sched.c 201.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
L
Linus Torvalds 已提交
70

71
#include <asm/tlb.h>
72
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
73

74 75 76 77 78 79 80
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
81
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
82 83
}

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

144 145 146 147 148 149 150 151 152 153 154 155
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
156
/*
I
Ingo Molnar 已提交
157
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
158
 */
I
Ingo Molnar 已提交
159 160 161 162 163
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
struct rt_bandwidth {
	ktime_t rt_period;
	u64 rt_runtime;
	struct hrtimer rt_period_timer;
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

238
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
239

240 241
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
242 243
struct cfs_rq;

P
Peter Zijlstra 已提交
244 245
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
246
/* task group related information */
247
struct task_group {
248
#ifdef CONFIG_CGROUP_SCHED
249 250
	struct cgroup_subsys_state css;
#endif
251 252

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
253 254 255 256 257
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
258 259 260 261 262 263
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

264
	struct rt_bandwidth rt_bandwidth;
265
#endif
266

267
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
268
	struct list_head list;
S
Srivatsa Vaddagiri 已提交
269 270
};

271
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
272 273 274 275 276
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

277 278
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
279 280 281 282 283
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
S
Srivatsa Vaddagiri 已提交
284

P
Peter Zijlstra 已提交
285 286
static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
static struct rt_rq *init_rt_rq_p[NR_CPUS];
287
#endif
P
Peter Zijlstra 已提交
288

289
/* task_group_lock serializes add/remove of task groups and also changes to
290 291
 * a task group's cpu shares.
 */
292
static DEFINE_SPINLOCK(task_group_lock);
293

294 295 296
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

297 298 299 300 301 302 303 304 305 306
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
307
/* Default task group.
I
Ingo Molnar 已提交
308
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
309
 */
310
struct task_group init_task_group = {
311
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
312
	.se	= init_sched_entity_p,
I
Ingo Molnar 已提交
313
	.cfs_rq = init_cfs_rq_p,
314
#endif
P
Peter Zijlstra 已提交
315

316
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
317 318
	.rt_se	= init_sched_rt_entity_p,
	.rt_rq	= init_rt_rq_p,
319
#endif
320
};
S
Srivatsa Vaddagiri 已提交
321 322

/* return group to which a task belongs */
323
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
324
{
325
	struct task_group *tg;
326

327
#ifdef CONFIG_USER_SCHED
328
	tg = p->user->tg;
329
#elif defined(CONFIG_CGROUP_SCHED)
330 331
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
332
#else
I
Ingo Molnar 已提交
333
	tg = &init_task_group;
334
#endif
335
	return tg;
S
Srivatsa Vaddagiri 已提交
336 337 338
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
339
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
340
{
341
#ifdef CONFIG_FAIR_GROUP_SCHED
342 343
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
344
#endif
P
Peter Zijlstra 已提交
345

346
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
347 348
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
349
#endif
S
Srivatsa Vaddagiri 已提交
350 351
}

352 353 354 355 356 357 358 359 360 361
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
362 363
#else

P
Peter Zijlstra 已提交
364
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
365 366
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
367

368
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
369

I
Ingo Molnar 已提交
370 371 372 373 374 375
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
376
	u64 min_vruntime;
I
Ingo Molnar 已提交
377 378 379 380 381 382 383

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
384
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
385 386 387

	unsigned long nr_spread_over;

388
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
389 390
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
391 392
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
393 394 395 396 397 398
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
399 400
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
401 402
#endif
};
L
Linus Torvalds 已提交
403

I
Ingo Molnar 已提交
404 405 406
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
407
	unsigned long rt_nr_running;
408
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
409 410
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
411
#ifdef CONFIG_SMP
412
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
413
	int overloaded;
P
Peter Zijlstra 已提交
414
#endif
P
Peter Zijlstra 已提交
415
	int rt_throttled;
P
Peter Zijlstra 已提交
416
	u64 rt_time;
P
Peter Zijlstra 已提交
417

418
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
419 420
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
421 422 423 424 425
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
426 427
};

G
Gregory Haskins 已提交
428 429 430 431
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
432 433
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
434 435 436 437 438 439 440 441
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
442

I
Ingo Molnar 已提交
443
	/*
444 445 446 447
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
448
	atomic_t rto_count;
G
Gregory Haskins 已提交
449 450
};

451 452 453 454
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
455 456 457 458
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
459 460 461 462 463 464 465
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
466
struct rq {
467 468
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
469 470 471 472 473 474

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
475 476
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
477
	unsigned char idle_at_tick;
478
#ifdef CONFIG_NO_HZ
479
	unsigned long last_tick_seen;
480 481
	unsigned char in_nohz_recently;
#endif
482 483
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
484 485 486 487
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
488 489
	struct rt_rq rt;

I
Ingo Molnar 已提交
490
#ifdef CONFIG_FAIR_GROUP_SCHED
491 492
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
493 494
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
495
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
496 497 498 499 500 501 502 503 504 505
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

506
	struct task_struct *curr, *idle;
507
	unsigned long next_balance;
L
Linus Torvalds 已提交
508
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
509 510 511 512

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

513
	unsigned int clock_warps, clock_overflows, clock_underflows;
514 515
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
516
	u64 tick_timestamp;
I
Ingo Molnar 已提交
517

L
Linus Torvalds 已提交
518 519 520
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
521
	struct root_domain *rd;
L
Linus Torvalds 已提交
522 523 524 525 526
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
527 528
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
529

530
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
531 532 533
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
534 535 536 537 538 539
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
540 541 542 543 544
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
545 546 547 548
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
549 550

	/* schedule() stats */
551 552 553
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
554 555

	/* try_to_wake_up() stats */
556 557
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
558 559

	/* BKL stats */
560
	unsigned int bkl_count;
L
Linus Torvalds 已提交
561
#endif
562
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
563 564
};

565
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
566

I
Ingo Molnar 已提交
567 568 569 570 571
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

572 573 574 575 576 577 578 579 580
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
#ifdef CONFIG_NO_HZ
static inline bool nohz_on(int cpu)
{
	return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
}

static inline u64 max_skipped_ticks(struct rq *rq)
{
	return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
}

static inline void update_last_tick_seen(struct rq *rq)
{
	rq->last_tick_seen = jiffies;
}
#else
static inline u64 max_skipped_ticks(struct rq *rq)
{
	return 1;
}

static inline void update_last_tick_seen(struct rq *rq)
{
}
#endif

I
Ingo Molnar 已提交
607
/*
I
Ingo Molnar 已提交
608 609
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
610
 */
I
Ingo Molnar 已提交
611
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
612 613 614 615 616 617
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
618 619 620
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
621 622 623 624 625 626 627 628 629 630
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
631 632 633 634 635 636
		u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
		u64 max_time = rq->tick_timestamp + max_jump;

		if (unlikely(clock + delta > max_time)) {
			if (clock < max_time)
				clock = max_time;
637 638
			else
				clock++;
I
Ingo Molnar 已提交
639 640 641 642 643 644 645 646 647 648
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
649
}
I
Ingo Molnar 已提交
650

I
Ingo Molnar 已提交
651 652 653 654
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
655 656
}

N
Nick Piggin 已提交
657 658
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
659
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
660 661 662 663
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
664 665
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
666 667 668 669 670 671

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
685
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
686 687
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
688 689
	SCHED_FEAT_AFFINE_WAKEUPS	= 8,
	SCHED_FEAT_CACHE_HOT_BUDDY	= 16,
I
Ingo Molnar 已提交
690 691 692
	SCHED_FEAT_SYNC_WAKEUPS		= 32,
	SCHED_FEAT_HRTICK		= 64,
	SCHED_FEAT_DOUBLE_TICK		= 128,
I
Ingo Molnar 已提交
693 694 695
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
696
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
697
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
698
		SCHED_FEAT_START_DEBIT		* 1 |
I
Ingo Molnar 已提交
699 700
		SCHED_FEAT_AFFINE_WAKEUPS	* 1 |
		SCHED_FEAT_CACHE_HOT_BUDDY	* 1 |
I
Ingo Molnar 已提交
701
		SCHED_FEAT_SYNC_WAKEUPS		* 1 |
P
Peter Zijlstra 已提交
702
		SCHED_FEAT_HRTICK		* 1 |
I
Ingo Molnar 已提交
703
		SCHED_FEAT_DOUBLE_TICK		* 0;
I
Ingo Molnar 已提交
704 705 706

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

707 708 709 710 711 712
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
713
/*
P
Peter Zijlstra 已提交
714
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
715 716
 * default: 1s
 */
P
Peter Zijlstra 已提交
717
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
718

719 720
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
721 722 723 724 725
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
726

727 728 729 730 731 732 733 734 735 736 737 738
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
739

740 741 742 743 744
static const unsigned long long time_sync_thresh = 100000;

static DEFINE_PER_CPU(unsigned long long, time_offset);
static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);

745
/*
746 747 748 749
 * Global lock which we take every now and then to synchronize
 * the CPUs time. This method is not warp-safe, but it's good
 * enough to synchronize slowly diverging time sources and thus
 * it's good enough for tracing:
750
 */
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
static DEFINE_SPINLOCK(time_sync_lock);
static unsigned long long prev_global_time;

static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
{
	unsigned long flags;

	spin_lock_irqsave(&time_sync_lock, flags);

	if (time < prev_global_time) {
		per_cpu(time_offset, cpu) += prev_global_time - time;
		time = prev_global_time;
	} else {
		prev_global_time = time;
	}

	spin_unlock_irqrestore(&time_sync_lock, flags);

	return time;
}

static unsigned long long __cpu_clock(int cpu)
773 774 775
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
776
	struct rq *rq;
777

778 779 780 781
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
782 783 784 785 786 787
	if (unlikely(!scheduler_running))
		return 0;

	local_irq_save(flags);
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
I
Ingo Molnar 已提交
788
	now = rq->clock;
789
	local_irq_restore(flags);
790 791 792

	return now;
}
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long prev_cpu_time, time, delta_time;

	prev_cpu_time = per_cpu(prev_cpu_time, cpu);
	time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
	delta_time = time-prev_cpu_time;

	if (unlikely(delta_time > time_sync_thresh))
		time = __sync_cpu_clock(time, cpu);

	return time;
}
P
Paul E. McKenney 已提交
811
EXPORT_SYMBOL_GPL(cpu_clock);
812

L
Linus Torvalds 已提交
813
#ifndef prepare_arch_switch
814 815 816 817 818 819
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

820 821 822 823 824
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

825
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
826
static inline int task_running(struct rq *rq, struct task_struct *p)
827
{
828
	return task_current(rq, p);
829 830
}

831
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
832 833 834
{
}

835
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
836
{
837 838 839 840
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
841 842 843 844 845 846 847
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

848 849 850 851
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
852
static inline int task_running(struct rq *rq, struct task_struct *p)
853 854 855 856
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
857
	return task_current(rq, p);
858 859 860
#endif
}

861
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

878
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
879 880 881 882 883 884 885 886 887 888 889 890
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
891
#endif
892 893
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
894

895 896 897 898
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
899
static inline struct rq *__task_rq_lock(struct task_struct *p)
900 901
	__acquires(rq->lock)
{
902 903 904 905 906
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
907 908 909 910
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
911 912
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
913
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
914 915
 * explicitly disabling preemption.
 */
916
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
917 918
	__acquires(rq->lock)
{
919
	struct rq *rq;
L
Linus Torvalds 已提交
920

921 922 923 924 925 926
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
927 928 929 930
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
931
static void __task_rq_unlock(struct rq *rq)
932 933 934 935 936
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

937
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
938 939 940 941 942 943
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
944
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
945
 */
A
Alexey Dobriyan 已提交
946
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
947 948
	__acquires(rq->lock)
{
949
	struct rq *rq;
L
Linus Torvalds 已提交
950 951 952 953 954 955 956 957

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

958
/*
959
 * We are going deep-idle (irqs are disabled):
960
 */
961
void sched_clock_idle_sleep_event(void)
962
{
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
979

980 981 982 983 984 985 986 987 988 989 990
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
991
	touch_softlockup_watchdog();
992
}
993
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
994

P
Peter Zijlstra 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

static inline void init_rq_hrtick(struct rq *rq)
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
#endif

I
Ingo Molnar 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1175
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1176 1177 1178 1179 1180
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1181
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1182 1183
		return;

P
Peter Zijlstra 已提交
1184
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
#endif

I
Ingo Molnar 已提交
1249
#else
P
Peter Zijlstra 已提交
1250
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1251 1252
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1253
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1254 1255 1256
}
#endif

1257 1258 1259 1260 1261 1262 1263 1264
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1265 1266 1267
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1268
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1269

1270
static unsigned long
1271 1272 1273 1274 1275 1276
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
1277
		lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
1278 1279 1280 1281 1282

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1283
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1284
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1285 1286
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1287
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1288

1289
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1290 1291 1292 1293 1294 1295 1296 1297
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

1298
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1299 1300
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1301
	lw->inv_weight = 0;
1302 1303
}

1304
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1305 1306
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1307
	lw->inv_weight = 0;
1308 1309
}

1310 1311 1312 1313
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1314
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1315 1316 1317 1318
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1330 1331 1332
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1333 1334
 */
static const int prio_to_weight[40] = {
1335 1336 1337 1338 1339 1340 1341 1342
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1343 1344
};

1345 1346 1347 1348 1349 1350 1351
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1352
static const u32 prio_to_wmult[40] = {
1353 1354 1355 1356 1357 1358 1359 1360
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1361
};
1362

I
Ingo Molnar 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1388

1389 1390 1391 1392 1393 1394
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1395 1396 1397 1398 1399 1400 1401
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1402 1403
#include "sched_stats.h"
#include "sched_idletask.c"
1404 1405
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1406 1407 1408 1409 1410 1411
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
static inline void inc_load(struct rq *rq, const struct task_struct *p)
{
	update_load_add(&rq->load, p->se.load.weight);
}

static inline void dec_load(struct rq *rq, const struct task_struct *p)
{
	update_load_sub(&rq->load, p->se.load.weight);
}

static void inc_nr_running(struct task_struct *p, struct rq *rq)
1423 1424
{
	rq->nr_running++;
1425
	inc_load(rq, p);
1426 1427
}

1428
static void dec_nr_running(struct task_struct *p, struct rq *rq)
1429 1430
{
	rq->nr_running--;
1431
	dec_load(rq, p);
1432 1433
}

1434 1435 1436
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1437 1438 1439 1440
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1441

I
Ingo Molnar 已提交
1442 1443 1444 1445 1446 1447 1448 1449
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1450

I
Ingo Molnar 已提交
1451 1452
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1453 1454
}

1455
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1456
{
I
Ingo Molnar 已提交
1457
	sched_info_queued(p);
1458
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1459
	p->se.on_rq = 1;
1460 1461
}

1462
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1463
{
1464
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1465
	p->se.on_rq = 0;
1466 1467
}

1468
/*
I
Ingo Molnar 已提交
1469
 * __normal_prio - return the priority that is based on the static prio
1470 1471 1472
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1473
	return p->static_prio;
1474 1475
}

1476 1477 1478 1479 1480 1481 1482
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1483
static inline int normal_prio(struct task_struct *p)
1484 1485 1486
{
	int prio;

1487
	if (task_has_rt_policy(p))
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1501
static int effective_prio(struct task_struct *p)
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1514
/*
I
Ingo Molnar 已提交
1515
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1516
 */
I
Ingo Molnar 已提交
1517
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1518
{
1519
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1520
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1521

1522
	enqueue_task(rq, p, wakeup);
1523
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1524 1525 1526 1527 1528
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1529
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1530
{
1531
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1532 1533
		rq->nr_uninterruptible++;

1534
	dequeue_task(rq, p, sleep);
1535
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1536 1537 1538 1539 1540 1541
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1542
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1543 1544 1545 1546
{
	return cpu_curr(task_cpu(p)) == p;
}

1547 1548 1549
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1550
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1551 1552 1553 1554
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1555
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1556
#ifdef CONFIG_SMP
1557 1558 1559 1560 1561 1562
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1563 1564
	task_thread_info(p)->cpu = cpu;
#endif
1565 1566
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1579
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1580

1581 1582 1583
/*
 * Is this task likely cache-hot:
 */
1584
static int
1585 1586 1587 1588
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1589 1590 1591
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1592
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1593 1594
		return 1;

1595 1596 1597
	if (p->sched_class != &fair_sched_class)
		return 0;

1598 1599 1600 1601 1602
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1603 1604 1605 1606 1607 1608
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1609
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1610
{
I
Ingo Molnar 已提交
1611 1612
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1613 1614
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1615
	u64 clock_offset;
I
Ingo Molnar 已提交
1616 1617

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1618 1619 1620 1621

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1622 1623 1624 1625
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1626 1627 1628 1629 1630
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1631
#endif
1632 1633
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1634 1635

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1636 1637
}

1638
struct migration_req {
L
Linus Torvalds 已提交
1639 1640
	struct list_head list;

1641
	struct task_struct *task;
L
Linus Torvalds 已提交
1642 1643 1644
	int dest_cpu;

	struct completion done;
1645
};
L
Linus Torvalds 已提交
1646 1647 1648 1649 1650

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1651
static int
1652
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1653
{
1654
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1655 1656 1657 1658 1659

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1660
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1661 1662 1663 1664 1665 1666 1667 1668
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1669

L
Linus Torvalds 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1682
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1683 1684
{
	unsigned long flags;
I
Ingo Molnar 已提交
1685
	int running, on_rq;
1686
	struct rq *rq;
L
Linus Torvalds 已提交
1687

1688 1689 1690 1691 1692 1693 1694 1695
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1696

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1710

1711 1712 1713 1714 1715 1716 1717 1718 1719
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1720

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1731

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1745

1746 1747 1748 1749 1750 1751 1752
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1768
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1780 1781
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1782 1783 1784 1785
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1786
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1787
{
1788
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1789
	unsigned long total = weighted_cpuload(cpu);
1790

1791
	if (type == 0)
I
Ingo Molnar 已提交
1792
		return total;
1793

I
Ingo Molnar 已提交
1794
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1795 1796 1797
}

/*
1798 1799
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1800
 */
A
Alexey Dobriyan 已提交
1801
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1802
{
1803
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1804
	unsigned long total = weighted_cpuload(cpu);
1805

N
Nick Piggin 已提交
1806
	if (type == 0)
I
Ingo Molnar 已提交
1807
		return total;
1808

I
Ingo Molnar 已提交
1809
	return max(rq->cpu_load[type-1], total);
1810 1811 1812 1813 1814
}

/*
 * Return the average load per task on the cpu's run queue
 */
1815
static unsigned long cpu_avg_load_per_task(int cpu)
1816
{
1817
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1818
	unsigned long total = weighted_cpuload(cpu);
1819 1820
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1821
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1822 1823
}

N
Nick Piggin 已提交
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1841 1842
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1843
			continue;
1844

N
Nick Piggin 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1861 1862
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1863 1864 1865 1866 1867 1868 1869 1870

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1871
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1872 1873 1874 1875 1876 1877 1878

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1879
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1880
 */
I
Ingo Molnar 已提交
1881 1882
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1883
{
1884
	cpumask_t tmp;
N
Nick Piggin 已提交
1885 1886 1887 1888
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1889 1890 1891 1892
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1893
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1919

1920
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1921 1922 1923
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1924 1925
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1926 1927
		if (tmp->flags & flag)
			sd = tmp;
1928
	}
N
Nick Piggin 已提交
1929 1930 1931 1932

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1933 1934 1935 1936 1937 1938
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1939 1940 1941

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1942 1943 1944 1945
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1946

1947
		new_cpu = find_idlest_cpu(group, t, cpu);
1948 1949 1950 1951 1952
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1953

1954
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1986
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1987
{
1988
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1989 1990
	unsigned long flags;
	long old_state;
1991
	struct rq *rq;
L
Linus Torvalds 已提交
1992

1993 1994 1995
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

1996
	smp_wmb();
L
Linus Torvalds 已提交
1997 1998 1999 2000 2001
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2002
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2003 2004 2005
		goto out_running;

	cpu = task_cpu(p);
2006
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2007 2008 2009 2010 2011 2012
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2013 2014 2015
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2016 2017 2018 2019 2020 2021
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2022
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2023 2024 2025 2026 2027 2028
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
2044 2045
out_activate:
#endif /* CONFIG_SMP */
2046 2047 2048 2049 2050 2051 2052 2053 2054
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2055
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2056
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2057 2058 2059
	success = 1;

out_running:
I
Ingo Molnar 已提交
2060 2061
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2062
	p->state = TASK_RUNNING;
2063 2064 2065 2066
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2067 2068 2069 2070 2071 2072
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2073
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2074
{
2075
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2076 2077 2078
}
EXPORT_SYMBOL(wake_up_process);

2079
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2080 2081 2082 2083 2084 2085 2086
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2087 2088 2089 2090 2091 2092 2093
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2094
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2095 2096
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2097 2098 2099

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2100 2101 2102 2103 2104 2105
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2106
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2107
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2108
#endif
N
Nick Piggin 已提交
2109

P
Peter Zijlstra 已提交
2110
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2111
	p->se.on_rq = 0;
N
Nick Piggin 已提交
2112

2113 2114 2115 2116
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2117 2118 2119 2120 2121 2122 2123
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2138
	set_task_cpu(p, cpu);
2139 2140 2141 2142 2143

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2144 2145
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2146

2147
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2148
	if (likely(sched_info_on()))
2149
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2150
#endif
2151
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2152 2153
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2154
#ifdef CONFIG_PREEMPT
2155
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2156
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2157
#endif
N
Nick Piggin 已提交
2158
	put_cpu();
L
Linus Torvalds 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2168
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2169 2170
{
	unsigned long flags;
I
Ingo Molnar 已提交
2171
	struct rq *rq;
L
Linus Torvalds 已提交
2172 2173

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2174
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2175
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2176 2177 2178

	p->prio = effective_prio(p);

2179
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2180
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2181 2182
	} else {
		/*
I
Ingo Molnar 已提交
2183 2184
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2185
		 */
2186
		p->sched_class->task_new(rq, p);
2187
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
2188
	}
I
Ingo Molnar 已提交
2189
	check_preempt_curr(rq, p);
2190 2191 2192 2193
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2194
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2195 2196
}

2197 2198 2199
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2200 2201
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2202 2203 2204 2205 2206 2207 2208 2209 2210
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2211
 * @notifier: notifier struct to unregister
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2255 2256 2257
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2258
 * @prev: the current task that is being switched out
2259 2260 2261 2262 2263 2264 2265 2266 2267
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2268 2269 2270
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2271
{
2272
	fire_sched_out_preempt_notifiers(prev, next);
2273 2274 2275 2276
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2277 2278
/**
 * finish_task_switch - clean up after a task-switch
2279
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2280 2281
 * @prev: the thread we just switched away from.
 *
2282 2283 2284 2285
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2286 2287
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2288
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2289 2290 2291
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2292
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2293 2294 2295
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2296
	long prev_state;
L
Linus Torvalds 已提交
2297 2298 2299 2300 2301

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2302
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2303 2304
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2305
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2306 2307 2308 2309 2310
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2311
	prev_state = prev->state;
2312 2313
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2314 2315 2316 2317
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2318

2319
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2320 2321
	if (mm)
		mmdrop(mm);
2322
	if (unlikely(prev_state == TASK_DEAD)) {
2323 2324 2325
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2326
		 */
2327
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2328
		put_task_struct(prev);
2329
	}
L
Linus Torvalds 已提交
2330 2331 2332 2333 2334 2335
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2336
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2337 2338
	__releases(rq->lock)
{
2339 2340
	struct rq *rq = this_rq();

2341 2342 2343 2344 2345
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2346
	if (current->set_child_tid)
2347
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2348 2349 2350 2351 2352 2353
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2354
static inline void
2355
context_switch(struct rq *rq, struct task_struct *prev,
2356
	       struct task_struct *next)
L
Linus Torvalds 已提交
2357
{
I
Ingo Molnar 已提交
2358
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2359

2360
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2361 2362
	mm = next->mm;
	oldmm = prev->active_mm;
2363 2364 2365 2366 2367 2368 2369
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2370
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2371 2372 2373 2374 2375 2376
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2377
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2378 2379 2380
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2381 2382 2383 2384 2385 2386 2387
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2388
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2389
#endif
L
Linus Torvalds 已提交
2390 2391 2392 2393

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2394 2395 2396 2397 2398 2399 2400
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2424
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2439 2440
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2441

2442
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2452
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2453 2454 2455 2456 2457
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2473
/*
I
Ingo Molnar 已提交
2474 2475
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2476
 */
I
Ingo Molnar 已提交
2477
static void update_cpu_load(struct rq *this_rq)
2478
{
2479
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2492 2493 2494 2495 2496 2497 2498
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2499 2500
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2501 2502
}

I
Ingo Molnar 已提交
2503 2504
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2505 2506 2507 2508 2509 2510
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2511
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2512 2513 2514
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2515
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2516 2517 2518 2519
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2520
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2521 2522 2523 2524 2525 2526 2527
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2528 2529
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2530 2531 2532 2533 2534 2535 2536 2537
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2538
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2552
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2553 2554 2555 2556
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2557 2558
	int ret = 0;

2559 2560 2561 2562 2563
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2564
	if (unlikely(!spin_trylock(&busiest->lock))) {
2565
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2566 2567 2568
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2569
			ret = 1;
L
Linus Torvalds 已提交
2570 2571 2572
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2573
	return ret;
L
Linus Torvalds 已提交
2574 2575 2576 2577 2578
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2579
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2580 2581
 * the cpu_allowed mask is restored.
 */
2582
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2583
{
2584
	struct migration_req req;
L
Linus Torvalds 已提交
2585
	unsigned long flags;
2586
	struct rq *rq;
L
Linus Torvalds 已提交
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2597

L
Linus Torvalds 已提交
2598 2599 2600 2601 2602
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2603

L
Linus Torvalds 已提交
2604 2605 2606 2607 2608 2609 2610
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2611 2612
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2613 2614 2615 2616
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2617
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2618
	put_cpu();
N
Nick Piggin 已提交
2619 2620
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2621 2622 2623 2624 2625 2626
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2627 2628
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2629
{
2630
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2631
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2632
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2633 2634 2635 2636
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2637
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2638 2639 2640 2641 2642
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2643
static
2644
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2645
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2646
		     int *all_pinned)
L
Linus Torvalds 已提交
2647 2648 2649 2650 2651 2652 2653
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2654 2655
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2656
		return 0;
2657
	}
2658 2659
	*all_pinned = 0;

2660 2661
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2662
		return 0;
2663
	}
L
Linus Torvalds 已提交
2664

2665 2666 2667 2668 2669 2670
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2671 2672
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2673
#ifdef CONFIG_SCHEDSTATS
2674
		if (task_hot(p, rq->clock, sd)) {
2675
			schedstat_inc(sd, lb_hot_gained[idle]);
2676 2677
			schedstat_inc(p, se.nr_forced_migrations);
		}
2678 2679 2680 2681
#endif
		return 1;
	}

2682 2683
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2684
		return 0;
2685
	}
L
Linus Torvalds 已提交
2686 2687 2688
	return 1;
}

2689 2690 2691 2692 2693
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2694
{
2695
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2696 2697
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2698

2699
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2700 2701
		goto out;

2702 2703
	pinned = 1;

L
Linus Torvalds 已提交
2704
	/*
I
Ingo Molnar 已提交
2705
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2706
	 */
I
Ingo Molnar 已提交
2707 2708
	p = iterator->start(iterator->arg);
next:
2709
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2710
		goto out;
2711
	/*
2712
	 * To help distribute high priority tasks across CPUs we don't
2713 2714 2715
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2716 2717
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2718
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2719 2720 2721
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2722 2723
	}

I
Ingo Molnar 已提交
2724
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2725
	pulled++;
I
Ingo Molnar 已提交
2726
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2727

2728
	/*
2729
	 * We only want to steal up to the prescribed amount of weighted load.
2730
	 */
2731
	if (rem_load_move > 0) {
2732 2733
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2734 2735
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2736 2737 2738
	}
out:
	/*
2739
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2740 2741 2742 2743
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2744 2745 2746

	if (all_pinned)
		*all_pinned = pinned;
2747 2748

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2749 2750
}

I
Ingo Molnar 已提交
2751
/*
P
Peter Williams 已提交
2752 2753 2754
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2755 2756 2757 2758
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2759
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2760 2761 2762
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2763
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2764
	unsigned long total_load_moved = 0;
2765
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2766 2767

	do {
P
Peter Williams 已提交
2768 2769
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2770
				max_load_move - total_load_moved,
2771
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2772
		class = class->next;
P
Peter Williams 已提交
2773
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2774

P
Peter Williams 已提交
2775 2776 2777
	return total_load_moved > 0;
}

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2814
	const struct sched_class *class;
P
Peter Williams 已提交
2815 2816

	for (class = sched_class_highest; class; class = class->next)
2817
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2818 2819 2820
			return 1;

	return 0;
I
Ingo Molnar 已提交
2821 2822
}

L
Linus Torvalds 已提交
2823 2824
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2825 2826
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2827 2828 2829
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2830 2831
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2832 2833 2834
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2835
	unsigned long max_pull;
2836 2837
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2838
	int load_idx, group_imb = 0;
2839 2840 2841 2842 2843 2844
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2845 2846

	max_load = this_load = total_load = total_pwr = 0;
2847 2848
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2849
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2850
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2851
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2852 2853 2854
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2855 2856

	do {
2857
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2858 2859
		int local_group;
		int i;
2860
		int __group_imb = 0;
2861
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2862
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2863 2864 2865

		local_group = cpu_isset(this_cpu, group->cpumask);

2866 2867 2868
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2869
		/* Tally up the load of all CPUs in the group */
2870
		sum_weighted_load = sum_nr_running = avg_load = 0;
2871 2872
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2873 2874

		for_each_cpu_mask(i, group->cpumask) {
2875 2876 2877 2878 2879 2880
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2881

2882
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2883 2884
				*sd_idle = 0;

L
Linus Torvalds 已提交
2885
			/* Bias balancing toward cpus of our domain */
2886 2887 2888 2889 2890 2891
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2892
				load = target_load(i, load_idx);
2893
			} else {
N
Nick Piggin 已提交
2894
				load = source_load(i, load_idx);
2895 2896 2897 2898 2899
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2900 2901

			avg_load += load;
2902
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2903
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2904 2905
		}

2906 2907 2908
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2909 2910
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2911
		 */
2912 2913
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2914 2915 2916 2917
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2918
		total_load += avg_load;
2919
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2920 2921

		/* Adjust by relative CPU power of the group */
2922 2923
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2924

2925 2926 2927
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2928
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2929

L
Linus Torvalds 已提交
2930 2931 2932
		if (local_group) {
			this_load = avg_load;
			this = group;
2933 2934 2935
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2936
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2937 2938
			max_load = avg_load;
			busiest = group;
2939 2940
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2941
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2942
		}
2943 2944 2945 2946 2947 2948

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2949 2950 2951
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2952 2953 2954 2955 2956 2957 2958 2959 2960

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2961
		/*
2962 2963
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2964 2965
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2966
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2967
			goto group_next;
2968

I
Ingo Molnar 已提交
2969
		/*
2970
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2971 2972 2973 2974 2975
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2976 2977
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2978 2979
			group_min = group;
			min_nr_running = sum_nr_running;
2980 2981
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2982
		}
2983

I
Ingo Molnar 已提交
2984
		/*
2985
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2997
		}
2998 2999
group_next:
#endif
L
Linus Torvalds 已提交
3000 3001 3002
		group = group->next;
	} while (group != sd->groups);

3003
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3004 3005 3006 3007 3008 3009 3010 3011
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3012
	busiest_load_per_task /= busiest_nr_running;
3013 3014 3015
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3016 3017 3018 3019 3020 3021 3022 3023
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3024
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3025 3026
	 * appear as very large values with unsigned longs.
	 */
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3039 3040

	/* Don't want to pull so many tasks that a group would go idle */
3041
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3042

L
Linus Torvalds 已提交
3043
	/* How much load to actually move to equalise the imbalance */
3044 3045
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3046 3047
			/ SCHED_LOAD_SCALE;

3048 3049 3050 3051 3052 3053
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3054
	if (*imbalance < busiest_load_per_task) {
3055
		unsigned long tmp, pwr_now, pwr_move;
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3067

I
Ingo Molnar 已提交
3068 3069
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3070
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3071 3072 3073 3074 3075 3076 3077 3078 3079
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3080 3081 3082 3083
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3084 3085 3086
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3087 3088
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3089
		if (max_load > tmp)
3090
			pwr_move += busiest->__cpu_power *
3091
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3092 3093

		/* Amount of load we'd add */
3094
		if (max_load * busiest->__cpu_power <
3095
				busiest_load_per_task * SCHED_LOAD_SCALE)
3096 3097
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3098
		else
3099 3100 3101 3102
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3103 3104 3105
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3106 3107
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3108 3109 3110 3111 3112
	}

	return busiest;

out_balanced:
3113
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3114
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3115
		goto ret;
L
Linus Torvalds 已提交
3116

3117 3118 3119 3120 3121
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3122
ret:
L
Linus Torvalds 已提交
3123 3124 3125 3126 3127 3128 3129
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3130
static struct rq *
I
Ingo Molnar 已提交
3131
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3132
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3133
{
3134
	struct rq *busiest = NULL, *rq;
3135
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3136 3137 3138
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3139
		unsigned long wl;
3140 3141 3142 3143

		if (!cpu_isset(i, *cpus))
			continue;

3144
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3145
		wl = weighted_cpuload(i);
3146

I
Ingo Molnar 已提交
3147
		if (rq->nr_running == 1 && wl > imbalance)
3148
			continue;
L
Linus Torvalds 已提交
3149

I
Ingo Molnar 已提交
3150 3151
		if (wl > max_load) {
			max_load = wl;
3152
			busiest = rq;
L
Linus Torvalds 已提交
3153 3154 3155 3156 3157 3158
		}
	}

	return busiest;
}

3159 3160 3161 3162 3163 3164
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3165 3166 3167 3168
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3169
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3170
			struct sched_domain *sd, enum cpu_idle_type idle,
3171
			int *balance)
L
Linus Torvalds 已提交
3172
{
P
Peter Williams 已提交
3173
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3174 3175
	struct sched_group *group;
	unsigned long imbalance;
3176
	struct rq *busiest;
3177
	cpumask_t cpus = CPU_MASK_ALL;
3178
	unsigned long flags;
N
Nick Piggin 已提交
3179

3180 3181 3182
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3183
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3184
	 * portraying it as CPU_NOT_IDLE.
3185
	 */
I
Ingo Molnar 已提交
3186
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3187
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3188
		sd_idle = 1;
L
Linus Torvalds 已提交
3189

3190
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3191

3192 3193
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3194 3195
				   &cpus, balance);

3196
	if (*balance == 0)
3197 3198
		goto out_balanced;

L
Linus Torvalds 已提交
3199 3200 3201 3202 3203
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3204
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
3205 3206 3207 3208 3209
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3210
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3211 3212 3213

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3214
	ld_moved = 0;
L
Linus Torvalds 已提交
3215 3216 3217 3218
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3219
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3220 3221
		 * correctly treated as an imbalance.
		 */
3222
		local_irq_save(flags);
N
Nick Piggin 已提交
3223
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3224
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3225
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3226
		double_rq_unlock(this_rq, busiest);
3227
		local_irq_restore(flags);
3228

3229 3230 3231
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3232
		if (ld_moved && this_cpu != smp_processor_id())
3233 3234
			resched_cpu(this_cpu);

3235
		/* All tasks on this runqueue were pinned by CPU affinity */
3236 3237 3238 3239
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
3240
			goto out_balanced;
3241
		}
L
Linus Torvalds 已提交
3242
	}
3243

P
Peter Williams 已提交
3244
	if (!ld_moved) {
L
Linus Torvalds 已提交
3245 3246 3247 3248 3249
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3250
			spin_lock_irqsave(&busiest->lock, flags);
3251 3252 3253 3254 3255

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3256
				spin_unlock_irqrestore(&busiest->lock, flags);
3257 3258 3259 3260
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3261 3262 3263
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3264
				active_balance = 1;
L
Linus Torvalds 已提交
3265
			}
3266
			spin_unlock_irqrestore(&busiest->lock, flags);
3267
			if (active_balance)
L
Linus Torvalds 已提交
3268 3269 3270 3271 3272 3273
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3274
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3275
		}
3276
	} else
L
Linus Torvalds 已提交
3277 3278
		sd->nr_balance_failed = 0;

3279
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3280 3281
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3282 3283 3284 3285 3286 3287 3288 3289 3290
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3291 3292
	}

P
Peter Williams 已提交
3293
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3294
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3295
		return -1;
P
Peter Williams 已提交
3296
	return ld_moved;
L
Linus Torvalds 已提交
3297 3298 3299 3300

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3301
	sd->nr_balance_failed = 0;
3302 3303

out_one_pinned:
L
Linus Torvalds 已提交
3304
	/* tune up the balancing interval */
3305 3306
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3307 3308
		sd->balance_interval *= 2;

3309
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3310
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3311
		return -1;
L
Linus Torvalds 已提交
3312 3313 3314 3315 3316 3317 3318
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3319
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3320 3321
 * this_rq is locked.
 */
3322
static int
3323
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
3324 3325
{
	struct sched_group *group;
3326
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3327
	unsigned long imbalance;
P
Peter Williams 已提交
3328
	int ld_moved = 0;
N
Nick Piggin 已提交
3329
	int sd_idle = 0;
3330
	int all_pinned = 0;
3331
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
3332

3333 3334 3335 3336
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3337
	 * portraying it as CPU_NOT_IDLE.
3338 3339 3340
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3341
		sd_idle = 1;
L
Linus Torvalds 已提交
3342

3343
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3344
redo:
I
Ingo Molnar 已提交
3345
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3346
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
3347
	if (!group) {
I
Ingo Molnar 已提交
3348
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3349
		goto out_balanced;
L
Linus Torvalds 已提交
3350 3351
	}

I
Ingo Molnar 已提交
3352
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3353
				&cpus);
N
Nick Piggin 已提交
3354
	if (!busiest) {
I
Ingo Molnar 已提交
3355
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3356
		goto out_balanced;
L
Linus Torvalds 已提交
3357 3358
	}

N
Nick Piggin 已提交
3359 3360
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3361
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3362

P
Peter Williams 已提交
3363
	ld_moved = 0;
3364 3365 3366
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3367 3368
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3369
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3370 3371
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3372
		spin_unlock(&busiest->lock);
3373

3374
		if (unlikely(all_pinned)) {
3375 3376 3377 3378
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
3379 3380
	}

P
Peter Williams 已提交
3381
	if (!ld_moved) {
I
Ingo Molnar 已提交
3382
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3383 3384
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3385 3386
			return -1;
	} else
3387
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3388

P
Peter Williams 已提交
3389
	return ld_moved;
3390 3391

out_balanced:
I
Ingo Molnar 已提交
3392
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3393
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3394
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3395
		return -1;
3396
	sd->nr_balance_failed = 0;
3397

3398
	return 0;
L
Linus Torvalds 已提交
3399 3400 3401 3402 3403 3404
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3405
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3406 3407
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3408 3409
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
3410 3411

	for_each_domain(this_cpu, sd) {
3412 3413 3414 3415 3416 3417
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3418
			/* If we've pulled tasks over stop searching: */
3419
			pulled_task = load_balance_newidle(this_cpu,
3420 3421 3422 3423 3424 3425 3426
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3427
	}
I
Ingo Molnar 已提交
3428
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3429 3430 3431 3432 3433
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3434
	}
L
Linus Torvalds 已提交
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3445
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3446
{
3447
	int target_cpu = busiest_rq->push_cpu;
3448 3449
	struct sched_domain *sd;
	struct rq *target_rq;
3450

3451
	/* Is there any task to move? */
3452 3453 3454 3455
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3456 3457

	/*
3458
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3459
	 * we need to fix it. Originally reported by
3460
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3461
	 */
3462
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3463

3464 3465
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3466 3467
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3468 3469

	/* Search for an sd spanning us and the target CPU. */
3470
	for_each_domain(target_cpu, sd) {
3471
		if ((sd->flags & SD_LOAD_BALANCE) &&
3472
		    cpu_isset(busiest_cpu, sd->span))
3473
				break;
3474
	}
3475

3476
	if (likely(sd)) {
3477
		schedstat_inc(sd, alb_count);
3478

P
Peter Williams 已提交
3479 3480
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3481 3482 3483 3484
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3485
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3486 3487
}

3488 3489 3490
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3491
	cpumask_t cpu_mask;
3492 3493 3494 3495 3496
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3497
/*
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3508
 *
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3565 3566 3567 3568 3569
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3570
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3571
{
3572 3573
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3574 3575
	unsigned long interval;
	struct sched_domain *sd;
3576
	/* Earliest time when we have to do rebalance again */
3577
	unsigned long next_balance = jiffies + 60*HZ;
3578
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3579

3580
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3581 3582 3583 3584
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3585
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3586 3587 3588 3589 3590 3591
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3592 3593 3594
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3595

3596 3597 3598 3599 3600
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3601
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3602
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3603 3604
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3605 3606 3607
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3608
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3609
			}
3610
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3611
		}
3612 3613 3614
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3615
		if (time_after(next_balance, sd->last_balance + interval)) {
3616
			next_balance = sd->last_balance + interval;
3617 3618
			update_next_balance = 1;
		}
3619 3620 3621 3622 3623 3624 3625 3626

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3627
	}
3628 3629 3630 3631 3632 3633 3634 3635

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3636 3637 3638 3639 3640 3641 3642 3643 3644
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3645 3646 3647 3648
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3649

I
Ingo Molnar 已提交
3650
	rebalance_domains(this_cpu, idle);
3651 3652 3653 3654 3655 3656 3657

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3658 3659
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3660 3661 3662 3663
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3664
		cpu_clear(this_cpu, cpus);
3665 3666 3667 3668 3669 3670 3671 3672 3673
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3674
			rebalance_domains(balance_cpu, CPU_IDLE);
3675 3676

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3677 3678
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3691
static inline void trigger_load_balance(struct rq *rq, int cpu)
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3743
}
I
Ingo Molnar 已提交
3744 3745 3746

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3747 3748 3749
/*
 * on UP we do not need to balance between CPUs:
 */
3750
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3751 3752
{
}
I
Ingo Molnar 已提交
3753

L
Linus Torvalds 已提交
3754 3755 3756 3757 3758 3759 3760
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3761 3762
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3763
 */
3764
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3765 3766
{
	unsigned long flags;
3767 3768
	u64 ns, delta_exec;
	struct rq *rq;
3769

3770 3771
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3772
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3773 3774
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3775 3776 3777 3778
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3779

L
Linus Torvalds 已提交
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3803 3804 3805 3806 3807
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3808
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3842
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3843 3844
	cputime64_t tmp;

3845 3846
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3847

L
Linus Torvalds 已提交
3848 3849 3850 3851 3852 3853 3854 3855
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3856
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3857
		cpustat->system = cputime64_add(cpustat->system, tmp);
3858
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3859 3860 3861 3862 3863 3864 3865
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3877 3878 3879 3880 3881 3882 3883 3884 3885
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3886
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3887 3888 3889 3890 3891 3892 3893

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3894
	} else
L
Linus Torvalds 已提交
3895 3896 3897
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3909
	struct task_struct *curr = rq->curr;
3910
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3911 3912

	spin_lock(&rq->lock);
3913
	__update_rq_clock(rq);
3914 3915 3916
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
3917
	if (unlikely(rq->clock < next_tick)) {
3918
		rq->clock = next_tick;
3919 3920
		rq->clock_underflows++;
	}
3921
	rq->tick_timestamp = rq->clock;
3922
	update_last_tick_seen(rq);
3923
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3924
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
3925
	spin_unlock(&rq->lock);
3926

3927
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3928 3929
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3930
#endif
L
Linus Torvalds 已提交
3931 3932 3933 3934
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

3935
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3936 3937 3938 3939
{
	/*
	 * Underflow?
	 */
3940 3941
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3942 3943 3944 3945
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3946 3947
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3948 3949 3950
}
EXPORT_SYMBOL(add_preempt_count);

3951
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3952 3953 3954 3955
{
	/*
	 * Underflow?
	 */
3956 3957
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3958 3959 3960
	/*
	 * Is the spinlock portion underflowing?
	 */
3961 3962 3963 3964
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3965 3966 3967 3968 3969 3970 3971
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3972
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3973
 */
I
Ingo Molnar 已提交
3974
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3975
{
3976 3977 3978 3979 3980
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3981 3982 3983
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3984 3985 3986 3987 3988

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3989
}
L
Linus Torvalds 已提交
3990

I
Ingo Molnar 已提交
3991 3992 3993 3994 3995
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3996
	/*
I
Ingo Molnar 已提交
3997
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3998 3999 4000
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
4001 4002 4003
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4004 4005
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4006
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4007 4008
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4009 4010
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4011 4012
	}
#endif
I
Ingo Molnar 已提交
4013 4014 4015 4016 4017 4018
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4019
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4020
{
4021
	const struct sched_class *class;
I
Ingo Molnar 已提交
4022
	struct task_struct *p;
L
Linus Torvalds 已提交
4023 4024

	/*
I
Ingo Molnar 已提交
4025 4026
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4027
	 */
I
Ingo Molnar 已提交
4028
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4029
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4030 4031
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4032 4033
	}

I
Ingo Molnar 已提交
4034 4035
	class = sched_class_highest;
	for ( ; ; ) {
4036
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4037 4038 4039 4040 4041 4042 4043 4044 4045
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4046

I
Ingo Molnar 已提交
4047 4048 4049 4050 4051 4052
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4053
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4069

P
Peter Zijlstra 已提交
4070 4071
	hrtick_clear(rq);

4072 4073 4074 4075
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
4076
	__update_rq_clock(rq);
4077 4078
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4079 4080 4081

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4082
				signal_pending(prev))) {
L
Linus Torvalds 已提交
4083
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4084
		} else {
4085
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
4086
		}
I
Ingo Molnar 已提交
4087
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4088 4089
	}

4090 4091 4092 4093
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4094

I
Ingo Molnar 已提交
4095
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4096 4097
		idle_balance(cpu, rq);

4098
	prev->sched_class->put_prev_task(rq, prev);
4099
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4100 4101

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
4102

L
Linus Torvalds 已提交
4103 4104 4105 4106 4107
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4108
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4109 4110 4111 4112 4113 4114
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4115 4116 4117
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4118 4119 4120
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4121
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4122

L
Linus Torvalds 已提交
4123 4124 4125 4126 4127 4128 4129 4130
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4131
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4132
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4133 4134 4135 4136 4137 4138 4139
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4140

L
Linus Torvalds 已提交
4141 4142
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4143
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4144
	 */
N
Nick Piggin 已提交
4145
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4146 4147
		return;

4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		schedule();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4161

4162 4163 4164 4165 4166 4167
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4168 4169 4170 4171
}
EXPORT_SYMBOL(preempt_schedule);

/*
4172
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4173 4174 4175 4176 4177 4178 4179 4180 4181
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4182

4183
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4184 4185
	BUG_ON(ti->preempt_count || !irqs_disabled());

4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		local_irq_enable();
		schedule();
		local_irq_disable();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4201

4202 4203 4204 4205 4206 4207
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4208 4209 4210 4211
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4212 4213
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4214
{
4215
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4216 4217 4218 4219
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4220 4221
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4222 4223 4224
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4225
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4226 4227 4228 4229 4230
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4231
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4232

4233
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4234 4235
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4236
		if (curr->func(curr, mode, sync, key) &&
4237
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4238 4239 4240 4241 4242 4243 4244 4245 4246
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4247
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4248
 */
4249
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4250
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4263
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4264 4265 4266 4267 4268
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4269
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4281
void
I
Ingo Molnar 已提交
4282
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4299
void complete(struct completion *x)
L
Linus Torvalds 已提交
4300 4301 4302 4303 4304
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4305
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4306 4307 4308 4309
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4310
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4311 4312 4313 4314 4315
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4316
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4317 4318 4319 4320
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4321 4322
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4323 4324 4325 4326 4327 4328 4329
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4330 4331 4332 4333
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4334 4335 4336 4337
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4338 4339 4340 4341 4342
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4343
				return timeout;
L
Linus Torvalds 已提交
4344 4345 4346 4347 4348 4349 4350 4351
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4352 4353
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4354 4355 4356 4357
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4358
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4359
	spin_unlock_irq(&x->wait.lock);
4360 4361
	return timeout;
}
L
Linus Torvalds 已提交
4362

4363
void __sched wait_for_completion(struct completion *x)
4364 4365
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4366
}
4367
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4368

4369
unsigned long __sched
4370
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4371
{
4372
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4373
}
4374
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4375

4376
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4377
{
4378 4379 4380 4381
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4382
}
4383
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4384

4385
unsigned long __sched
4386 4387
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4388
{
4389
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4390
}
4391
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4392

M
Matthew Wilcox 已提交
4393 4394 4395 4396 4397 4398 4399 4400 4401
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4402 4403
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4404
{
I
Ingo Molnar 已提交
4405 4406 4407 4408
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4409

4410
	__set_current_state(state);
L
Linus Torvalds 已提交
4411

4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4426 4427 4428
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4429
long __sched
I
Ingo Molnar 已提交
4430
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4431
{
4432
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4433 4434 4435
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4436
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4437
{
4438
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4439 4440 4441
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4442
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4443
{
4444
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4445 4446 4447
}
EXPORT_SYMBOL(sleep_on_timeout);

4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4460
void rt_mutex_setprio(struct task_struct *p, int prio)
4461 4462
{
	unsigned long flags;
4463
	int oldprio, on_rq, running;
4464
	struct rq *rq;
4465
	const struct sched_class *prev_class = p->sched_class;
4466 4467 4468 4469

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4470
	update_rq_clock(rq);
4471

4472
	oldprio = p->prio;
I
Ingo Molnar 已提交
4473
	on_rq = p->se.on_rq;
4474
	running = task_current(rq, p);
4475
	if (on_rq)
4476
		dequeue_task(rq, p, 0);
4477 4478
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4479 4480 4481 4482 4483 4484

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4485 4486
	p->prio = prio;

4487 4488
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4489
	if (on_rq) {
4490
		enqueue_task(rq, p, 0);
4491 4492

		check_class_changed(rq, p, prev_class, oldprio, running);
4493 4494 4495 4496 4497 4498
	}
	task_rq_unlock(rq, &flags);
}

#endif

4499
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4500
{
I
Ingo Molnar 已提交
4501
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4502
	unsigned long flags;
4503
	struct rq *rq;
L
Linus Torvalds 已提交
4504 4505 4506 4507 4508 4509 4510 4511

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4512
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4513 4514 4515 4516
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4517
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4518
	 */
4519
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4520 4521 4522
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4523
	on_rq = p->se.on_rq;
4524
	if (on_rq) {
4525
		dequeue_task(rq, p, 0);
4526 4527
		dec_load(rq, p);
	}
L
Linus Torvalds 已提交
4528 4529

	p->static_prio = NICE_TO_PRIO(nice);
4530
	set_load_weight(p);
4531 4532 4533
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4534

I
Ingo Molnar 已提交
4535
	if (on_rq) {
4536
		enqueue_task(rq, p, 0);
4537
		inc_load(rq, p);
L
Linus Torvalds 已提交
4538
		/*
4539 4540
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4541
		 */
4542
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4543 4544 4545 4546 4547 4548 4549
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4550 4551 4552 4553 4554
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4555
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4556
{
4557 4558
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4559

M
Matt Mackall 已提交
4560 4561 4562 4563
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4575
	long nice, retval;
L
Linus Torvalds 已提交
4576 4577 4578 4579 4580 4581

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4582 4583
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4584 4585 4586 4587 4588 4589 4590 4591 4592
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4593 4594 4595
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4614
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4615 4616 4617 4618 4619 4620 4621 4622
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4623
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4624 4625 4626
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4627
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4642
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4643 4644 4645 4646 4647 4648 4649 4650
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4651
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4652
{
4653
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4654 4655 4656
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4657 4658
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4659
{
I
Ingo Molnar 已提交
4660
	BUG_ON(p->se.on_rq);
4661

L
Linus Torvalds 已提交
4662
	p->policy = policy;
I
Ingo Molnar 已提交
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4675
	p->rt_priority = prio;
4676 4677 4678
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4679
	set_load_weight(p);
L
Linus Torvalds 已提交
4680 4681 4682
}

/**
4683
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4684 4685 4686
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4687
 *
4688
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4689
 */
I
Ingo Molnar 已提交
4690 4691
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4692
{
4693
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4694
	unsigned long flags;
4695
	const struct sched_class *prev_class = p->sched_class;
4696
	struct rq *rq;
L
Linus Torvalds 已提交
4697

4698 4699
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4700 4701 4702 4703 4704
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4705 4706
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4707
		return -EINVAL;
L
Linus Torvalds 已提交
4708 4709
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4710 4711
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4712 4713
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4714
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4715
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4716
		return -EINVAL;
4717
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4718 4719
		return -EINVAL;

4720 4721 4722 4723
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4724
		if (rt_policy(policy)) {
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4741 4742 4743 4744 4745 4746
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4747

4748 4749 4750 4751 4752
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4753

4754 4755 4756 4757 4758
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
4759
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4760 4761 4762
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4763 4764 4765
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4766 4767 4768 4769 4770
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4771 4772 4773 4774
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4775
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4776 4777 4778
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4779 4780
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4781 4782
		goto recheck;
	}
I
Ingo Molnar 已提交
4783
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4784
	on_rq = p->se.on_rq;
4785
	running = task_current(rq, p);
4786
	if (on_rq)
4787
		deactivate_task(rq, p, 0);
4788 4789
	if (running)
		p->sched_class->put_prev_task(rq, p);
4790

L
Linus Torvalds 已提交
4791
	oldprio = p->prio;
I
Ingo Molnar 已提交
4792
	__setscheduler(rq, p, policy, param->sched_priority);
4793

4794 4795
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4796 4797
	if (on_rq) {
		activate_task(rq, p, 0);
4798 4799

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4800
	}
4801 4802 4803
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4804 4805
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4806 4807 4808 4809
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4810 4811
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4812 4813 4814
{
	struct sched_param lparam;
	struct task_struct *p;
4815
	int retval;
L
Linus Torvalds 已提交
4816 4817 4818 4819 4820

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4821 4822 4823

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4824
	p = find_process_by_pid(pid);
4825 4826 4827
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4828

L
Linus Torvalds 已提交
4829 4830 4831 4832 4833 4834 4835 4836 4837
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4838 4839
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4840
{
4841 4842 4843 4844
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4864
	struct task_struct *p;
4865
	int retval;
L
Linus Torvalds 已提交
4866 4867

	if (pid < 0)
4868
		return -EINVAL;
L
Linus Torvalds 已提交
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4890
	struct task_struct *p;
4891
	int retval;
L
Linus Torvalds 已提交
4892 4893

	if (!param || pid < 0)
4894
		return -EINVAL;
L
Linus Torvalds 已提交
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4924 4925
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4926

4927
	get_online_cpus();
L
Linus Torvalds 已提交
4928 4929 4930 4931 4932
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4933
		put_online_cpus();
L
Linus Torvalds 已提交
4934 4935 4936 4937 4938
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4939
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4950 4951 4952 4953
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4954 4955
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4956
 again:
L
Linus Torvalds 已提交
4957 4958
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4971 4972
out_unlock:
	put_task_struct(p);
4973
	put_online_cpus();
L
Linus Torvalds 已提交
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

5014
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
5015 5016 5017
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
5018
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5019 5020
EXPORT_SYMBOL(cpu_online_map);

5021
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5022
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
5023 5024 5025 5026
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5027
	struct task_struct *p;
L
Linus Torvalds 已提交
5028 5029
	int retval;

5030
	get_online_cpus();
L
Linus Torvalds 已提交
5031 5032 5033 5034 5035 5036 5037
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5038 5039 5040 5041
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5042
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5043 5044 5045

out_unlock:
	read_unlock(&tasklist_lock);
5046
	put_online_cpus();
L
Linus Torvalds 已提交
5047

5048
	return retval;
L
Linus Torvalds 已提交
5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5079 5080
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5081 5082 5083
 */
asmlinkage long sys_sched_yield(void)
{
5084
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5085

5086
	schedstat_inc(rq, yld_count);
5087
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5088 5089 5090 5091 5092 5093

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5094
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5095 5096 5097 5098 5099 5100 5101 5102
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5103
static void __cond_resched(void)
L
Linus Torvalds 已提交
5104
{
5105 5106 5107
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5108 5109 5110 5111 5112
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5113 5114 5115 5116 5117 5118 5119
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5120 5121
#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5122
{
5123 5124
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5125 5126 5127 5128 5129
		__cond_resched();
		return 1;
	}
	return 0;
}
5130 5131
EXPORT_SYMBOL(_cond_resched);
#endif
L
Linus Torvalds 已提交
5132 5133 5134 5135 5136

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5137
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5138 5139 5140
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5141
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5142
{
N
Nick Piggin 已提交
5143
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5144 5145
	int ret = 0;

N
Nick Piggin 已提交
5146
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5147
		spin_unlock(lock);
N
Nick Piggin 已提交
5148 5149 5150 5151
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5152
		ret = 1;
L
Linus Torvalds 已提交
5153 5154
		spin_lock(lock);
	}
J
Jan Kara 已提交
5155
	return ret;
L
Linus Torvalds 已提交
5156 5157 5158 5159 5160 5161 5162
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5163
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5164
		local_bh_enable();
L
Linus Torvalds 已提交
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5176
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5187
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5188 5189 5190 5191 5192 5193 5194
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5195
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5196

5197
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5198 5199 5200
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5201
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5202 5203 5204 5205 5206
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5207
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5208 5209
	long ret;

5210
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5211 5212 5213
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5214
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5235
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5236
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5260
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5261
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5278
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5279
	unsigned int time_slice;
5280
	int retval;
L
Linus Torvalds 已提交
5281 5282 5283
	struct timespec t;

	if (pid < 0)
5284
		return -EINVAL;
L
Linus Torvalds 已提交
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5296 5297 5298 5299 5300 5301
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5302
		time_slice = DEF_TIMESLICE;
5303
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5304 5305 5306 5307 5308
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5309 5310
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5311 5312
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5313
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5314
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5315 5316
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5317

L
Linus Torvalds 已提交
5318 5319 5320 5321 5322
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5323
static const char stat_nam[] = "RSDTtZX";
5324

5325
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5326 5327
{
	unsigned long free = 0;
5328
	unsigned state;
L
Linus Torvalds 已提交
5329 5330

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5331
	printk(KERN_INFO "%-13.13s %c", p->comm,
5332
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5333
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5334
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5335
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5336
	else
I
Ingo Molnar 已提交
5337
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5338 5339
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5340
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5341
	else
I
Ingo Molnar 已提交
5342
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5343 5344 5345
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5346
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5347 5348
		while (!*n)
			n++;
5349
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5350 5351
	}
#endif
5352
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5353
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5354

5355
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5356 5357
}

I
Ingo Molnar 已提交
5358
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5359
{
5360
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5361

5362 5363 5364
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5365
#else
5366 5367
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5368 5369 5370 5371 5372 5373 5374 5375
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5376
		if (!state_filter || (p->state & state_filter))
5377
			sched_show_task(p);
L
Linus Torvalds 已提交
5378 5379
	} while_each_thread(g, p);

5380 5381
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5382 5383 5384
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5385
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5386 5387 5388 5389 5390
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5391 5392
}

I
Ingo Molnar 已提交
5393 5394
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5395
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5396 5397
}

5398 5399 5400 5401 5402 5403 5404 5405
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5406
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5407
{
5408
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5409 5410
	unsigned long flags;

I
Ingo Molnar 已提交
5411 5412 5413
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5414
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5415
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5416
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5417 5418 5419

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5420 5421 5422
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5423 5424 5425
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5426
	task_thread_info(idle)->preempt_count = 0;
5427

I
Ingo Molnar 已提交
5428 5429 5430 5431
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5468 5469 5470 5471
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5472
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5491
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5492 5493
 * call is not atomic; no spinlocks may be held.
 */
5494
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5495
{
5496
	struct migration_req req;
L
Linus Torvalds 已提交
5497
	unsigned long flags;
5498
	struct rq *rq;
5499
	int ret = 0;
L
Linus Torvalds 已提交
5500 5501 5502 5503 5504 5505 5506

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

5507 5508 5509
	if (p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, &new_mask);
	else {
I
Ingo Molnar 已提交
5510
		p->cpus_allowed = new_mask;
P
Peter Zijlstra 已提交
5511
		p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5512 5513
	}

L
Linus Torvalds 已提交
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5528

L
Linus Torvalds 已提交
5529 5530 5531 5532 5533
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5534
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5535 5536 5537 5538 5539 5540
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5541 5542
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5543
 */
5544
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5545
{
5546
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5547
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5548 5549

	if (unlikely(cpu_is_offline(dest_cpu)))
5550
		return ret;
L
Linus Torvalds 已提交
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5563
	on_rq = p->se.on_rq;
5564
	if (on_rq)
5565
		deactivate_task(rq_src, p, 0);
5566

L
Linus Torvalds 已提交
5567
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5568 5569 5570
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5571
	}
5572
	ret = 1;
L
Linus Torvalds 已提交
5573 5574
out:
	double_rq_unlock(rq_src, rq_dest);
5575
	return ret;
L
Linus Torvalds 已提交
5576 5577 5578 5579 5580 5581 5582
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5583
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5584 5585
{
	int cpu = (long)data;
5586
	struct rq *rq;
L
Linus Torvalds 已提交
5587 5588 5589 5590 5591 5592

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5593
		struct migration_req *req;
L
Linus Torvalds 已提交
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5616
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5617 5618
		list_del_init(head->next);

N
Nick Piggin 已提交
5619 5620 5621
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5651
/*
5652
 * Figure out where task on dead CPU should go, use force if necessary.
5653 5654
 * NOTE: interrupts should be disabled by the caller
 */
5655
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5656
{
5657
	unsigned long flags;
L
Linus Torvalds 已提交
5658
	cpumask_t mask;
5659 5660
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5661

5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5674 5675 5676 5677 5678
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5679
			 * cpuset_cpus_allowed() will not block. It must be
5680 5681
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5682
			rq = task_rq_lock(p, &flags);
5683
			p->cpus_allowed = cpus_allowed;
5684 5685
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5686

5687 5688 5689 5690 5691
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5692
			if (p->mm && printk_ratelimit()) {
5693 5694
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5695 5696
					task_pid_nr(p), p->comm, dead_cpu);
			}
5697
		}
5698
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5699 5700 5701 5702 5703 5704 5705 5706 5707
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5708
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5709
{
5710
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5724
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5725

5726
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5727

5728 5729
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5730 5731
			continue;

5732 5733 5734
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5735

5736
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5737 5738
}

I
Ingo Molnar 已提交
5739 5740
/*
 * Schedules idle task to be the next runnable task on current CPU.
5741 5742
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5743 5744 5745
 */
void sched_idle_next(void)
{
5746
	int this_cpu = smp_processor_id();
5747
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5748 5749 5750 5751
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5752
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5753

5754 5755 5756
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5757 5758 5759
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5760
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5761

5762 5763
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5764 5765 5766 5767

	spin_unlock_irqrestore(&rq->lock, flags);
}

5768 5769
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5783
/* called under rq->lock with disabled interrupts */
5784
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5785
{
5786
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5787 5788

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5789
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5790 5791

	/* Cannot have done final schedule yet: would have vanished. */
5792
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5793

5794
	get_task_struct(p);
L
Linus Torvalds 已提交
5795 5796 5797

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5798
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5799 5800
	 * fine.
	 */
5801
	spin_unlock_irq(&rq->lock);
5802
	move_task_off_dead_cpu(dead_cpu, p);
5803
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5804

5805
	put_task_struct(p);
L
Linus Torvalds 已提交
5806 5807 5808 5809 5810
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5811
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5812
	struct task_struct *next;
5813

I
Ingo Molnar 已提交
5814 5815 5816
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5817
		update_rq_clock(rq);
5818
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5819 5820 5821
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5822

L
Linus Torvalds 已提交
5823 5824 5825 5826
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5827 5828 5829
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5830 5831
	{
		.procname	= "sched_domain",
5832
		.mode		= 0555,
5833
	},
I
Ingo Molnar 已提交
5834
	{0, },
5835 5836 5837
};

static struct ctl_table sd_ctl_root[] = {
5838
	{
5839
		.ctl_name	= CTL_KERN,
5840
		.procname	= "kernel",
5841
		.mode		= 0555,
5842 5843
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5844
	{0, },
5845 5846 5847 5848 5849
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5850
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5851 5852 5853 5854

	return entry;
}

5855 5856
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5857
	struct ctl_table *entry;
5858

5859 5860 5861
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5862
	 * will always be set. In the lowest directory the names are
5863 5864 5865
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5866 5867
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5868 5869 5870
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5871 5872 5873 5874 5875

	kfree(*tablep);
	*tablep = NULL;
}

5876
static void
5877
set_table_entry(struct ctl_table *entry,
5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5891
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5892

5893 5894 5895
	if (table == NULL)
		return NULL;

5896
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5897
		sizeof(long), 0644, proc_doulongvec_minmax);
5898
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5899
		sizeof(long), 0644, proc_doulongvec_minmax);
5900
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5901
		sizeof(int), 0644, proc_dointvec_minmax);
5902
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5903
		sizeof(int), 0644, proc_dointvec_minmax);
5904
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5905
		sizeof(int), 0644, proc_dointvec_minmax);
5906
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5907
		sizeof(int), 0644, proc_dointvec_minmax);
5908
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5909
		sizeof(int), 0644, proc_dointvec_minmax);
5910
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5911
		sizeof(int), 0644, proc_dointvec_minmax);
5912
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5913
		sizeof(int), 0644, proc_dointvec_minmax);
5914
	set_table_entry(&table[9], "cache_nice_tries",
5915 5916
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5917
	set_table_entry(&table[10], "flags", &sd->flags,
5918
		sizeof(int), 0644, proc_dointvec_minmax);
5919
	/* &table[11] is terminator */
5920 5921 5922 5923

	return table;
}

5924
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5925 5926 5927 5928 5929 5930 5931 5932 5933
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5934 5935
	if (table == NULL)
		return NULL;
5936 5937 5938 5939 5940

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5941
		entry->mode = 0555;
5942 5943 5944 5945 5946 5947 5948 5949
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5950
static void register_sched_domain_sysctl(void)
5951 5952 5953 5954 5955
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5956 5957 5958
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5959 5960 5961
	if (entry == NULL)
		return;

5962
	for_each_online_cpu(i) {
5963 5964
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5965
		entry->mode = 0555;
5966
		entry->child = sd_alloc_ctl_cpu_table(i);
5967
		entry++;
5968
	}
5969 5970

	WARN_ON(sd_sysctl_header);
5971 5972
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5973

5974
/* may be called multiple times per register */
5975 5976
static void unregister_sched_domain_sysctl(void)
{
5977 5978
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5979
	sd_sysctl_header = NULL;
5980 5981
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5982
}
5983
#else
5984 5985 5986 5987
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5988 5989 5990 5991
{
}
#endif

L
Linus Torvalds 已提交
5992 5993 5994 5995
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5996 5997
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5998 5999
{
	struct task_struct *p;
6000
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6001
	unsigned long flags;
6002
	struct rq *rq;
L
Linus Torvalds 已提交
6003 6004

	switch (action) {
6005

L
Linus Torvalds 已提交
6006
	case CPU_UP_PREPARE:
6007
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6008
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6009 6010 6011 6012 6013
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6014
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6015 6016 6017
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6018

L
Linus Torvalds 已提交
6019
	case CPU_ONLINE:
6020
	case CPU_ONLINE_FROZEN:
6021
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6022
		wake_up_process(cpu_rq(cpu)->migration_thread);
6023 6024 6025 6026 6027 6028 6029 6030 6031

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6032
		break;
6033

L
Linus Torvalds 已提交
6034 6035
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6036
	case CPU_UP_CANCELED_FROZEN:
6037 6038
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6039
		/* Unbind it from offline cpu so it can run. Fall thru. */
6040 6041
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6042 6043 6044
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6045

L
Linus Torvalds 已提交
6046
	case CPU_DEAD:
6047
	case CPU_DEAD_FROZEN:
6048
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6049 6050 6051 6052 6053
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6054
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6055
		update_rq_clock(rq);
6056
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6057
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6058 6059
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6060
		migrate_dead_tasks(cpu);
6061
		spin_unlock_irq(&rq->lock);
6062
		cpuset_unlock();
L
Linus Torvalds 已提交
6063 6064 6065
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6066 6067 6068 6069 6070
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6071 6072
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6073 6074
			struct migration_req *req;

L
Linus Torvalds 已提交
6075
			req = list_entry(rq->migration_queue.next,
6076
					 struct migration_req, list);
L
Linus Torvalds 已提交
6077 6078 6079 6080 6081
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6082

6083 6084
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6085 6086 6087 6088 6089 6090 6091 6092 6093
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6094 6095 6096 6097 6098 6099 6100 6101
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6102
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6103 6104 6105 6106
	.notifier_call = migration_call,
	.priority = 10
};

6107
void __init migration_init(void)
L
Linus Torvalds 已提交
6108 6109
{
	void *cpu = (void *)(long)smp_processor_id();
6110
	int err;
6111 6112

	/* Start one for the boot CPU: */
6113 6114
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6115 6116 6117 6118 6119 6120
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6121 6122 6123 6124 6125

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

6126
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6127 6128

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
6129
{
I
Ingo Molnar 已提交
6130 6131 6132
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
6133

I
Ingo Molnar 已提交
6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6145 6146
	}

I
Ingo Molnar 已提交
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6157

I
Ingo Molnar 已提交
6158
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6159
	do {
I
Ingo Molnar 已提交
6160 6161 6162
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6163 6164 6165
			break;
		}

I
Ingo Molnar 已提交
6166 6167 6168 6169 6170 6171
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6172

I
Ingo Molnar 已提交
6173 6174 6175 6176 6177
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6178

I
Ingo Molnar 已提交
6179 6180 6181 6182 6183
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6184

I
Ingo Molnar 已提交
6185
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
6186

I
Ingo Molnar 已提交
6187 6188
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6189

I
Ingo Molnar 已提交
6190 6191 6192
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6193

I
Ingo Molnar 已提交
6194 6195
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6196

I
Ingo Molnar 已提交
6197 6198 6199 6200 6201
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6202

I
Ingo Molnar 已提交
6203 6204 6205
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
6206

I
Ingo Molnar 已提交
6207 6208 6209 6210
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6211

I
Ingo Molnar 已提交
6212 6213 6214 6215 6216
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
6217 6218
		level++;
		sd = sd->parent;
6219
		if (!sd)
I
Ingo Molnar 已提交
6220 6221
			break;
	}
L
Linus Torvalds 已提交
6222 6223
}
#else
6224
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6225 6226
#endif

6227
static int sd_degenerate(struct sched_domain *sd)
6228 6229 6230 6231 6232 6233 6234 6235
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6236 6237 6238
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6252 6253
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6272 6273 6274
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6275 6276 6277 6278 6279 6280 6281
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6292
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6293 6294
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6295
		}
G
Gregory Haskins 已提交
6296

6297 6298 6299
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6300 6301 6302 6303 6304 6305 6306
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6307
	cpu_set(rq->cpu, rd->span);
6308 6309
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);
6310

I
Ingo Molnar 已提交
6311
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6312 6313
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6314
	}
G
Gregory Haskins 已提交
6315 6316 6317 6318

	spin_unlock_irqrestore(&rq->lock, flags);
}

6319
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6320 6321 6322
{
	memset(rd, 0, sizeof(*rd));

6323 6324
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6325 6326 6327 6328
}

static void init_defrootdomain(void)
{
6329
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6330 6331 6332
	atomic_set(&def_root_domain.refcount, 1);
}

6333
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6334 6335 6336 6337 6338 6339 6340
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6341
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6342 6343 6344 6345

	return rd;
}

L
Linus Torvalds 已提交
6346
/*
I
Ingo Molnar 已提交
6347
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6348 6349
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6350 6351
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6352
{
6353
	struct rq *rq = cpu_rq(cpu);
6354 6355 6356 6357 6358 6359 6360
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6361
		if (sd_parent_degenerate(tmp, parent)) {
6362
			tmp->parent = parent->parent;
6363 6364 6365
			if (parent->parent)
				parent->parent->child = tmp;
		}
6366 6367
	}

6368
	if (sd && sd_degenerate(sd)) {
6369
		sd = sd->parent;
6370 6371 6372
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6373 6374 6375

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6376
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6377
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6378 6379 6380
}

/* cpus with isolated domains */
6381
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6396
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6397 6398

/*
6399 6400 6401 6402
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6403 6404 6405 6406 6407
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6408
static void
6409 6410 6411
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
6412 6413 6414 6415 6416 6417
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
6418 6419
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
6420 6421 6422 6423 6424 6425
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
6426
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6427 6428

		for_each_cpu_mask(j, span) {
6429
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6444
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6445

6446
#ifdef CONFIG_NUMA
6447

6448 6449 6450 6451 6452
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6453
 * Find the next node to include in a given scheduling domain. Simply
6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
6493
 * Given a node, construct a good cpumask for its sched_domain to span. It
6494 6495 6496 6497 6498 6499
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6500 6501
	cpumask_t span, nodemask;
	int i;
6502 6503 6504 6505 6506 6507 6508 6509 6510 6511

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6512

6513 6514 6515 6516 6517 6518 6519 6520
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6521
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6522

6523
/*
6524
 * SMT sched-domains:
6525
 */
L
Linus Torvalds 已提交
6526 6527
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6528
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6529

I
Ingo Molnar 已提交
6530 6531
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6532
{
6533 6534
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6535 6536 6537 6538
	return cpu;
}
#endif

6539 6540 6541
/*
 * multi-core sched-domains:
 */
6542 6543
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6544
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6545 6546 6547
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6548 6549
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6550
{
6551
	int group;
6552
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6553
	cpus_and(mask, mask, *cpu_map);
6554 6555 6556 6557
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6558 6559
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6560 6561
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6562
{
6563 6564
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6565 6566 6567 6568
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6569
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6570
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6571

I
Ingo Molnar 已提交
6572 6573
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6574
{
6575
	int group;
6576
#ifdef CONFIG_SCHED_MC
6577
	cpumask_t mask = cpu_coregroup_map(cpu);
6578
	cpus_and(mask, mask, *cpu_map);
6579
	group = first_cpu(mask);
6580
#elif defined(CONFIG_SCHED_SMT)
6581
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6582
	cpus_and(mask, mask, *cpu_map);
6583
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6584
#else
6585
	group = cpu;
L
Linus Torvalds 已提交
6586
#endif
6587 6588 6589
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6590 6591 6592 6593
}

#ifdef CONFIG_NUMA
/*
6594 6595 6596
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6597
 */
6598
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6599
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6600

6601
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6602
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6603

6604 6605
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6606
{
6607 6608 6609 6610 6611 6612 6613 6614 6615
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6616
}
6617

6618 6619 6620 6621 6622 6623 6624
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6625 6626 6627
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6628

6629 6630 6631 6632 6633 6634 6635 6636
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6637

6638 6639 6640 6641
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6642
}
L
Linus Torvalds 已提交
6643 6644
#endif

6645
#ifdef CONFIG_NUMA
6646 6647 6648
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6649
	int cpu, i;
6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6680 6681 6682 6683 6684
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6685

6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6712 6713
	sd->groups->__cpu_power = 0;

6714 6715 6716 6717 6718 6719 6720 6721 6722 6723
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6724
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6725 6726 6727 6728 6729 6730 6731 6732
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6733
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6734 6735 6736 6737
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6738
/*
6739 6740
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6741
 */
6742
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6743 6744
{
	int i;
G
Gregory Haskins 已提交
6745
	struct root_domain *rd;
6746 6747
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6748
	int sd_allnodes = 0;
6749 6750 6751 6752

	/*
	 * Allocate the per-node list of sched groups
	 */
6753
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6754
				    GFP_KERNEL);
6755 6756
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6757
		return -ENOMEM;
6758 6759 6760
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6761

6762
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
6763 6764 6765 6766 6767
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
		return -ENOMEM;
	}

L
Linus Torvalds 已提交
6768
	/*
6769
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6770
	 */
6771
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6772 6773 6774
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6775
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6776 6777

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6778 6779
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6780 6781 6782
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6783
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6784
			p = sd;
6785
			sd_allnodes = 1;
6786 6787 6788
		} else
			p = NULL;

L
Linus Torvalds 已提交
6789 6790
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6791 6792
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6793 6794
		if (p)
			p->child = sd;
6795
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6796 6797 6798 6799 6800 6801 6802
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6803 6804
		if (p)
			p->child = sd;
6805
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6806

6807 6808 6809 6810 6811 6812 6813
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6814
		p->child = sd;
6815
		cpu_to_core_group(i, cpu_map, &sd->groups);
6816 6817
#endif

L
Linus Torvalds 已提交
6818 6819 6820 6821
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6822
		sd->span = per_cpu(cpu_sibling_map, i);
6823
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6824
		sd->parent = p;
6825
		p->child = sd;
6826
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6827 6828 6829 6830 6831
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6832
	for_each_cpu_mask(i, *cpu_map) {
6833
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6834
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6835 6836 6837
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6838 6839
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6840 6841 6842
	}
#endif

6843 6844 6845 6846 6847 6848 6849
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6850 6851
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6852 6853 6854
	}
#endif

L
Linus Torvalds 已提交
6855 6856 6857 6858
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6859
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6860 6861 6862
		if (cpus_empty(nodemask))
			continue;

6863
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6864 6865 6866 6867
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6868
	if (sd_allnodes)
I
Ingo Molnar 已提交
6869 6870
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6871 6872 6873 6874 6875 6876 6877 6878 6879 6880

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6881 6882
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6883
			continue;
6884
		}
6885 6886 6887 6888

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6889
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6890 6891 6892 6893 6894
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6895 6896 6897
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6898

6899 6900 6901
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6902
		sg->__cpu_power = 0;
6903
		sg->cpumask = nodemask;
6904
		sg->next = sg;
6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6923 6924
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6925 6926 6927
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6928
				goto error;
6929
			}
6930
			sg->__cpu_power = 0;
6931
			sg->cpumask = tmp;
6932
			sg->next = prev->next;
6933 6934 6935 6936 6937
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6938 6939 6940
#endif

	/* Calculate CPU power for physical packages and nodes */
6941
#ifdef CONFIG_SCHED_SMT
6942
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6943 6944
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6945
		init_sched_groups_power(i, sd);
6946
	}
L
Linus Torvalds 已提交
6947
#endif
6948
#ifdef CONFIG_SCHED_MC
6949
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6950 6951
		struct sched_domain *sd = &per_cpu(core_domains, i);

6952
		init_sched_groups_power(i, sd);
6953 6954
	}
#endif
6955

6956
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6957 6958
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6959
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6960 6961
	}

6962
#ifdef CONFIG_NUMA
6963 6964
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6965

6966 6967
	if (sd_allnodes) {
		struct sched_group *sg;
6968

6969
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6970 6971
		init_numa_sched_groups_power(sg);
	}
6972 6973
#endif

L
Linus Torvalds 已提交
6974
	/* Attach the domains */
6975
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6976 6977 6978
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6979 6980
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6981 6982 6983
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
6984
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
6985
	}
6986 6987 6988

	return 0;

6989
#ifdef CONFIG_NUMA
6990 6991 6992
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6993
#endif
L
Linus Torvalds 已提交
6994
}
P
Paul Jackson 已提交
6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7006 7007 7008 7009
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7010
/*
I
Ingo Molnar 已提交
7011
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7012 7013
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7014
 */
7015
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7016
{
7017 7018
	int err;

7019
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7020 7021 7022 7023 7024
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7025
	err = build_sched_domains(doms_cur);
7026
	register_sched_domain_sysctl();
7027 7028

	return err;
7029 7030 7031
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
7032
{
7033
	free_sched_groups(cpu_map);
7034
}
L
Linus Torvalds 已提交
7035

7036 7037 7038 7039
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7040
static void detach_destroy_domains(const cpumask_t *cpu_map)
7041 7042 7043
{
	int i;

7044 7045
	unregister_sched_domain_sysctl();

7046
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7047
		cpu_attach_domain(NULL, &def_root_domain, i);
7048 7049 7050 7051
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
7052 7053
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7054
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7055 7056 7057 7058
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7059 7060 7061
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7062 7063 7064
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7065 7066
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7067 7068 7069 7070 7071 7072 7073 7074 7075 7076
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

7077 7078
	lock_doms_cur();

7079 7080 7081
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
7117 7118

	register_sched_domain_sysctl();
7119 7120

	unlock_doms_cur();
P
Paul Jackson 已提交
7121 7122
}

7123
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7124
int arch_reinit_sched_domains(void)
7125 7126 7127
{
	int err;

7128
	get_online_cpus();
7129 7130
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
7131
	put_online_cpus();
7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7158 7159
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7160 7161 7162
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7163 7164
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7165 7166 7167 7168 7169 7170 7171
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7172 7173
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7174 7175 7176
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7197 7198
#endif

L
Linus Torvalds 已提交
7199
/*
I
Ingo Molnar 已提交
7200
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7201
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7202
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7203 7204 7205 7206 7207 7208 7209
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7210
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7211
	case CPU_DOWN_PREPARE:
7212
	case CPU_DOWN_PREPARE_FROZEN:
7213
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7214 7215 7216
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7217
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7218
	case CPU_DOWN_FAILED:
7219
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7220
	case CPU_ONLINE:
7221
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7222
	case CPU_DEAD:
7223
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7224 7225 7226 7227 7228 7229 7230 7231 7232
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7233
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7234 7235 7236 7237 7238 7239

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7240 7241
	cpumask_t non_isolated_cpus;

7242
	get_online_cpus();
7243
	arch_init_sched_domains(&cpu_online_map);
7244
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7245 7246
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7247
	put_online_cpus();
L
Linus Torvalds 已提交
7248 7249
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7250 7251 7252 7253

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
7254
	sched_init_granularity();
L
Linus Torvalds 已提交
7255 7256 7257 7258
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7259
	sched_init_granularity();
L
Linus Torvalds 已提交
7260 7261 7262 7263 7264 7265 7266 7267 7268 7269
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7270
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7271 7272 7273 7274 7275
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7276
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7277 7278
}

P
Peter Zijlstra 已提交
7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7292
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7293 7294
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7295 7296 7297 7298 7299 7300 7301
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7302

7303
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7304
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7305 7306
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7307 7308
}

P
Peter Zijlstra 已提交
7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326
#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
		struct cfs_rq *cfs_rq, struct sched_entity *se,
		int cpu, int add)
{
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
	se->cfs_rq = &rq->cfs;
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
	se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
	se->parent = NULL;
}
7327
#endif
P
Peter Zijlstra 已提交
7328

7329
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348
static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
		struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
		int cpu, int add)
{
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
	rt_se->parent = NULL;
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7349 7350
void __init sched_init(void)
{
7351
	int highest_cpu = 0;
I
Ingo Molnar 已提交
7352 7353
	int i, j;

G
Gregory Haskins 已提交
7354 7355 7356 7357
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7358 7359 7360 7361 7362 7363 7364 7365
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
#endif

7366
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7367 7368 7369
	list_add(&init_task_group.list, &task_groups);
#endif

7370
	for_each_possible_cpu(i) {
7371
		struct rq *rq;
L
Linus Torvalds 已提交
7372 7373 7374

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7375
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7376
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7377
		rq->clock = 1;
7378
		update_last_tick_seen(rq);
I
Ingo Molnar 已提交
7379
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7380
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7381
#ifdef CONFIG_FAIR_GROUP_SCHED
7382
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7383 7384 7385 7386 7387
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		init_tg_cfs_entry(rq, &init_task_group,
				&per_cpu(init_cfs_rq, i),
				&per_cpu(init_sched_entity, i), i, 1);

7388 7389
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7390 7391 7392 7393
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
		init_tg_rt_entry(rq, &init_task_group,
				&per_cpu(init_rt_rq, i),
				&per_cpu(init_sched_rt_entity, i), i, 1);
I
Ingo Molnar 已提交
7394
#endif
L
Linus Torvalds 已提交
7395

I
Ingo Molnar 已提交
7396 7397
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7398
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7399
		rq->sd = NULL;
G
Gregory Haskins 已提交
7400
		rq->rd = NULL;
L
Linus Torvalds 已提交
7401
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7402
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7403
		rq->push_cpu = 0;
7404
		rq->cpu = i;
L
Linus Torvalds 已提交
7405 7406
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7407
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7408
#endif
P
Peter Zijlstra 已提交
7409
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7410
		atomic_set(&rq->nr_iowait, 0);
7411
		highest_cpu = i;
L
Linus Torvalds 已提交
7412 7413
	}

7414
	set_load_weight(&init_task);
7415

7416 7417 7418 7419
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7420
#ifdef CONFIG_SMP
7421
	nr_cpu_ids = highest_cpu + 1;
7422 7423 7424
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7425 7426 7427 7428
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
7442 7443 7444 7445
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7446 7447

	scheduler_running = 1;
L
Linus Torvalds 已提交
7448 7449 7450 7451 7452
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
7453
#ifdef in_atomic
L
Linus Torvalds 已提交
7454 7455 7456 7457 7458 7459 7460
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
7461
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
7462 7463 7464
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
7465
		debug_show_held_locks(current);
7466 7467
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
7468 7469 7470 7471 7472 7473 7474 7475
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7490 7491
void normalize_rt_tasks(void)
{
7492
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7493
	unsigned long flags;
7494
	struct rq *rq;
L
Linus Torvalds 已提交
7495

7496
	read_lock_irqsave(&tasklist_lock, flags);
7497
	do_each_thread(g, p) {
7498 7499 7500 7501 7502 7503
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7504 7505
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7506 7507 7508
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7509
#endif
I
Ingo Molnar 已提交
7510 7511 7512 7513 7514 7515 7516 7517 7518
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7519
			continue;
I
Ingo Molnar 已提交
7520
		}
L
Linus Torvalds 已提交
7521

7522
		spin_lock(&p->pi_lock);
7523
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7524

7525
		normalize_task(rq, p);
7526

7527
		__task_rq_unlock(rq);
7528
		spin_unlock(&p->pi_lock);
7529 7530
	} while_each_thread(g, p);

7531
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7532 7533 7534
}

#endif /* CONFIG_MAGIC_SYSRQ */
7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7553
struct task_struct *curr_task(int cpu)
7554 7555 7556 7557 7558 7559 7560 7561 7562 7563
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7564 7565
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7566 7567 7568 7569 7570 7571 7572
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7573
void set_curr_task(int cpu, struct task_struct *p)
7574 7575 7576 7577 7578
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7579

7580 7581
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7596
static int alloc_fair_sched_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7597 7598 7599
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
7600
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7601 7602
	int i;

7603
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7604 7605
	if (!tg->cfs_rq)
		goto err;
7606
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7607 7608
	if (!tg->se)
		goto err;
7609 7610

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7611 7612

	for_each_possible_cpu(i) {
7613
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7614

P
Peter Zijlstra 已提交
7615 7616
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7617 7618 7619
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
7620 7621
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7622 7623 7624
		if (!se)
			goto err;

7625
		init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

static inline int alloc_fair_sched_group(struct task_group *tg)
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7661 7662 7663
#endif

#ifdef CONFIG_RT_GROUP_SCHED
7664 7665 7666 7667
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

7668 7669
	destroy_rt_bandwidth(&tg->rt_bandwidth);

7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

static int alloc_rt_sched_group(struct task_group *tg)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	struct rq *rq;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

7695 7696
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7697 7698 7699 7700

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
7701 7702 7703 7704
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
7705

P
Peter Zijlstra 已提交
7706 7707 7708 7709
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
7710

P
Peter Zijlstra 已提交
7711
		init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
S
Srivatsa Vaddagiri 已提交
7712 7713
	}

7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

static inline int alloc_rt_sched_group(struct task_group *tg)
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

7749
#ifdef CONFIG_GROUP_SCHED
7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
struct task_group *sched_create_group(void)
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

	if (!alloc_fair_sched_group(tg))
		goto err;

	if (!alloc_rt_sched_group(tg))
		goto err;

7774
	spin_lock_irqsave(&task_group_lock, flags);
7775
	for_each_possible_cpu(i) {
7776 7777
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
7778
	}
P
Peter Zijlstra 已提交
7779
	list_add_rcu(&tg->list, &task_groups);
7780
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7781

7782
	return tg;
S
Srivatsa Vaddagiri 已提交
7783 7784

err:
P
Peter Zijlstra 已提交
7785
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7786 7787 7788
	return ERR_PTR(-ENOMEM);
}

7789
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7790
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7791 7792
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7793
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7794 7795
}

7796
/* Destroy runqueue etc associated with a task group */
7797
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7798
{
7799
	unsigned long flags;
7800
	int i;
S
Srivatsa Vaddagiri 已提交
7801

7802
	spin_lock_irqsave(&task_group_lock, flags);
7803
	for_each_possible_cpu(i) {
7804 7805
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
7806
	}
P
Peter Zijlstra 已提交
7807
	list_del_rcu(&tg->list);
7808
	spin_unlock_irqrestore(&task_group_lock, flags);
7809 7810

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7811
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7812 7813
}

7814
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7815 7816 7817
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7818 7819
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7820 7821 7822 7823 7824 7825 7826 7827 7828
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

7829
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7830 7831
	on_rq = tsk->se.on_rq;

7832
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7833
		dequeue_task(rq, tsk, 0);
7834 7835
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7836

P
Peter Zijlstra 已提交
7837
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7838

P
Peter Zijlstra 已提交
7839 7840 7841 7842 7843
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

7844 7845 7846
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7847
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7848 7849 7850

	task_rq_unlock(rq, &flags);
}
7851
#endif
S
Srivatsa Vaddagiri 已提交
7852

7853
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
7854 7855 7856 7857 7858 7859
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

7860
	spin_lock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
7861 7862

	on_rq = se->on_rq;
7863
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7864 7865 7866 7867 7868
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

7869
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7870
		enqueue_entity(cfs_rq, se, 0);
7871 7872

	spin_unlock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
7873 7874
}

7875 7876
static DEFINE_MUTEX(shares_mutex);

7877
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7878 7879
{
	int i;
7880
	unsigned long flags;
7881

7882 7883 7884 7885 7886 7887 7888 7889
	/*
	 * A weight of 0 or 1 can cause arithmetics problems.
	 * (The default weight is 1024 - so there's no practical
	 *  limitation from this.)
	 */
	if (shares < 2)
		shares = 2;

7890
	mutex_lock(&shares_mutex);
7891
	if (tg->shares == shares)
7892
		goto done;
S
Srivatsa Vaddagiri 已提交
7893

7894
	spin_lock_irqsave(&task_group_lock, flags);
7895 7896
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
7897
	spin_unlock_irqrestore(&task_group_lock, flags);
7898 7899 7900 7901 7902 7903 7904 7905

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
7906
	tg->shares = shares;
7907
	for_each_possible_cpu(i)
7908
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
7909

7910 7911 7912 7913
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
7914
	spin_lock_irqsave(&task_group_lock, flags);
7915 7916
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
7917
	spin_unlock_irqrestore(&task_group_lock, flags);
7918
done:
7919
	mutex_unlock(&shares_mutex);
7920
	return 0;
S
Srivatsa Vaddagiri 已提交
7921 7922
}

7923 7924 7925 7926
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
7927
#endif
7928

7929
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7930
/*
P
Peter Zijlstra 已提交
7931
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
7932
 */
P
Peter Zijlstra 已提交
7933 7934 7935 7936 7937 7938 7939
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

7940
	return div64_64(runtime << 16, period);
P
Peter Zijlstra 已提交
7941 7942 7943
}

static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
7944 7945 7946
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
7947
	unsigned long global_ratio =
7948
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
7949 7950

	rcu_read_lock();
P
Peter Zijlstra 已提交
7951 7952 7953
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
7954

7955 7956
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
7957 7958
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
7959

P
Peter Zijlstra 已提交
7960
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
7961 7962
}

7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

7974 7975
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7976
{
P
Peter Zijlstra 已提交
7977 7978 7979
	int err = 0;

	mutex_lock(&rt_constraints_mutex);
7980 7981 7982 7983 7984
	read_lock(&tasklist_lock);
	if (rt_runtime_us == 0 && tg_has_rt_tasks(tg)) {
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
7985 7986 7987 7988
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
7989 7990
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7991
 unlock:
7992
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7993 7994 7995
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7996 7997
}

7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8010 8011 8012 8013
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8014
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8015 8016
		return -1;

8017
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8018 8019 8020
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
	if (!__rt_schedulable(NULL, 1, 0))
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
#else
static int sched_rt_global_constraints(void)
{
	return 0;
}
8057
#endif
8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8088

8089
#ifdef CONFIG_CGROUP_SCHED
8090 8091

/* return corresponding task_group object of a cgroup */
8092
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8093
{
8094 8095
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8096 8097 8098
}

static struct cgroup_subsys_state *
8099
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8100 8101 8102
{
	struct task_group *tg;

8103
	if (!cgrp->parent) {
8104
		/* This is early initialization for the top cgroup */
8105
		init_task_group.css.cgroup = cgrp;
8106 8107 8108 8109
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
8110
	if (cgrp->parent->parent)
8111 8112 8113 8114 8115 8116 8117
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8118
	tg->css.cgroup = cgrp;
8119 8120 8121 8122

	return &tg->css;
}

I
Ingo Molnar 已提交
8123 8124
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8125
{
8126
	struct task_group *tg = cgroup_tg(cgrp);
8127 8128 8129 8130

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8131 8132 8133
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8134
{
8135 8136
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8137
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8138 8139
		return -EINVAL;
#else
8140 8141 8142
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8143
#endif
8144 8145 8146 8147 8148

	return 0;
}

static void
8149
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8150 8151 8152 8153 8154
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8155
#ifdef CONFIG_FAIR_GROUP_SCHED
8156 8157
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
8158
{
8159
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8160 8161
}

8162
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
8163
{
8164
	struct task_group *tg = cgroup_tg(cgrp);
8165 8166 8167

	return (u64) tg->shares;
}
8168
#endif
8169

8170
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8171 8172 8173 8174
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
P
Peter Zijlstra 已提交
8175
{
P
Peter Zijlstra 已提交
8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201
	char buffer[64];
	int retval = 0;
	s64 val;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */

	/* strip newline if necessary */
	if (nbytes && (buffer[nbytes-1] == '\n'))
		buffer[nbytes-1] = 0;
	val = simple_strtoll(buffer, &end, 0);
	if (*end)
		return -EINVAL;

	/* Pass to subsystem */
	retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
	if (!retval)
		retval = nbytes;
	return retval;
P
Peter Zijlstra 已提交
8202 8203
}

P
Peter Zijlstra 已提交
8204 8205 8206 8207
static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   char __user *buf, size_t nbytes,
				   loff_t *ppos)
P
Peter Zijlstra 已提交
8208
{
P
Peter Zijlstra 已提交
8209 8210 8211
	char tmp[64];
	long val = sched_group_rt_runtime(cgroup_tg(cgrp));
	int len = sprintf(tmp, "%ld\n", val);
P
Peter Zijlstra 已提交
8212

P
Peter Zijlstra 已提交
8213
	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
P
Peter Zijlstra 已提交
8214
}
8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8226
#endif
P
Peter Zijlstra 已提交
8227

8228
static struct cftype cpu_files[] = {
8229
#ifdef CONFIG_FAIR_GROUP_SCHED
8230 8231 8232 8233 8234
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
8235 8236
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8237
	{
P
Peter Zijlstra 已提交
8238 8239 8240
		.name = "rt_runtime_us",
		.read = cpu_rt_runtime_read,
		.write = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8241
	},
8242 8243 8244 8245 8246
	{
		.name = "rt_period_us",
		.read_uint = cpu_rt_period_read_uint,
		.write_uint = cpu_rt_period_write_uint,
	},
8247
#endif
8248 8249 8250 8251
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8252
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8253 8254 8255
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8256 8257 8258 8259 8260 8261 8262
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8263 8264 8265
	.early_init	= 1,
};

8266
#endif	/* CONFIG_CGROUP_SCHED */
8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8319 8320
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */