
	if (type == 0)
I
Ingo Molnar 已提交
1803
		return total;
1804

I
Ingo Molnar 已提交
1805
	return max(rq->cpu_load[type-1], total);
1806 1807 1808 1809 1810
}

/*
 * Return the average load per task on the cpu's run queue
 */
1811
static unsigned long cpu_avg_load_per_task(int cpu)
1812
{
1813
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1814
	unsigned long total = weighted_cpuload(cpu);
1815 1816
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1817
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1818 1819
}

N
Nick Piggin 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1837 1838
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1839
			continue;
1840

N
Nick Piggin 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1857 1858
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1859 1860 1861 1862 1863 1864 1865 1866

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1867
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1868 1869 1870 1871 1872 1873 1874

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1875
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1876
 */
I
Ingo Molnar 已提交
1877
static int
1878 1879
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
1880 1881 1882 1883 1884
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1885
	/* Traverse only the allowed CPUs */
1886
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
1887

1888
	for_each_cpu_mask(i, *tmp) {
1889
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1915

1916
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1917 1918 1919
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1920 1921
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1922 1923
		if (tmp->flags & flag)
			sd = tmp;
1924
	}
N
Nick Piggin 已提交
1925 1926

	while (sd) {
1927
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
1928
		struct sched_group *group;
1929 1930 1931 1932 1933 1934
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1935 1936 1937

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1938 1939 1940 1941
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1942

1943
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1944 1945 1946 1947 1948
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1949

1950
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1982
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1983
{
1984
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1985 1986
	unsigned long flags;
	long old_state;
1987
	struct rq *rq;
L
Linus Torvalds 已提交
1988

1989 1990 1991
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

1992
	smp_wmb();
L
Linus Torvalds 已提交
1993 1994 1995 1996 1997
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1998
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1999 2000 2001
		goto out_running;

	cpu = task_cpu(p);
2002
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2003 2004 2005 2006 2007 2008
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2009 2010 2011
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2012 2013 2014 2015 2016 2017
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2018
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2019 2020 2021 2022 2023 2024
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
2040 2041
out_activate:
#endif /* CONFIG_SMP */
2042 2043 2044 2045 2046 2047 2048 2049 2050
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2051
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2052
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2053 2054 2055
	success = 1;

out_running:
I
Ingo Molnar 已提交
2056 2057
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2058
	p->state = TASK_RUNNING;
2059 2060 2061 2062
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2063 2064 2065 2066 2067 2068
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2069
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2070
{
2071
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2072 2073 2074
}
EXPORT_SYMBOL(wake_up_process);

2075
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2076 2077 2078 2079 2080 2081 2082
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2083 2084 2085 2086 2087 2088 2089
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2090
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2091 2092
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2093 2094 2095

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2096 2097 2098 2099 2100 2101
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2102
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2103
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2104
#endif
N
Nick Piggin 已提交
2105

P
Peter Zijlstra 已提交
2106
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2107
	p->se.on_rq = 0;
N
Nick Piggin 已提交
2108

2109 2110 2111 2112
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2113 2114 2115 2116 2117 2118 2119
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2134
	set_task_cpu(p, cpu);
2135 2136 2137 2138 2139

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2140 2141
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2142

2143
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2144
	if (likely(sched_info_on()))
2145
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2146
#endif
2147
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2148 2149
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2150
#ifdef CONFIG_PREEMPT
2151
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2152
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2153
#endif
N
Nick Piggin 已提交
2154
	put_cpu();
L
Linus Torvalds 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2164
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2165 2166
{
	unsigned long flags;
I
Ingo Molnar 已提交
2167
	struct rq *rq;
L
Linus Torvalds 已提交
2168 2169

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2170
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2171
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2172 2173 2174

	p->prio = effective_prio(p);

2175
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2176
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2177 2178
	} else {
		/*
I
Ingo Molnar 已提交
2179 2180
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2181
		 */
2182
		p->sched_class->task_new(rq, p);
2183
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
2184
	}
I
Ingo Molnar 已提交
2185
	check_preempt_curr(rq, p);
2186 2187 2188 2189
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2190
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2191 2192
}

2193 2194 2195
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2196 2197
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2198 2199 2200 2201 2202 2203 2204 2205 2206
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2207
 * @notifier: notifier struct to unregister
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2251 2252 2253
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2254
 * @prev: the current task that is being switched out
2255 2256 2257 2258 2259 2260 2261 2262 2263
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2264 2265 2266
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2267
{
2268
	fire_sched_out_preempt_notifiers(prev, next);
2269 2270 2271 2272
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2273 2274
/**
 * finish_task_switch - clean up after a task-switch
2275
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2276 2277
 * @prev: the thread we just switched away from.
 *
2278 2279 2280 2281
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2282 2283
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2284
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2285 2286 2287
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2288
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2289 2290 2291
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2292
	long prev_state;
L
Linus Torvalds 已提交
2293 2294 2295 2296 2297

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2298
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2299 2300
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2301
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2302 2303 2304 2305 2306
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2307
	prev_state = prev->state;
2308 2309
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2310 2311 2312 2313
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2314

2315
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2316 2317
	if (mm)
		mmdrop(mm);
2318
	if (unlikely(prev_state == TASK_DEAD)) {
2319 2320 2321
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2322
		 */
2323
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2324
		put_task_struct(prev);
2325
	}
L
Linus Torvalds 已提交
2326 2327 2328 2329 2330 2331
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2332
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2333 2334
	__releases(rq->lock)
{
2335 2336
	struct rq *rq = this_rq();

2337 2338 2339 2340 2341
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2342
	if (current->set_child_tid)
2343
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2344 2345 2346 2347 2348 2349
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2350
static inline void
2351
context_switch(struct rq *rq, struct task_struct *prev,
2352
	       struct task_struct *next)
L
Linus Torvalds 已提交
2353
{
I
Ingo Molnar 已提交
2354
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2355

2356
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2357 2358
	mm = next->mm;
	oldmm = prev->active_mm;
2359 2360 2361 2362 2363 2364 2365
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2366
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2367 2368 2369 2370 2371 2372
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2373
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2374 2375 2376
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2377 2378 2379 2380 2381 2382 2383
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2384
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2385
#endif
L
Linus Torvalds 已提交
2386 2387 2388 2389

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2390 2391 2392 2393 2394 2395 2396
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2420
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2435 2436
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2437

2438
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2439 2440 2441 2442 2443 2444 2445 2446 2447
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2448
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2449 2450 2451 2452 2453
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2469
/*
I
Ingo Molnar 已提交
2470 2471
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2472
 */
I
Ingo Molnar 已提交
2473
static void update_cpu_load(struct rq *this_rq)
2474
{
2475
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2488 2489 2490 2491 2492 2493 2494
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2495 2496
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2497 2498
}

I
Ingo Molnar 已提交
2499 2500
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2501 2502 2503 2504 2505 2506
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2507
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2508 2509 2510
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2511
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2512 2513 2514 2515
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2516
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2517 2518 2519 2520 2521 2522 2523
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2524 2525
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2526 2527 2528 2529 2530 2531 2532 2533
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2534
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2548
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2549 2550 2551 2552
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2553 2554
	int ret = 0;

2555 2556 2557 2558 2559
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2560
	if (unlikely(!spin_trylock(&busiest->lock))) {
2561
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2562 2563 2564
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2565
			ret = 1;
L
Linus Torvalds 已提交
2566 2567 2568
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2569
	return ret;
L
Linus Torvalds 已提交
2570 2571 2572 2573 2574
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2575
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2576 2577
 * the cpu_allowed mask is restored.
 */
2578
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2579
{
2580
	struct migration_req req;
L
Linus Torvalds 已提交
2581
	unsigned long flags;
2582
	struct rq *rq;
L
Linus Torvalds 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2593

L
Linus Torvalds 已提交
2594 2595 2596 2597 2598
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2599

L
Linus Torvalds 已提交
2600 2601 2602 2603 2604 2605 2606
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2607 2608
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2609 2610 2611 2612
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2613
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2614
	put_cpu();
N
Nick Piggin 已提交
2615 2616
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2617 2618 2619 2620 2621 2622
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2623 2624
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2625
{
2626
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2627
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2628
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2629 2630 2631 2632
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2633
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2634 2635 2636 2637 2638
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2639
static
2640
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2641
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2642
		     int *all_pinned)
L
Linus Torvalds 已提交
2643 2644 2645 2646 2647 2648 2649
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2650 2651
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2652
		return 0;
2653
	}
2654 2655
	*all_pinned = 0;

2656 2657
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2658
		return 0;
2659
	}
L
Linus Torvalds 已提交
2660

2661 2662 2663 2664 2665 2666
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2667 2668
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2669
#ifdef CONFIG_SCHEDSTATS
2670
		if (task_hot(p, rq->clock, sd)) {
2671
			schedstat_inc(sd, lb_hot_gained[idle]);
2672 2673
			schedstat_inc(p, se.nr_forced_migrations);
		}
2674 2675 2676 2677
#endif
		return 1;
	}

2678 2679
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2680
		return 0;
2681
	}
L
Linus Torvalds 已提交
2682 2683 2684
	return 1;
}

2685 2686 2687 2688 2689
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2690
{
2691
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2692 2693
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2694

2695
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2696 2697
		goto out;

2698 2699
	pinned = 1;

L
Linus Torvalds 已提交
2700
	/*
I
Ingo Molnar 已提交
2701
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2702
	 */
I
Ingo Molnar 已提交
2703 2704
	p = iterator->start(iterator->arg);
next:
2705
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2706
		goto out;
2707
	/*
2708
	 * To help distribute high priority tasks across CPUs we don't
2709 2710 2711
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2712 2713
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2714
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2715 2716 2717
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2718 2719
	}

I
Ingo Molnar 已提交
2720
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2721
	pulled++;
I
Ingo Molnar 已提交
2722
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2723

2724
	/*
2725
	 * We only want to steal up to the prescribed amount of weighted load.
2726
	 */
2727
	if (rem_load_move > 0) {
2728 2729
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2730 2731
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2732 2733 2734
	}
out:
	/*
2735
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2736 2737 2738 2739
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2740 2741 2742

	if (all_pinned)
		*all_pinned = pinned;
2743 2744

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2745 2746
}

I
Ingo Molnar 已提交
2747
/*
P
Peter Williams 已提交
2748 2749 2750
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2751 2752 2753 2754
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2755
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2756 2757 2758
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2759
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2760
	unsigned long total_load_moved = 0;
2761
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2762 2763

	do {
P
Peter Williams 已提交
2764 2765
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2766
				max_load_move - total_load_moved,
2767
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2768
		class = class->next;
P
Peter Williams 已提交
2769
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2770

P
Peter Williams 已提交
2771 2772 2773
	return total_load_moved > 0;
}

2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2810
	const struct sched_class *class;
P
Peter Williams 已提交
2811 2812

	for (class = sched_class_highest; class; class = class->next)
2813
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2814 2815 2816
			return 1;

	return 0;
I
Ingo Molnar 已提交
2817 2818
}

L
Linus Torvalds 已提交
2819 2820
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2821 2822
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2823 2824 2825
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2826
		   unsigned long *imbalance, enum cpu_idle_type idle,
2827
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2828 2829 2830
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2831
	unsigned long max_pull;
2832 2833
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2834
	int load_idx, group_imb = 0;
2835 2836 2837 2838 2839 2840
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2841 2842

	max_load = this_load = total_load = total_pwr = 0;
2843 2844
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2845
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2846
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2847
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2848 2849 2850
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2851 2852

	do {
2853
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2854 2855
		int local_group;
		int i;
2856
		int __group_imb = 0;
2857
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2858
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2859 2860 2861

		local_group = cpu_isset(this_cpu, group->cpumask);

2862 2863 2864
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2865
		/* Tally up the load of all CPUs in the group */
2866
		sum_weighted_load = sum_nr_running = avg_load = 0;
2867 2868
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2869 2870

		for_each_cpu_mask(i, group->cpumask) {
2871 2872 2873 2874 2875 2876
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2877

2878
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2879 2880
				*sd_idle = 0;

L
Linus Torvalds 已提交
2881
			/* Bias balancing toward cpus of our domain */
2882 2883 2884 2885 2886 2887
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2888
				load = target_load(i, load_idx);
2889
			} else {
N
Nick Piggin 已提交
2890
				load = source_load(i, load_idx);
2891 2892 2893 2894 2895
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2896 2897

			avg_load += load;
2898
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2899
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2900 2901
		}

2902 2903 2904
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2905 2906
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2907
		 */
2908 2909
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2910 2911 2912 2913
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2914
		total_load += avg_load;
2915
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2916 2917

		/* Adjust by relative CPU power of the group */
2918 2919
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2920

2921 2922 2923
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2924
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2925

L
Linus Torvalds 已提交
2926 2927 2928
		if (local_group) {
			this_load = avg_load;
			this = group;
2929 2930 2931
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2932
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2933 2934
			max_load = avg_load;
			busiest = group;
2935 2936
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2937
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2938
		}
2939 2940 2941 2942 2943 2944

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2945 2946 2947
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2948 2949 2950 2951 2952 2953 2954 2955 2956

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2957
		/*
2958 2959
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2960 2961
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2962
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2963
			goto group_next;
2964

I
Ingo Molnar 已提交
2965
		/*
2966
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2967 2968 2969 2970 2971
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2972 2973
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2974 2975
			group_min = group;
			min_nr_running = sum_nr_running;
2976 2977
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2978
		}
2979

I
Ingo Molnar 已提交
2980
		/*
2981
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2993
		}
2994 2995
group_next:
#endif
L
Linus Torvalds 已提交
2996 2997 2998
		group = group->next;
	} while (group != sd->groups);

2999
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3000 3001 3002 3003 3004 3005 3006 3007
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3008
	busiest_load_per_task /= busiest_nr_running;
3009 3010 3011
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3012 3013 3014 3015 3016 3017 3018 3019
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3020
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3021 3022
	 * appear as very large values with unsigned longs.
	 */
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3035 3036

	/* Don't want to pull so many tasks that a group would go idle */
3037
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3038

L
Linus Torvalds 已提交
3039
	/* How much load to actually move to equalise the imbalance */
3040 3041
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3042 3043
			/ SCHED_LOAD_SCALE;

3044 3045 3046 3047 3048 3049
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3050
	if (*imbalance < busiest_load_per_task) {
3051
		unsigned long tmp, pwr_now, pwr_move;
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3063

I
Ingo Molnar 已提交
3064 3065
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3066
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3067 3068 3069 3070 3071 3072 3073 3074 3075
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3076 3077 3078 3079
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3080 3081 3082
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3083 3084
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3085
		if (max_load > tmp)
3086
			pwr_move += busiest->__cpu_power *
3087
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3088 3089

		/* Amount of load we'd add */
3090
		if (max_load * busiest->__cpu_power <
3091
				busiest_load_per_task * SCHED_LOAD_SCALE)
3092 3093
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3094
		else
3095 3096 3097 3098
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3099 3100 3101
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3102 3103
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3104 3105 3106 3107 3108
	}

	return busiest;

out_balanced:
3109
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3110
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3111
		goto ret;
L
Linus Torvalds 已提交
3112

3113 3114 3115 3116 3117
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3118
ret:
L
Linus Torvalds 已提交
3119 3120 3121 3122 3123 3124 3125
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3126
static struct rq *
I
Ingo Molnar 已提交
3127
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3128
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3129
{
3130
	struct rq *busiest = NULL, *rq;
3131
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3132 3133 3134
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3135
		unsigned long wl;
3136 3137 3138 3139

		if (!cpu_isset(i, *cpus))
			continue;

3140
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3141
		wl = weighted_cpuload(i);
3142

I
Ingo Molnar 已提交
3143
		if (rq->nr_running == 1 && wl > imbalance)
3144
			continue;
L
Linus Torvalds 已提交
3145

I
Ingo Molnar 已提交
3146 3147
		if (wl > max_load) {
			max_load = wl;
3148
			busiest = rq;
L
Linus Torvalds 已提交
3149 3150 3151 3152 3153 3154
		}
	}

	return busiest;
}

3155 3156 3157 3158 3159 3160
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3161 3162 3163 3164
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3165
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3166
			struct sched_domain *sd, enum cpu_idle_type idle,
3167
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3168
{
P
Peter Williams 已提交
3169
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3170 3171
	struct sched_group *group;
	unsigned long imbalance;
3172
	struct rq *busiest;
3173
	unsigned long flags;
N
Nick Piggin 已提交
3174

3175 3176
	cpus_setall(*cpus);

3177 3178 3179
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3180
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3181
	 * portraying it as CPU_NOT_IDLE.
3182
	 */
I
Ingo Molnar 已提交
3183
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3184
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3185
		sd_idle = 1;
L
Linus Torvalds 已提交
3186

3187
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3188

3189 3190
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3191
				   cpus, balance);
3192

3193
	if (*balance == 0)
3194 3195
		goto out_balanced;

L
Linus Torvalds 已提交
3196 3197 3198 3199 3200
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3201
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3202 3203 3204 3205 3206
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3207
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3208 3209 3210

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3211
	ld_moved = 0;
L
Linus Torvalds 已提交
3212 3213 3214 3215
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3216
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3217 3218
		 * correctly treated as an imbalance.
		 */
3219
		local_irq_save(flags);
N
Nick Piggin 已提交
3220
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3221
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3222
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3223
		double_rq_unlock(this_rq, busiest);
3224
		local_irq_restore(flags);
3225

3226 3227 3228
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3229
		if (ld_moved && this_cpu != smp_processor_id())
3230 3231
			resched_cpu(this_cpu);

3232
		/* All tasks on this runqueue were pinned by CPU affinity */
3233
		if (unlikely(all_pinned)) {
3234 3235
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3236
				goto redo;
3237
			goto out_balanced;
3238
		}
L
Linus Torvalds 已提交
3239
	}
3240

P
Peter Williams 已提交
3241
	if (!ld_moved) {
L
Linus Torvalds 已提交
3242 3243 3244 3245 3246
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3247
			spin_lock_irqsave(&busiest->lock, flags);
3248 3249 3250 3251 3252

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3253
				spin_unlock_irqrestore(&busiest->lock, flags);
3254 3255 3256 3257
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3258 3259 3260
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3261
				active_balance = 1;
L
Linus Torvalds 已提交
3262
			}
3263
			spin_unlock_irqrestore(&busiest->lock, flags);
3264
			if (active_balance)
L
Linus Torvalds 已提交
3265 3266 3267 3268 3269 3270
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3271
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3272
		}
3273
	} else
L
Linus Torvalds 已提交
3274 3275
		sd->nr_balance_failed = 0;

3276
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3277 3278
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3279 3280 3281 3282 3283 3284 3285 3286 3287
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3288 3289
	}

P
Peter Williams 已提交
3290
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3291
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3292
		return -1;
P
Peter Williams 已提交
3293
	return ld_moved;
L
Linus Torvalds 已提交
3294 3295 3296 3297

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3298
	sd->nr_balance_failed = 0;
3299 3300

out_one_pinned:
L
Linus Torvalds 已提交
3301
	/* tune up the balancing interval */
3302 3303
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3304 3305
		sd->balance_interval *= 2;

3306
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3307
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3308
		return -1;
L
Linus Torvalds 已提交
3309 3310 3311 3312 3313 3314 3315
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3316
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3317 3318
 * this_rq is locked.
 */
3319
static int
3320 3321
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3322 3323
{
	struct sched_group *group;
3324
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3325
	unsigned long imbalance;
P
Peter Williams 已提交
3326
	int ld_moved = 0;
N
Nick Piggin 已提交
3327
	int sd_idle = 0;
3328
	int all_pinned = 0;
3329 3330

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3331

3332 3333 3334 3335
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3336
	 * portraying it as CPU_NOT_IDLE.
3337 3338 3339
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3340
		sd_idle = 1;
L
Linus Torvalds 已提交
3341

3342
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3343
redo:
I
Ingo Molnar 已提交
3344
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3345
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3346
	if (!group) {
I
Ingo Molnar 已提交
3347
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3348
		goto out_balanced;
L
Linus Torvalds 已提交
3349 3350
	}

3351
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3352
	if (!busiest) {
I
Ingo Molnar 已提交
3353
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3354
		goto out_balanced;
L
Linus Torvalds 已提交
3355 3356
	}

N
Nick Piggin 已提交
3357 3358
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3359
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3360

P
Peter Williams 已提交
3361
	ld_moved = 0;
3362 3363 3364
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3365 3366
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3367
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3368 3369
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3370
		spin_unlock(&busiest->lock);
3371

3372
		if (unlikely(all_pinned)) {
3373 3374
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3375 3376
				goto redo;
		}
3377 3378
	}

P
Peter Williams 已提交
3379
	if (!ld_moved) {
I
Ingo Molnar 已提交
3380
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3381 3382
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3383 3384
			return -1;
	} else
3385
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3386

P
Peter Williams 已提交
3387
	return ld_moved;
3388 3389

out_balanced:
I
Ingo Molnar 已提交
3390
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3391
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3392
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3393
		return -1;
3394
	sd->nr_balance_failed = 0;
3395

3396
	return 0;
L
Linus Torvalds 已提交
3397 3398 3399 3400 3401 3402
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3403
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3404 3405
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3406 3407
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3408
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3409 3410

	for_each_domain(this_cpu, sd) {
3411 3412 3413 3414 3415 3416
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3417
			/* If we've pulled tasks over stop searching: */
3418 3419
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3420 3421 3422 3423 3424 3425

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3426
	}
I
Ingo Molnar 已提交
3427
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3428 3429 3430 3431 3432
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3433
	}
L
Linus Torvalds 已提交
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3444
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3445
{
3446
	int target_cpu = busiest_rq->push_cpu;
3447 3448
	struct sched_domain *sd;
	struct rq *target_rq;
3449

3450
	/* Is there any task to move? */
3451 3452 3453 3454
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3455 3456

	/*
3457
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3458
	 * we need to fix it. Originally reported by
3459
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3460
	 */
3461
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3462

3463 3464
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3465 3466
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3467 3468

	/* Search for an sd spanning us and the target CPU. */
3469
	for_each_domain(target_cpu, sd) {
3470
		if ((sd->flags & SD_LOAD_BALANCE) &&
3471
		    cpu_isset(busiest_cpu, sd->span))
3472
				break;
3473
	}
3474

3475
	if (likely(sd)) {
3476
		schedstat_inc(sd, alb_count);
3477

P
Peter Williams 已提交
3478 3479
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3480 3481 3482 3483
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3484
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3485 3486
}

3487 3488 3489
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3490
	cpumask_t cpu_mask;
3491 3492 3493 3494 3495
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3496
/*
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3507
 *
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3564 3565 3566 3567 3568
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3569
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3570
{
3571 3572
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3573 3574
	unsigned long interval;
	struct sched_domain *sd;
3575
	/* Earliest time when we have to do rebalance again */
3576
	unsigned long next_balance = jiffies + 60*HZ;
3577
	int update_next_balance = 0;
3578
	cpumask_t tmp;
L
Linus Torvalds 已提交
3579

3580
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3581 3582 3583 3584
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3585
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3586 3587 3588 3589 3590 3591
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3592 3593 3594
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3595

3596 3597 3598 3599 3600
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3601
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3602
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3603 3604
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3605 3606 3607
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3608
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3609
			}
3610
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3611
		}
3612 3613 3614
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3615
		if (time_after(next_balance, sd->last_balance + interval)) {
3616
			next_balance = sd->last_balance + interval;
3617 3618
			update_next_balance = 1;
		}
3619 3620 3621 3622 3623 3624 3625 3626

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3627
	}
3628 3629 3630 3631 3632 3633 3634 3635

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3636 3637 3638 3639 3640 3641 3642 3643 3644
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3645 3646 3647 3648
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3649

I
Ingo Molnar 已提交
3650
	rebalance_domains(this_cpu, idle);
3651 3652 3653 3654 3655 3656 3657

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3658 3659
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3660 3661 3662 3663
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3664
		cpu_clear(this_cpu, cpus);
3665 3666 3667 3668 3669 3670 3671 3672 3673
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3674
			rebalance_domains(balance_cpu, CPU_IDLE);
3675 3676

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3677 3678
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3691
static inline void trigger_load_balance(struct rq *rq, int cpu)
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3718
			if (ilb < nr_cpu_ids)
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3743
}
I
Ingo Molnar 已提交
3744 3745 3746

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3747 3748 3749
/*
 * on UP we do not need to balance between CPUs:
 */
3750
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3751 3752
{
}
I
Ingo Molnar 已提交
3753

L
Linus Torvalds 已提交
3754 3755 3756 3757 3758 3759 3760
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3761 3762
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3763
 */
3764
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3765 3766
{
	unsigned long flags;
3767 3768
	u64 ns, delta_exec;
	struct rq *rq;
3769

3770 3771
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3772
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3773 3774
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3775 3776 3777 3778
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3779

L
Linus Torvalds 已提交
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3803 3804 3805 3806 3807
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3808
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3842
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3843 3844
	cputime64_t tmp;

3845 3846
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3847

L
Linus Torvalds 已提交
3848 3849 3850 3851 3852 3853 3854 3855
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3856
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3857
		cpustat->system = cputime64_add(cpustat->system, tmp);
3858
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3859 3860 3861 3862 3863 3864 3865
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3877 3878 3879 3880 3881 3882 3883 3884 3885
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3886
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3887 3888 3889 3890 3891 3892 3893

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3894
	} else
L
Linus Torvalds 已提交
3895 3896 3897
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3909
	struct task_struct *curr = rq->curr;
3910
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3911 3912

	spin_lock(&rq->lock);
3913
	__update_rq_clock(rq);
3914 3915 3916
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
3917
	if (unlikely(rq->clock < next_tick)) {
3918
		rq->clock = next_tick;
3919 3920
		rq->clock_underflows++;
	}
3921
	rq->tick_timestamp = rq->clock;
3922
	update_last_tick_seen(rq);
3923
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3924
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
3925
	spin_unlock(&rq->lock);
3926

3927
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3928 3929
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3930
#endif
L
Linus Torvalds 已提交
3931 3932 3933 3934
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

3935
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3936 3937 3938 3939
{
	/*
	 * Underflow?
	 */
3940 3941
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3942 3943 3944 3945
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3946 3947
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3948 3949 3950
}
EXPORT_SYMBOL(add_preempt_count);

3951
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3952 3953 3954 3955
{
	/*
	 * Underflow?
	 */
3956 3957
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3958 3959 3960
	/*
	 * Is the spinlock portion underflowing?
	 */
3961 3962 3963 3964
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3965 3966 3967 3968 3969 3970 3971
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3972
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3973
 */
I
Ingo Molnar 已提交
3974
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3975
{
3976 3977 3978 3979 3980
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3981 3982 3983
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3984 3985 3986 3987 3988

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3989
}
L
Linus Torvalds 已提交
3990

I
Ingo Molnar 已提交
3991 3992 3993 3994 3995
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3996
	/*
I
Ingo Molnar 已提交
3997
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3998 3999 4000
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
4001 4002 4003
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4004 4005
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4006
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4007 4008
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4009 4010
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4011 4012
	}
#endif
I
Ingo Molnar 已提交
4013 4014 4015 4016 4017 4018
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4019
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4020
{
4021
	const struct sched_class *class;
I
Ingo Molnar 已提交
4022
	struct task_struct *p;
L
Linus Torvalds 已提交
4023 4024

	/*
I
Ingo Molnar 已提交
4025 4026
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4027
	 */
I
Ingo Molnar 已提交
4028
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4029
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4030 4031
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4032 4033
	}

I
Ingo Molnar 已提交
4034 4035
	class = sched_class_highest;
	for ( ; ; ) {
4036
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4037 4038 4039 4040 4041 4042 4043 4044 4045
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4046

I
Ingo Molnar 已提交
4047 4048 4049 4050 4051 4052
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4053
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4069

P
Peter Zijlstra 已提交
4070 4071
	hrtick_clear(rq);

4072 4073 4074 4075
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
4076
	__update_rq_clock(rq);
4077 4078
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4079 4080 4081

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4082
				signal_pending(prev))) {
L
Linus Torvalds 已提交
4083
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4084
		} else {
4085
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
4086
		}
I
Ingo Molnar 已提交
4087
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4088 4089
	}

4090 4091 4092 4093
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4094

I
Ingo Molnar 已提交
4095
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4096 4097
		idle_balance(cpu, rq);

4098
	prev->sched_class->put_prev_task(rq, prev);
4099
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4100 4101

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
4102

L
Linus Torvalds 已提交
4103 4104 4105 4106 4107
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4108
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4109 4110 4111 4112 4113 4114
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4115 4116 4117
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4118 4119 4120
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4121
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4122

L
Linus Torvalds 已提交
4123 4124 4125 4126 4127 4128 4129 4130
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4131
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4132
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4133 4134 4135 4136 4137 4138 4139
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4140

L
Linus Torvalds 已提交
4141 4142
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4143
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4144
	 */
N
Nick Piggin 已提交
4145
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4146 4147
		return;

4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		schedule();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4161

4162 4163 4164 4165 4166 4167
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4168 4169 4170 4171
}
EXPORT_SYMBOL(preempt_schedule);

/*
4172
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4173 4174 4175 4176 4177 4178 4179 4180 4181
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4182

4183
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4184 4185
	BUG_ON(ti->preempt_count || !irqs_disabled());

4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		local_irq_enable();
		schedule();
		local_irq_disable();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4201

4202 4203 4204 4205 4206 4207
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4208 4209 4210 4211
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4212 4213
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4214
{
4215
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4216 4217 4218 4219
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4220 4221
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4222 4223 4224
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4225
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4226 4227 4228 4229 4230
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4231
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4232

4233
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4234 4235
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4236
		if (curr->func(curr, mode, sync, key) &&
4237
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4238 4239 4240 4241 4242 4243 4244 4245 4246
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4247
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4248
 */
4249
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4250
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4263
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4264 4265 4266 4267 4268
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4269
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4281
void
I
Ingo Molnar 已提交
4282
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4299
void complete(struct completion *x)
L
Linus Torvalds 已提交
4300 4301 4302 4303 4304
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4305
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4306 4307 4308 4309
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4310
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4311 4312 4313 4314 4315
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4316
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4317 4318 4319 4320
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4321 4322
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4323 4324 4325 4326 4327 4328 4329
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4330 4331 4332 4333
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4334 4335 4336 4337
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4338 4339 4340 4341 4342
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4343
				return timeout;
L
Linus Torvalds 已提交
4344 4345 4346 4347 4348 4349 4350 4351
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4352 4353
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4354 4355 4356 4357
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4358
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4359
	spin_unlock_irq(&x->wait.lock);
4360 4361
	return timeout;
}
L
Linus Torvalds 已提交
4362

4363
void __sched wait_for_completion(struct completion *x)
4364 4365
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4366
}
4367
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4368

4369
unsigned long __sched
4370
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4371
{
4372
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4373
}
4374
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4375

4376
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4377
{
4378 4379 4380 4381
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4382
}
4383
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4384

4385
unsigned long __sched
4386 4387
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4388
{
4389
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4390
}
4391
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4392

M
Matthew Wilcox 已提交
4393 4394 4395 4396 4397 4398 4399 4400 4401
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4402 4403
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4404
{
I
Ingo Molnar 已提交
4405 4406 4407 4408
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4409

4410
	__set_current_state(state);
L
Linus Torvalds 已提交
4411

4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4426 4427 4428
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4429
long __sched
I
Ingo Molnar 已提交
4430
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4431
{
4432
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4433 4434 4435
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4436
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4437
{
4438
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4439 4440 4441
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4442
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4443
{
4444
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4445 4446 4447
}
EXPORT_SYMBOL(sleep_on_timeout);

4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4460
void rt_mutex_setprio(struct task_struct *p, int prio)
4461 4462
{
	unsigned long flags;
4463
	int oldprio, on_rq, running;
4464
	struct rq *rq;
4465
	const struct sched_class *prev_class = p->sched_class;
4466 4467 4468 4469

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4470
	update_rq_clock(rq);
4471

4472
	oldprio = p->prio;
I
Ingo Molnar 已提交
4473
	on_rq = p->se.on_rq;
4474
	running = task_current(rq, p);
4475
	if (on_rq)
4476
		dequeue_task(rq, p, 0);
4477 4478
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4479 4480 4481 4482 4483 4484

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4485 4486
	p->prio = prio;

4487 4488
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4489
	if (on_rq) {
4490
		enqueue_task(rq, p, 0);
4491 4492

		check_class_changed(rq, p, prev_class, oldprio, running);
4493 4494 4495 4496 4497 4498
	}
	task_rq_unlock(rq, &flags);
}

#endif

4499
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4500
{
I
Ingo Molnar 已提交
4501
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4502
	unsigned long flags;
4503
	struct rq *rq;
L
Linus Torvalds 已提交
4504 4505 4506 4507 4508 4509 4510 4511

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4512
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4513 4514 4515 4516
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4517
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4518
	 */
4519
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4520 4521 4522
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4523
	on_rq = p->se.on_rq;
4524
	if (on_rq) {
4525
		dequeue_task(rq, p, 0);
4526 4527
		dec_load(rq, p);
	}
L
Linus Torvalds 已提交
4528 4529

	p->static_prio = NICE_TO_PRIO(nice);
4530
	set_load_weight(p);
4531 4532 4533
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4534

I
Ingo Molnar 已提交
4535
	if (on_rq) {
4536
		enqueue_task(rq, p, 0);
4537
		inc_load(rq, p);
L
Linus Torvalds 已提交
4538
		/*
4539 4540
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4541
		 */
4542
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4543 4544 4545 4546 4547 4548 4549
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4550 4551 4552 4553 4554
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4555
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4556
{
4557 4558
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4559

M
Matt Mackall 已提交
4560 4561 4562 4563
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4575
	long nice, retval;
L
Linus Torvalds 已提交
4576 4577 4578 4579 4580 4581

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4582 4583
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4584 4585 4586 4587 4588 4589 4590 4591 4592
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4593 4594 4595
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4614
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4615 4616 4617 4618 4619 4620 4621 4622
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4623
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4624 4625 4626
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4627
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4642
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4643 4644 4645 4646 4647 4648 4649 4650
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4651
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4652
{
4653
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4654 4655 4656
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4657 4658
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4659
{
I
Ingo Molnar 已提交
4660
	BUG_ON(p->se.on_rq);
4661

L
Linus Torvalds 已提交
4662
	p->policy = policy;
I
Ingo Molnar 已提交
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4675
	p->rt_priority = prio;
4676 4677 4678
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4679
	set_load_weight(p);
L
Linus Torvalds 已提交
4680 4681 4682
}

/**
4683
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4684 4685 4686
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4687
 *
4688
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4689
 */
I
Ingo Molnar 已提交
4690 4691
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4692
{
4693
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4694
	unsigned long flags;
4695
	const struct sched_class *prev_class = p->sched_class;
4696
	struct rq *rq;
L
Linus Torvalds 已提交
4697

4698 4699
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4700 4701 4702 4703 4704
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4705 4706
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4707
		return -EINVAL;
L
Linus Torvalds 已提交
4708 4709
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4710 4711
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4712 4713
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4714
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4715
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4716
		return -EINVAL;
4717
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4718 4719
		return -EINVAL;

4720 4721 4722 4723
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4724
		if (rt_policy(policy)) {
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4741 4742 4743 4744 4745 4746
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4747

4748 4749 4750 4751 4752
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4753

4754 4755 4756 4757 4758
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
4759
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4760 4761 4762
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4763 4764 4765
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4766 4767 4768 4769 4770
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4771 4772 4773 4774
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4775
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4776 4777 4778
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4779 4780
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4781 4782
		goto recheck;
	}
I
Ingo Molnar 已提交
4783
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4784
	on_rq = p->se.on_rq;
4785
	running = task_current(rq, p);
4786
	if (on_rq)
4787
		deactivate_task(rq, p, 0);
4788 4789
	if (running)
		p->sched_class->put_prev_task(rq, p);
4790

L
Linus Torvalds 已提交
4791
	oldprio = p->prio;
I
Ingo Molnar 已提交
4792
	__setscheduler(rq, p, policy, param->sched_priority);
4793

4794 4795
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4796 4797
	if (on_rq) {
		activate_task(rq, p, 0);
4798 4799

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4800
	}
4801 4802 4803
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4804 4805
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4806 4807 4808 4809
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4810 4811
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4812 4813 4814
{
	struct sched_param lparam;
	struct task_struct *p;
4815
	int retval;
L
Linus Torvalds 已提交
4816 4817 4818 4819 4820

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4821 4822 4823

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4824
	p = find_process_by_pid(pid);
4825 4826 4827
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4828

L
Linus Torvalds 已提交
4829 4830 4831 4832 4833 4834 4835 4836 4837
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4838 4839
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4840
{
4841 4842 4843 4844
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4864
	struct task_struct *p;
4865
	int retval;
L
Linus Torvalds 已提交
4866 4867

	if (pid < 0)
4868
		return -EINVAL;
L
Linus Torvalds 已提交
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4890
	struct task_struct *p;
4891
	int retval;
L
Linus Torvalds 已提交
4892 4893

	if (!param || pid < 0)
4894
		return -EINVAL;
L
Linus Torvalds 已提交
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4921
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
4922 4923
{
	cpumask_t cpus_allowed;
4924
	cpumask_t new_mask = *in_mask;
4925 4926
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4927

4928
	get_online_cpus();
L
Linus Torvalds 已提交
4929 4930 4931 4932 4933
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4934
		put_online_cpus();
L
Linus Torvalds 已提交
4935 4936 4937 4938 4939
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4940
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4951 4952 4953 4954
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4955
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
4956
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4957
 again:
4958
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
4959

P
Paul Menage 已提交
4960
	if (!retval) {
4961
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4972 4973
out_unlock:
	put_task_struct(p);
4974
	put_online_cpus();
L
Linus Torvalds 已提交
4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5005
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5006 5007 5008 5009 5010 5011 5012 5013 5014
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

5015
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
5016 5017 5018
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
5019
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5020 5021
EXPORT_SYMBOL(cpu_online_map);

5022
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5023
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
5024 5025 5026 5027
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5028
	struct task_struct *p;
L
Linus Torvalds 已提交
5029 5030
	int retval;

5031
	get_online_cpus();
L
Linus Torvalds 已提交
5032 5033 5034 5035 5036 5037 5038
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5039 5040 5041 5042
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5043
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5044 5045 5046

out_unlock:
	read_unlock(&tasklist_lock);
5047
	put_online_cpus();
L
Linus Torvalds 已提交
5048

5049
	return retval;
L
Linus Torvalds 已提交
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5080 5081
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5082 5083 5084
 */
asmlinkage long sys_sched_yield(void)
{
5085
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5086

5087
	schedstat_inc(rq, yld_count);
5088
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5089 5090 5091 5092 5093 5094

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5095
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5096 5097 5098 5099 5100 5101 5102 5103
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5104
static void __cond_resched(void)
L
Linus Torvalds 已提交
5105
{
5106 5107 5108
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5109 5110 5111 5112 5113
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5114 5115 5116 5117 5118 5119 5120
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5121 5122
#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5123
{
5124 5125
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5126 5127 5128 5129 5130
		__cond_resched();
		return 1;
	}
	return 0;
}
5131 5132
EXPORT_SYMBOL(_cond_resched);
#endif
L
Linus Torvalds 已提交
5133 5134 5135 5136 5137

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5138
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5139 5140 5141
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5142
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5143
{
N
Nick Piggin 已提交
5144
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5145 5146
	int ret = 0;

N
Nick Piggin 已提交
5147
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5148
		spin_unlock(lock);
N
Nick Piggin 已提交
5149 5150 5151 5152
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5153
		ret = 1;
L
Linus Torvalds 已提交
5154 5155
		spin_lock(lock);
	}
J
Jan Kara 已提交
5156
	return ret;
L
Linus Torvalds 已提交
5157 5158 5159 5160 5161 5162 5163
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5164
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5165
		local_bh_enable();
L
Linus Torvalds 已提交
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5177
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5188
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5189 5190 5191 5192 5193 5194 5195
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5196
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5197

5198
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5199 5200 5201
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5202
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5203 5204 5205 5206 5207
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5208
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5209 5210
	long ret;

5211
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5212 5213 5214
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5215
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5236
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5237
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5261
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5262
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5279
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5280
	unsigned int time_slice;
5281
	int retval;
L
Linus Torvalds 已提交
5282 5283 5284
	struct timespec t;

	if (pid < 0)
5285
		return -EINVAL;
L
Linus Torvalds 已提交
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5297 5298 5299 5300 5301 5302
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5303
		time_slice = DEF_TIMESLICE;
5304
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5305 5306 5307 5308 5309
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5310 5311
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5312 5313
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5314
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5315
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5316 5317
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5318

L
Linus Torvalds 已提交
5319 5320 5321 5322 5323
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5324
static const char stat_nam[] = "RSDTtZX";
5325

5326
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5327 5328
{
	unsigned long free = 0;
5329
	unsigned state;
L
Linus Torvalds 已提交
5330 5331

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5332
	printk(KERN_INFO "%-13.13s %c", p->comm,
5333
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5334
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5335
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5336
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5337
	else
I
Ingo Molnar 已提交
5338
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5339 5340
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5341
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5342
	else
I
Ingo Molnar 已提交
5343
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5344 5345 5346
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5347
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5348 5349
		while (!*n)
			n++;
5350
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5351 5352
	}
#endif
5353
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5354
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5355

5356
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5357 5358
}

I
Ingo Molnar 已提交
5359
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5360
{
5361
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5362

5363 5364 5365
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5366
#else
5367 5368
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5369 5370 5371 5372 5373 5374 5375 5376
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5377
		if (!state_filter || (p->state & state_filter))
5378
			sched_show_task(p);
L
Linus Torvalds 已提交
5379 5380
	} while_each_thread(g, p);

5381 5382
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5383 5384 5385
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5386
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5387 5388 5389 5390 5391
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5392 5393
}

I
Ingo Molnar 已提交
5394 5395
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5396
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5397 5398
}

5399 5400 5401 5402 5403 5404 5405 5406
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5407
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5408
{
5409
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5410 5411
	unsigned long flags;

I
Ingo Molnar 已提交
5412 5413 5414
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5415
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5416
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5417
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5418 5419 5420

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5421 5422 5423
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5424 5425 5426
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5427
	task_thread_info(idle)->preempt_count = 0;
5428

I
Ingo Molnar 已提交
5429 5430 5431 5432
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5469 5470 5471 5472
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5473
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5492
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5493 5494
 * call is not atomic; no spinlocks may be held.
 */
5495
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5496
{
5497
	struct migration_req req;
L
Linus Torvalds 已提交
5498
	unsigned long flags;
5499
	struct rq *rq;
5500
	int ret = 0;
L
Linus Torvalds 已提交
5501 5502

	rq = task_rq_lock(p, &flags);
5503
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5504 5505 5506 5507
		ret = -EINVAL;
		goto out;
	}

5508
	if (p->sched_class->set_cpus_allowed)
5509
		p->sched_class->set_cpus_allowed(p, new_mask);
5510
	else {
5511 5512
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5513 5514
	}

L
Linus Torvalds 已提交
5515
	/* Can the task run on the task's current CPU? If so, we're done */
5516
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5517 5518
		goto out;

5519
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5520 5521 5522 5523 5524 5525 5526 5527 5528
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5529

L
Linus Torvalds 已提交
5530 5531
	return ret;
}
5532
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5533 5534

/*
I
Ingo Molnar 已提交
5535
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5536 5537 5538 5539 5540 5541
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5542 5543
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5544
 */
5545
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5546
{
5547
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5548
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5549 5550

	if (unlikely(cpu_is_offline(dest_cpu)))
5551
		return ret;
L
Linus Torvalds 已提交
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5564
	on_rq = p->se.on_rq;
5565
	if (on_rq)
5566
		deactivate_task(rq_src, p, 0);
5567

L
Linus Torvalds 已提交
5568
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5569 5570 5571
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5572
	}
5573
	ret = 1;
L
Linus Torvalds 已提交
5574 5575
out:
	double_rq_unlock(rq_src, rq_dest);
5576
	return ret;
L
Linus Torvalds 已提交
5577 5578 5579 5580 5581 5582 5583
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5584
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5585 5586
{
	int cpu = (long)data;
5587
	struct rq *rq;
L
Linus Torvalds 已提交
5588 5589 5590 5591 5592 5593

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5594
		struct migration_req *req;
L
Linus Torvalds 已提交
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5617
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5618 5619
		list_del_init(head->next);

N
Nick Piggin 已提交
5620 5621 5622
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5652
/*
5653
 * Figure out where task on dead CPU should go, use force if necessary.
5654 5655
 * NOTE: interrupts should be disabled by the caller
 */
5656
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5657
{
5658
	unsigned long flags;
L
Linus Torvalds 已提交
5659
	cpumask_t mask;
5660 5661
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5662

5663 5664 5665 5666 5667 5668 5669
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
5670
		if (dest_cpu >= nr_cpu_ids)
5671 5672 5673
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
5674
		if (dest_cpu >= nr_cpu_ids) {
5675 5676 5677
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
5678 5679 5680 5681
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5682
			 * cpuset_cpus_allowed() will not block. It must be
5683 5684
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5685
			rq = task_rq_lock(p, &flags);
5686
			p->cpus_allowed = cpus_allowed;
5687 5688
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5689

5690 5691 5692 5693 5694
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5695
			if (p->mm && printk_ratelimit()) {
5696 5697
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5698 5699
					task_pid_nr(p), p->comm, dead_cpu);
			}
5700
		}
5701
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5702 5703 5704 5705 5706 5707 5708 5709 5710
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5711
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5712
{
5713
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5727
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5728

5729
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5730

5731 5732
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5733 5734
			continue;

5735 5736 5737
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5738

5739
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5740 5741
}

I
Ingo Molnar 已提交
5742 5743
/*
 * Schedules idle task to be the next runnable task on current CPU.
5744 5745
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5746 5747 5748
 */
void sched_idle_next(void)
{
5749
	int this_cpu = smp_processor_id();
5750
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5751 5752 5753 5754
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5755
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5756

5757 5758 5759
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5760 5761 5762
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5763
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5764

5765 5766
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5767 5768 5769 5770

	spin_unlock_irqrestore(&rq->lock, flags);
}

5771 5772
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5786
/* called under rq->lock with disabled interrupts */
5787
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5788
{
5789
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5790 5791

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5792
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5793 5794

	/* Cannot have done final schedule yet: would have vanished. */
5795
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5796

5797
	get_task_struct(p);
L
Linus Torvalds 已提交
5798 5799 5800

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5801
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5802 5803
	 * fine.
	 */
5804
	spin_unlock_irq(&rq->lock);
5805
	move_task_off_dead_cpu(dead_cpu, p);
5806
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5807

5808
	put_task_struct(p);
L
Linus Torvalds 已提交
5809 5810 5811 5812 5813
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5814
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5815
	struct task_struct *next;
5816

I
Ingo Molnar 已提交
5817 5818 5819
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5820
		update_rq_clock(rq);
5821
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5822 5823 5824
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5825

L
Linus Torvalds 已提交
5826 5827 5828 5829
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5830 5831 5832
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5833 5834
	{
		.procname	= "sched_domain",
5835
		.mode		= 0555,
5836
	},
I
Ingo Molnar 已提交
5837
	{0, },
5838 5839 5840
};

static struct ctl_table sd_ctl_root[] = {
5841
	{
5842
		.ctl_name	= CTL_KERN,
5843
		.procname	= "kernel",
5844
		.mode		= 0555,
5845 5846
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5847
	{0, },
5848 5849 5850 5851 5852
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5853
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5854 5855 5856 5857

	return entry;
}

5858 5859
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5860
	struct ctl_table *entry;
5861

5862 5863 5864
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5865
	 * will always be set. In the lowest directory the names are
5866 5867 5868
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5869 5870
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5871 5872 5873
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5874 5875 5876 5877 5878

	kfree(*tablep);
	*tablep = NULL;
}

5879
static void
5880
set_table_entry(struct ctl_table *entry,
5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5894
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5895

5896 5897 5898
	if (table == NULL)
		return NULL;

5899
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5900
		sizeof(long), 0644, proc_doulongvec_minmax);
5901
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5902
		sizeof(long), 0644, proc_doulongvec_minmax);
5903
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5904
		sizeof(int), 0644, proc_dointvec_minmax);
5905
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5906
		sizeof(int), 0644, proc_dointvec_minmax);
5907
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5908
		sizeof(int), 0644, proc_dointvec_minmax);
5909
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5910
		sizeof(int), 0644, proc_dointvec_minmax);
5911
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5912
		sizeof(int), 0644, proc_dointvec_minmax);
5913
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5914
		sizeof(int), 0644, proc_dointvec_minmax);
5915
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5916
		sizeof(int), 0644, proc_dointvec_minmax);
5917
	set_table_entry(&table[9], "cache_nice_tries",
5918 5919
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5920
	set_table_entry(&table[10], "flags", &sd->flags,
5921
		sizeof(int), 0644, proc_dointvec_minmax);
5922
	/* &table[11] is terminator */
5923 5924 5925 5926

	return table;
}

5927
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5928 5929 5930 5931 5932 5933 5934 5935 5936
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5937 5938
	if (table == NULL)
		return NULL;
5939 5940 5941 5942 5943

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5944
		entry->mode = 0555;
5945 5946 5947 5948 5949 5950 5951 5952
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5953
static void register_sched_domain_sysctl(void)
5954 5955 5956 5957 5958
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5959 5960 5961
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5962 5963 5964
	if (entry == NULL)
		return;

5965
	for_each_online_cpu(i) {
5966 5967
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5968
		entry->mode = 0555;
5969
		entry->child = sd_alloc_ctl_cpu_table(i);
5970
		entry++;
5971
	}
5972 5973

	WARN_ON(sd_sysctl_header);
5974 5975
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5976

5977
/* may be called multiple times per register */
5978 5979
static void unregister_sched_domain_sysctl(void)
{
5980 5981
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5982
	sd_sysctl_header = NULL;
5983 5984
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5985
}
5986
#else
5987 5988 5989 5990
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5991 5992 5993 5994
{
}
#endif

L
Linus Torvalds 已提交
5995 5996 5997 5998
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5999 6000
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6001 6002
{
	struct task_struct *p;
6003
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6004
	unsigned long flags;
6005
	struct rq *rq;
L
Linus Torvalds 已提交
6006 6007

	switch (action) {
6008

L
Linus Torvalds 已提交
6009
	case CPU_UP_PREPARE:
6010
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6011
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6012 6013 6014 6015 6016
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6017
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6018 6019 6020
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6021

L
Linus Torvalds 已提交
6022
	case CPU_ONLINE:
6023
	case CPU_ONLINE_FROZEN:
6024
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6025
		wake_up_process(cpu_rq(cpu)->migration_thread);
6026 6027 6028 6029 6030 6031 6032 6033 6034

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6035
		break;
6036

L
Linus Torvalds 已提交
6037 6038
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6039
	case CPU_UP_CANCELED_FROZEN:
6040 6041
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6042
		/* Unbind it from offline cpu so it can run. Fall thru. */
6043 6044
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6045 6046 6047
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6048

L
Linus Torvalds 已提交
6049
	case CPU_DEAD:
6050
	case CPU_DEAD_FROZEN:
6051
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6052 6053 6054 6055 6056
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6057
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6058
		update_rq_clock(rq);
6059
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6060
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6061 6062
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6063
		migrate_dead_tasks(cpu);
6064
		spin_unlock_irq(&rq->lock);
6065
		cpuset_unlock();
L
Linus Torvalds 已提交
6066 6067 6068
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6069 6070 6071 6072 6073
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6074 6075
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6076 6077
			struct migration_req *req;

L
Linus Torvalds 已提交
6078
			req = list_entry(rq->migration_queue.next,
6079
					 struct migration_req, list);
L
Linus Torvalds 已提交
6080 6081 6082 6083 6084
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6085

6086 6087
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6088 6089 6090 6091 6092 6093 6094 6095 6096
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6097 6098 6099 6100 6101 6102 6103 6104
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6105
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6106 6107 6108 6109
	.notifier_call = migration_call,
	.priority = 10
};

6110
void __init migration_init(void)
L
Linus Torvalds 已提交
6111 6112
{
	void *cpu = (void *)(long)smp_processor_id();
6113
	int err;
6114 6115

	/* Start one for the boot CPU: */
6116 6117
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6118 6119 6120 6121 6122 6123
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6124

6125
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6126

6127 6128
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6129
{
I
Ingo Molnar 已提交
6130
	struct sched_group *group = sd->groups;
6131
	char str[256];
L
Linus Torvalds 已提交
6132

6133
	cpulist_scnprintf(str, sizeof(str), sd->span);
6134
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6135 6136 6137 6138 6139 6140 6141 6142 6143

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6144 6145
	}

I
Ingo Molnar 已提交
6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6156

I
Ingo Molnar 已提交
6157
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6158
	do {
I
Ingo Molnar 已提交
6159 6160 6161
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6162 6163 6164
			break;
		}

I
Ingo Molnar 已提交
6165 6166 6167 6168 6169 6170
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6171

I
Ingo Molnar 已提交
6172 6173 6174 6175 6176
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6177

6178
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6179 6180 6181 6182
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6183

6184
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6185

6186
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6187
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6188

I
Ingo Molnar 已提交
6189 6190 6191
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6192

6193
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6194
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6195

6196
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6197 6198 6199 6200
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6201

I
Ingo Molnar 已提交
6202 6203
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6204
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6205
	int level = 0;
L
Linus Torvalds 已提交
6206

I
Ingo Molnar 已提交
6207 6208 6209 6210
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6211

I
Ingo Molnar 已提交
6212 6213
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6214 6215 6216 6217 6218 6219
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6220
	for (;;) {
6221
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6222
			break;
L
Linus Torvalds 已提交
6223 6224
		level++;
		sd = sd->parent;
6225
		if (!sd)
I
Ingo Molnar 已提交
6226 6227
			break;
	}
6228
	kfree(groupmask);
L
Linus Torvalds 已提交
6229 6230
}
#else
6231
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6232 6233
#endif

6234
static int sd_degenerate(struct sched_domain *sd)
6235 6236 6237 6238 6239 6240 6241 6242
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6243 6244 6245
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6259 6260
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6279 6280 6281
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6282 6283 6284 6285 6286 6287 6288
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6299
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6300 6301
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6302
		}
G
Gregory Haskins 已提交
6303

6304 6305 6306
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6307 6308 6309 6310 6311 6312 6313
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6314
	cpu_set(rq->cpu, rd->span);
6315 6316
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);
6317

I
Ingo Molnar 已提交
6318
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6319 6320
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6321
	}
G
Gregory Haskins 已提交
6322 6323 6324 6325

	spin_unlock_irqrestore(&rq->lock, flags);
}

6326
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6327 6328 6329
{
	memset(rd, 0, sizeof(*rd));

6330 6331
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6332 6333 6334 6335
}

static void init_defrootdomain(void)
{
6336
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6337 6338 6339
	atomic_set(&def_root_domain.refcount, 1);
}

6340
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6341 6342 6343 6344 6345 6346 6347
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6348
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6349 6350 6351 6352

	return rd;
}

L
Linus Torvalds 已提交
6353
/*
I
Ingo Molnar 已提交
6354
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6355 6356
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6357 6358
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6359
{
6360
	struct rq *rq = cpu_rq(cpu);
6361 6362 6363 6364 6365 6366 6367
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6368
		if (sd_parent_degenerate(tmp, parent)) {
6369
			tmp->parent = parent->parent;
6370 6371 6372
			if (parent->parent)
				parent->parent->child = tmp;
		}
6373 6374
	}

6375
	if (sd && sd_degenerate(sd)) {
6376
		sd = sd->parent;
6377 6378 6379
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6380 6381 6382

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6383
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6384
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6385 6386 6387
}

/* cpus with isolated domains */
6388
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6403
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6404 6405

/*
6406 6407 6408 6409
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6410 6411 6412 6413 6414
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6415
static void
6416
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6417
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6418 6419 6420
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6421 6422 6423 6424
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6425 6426 6427
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6428
		struct sched_group *sg;
6429
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6430 6431
		int j;

6432
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6433 6434
			continue;

6435
		cpus_clear(sg->cpumask);
6436
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6437

6438 6439
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6440 6441
				continue;

6442
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6454
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6455

6456
#ifdef CONFIG_NUMA
6457

6458 6459 6460 6461 6462
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6463
 * Find the next node to include in a given scheduling domain. Simply
6464 6465 6466 6467
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6468
static int find_next_best_node(int node, nodemask_t *used_nodes)
6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6482
		if (node_isset(n, *used_nodes))
6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6494
	node_set(best_node, *used_nodes);
6495 6496 6497 6498 6499 6500 6501
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 *
I
Ingo Molnar 已提交
6502
 * Given a node, construct a good cpumask for its sched_domain to span. It
6503 6504 6505
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6506
static void sched_domain_node_span(int node, cpumask_t *span)
6507
{
6508 6509
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6510
	int i;
6511

6512
	cpus_clear(*span);
6513
	nodes_clear(used_nodes);
6514

6515
	cpus_or(*span, *span, *nodemask);
6516
	node_set(node, used_nodes);
6517 6518

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6519
		int next_node = find_next_best_node(node, &used_nodes);
6520

6521
		node_to_cpumask_ptr_next(nodemask, next_node);
6522
		cpus_or(*span, *span, *nodemask);
6523 6524 6525 6526
	}
}
#endif

6527
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6528

6529
/*
6530
 * SMT sched-domains:
6531
 */
L
Linus Torvalds 已提交
6532 6533
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6534
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6535

I
Ingo Molnar 已提交
6536
static int
6537 6538
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6539
{
6540 6541
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6542 6543 6544 6545
	return cpu;
}
#endif

6546 6547 6548
/*
 * multi-core sched-domains:
 */
6549 6550
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6551
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6552 6553 6554
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6555
static int
6556 6557
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6558
{
6559
	int group;
6560 6561 6562 6563

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6564 6565 6566
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6567 6568
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6569
static int
6570 6571
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6572
{
6573 6574
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6575 6576 6577 6578
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6579
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6580
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6581

I
Ingo Molnar 已提交
6582
static int
6583 6584
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6585
{
6586
	int group;
6587
#ifdef CONFIG_SCHED_MC
6588 6589 6590
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6591
#elif defined(CONFIG_SCHED_SMT)
6592 6593 6594
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6595
#else
6596
	group = cpu;
L
Linus Torvalds 已提交
6597
#endif
6598 6599 6600
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6601 6602 6603 6604
}

#ifdef CONFIG_NUMA
/*
6605 6606 6607
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6608
 */
6609
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6610
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6611

6612
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6613
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6614

6615
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6616
				 struct sched_group **sg, cpumask_t *nodemask)
6617
{
6618 6619
	int group;

6620 6621 6622
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
6623 6624 6625 6626

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6627
}
6628

6629 6630 6631 6632 6633 6634 6635
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6636 6637 6638
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6639

6640 6641 6642 6643 6644 6645 6646 6647
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6648

6649 6650 6651 6652
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6653
}
L
Linus Torvalds 已提交
6654 6655
#endif

6656
#ifdef CONFIG_NUMA
6657
/* Free memory allocated for various sched_group structures */
6658
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6659
{
6660
	int cpu, i;
6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6672 6673 6674
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6691
#else
6692
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6693 6694 6695
{
}
#endif
6696

6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6723 6724
	sd->groups->__cpu_power = 0;

6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6735
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6736 6737 6738 6739 6740 6741 6742 6743
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6744
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6745 6746 6747 6748
		group = group->next;
	} while (group != child->groups);
}

6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

L
Linus Torvalds 已提交
6808
/*
6809 6810
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6811
 */
6812
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6813 6814
{
	int i;
G
Gregory Haskins 已提交
6815
	struct root_domain *rd;
6816 6817
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
6818 6819
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6820
	int sd_allnodes = 0;
6821 6822 6823 6824

	/*
	 * Allocate the per-node list of sched groups
	 */
6825
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6826
				    GFP_KERNEL);
6827 6828
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6829
		return -ENOMEM;
6830 6831
	}
#endif
L
Linus Torvalds 已提交
6832

6833
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
6834 6835
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
6836 6837 6838
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
6839 6840 6841
		return -ENOMEM;
	}

6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
6861
	/*
6862
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6863
	 */
6864
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6865
		struct sched_domain *sd = NULL, *p;
6866
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
6867

6868 6869
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
6870 6871

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6872
		if (cpus_weight(*cpu_map) >
6873
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
6874
			sd = &per_cpu(allnodes_domains, i);
6875
			SD_INIT(sd, ALLNODES);
6876
			sd->span = *cpu_map;
6877
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
6878
			p = sd;
6879
			sd_allnodes = 1;
6880 6881 6882
		} else
			p = NULL;

L
Linus Torvalds 已提交
6883
		sd = &per_cpu(node_domains, i);
6884
		SD_INIT(sd, NODE);
6885
		sched_domain_node_span(cpu_to_node(i), &sd->span);
6886
		sd->parent = p;
6887 6888
		if (p)
			p->child = sd;
6889
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6890 6891 6892 6893
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
6894 6895
		SD_INIT(sd, CPU);
		sd->span = *nodemask;
L
Linus Torvalds 已提交
6896
		sd->parent = p;
6897 6898
		if (p)
			p->child = sd;
6899
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
6900

6901 6902 6903
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
6904
		SD_INIT(sd, MC);
6905 6906 6907
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6908
		p->child = sd;
6909
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
6910 6911
#endif

L
Linus Torvalds 已提交
6912 6913 6914
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
6915
		SD_INIT(sd, SIBLING);
6916
		sd->span = per_cpu(cpu_sibling_map, i);
6917
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6918
		sd->parent = p;
6919
		p->child = sd;
6920
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
6921 6922 6923 6924 6925
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6926
	for_each_cpu_mask(i, *cpu_map) {
6927 6928 6929 6930 6931 6932
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
6933 6934
			continue;

I
Ingo Molnar 已提交
6935
		init_sched_build_groups(this_sibling_map, cpu_map,
6936 6937
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
6938 6939 6940
	}
#endif

6941 6942 6943
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
6944 6945 6946 6947 6948 6949
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
6950
			continue;
6951

I
Ingo Molnar 已提交
6952
		init_sched_build_groups(this_core_map, cpu_map,
6953 6954
					&cpu_to_core_group,
					send_covered, tmpmask);
6955 6956 6957
	}
#endif

L
Linus Torvalds 已提交
6958 6959
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
6960 6961
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
6962

6963 6964 6965
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
6966 6967
			continue;

6968 6969 6970
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
6971 6972 6973 6974
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6975 6976 6977 6978 6979 6980 6981
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
6982 6983 6984 6985

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
6986 6987 6988
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
6989 6990
		int j;

6991 6992 6993 6994 6995
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
6996
			sched_group_nodes[i] = NULL;
6997
			continue;
6998
		}
6999

7000
		sched_domain_node_span(i, domainspan);
7001
		cpus_and(*domainspan, *domainspan, *cpu_map);
7002

7003
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7004 7005 7006 7007 7008
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7009
		sched_group_nodes[i] = sg;
7010
		for_each_cpu_mask(j, *nodemask) {
7011
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7012

7013 7014 7015
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7016
		sg->__cpu_power = 0;
7017
		sg->cpumask = *nodemask;
7018
		sg->next = sg;
7019
		cpus_or(*covered, *covered, *nodemask);
7020 7021 7022
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7023
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7024
			int n = (i + j) % MAX_NUMNODES;
7025
			node_to_cpumask_ptr(pnodemask, n);
7026

7027 7028 7029 7030
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7031 7032
				break;

7033 7034
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7035 7036
				continue;

7037 7038
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7039 7040 7041
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7042
				goto error;
7043
			}
7044
			sg->__cpu_power = 0;
7045
			sg->cpumask = *tmpmask;
7046
			sg->next = prev->next;
7047
			cpus_or(*covered, *covered, *tmpmask);
7048 7049 7050 7051
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7052 7053 7054
#endif

	/* Calculate CPU power for physical packages and nodes */
7055
#ifdef CONFIG_SCHED_SMT
7056
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7057 7058
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7059
		init_sched_groups_power(i, sd);
7060
	}
L
Linus Torvalds 已提交
7061
#endif
7062
#ifdef CONFIG_SCHED_MC
7063
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7064 7065
		struct sched_domain *sd = &per_cpu(core_domains, i);

7066
		init_sched_groups_power(i, sd);
7067 7068
	}
#endif
7069

7070
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7071 7072
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7073
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7074 7075
	}

7076
#ifdef CONFIG_NUMA
7077 7078
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7079

7080 7081
	if (sd_allnodes) {
		struct sched_group *sg;
7082

7083 7084
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7085 7086
		init_numa_sched_groups_power(sg);
	}
7087 7088
#endif

L
Linus Torvalds 已提交
7089
	/* Attach the domains */
7090
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7091 7092 7093
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7094 7095
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7096 7097 7098
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7099
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7100
	}
7101

7102
	SCHED_CPUMASK_FREE((void *)allmasks);
7103 7104
	return 0;

7105
#ifdef CONFIG_NUMA
7106
error:
7107 7108
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7109
	return -ENOMEM;
7110
#endif
L
Linus Torvalds 已提交
7111
}
P
Paul Jackson 已提交
7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7123 7124 7125 7126
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7127
/*
I
Ingo Molnar 已提交
7128
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7129 7130
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7131
 */
7132
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7133
{
7134 7135
	int err;

7136
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7137 7138 7139 7140 7141
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7142
	err = build_sched_domains(doms_cur);
7143
	register_sched_domain_sysctl();
7144 7145

	return err;
7146 7147
}

7148 7149
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7150
{
7151
	free_sched_groups(cpu_map, tmpmask);
7152
}
L
Linus Torvalds 已提交
7153

7154 7155 7156 7157
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7158
static void detach_destroy_domains(const cpumask_t *cpu_map)
7159
{
7160
	cpumask_t tmpmask;
7161 7162
	int i;

7163 7164
	unregister_sched_domain_sysctl();

7165
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7166
		cpu_attach_domain(NULL, &def_root_domain, i);
7167
	synchronize_sched();
7168
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7169 7170
}

P
Paul Jackson 已提交
7171 7172
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7173
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7174 7175 7176 7177
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7178 7179 7180
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7181 7182 7183
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7184 7185
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7186 7187 7188 7189 7190 7191 7192 7193 7194 7195
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

7196 7197
	lock_doms_cur();

7198 7199 7200
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
7236 7237

	register_sched_domain_sysctl();
7238 7239

	unlock_doms_cur();
P
Paul Jackson 已提交
7240 7241
}

7242
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7243
int arch_reinit_sched_domains(void)
7244 7245 7246
{
	int err;

7247
	get_online_cpus();
7248 7249
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
7250
	put_online_cpus();
7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7277 7278
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7279 7280 7281
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7282 7283
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7284 7285 7286 7287 7288 7289 7290
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7291 7292
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7293 7294 7295
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7316 7317
#endif

L
Linus Torvalds 已提交
7318
/*
I
Ingo Molnar 已提交
7319
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7320
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7321
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7322 7323 7324 7325 7326 7327 7328
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7329
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7330
	case CPU_DOWN_PREPARE:
7331
	case CPU_DOWN_PREPARE_FROZEN:
7332
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7333 7334 7335
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7336
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7337
	case CPU_DOWN_FAILED:
7338
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7339
	case CPU_ONLINE:
7340
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7341
	case CPU_DEAD:
7342
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7343 7344 7345 7346 7347 7348 7349 7350 7351
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7352
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7353 7354 7355 7356 7357 7358

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7359 7360
	cpumask_t non_isolated_cpus;

7361 7362 7363 7364 7365
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7366
	get_online_cpus();
7367
	arch_init_sched_domains(&cpu_online_map);
7368
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7369 7370
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7371
	put_online_cpus();
L
Linus Torvalds 已提交
7372 7373
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7374 7375

	/* Move init over to a non-isolated CPU */
7376
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7377
		BUG();
I
Ingo Molnar 已提交
7378
	sched_init_granularity();
L
Linus Torvalds 已提交
7379 7380 7381 7382
}
#else
void __init sched_init_smp(void)
{
7383 7384 7385 7386 7387
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
I
Ingo Molnar 已提交
7388
	sched_init_granularity();
L
Linus Torvalds 已提交
7389 7390 7391 7392 7393 7394 7395 7396 7397 7398
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7399
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7400 7401 7402 7403 7404
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7405
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7406 7407
}

P
Peter Zijlstra 已提交
7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7421
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7422 7423
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7424 7425 7426 7427 7428 7429 7430
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7431 7432
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7433

7434
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7435
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7436 7437
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7438 7439
}

P
Peter Zijlstra 已提交
7440
#ifdef CONFIG_FAIR_GROUP_SCHED
7441 7442 7443
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7444
{
7445
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7446 7447 7448 7449 7450 7451 7452
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7453 7454 7455 7456
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7457 7458 7459 7460 7461
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7462 7463 7464
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
	se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7465
	se->parent = parent;
P
Peter Zijlstra 已提交
7466
}
7467
#endif
P
Peter Zijlstra 已提交
7468

7469
#ifdef CONFIG_RT_GROUP_SCHED
7470 7471 7472
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7473
{
7474 7475
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7476 7477 7478 7479
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7480
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7481 7482 7483 7484
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7485 7486 7487
	if (!rt_se)
		return;

7488 7489 7490 7491 7492
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7493 7494
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
7495
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7496 7497 7498 7499
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7500 7501
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7502
	int i, j;
7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
		ptr = (unsigned long)alloc_bootmem_low(alloc_size);

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
#endif
	}
I
Ingo Molnar 已提交
7532

G
Gregory Haskins 已提交
7533 7534 7535 7536
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7537 7538 7539 7540 7541 7542 7543 7544
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
#endif

7545
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7546 7547 7548
	list_add(&init_task_group.list, &task_groups);
#endif

7549
	for_each_possible_cpu(i) {
7550
		struct rq *rq;
L
Linus Torvalds 已提交
7551 7552 7553

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7554
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7555
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7556
		rq->clock = 1;
7557
		update_last_tick_seen(rq);
I
Ingo Molnar 已提交
7558
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7559
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7560
#ifdef CONFIG_FAIR_GROUP_SCHED
7561
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7562
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7583
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595
#elif defined CONFIG_USER_SCHED
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
7596
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
7597
				&per_cpu(init_cfs_rq, i),
7598
				&per_cpu(init_sched_entity, i), i, 1, NULL);
P
Peter Zijlstra 已提交
7599

7600
#endif
D
Dhaval Giani 已提交
7601 7602 7603
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7604
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7605
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7606
#ifdef CONFIG_CGROUP_SCHED
7607
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7608
#elif defined CONFIG_USER_SCHED
7609
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
7610
				&per_cpu(init_rt_rq, i),
7611
				&per_cpu(init_sched_rt_entity, i), i, 1, NULL);
D
Dhaval Giani 已提交
7612
#endif
I
Ingo Molnar 已提交
7613
#endif
L
Linus Torvalds 已提交
7614

I
Ingo Molnar 已提交
7615 7616
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7617
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7618
		rq->sd = NULL;
G
Gregory Haskins 已提交
7619
		rq->rd = NULL;
L
Linus Torvalds 已提交
7620
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7621
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7622
		rq->push_cpu = 0;
7623
		rq->cpu = i;
L
Linus Torvalds 已提交
7624 7625
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7626
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7627
#endif
P
Peter Zijlstra 已提交
7628
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7629 7630 7631
		atomic_set(&rq->nr_iowait, 0);
	}

7632
	set_load_weight(&init_task);
7633

7634 7635 7636 7637
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7638 7639 7640 7641
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7642 7643 7644 7645
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
7659 7660 7661 7662
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7663 7664

	scheduler_running = 1;
L
Linus Torvalds 已提交
7665 7666 7667 7668 7669
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
7670
#ifdef in_atomic
L
Linus Torvalds 已提交
7671 7672 7673 7674 7675 7676 7677
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
7678
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
7679 7680 7681
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
7682
		debug_show_held_locks(current);
7683 7684
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
7685 7686 7687 7688 7689 7690 7691 7692
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7707 7708
void normalize_rt_tasks(void)
{
7709
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7710
	unsigned long flags;
7711
	struct rq *rq;
L
Linus Torvalds 已提交
7712

7713
	read_lock_irqsave(&tasklist_lock, flags);
7714
	do_each_thread(g, p) {
7715 7716 7717 7718 7719 7720
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7721 7722
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7723 7724 7725
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7726
#endif
I
Ingo Molnar 已提交
7727 7728 7729 7730 7731 7732 7733 7734 7735
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7736
			continue;
I
Ingo Molnar 已提交
7737
		}
L
Linus Torvalds 已提交
7738

7739
		spin_lock(&p->pi_lock);
7740
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7741

7742
		normalize_task(rq, p);
7743

7744
		__task_rq_unlock(rq);
7745
		spin_unlock(&p->pi_lock);
7746 7747
	} while_each_thread(g, p);

7748
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7749 7750 7751
}

#endif /* CONFIG_MAGIC_SYSRQ */
7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7770
struct task_struct *curr_task(int cpu)
7771 7772 7773 7774 7775 7776 7777 7778 7779 7780
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7781 7782
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7783 7784 7785 7786 7787 7788 7789
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7790
void set_curr_task(int cpu, struct task_struct *p)
7791 7792 7793 7794 7795
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7796

7797 7798
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7813 7814
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7815 7816
{
	struct cfs_rq *cfs_rq;
7817
	struct sched_entity *se, *parent_se;
7818
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7819 7820
	int i;

7821
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7822 7823
	if (!tg->cfs_rq)
		goto err;
7824
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7825 7826
	if (!tg->se)
		goto err;
7827 7828

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7829 7830

	for_each_possible_cpu(i) {
7831
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7832

P
Peter Zijlstra 已提交
7833 7834
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7835 7836 7837
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
7838 7839
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7840 7841 7842
		if (!se)
			goto err;

7843 7844
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

7868 7869
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7881 7882 7883
#endif

#ifdef CONFIG_RT_GROUP_SCHED
7884 7885 7886 7887
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

7888 7889
	destroy_rt_bandwidth(&tg->rt_bandwidth);

7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

7901 7902
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7903 7904
{
	struct rt_rq *rt_rq;
7905
	struct sched_rt_entity *rt_se, *parent_se;
7906 7907 7908
	struct rq *rq;
	int i;

7909
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
7910 7911
	if (!tg->rt_rq)
		goto err;
7912
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
7913 7914 7915
	if (!tg->rt_se)
		goto err;

7916 7917
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7918 7919 7920 7921

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
7922 7923 7924 7925
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
7926

P
Peter Zijlstra 已提交
7927 7928 7929 7930
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
7931

7932 7933
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
7934 7935
	}

7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

7957 7958
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

7972
#ifdef CONFIG_GROUP_SCHED
7973 7974 7975 7976 7977 7978 7979 7980
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7981
struct task_group *sched_create_group(struct task_group *parent)
7982 7983 7984 7985 7986 7987 7988 7989 7990
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7991
	if (!alloc_fair_sched_group(tg, parent))
7992 7993
		goto err;

7994
	if (!alloc_rt_sched_group(tg, parent))
7995 7996
		goto err;

7997
	spin_lock_irqsave(&task_group_lock, flags);
7998
	for_each_possible_cpu(i) {
7999 8000
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8001
	}
P
Peter Zijlstra 已提交
8002
	list_add_rcu(&tg->list, &task_groups);
8003
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8004

8005
	return tg;
S
Srivatsa Vaddagiri 已提交
8006 8007

err:
P
Peter Zijlstra 已提交
8008
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8009 8010 8011
	return ERR_PTR(-ENOMEM);
}

8012
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8013
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8014 8015
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8016
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8017 8018
}

8019
/* Destroy runqueue etc associated with a task group */
8020
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8021
{
8022
	unsigned long flags;
8023
	int i;
S
Srivatsa Vaddagiri 已提交
8024

8025
	spin_lock_irqsave(&task_group_lock, flags);
8026
	for_each_possible_cpu(i) {
8027 8028
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8029
	}
P
Peter Zijlstra 已提交
8030
	list_del_rcu(&tg->list);
8031
	spin_unlock_irqrestore(&task_group_lock, flags);
8032 8033

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8034
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8035 8036
}

8037
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8038 8039 8040
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8041 8042
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8043 8044 8045 8046 8047 8048 8049 8050 8051
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8052
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8053 8054
	on_rq = tsk->se.on_rq;

8055
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8056
		dequeue_task(rq, tsk, 0);
8057 8058
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8059

P
Peter Zijlstra 已提交
8060
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8061

P
Peter Zijlstra 已提交
8062 8063 8064 8065 8066
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8067 8068 8069
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8070
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8071 8072 8073

	task_rq_unlock(rq, &flags);
}
8074
#endif
S
Srivatsa Vaddagiri 已提交
8075

8076
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
8077 8078 8079 8080 8081 8082
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

8083
	spin_lock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
8084 8085

	on_rq = se->on_rq;
8086
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8087 8088 8089 8090 8091
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

8092
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8093
		enqueue_entity(cfs_rq, se, 0);
8094 8095

	spin_unlock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
8096 8097
}

8098 8099
static DEFINE_MUTEX(shares_mutex);

8100
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8101 8102
{
	int i;
8103
	unsigned long flags;
8104

8105 8106 8107 8108 8109 8110
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8111 8112 8113 8114 8115 8116 8117 8118
	/*
	 * A weight of 0 or 1 can cause arithmetics problems.
	 * (The default weight is 1024 - so there's no practical
	 *  limitation from this.)
	 */
	if (shares < 2)
		shares = 2;

8119
	mutex_lock(&shares_mutex);
8120
	if (tg->shares == shares)
8121
		goto done;
S
Srivatsa Vaddagiri 已提交
8122

8123
	spin_lock_irqsave(&task_group_lock, flags);
8124 8125
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
8126
	spin_unlock_irqrestore(&task_group_lock, flags);
8127 8128 8129 8130 8131 8132 8133 8134

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8135
	tg->shares = shares;
8136
	for_each_possible_cpu(i)
8137
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
8138

8139 8140 8141 8142
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8143
	spin_lock_irqsave(&task_group_lock, flags);
8144 8145
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
8146
	spin_unlock_irqrestore(&task_group_lock, flags);
8147
done:
8148
	mutex_unlock(&shares_mutex);
8149
	return 0;
S
Srivatsa Vaddagiri 已提交
8150 8151
}

8152 8153 8154 8155
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8156
#endif
8157

8158
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8159
/*
P
Peter Zijlstra 已提交
8160
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8161
 */
P
Peter Zijlstra 已提交
8162 8163 8164 8165 8166 8167 8168
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

8169
	return div64_64(runtime << 16, period);
P
Peter Zijlstra 已提交
8170 8171 8172
}

static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8173 8174 8175
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8176
	unsigned long global_ratio =
8177
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8178 8179

	rcu_read_lock();
P
Peter Zijlstra 已提交
8180 8181 8182
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8183

8184 8185
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8186 8187
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8188

P
Peter Zijlstra 已提交
8189
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8190 8191
}

8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8203 8204
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8205
{
P
Peter Zijlstra 已提交
8206
	int i, err = 0;
P
Peter Zijlstra 已提交
8207 8208

	mutex_lock(&rt_constraints_mutex);
8209
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8210
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8211 8212 8213
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8214 8215 8216 8217
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8218 8219

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8220 8221
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8222 8223 8224 8225 8226 8227 8228 8229 8230

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8231
 unlock:
8232
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8233 8234 8235
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8236 8237
}

8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8250 8251 8252 8253
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8254
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8255 8256
		return -1;

8257
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8258 8259 8260
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
	if (!__rt_schedulable(NULL, 1, 0))
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
#else
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8308 8309
	return 0;
}
8310
#endif
8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8341

8342
#ifdef CONFIG_CGROUP_SCHED
8343 8344

/* return corresponding task_group object of a cgroup */
8345
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8346
{
8347 8348
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8349 8350 8351
}

static struct cgroup_subsys_state *
8352
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8353
{
8354
	struct task_group *tg, *parent;
8355

8356
	if (!cgrp->parent) {
8357
		/* This is early initialization for the top cgroup */
8358
		init_task_group.css.cgroup = cgrp;
8359 8360 8361
		return &init_task_group.css;
	}

8362 8363
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8364 8365 8366 8367
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8368
	tg->css.cgroup = cgrp;
8369 8370 8371 8372

	return &tg->css;
}

I
Ingo Molnar 已提交
8373 8374
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8375
{
8376
	struct task_group *tg = cgroup_tg(cgrp);
8377 8378 8379 8380

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8381 8382 8383
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8384
{
8385 8386
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8387
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8388 8389
		return -EINVAL;
#else
8390 8391 8392
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8393
#endif
8394 8395 8396 8397 8398

	return 0;
}

static void
8399
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8400 8401 8402 8403 8404
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8405
#ifdef CONFIG_FAIR_GROUP_SCHED
8406 8407
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
8408
{
8409
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8410 8411
}

8412
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
8413
{
8414
	struct task_group *tg = cgroup_tg(cgrp);
8415 8416 8417

	return (u64) tg->shares;
}
8418
#endif
8419

8420
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8421
static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
P
Peter Zijlstra 已提交
8422 8423 8424
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
P
Peter Zijlstra 已提交
8425
{
P
Peter Zijlstra 已提交
8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451
	char buffer[64];
	int retval = 0;
	s64 val;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */

	/* strip newline if necessary */
	if (nbytes && (buffer[nbytes-1] == '\n'))
		buffer[nbytes-1] = 0;
	val = simple_strtoll(buffer, &end, 0);
	if (*end)
		return -EINVAL;

	/* Pass to subsystem */
	retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
	if (!retval)
		retval = nbytes;
	return retval;
P
Peter Zijlstra 已提交
8452 8453
}

P
Peter Zijlstra 已提交
8454 8455 8456 8457
static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   char __user *buf, size_t nbytes,
				   loff_t *ppos)
P
Peter Zijlstra 已提交
8458
{
P
Peter Zijlstra 已提交
8459 8460 8461
	char tmp[64];
	long val = sched_group_rt_runtime(cgroup_tg(cgrp));
	int len = sprintf(tmp, "%ld\n", val);
P
Peter Zijlstra 已提交
8462

P
Peter Zijlstra 已提交
8463
	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
P
Peter Zijlstra 已提交
8464
}
8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8476
#endif
P
Peter Zijlstra 已提交
8477

8478
static struct cftype cpu_files[] = {
8479
#ifdef CONFIG_FAIR_GROUP_SCHED
8480 8481 8482 8483 8484
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
8485 8486
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8487
	{
P
Peter Zijlstra 已提交
8488 8489 8490
		.name = "rt_runtime_us",
		.read = cpu_rt_runtime_read,
		.write = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8491
	},
8492 8493 8494 8495 8496
	{
		.name = "rt_period_us",
		.read_uint = cpu_rt_period_read_uint,
		.write_uint = cpu_rt_period_write_uint,
	},
8497
#endif
8498 8499 8500 8501
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8502
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8503 8504 8505
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8506 8507 8508 8509 8510 8511 8512
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8513 8514 8515
	.early_init	= 1,
};

8516
#endif	/* CONFIG_CGROUP_SCHED */
8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8537
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8538
{
8539
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8552
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8569
static void
8570
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8571
{
8572
	struct cpuacct *ca = cgroup_ca(cgrp);
8573 8574 8575 8576 8577 8578

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
8579
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8580
{
8581
	struct cpuacct *ca = cgroup_ca(cgrp);
8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

8623 8624 8625 8626
static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
8627
		.write_uint = cpuusage_write,
8628 8629 8630
	},
};

8631
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8632
{
8633
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */