提交 9c1cfda2 编写于 作者: J John Hawkes 提交者: Linus Torvalds

[PATCH] cpusets: Move the ia64 domain setup code to the generic code

Signed-off-by: NJohn Hawkes <hawkes@sgi.com>
Signed-off-by: NIngo Molnar <mingo@elte.hu>
Signed-off-by: NAndrew Morton <akpm@osdl.org>
Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
上级 ef08e3b4
......@@ -16,7 +16,7 @@ obj-$(CONFIG_IA64_HP_ZX1_SWIOTLB) += acpi-ext.o
obj-$(CONFIG_IA64_PALINFO) += palinfo.o
obj-$(CONFIG_IOSAPIC) += iosapic.o
obj-$(CONFIG_MODULES) += module.o
obj-$(CONFIG_SMP) += smp.o smpboot.o domain.o
obj-$(CONFIG_SMP) += smp.o smpboot.o
obj-$(CONFIG_NUMA) += numa.o
obj-$(CONFIG_PERFMON) += perfmon_default_smpl.o
obj-$(CONFIG_IA64_CYCLONE) += cyclone.o
......
/*
* arch/ia64/kernel/domain.c
* Architecture specific sched-domains builder.
*
* Copyright (C) 2004 Jesse Barnes
* Copyright (C) 2004 Silicon Graphics, Inc.
*/
#include <linux/sched.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <linux/cpumask.h>
#include <linux/init.h>
#include <linux/topology.h>
#include <linux/nodemask.h>
#define SD_NODES_PER_DOMAIN 16
#ifdef CONFIG_NUMA
/**
* find_next_best_node - find the next node to include in a sched_domain
* @node: node whose sched_domain we're building
* @used_nodes: nodes already in the sched_domain
*
* Find the next node to include in a given scheduling domain. Simply
* finds the closest node not already in the @used_nodes map.
*
* Should use nodemask_t.
*/
static int find_next_best_node(int node, unsigned long *used_nodes)
{
int i, n, val, min_val, best_node = 0;
min_val = INT_MAX;
for (i = 0; i < MAX_NUMNODES; i++) {
/* Start at @node */
n = (node + i) % MAX_NUMNODES;
if (!nr_cpus_node(n))
continue;
/* Skip already used nodes */
if (test_bit(n, used_nodes))
continue;
/* Simple min distance search */
val = node_distance(node, n);
if (val < min_val) {
min_val = val;
best_node = n;
}
}
set_bit(best_node, used_nodes);
return best_node;
}
/**
* sched_domain_node_span - get a cpumask for a node's sched_domain
* @node: node whose cpumask we're constructing
* @size: number of nodes to include in this span
*
* Given a node, construct a good cpumask for its sched_domain to span. It
* should be one that prevents unnecessary balancing, but also spreads tasks
* out optimally.
*/
static cpumask_t sched_domain_node_span(int node)
{
int i;
cpumask_t span, nodemask;
DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
cpus_clear(span);
bitmap_zero(used_nodes, MAX_NUMNODES);
nodemask = node_to_cpumask(node);
cpus_or(span, span, nodemask);
set_bit(node, used_nodes);
for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
int next_node = find_next_best_node(node, used_nodes);
nodemask = node_to_cpumask(next_node);
cpus_or(span, span, nodemask);
}
return span;
}
#endif
/*
* At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
* can switch it on easily if needed.
*/
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
static struct sched_group sched_group_cpus[NR_CPUS];
static int cpu_to_cpu_group(int cpu)
{
return cpu;
}
#endif
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
static struct sched_group sched_group_phys[NR_CPUS];
static int cpu_to_phys_group(int cpu)
{
#ifdef CONFIG_SCHED_SMT
return first_cpu(cpu_sibling_map[cpu]);
#else
return cpu;
#endif
}
#ifdef CONFIG_NUMA
/*
* The init_sched_build_groups can't handle what we want to do with node
* groups, so roll our own. Now each node has its own list of groups which
* gets dynamically allocated.
*/
static DEFINE_PER_CPU(struct sched_domain, node_domains);
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
static int cpu_to_allnodes_group(int cpu)
{
return cpu_to_node(cpu);
}
#endif
/*
* Build sched domains for a given set of cpus and attach the sched domains
* to the individual cpus
*/
void build_sched_domains(const cpumask_t *cpu_map)
{
int i;
#ifdef CONFIG_NUMA
struct sched_group **sched_group_nodes = NULL;
struct sched_group *sched_group_allnodes = NULL;
/*
* Allocate the per-node list of sched groups
*/
sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
GFP_ATOMIC);
if (!sched_group_nodes) {
printk(KERN_WARNING "Can not alloc sched group node list\n");
return;
}
sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
/*
* Set up domains for cpus specified by the cpu_map.
*/
for_each_cpu_mask(i, *cpu_map) {
int group;
struct sched_domain *sd = NULL, *p;
cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
cpus_and(nodemask, nodemask, *cpu_map);
#ifdef CONFIG_NUMA
if (cpus_weight(*cpu_map)
> SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
if (!sched_group_allnodes) {
sched_group_allnodes
= kmalloc(sizeof(struct sched_group)
* MAX_NUMNODES,
GFP_KERNEL);
if (!sched_group_allnodes) {
printk(KERN_WARNING
"Can not alloc allnodes sched group\n");
break;
}
sched_group_allnodes_bycpu[i]
= sched_group_allnodes;
}
sd = &per_cpu(allnodes_domains, i);
*sd = SD_ALLNODES_INIT;
sd->span = *cpu_map;
group = cpu_to_allnodes_group(i);
sd->groups = &sched_group_allnodes[group];
p = sd;
} else
p = NULL;
sd = &per_cpu(node_domains, i);
*sd = SD_NODE_INIT;
sd->span = sched_domain_node_span(cpu_to_node(i));
sd->parent = p;
cpus_and(sd->span, sd->span, *cpu_map);
#endif
p = sd;
sd = &per_cpu(phys_domains, i);
group = cpu_to_phys_group(i);
*sd = SD_CPU_INIT;
sd->span = nodemask;
sd->parent = p;
sd->groups = &sched_group_phys[group];
#ifdef CONFIG_SCHED_SMT
p = sd;
sd = &per_cpu(cpu_domains, i);
group = cpu_to_cpu_group(i);
*sd = SD_SIBLING_INIT;
sd->span = cpu_sibling_map[i];
cpus_and(sd->span, sd->span, *cpu_map);
sd->parent = p;
sd->groups = &sched_group_cpus[group];
#endif
}
#ifdef CONFIG_SCHED_SMT
/* Set up CPU (sibling) groups */
for_each_cpu_mask(i, *cpu_map) {
cpumask_t this_sibling_map = cpu_sibling_map[i];
cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
if (i != first_cpu(this_sibling_map))
continue;
init_sched_build_groups(sched_group_cpus, this_sibling_map,
&cpu_to_cpu_group);
}
#endif
/* Set up physical groups */
for (i = 0; i < MAX_NUMNODES; i++) {
cpumask_t nodemask = node_to_cpumask(i);
cpus_and(nodemask, nodemask, *cpu_map);
if (cpus_empty(nodemask))
continue;
init_sched_build_groups(sched_group_phys, nodemask,
&cpu_to_phys_group);
}
#ifdef CONFIG_NUMA
if (sched_group_allnodes)
init_sched_build_groups(sched_group_allnodes, *cpu_map,
&cpu_to_allnodes_group);
for (i = 0; i < MAX_NUMNODES; i++) {
/* Set up node groups */
struct sched_group *sg, *prev;
cpumask_t nodemask = node_to_cpumask(i);
cpumask_t domainspan;
cpumask_t covered = CPU_MASK_NONE;
int j;
cpus_and(nodemask, nodemask, *cpu_map);
if (cpus_empty(nodemask)) {
sched_group_nodes[i] = NULL;
continue;
}
domainspan = sched_domain_node_span(i);
cpus_and(domainspan, domainspan, *cpu_map);
sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
sched_group_nodes[i] = sg;
for_each_cpu_mask(j, nodemask) {
struct sched_domain *sd;
sd = &per_cpu(node_domains, j);
sd->groups = sg;
if (sd->groups == NULL) {
/* Turn off balancing if we have no groups */
sd->flags = 0;
}
}
if (!sg) {
printk(KERN_WARNING
"Can not alloc domain group for node %d\n", i);
continue;
}
sg->cpu_power = 0;
sg->cpumask = nodemask;
cpus_or(covered, covered, nodemask);
prev = sg;
for (j = 0; j < MAX_NUMNODES; j++) {
cpumask_t tmp, notcovered;
int n = (i + j) % MAX_NUMNODES;
cpus_complement(notcovered, covered);
cpus_and(tmp, notcovered, *cpu_map);
cpus_and(tmp, tmp, domainspan);
if (cpus_empty(tmp))
break;
nodemask = node_to_cpumask(n);
cpus_and(tmp, tmp, nodemask);
if (cpus_empty(tmp))
continue;
sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
if (!sg) {
printk(KERN_WARNING
"Can not alloc domain group for node %d\n", j);
break;
}
sg->cpu_power = 0;
sg->cpumask = tmp;
cpus_or(covered, covered, tmp);
prev->next = sg;
prev = sg;
}
prev->next = sched_group_nodes[i];
}
#endif
/* Calculate CPU power for physical packages and nodes */
for_each_cpu_mask(i, *cpu_map) {
int power;
struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
sd = &per_cpu(cpu_domains, i);
power = SCHED_LOAD_SCALE;
sd->groups->cpu_power = power;
#endif
sd = &per_cpu(phys_domains, i);
power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
(cpus_weight(sd->groups->cpumask)-1) / 10;
sd->groups->cpu_power = power;
#ifdef CONFIG_NUMA
sd = &per_cpu(allnodes_domains, i);
if (sd->groups) {
power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
(cpus_weight(sd->groups->cpumask)-1) / 10;
sd->groups->cpu_power = power;
}
#endif
}
#ifdef CONFIG_NUMA
for (i = 0; i < MAX_NUMNODES; i++) {
struct sched_group *sg = sched_group_nodes[i];
int j;
if (sg == NULL)
continue;
next_sg:
for_each_cpu_mask(j, sg->cpumask) {
struct sched_domain *sd;
int power;
sd = &per_cpu(phys_domains, j);
if (j != first_cpu(sd->groups->cpumask)) {
/*
* Only add "power" once for each
* physical package.
*/
continue;
}
power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
(cpus_weight(sd->groups->cpumask)-1) / 10;
sg->cpu_power += power;
}
sg = sg->next;
if (sg != sched_group_nodes[i])
goto next_sg;
}
#endif
/* Attach the domains */
for_each_cpu_mask(i, *cpu_map) {
struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
sd = &per_cpu(cpu_domains, i);
#else
sd = &per_cpu(phys_domains, i);
#endif
cpu_attach_domain(sd, i);
}
}
/*
* Set up scheduler domains and groups. Callers must hold the hotplug lock.
*/
void arch_init_sched_domains(const cpumask_t *cpu_map)
{
cpumask_t cpu_default_map;
/*
* Setup mask for cpus without special case scheduling requirements.
* For now this just excludes isolated cpus, but could be used to
* exclude other special cases in the future.
*/
cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
build_sched_domains(&cpu_default_map);
}
void arch_destroy_sched_domains(const cpumask_t *cpu_map)
{
#ifdef CONFIG_NUMA
int i;
int cpu;
for_each_cpu_mask(cpu, *cpu_map) {
struct sched_group *sched_group_allnodes
= sched_group_allnodes_bycpu[cpu];
struct sched_group **sched_group_nodes
= sched_group_nodes_bycpu[cpu];
if (sched_group_allnodes) {
kfree(sched_group_allnodes);
sched_group_allnodes_bycpu[cpu] = NULL;
}
if (!sched_group_nodes)
continue;
for (i = 0; i < MAX_NUMNODES; i++) {
cpumask_t nodemask = node_to_cpumask(i);
struct sched_group *oldsg, *sg = sched_group_nodes[i];
cpus_and(nodemask, nodemask, *cpu_map);
if (cpus_empty(nodemask))
continue;
if (sg == NULL)
continue;
sg = sg->next;
next_sg:
oldsg = sg;
sg = sg->next;
kfree(oldsg);
if (oldsg != sched_group_nodes[i])
goto next_sg;
}
kfree(sched_group_nodes);
sched_group_nodes_bycpu[cpu] = NULL;
}
#endif
}
......@@ -20,9 +20,6 @@
#include <asm/ptrace.h>
#include <asm/ustack.h>
/* Our arch specific arch_init_sched_domain is in arch/ia64/kernel/domain.c */
#define ARCH_HAS_SCHED_DOMAIN
#define IA64_NUM_DBG_REGS 8
/*
* Limits for PMC and PMD are set to less than maximum architected values
......
......@@ -98,29 +98,6 @@ void build_cpu_to_node_map(void);
.nr_balance_failed = 0, \
}
/* sched_domains SD_ALLNODES_INIT for IA64 NUMA machines */
#define SD_ALLNODES_INIT (struct sched_domain) { \
.span = CPU_MASK_NONE, \
.parent = NULL, \
.groups = NULL, \
.min_interval = 64, \
.max_interval = 64*num_online_cpus(), \
.busy_factor = 128, \
.imbalance_pct = 133, \
.cache_hot_time = (10*1000000), \
.cache_nice_tries = 1, \
.busy_idx = 3, \
.idle_idx = 3, \
.newidle_idx = 0, /* unused */ \
.wake_idx = 0, /* unused */ \
.forkexec_idx = 0, /* unused */ \
.per_cpu_gain = 100, \
.flags = SD_LOAD_BALANCE, \
.last_balance = jiffies, \
.balance_interval = 64, \
.nr_balance_failed = 0, \
}
#endif /* CONFIG_NUMA */
#include <asm-generic/topology.h>
......
......@@ -564,13 +564,6 @@ struct sched_domain {
extern void partition_sched_domains(cpumask_t *partition1,
cpumask_t *partition2);
#ifdef ARCH_HAS_SCHED_DOMAIN
/* Useful helpers that arch setup code may use. Defined in kernel/sched.c */
extern cpumask_t cpu_isolated_map;
extern void init_sched_build_groups(struct sched_group groups[],
cpumask_t span, int (*group_fn)(int cpu));
extern void cpu_attach_domain(struct sched_domain *sd, int cpu);
#endif /* ARCH_HAS_SCHED_DOMAIN */
#endif /* CONFIG_SMP */
......
......@@ -135,6 +135,29 @@
}
#endif
/* sched_domains SD_ALLNODES_INIT for NUMA machines */
#define SD_ALLNODES_INIT (struct sched_domain) { \
.span = CPU_MASK_NONE, \
.parent = NULL, \
.groups = NULL, \
.min_interval = 64, \
.max_interval = 64*num_online_cpus(), \
.busy_factor = 128, \
.imbalance_pct = 133, \
.cache_hot_time = (10*1000000), \
.cache_nice_tries = 1, \
.busy_idx = 3, \
.idle_idx = 3, \
.newidle_idx = 0, /* unused */ \
.wake_idx = 0, /* unused */ \
.forkexec_idx = 0, /* unused */ \
.per_cpu_gain = 100, \
.flags = SD_LOAD_BALANCE, \
.last_balance = jiffies, \
.balance_interval = 64, \
.nr_balance_failed = 0, \
}
#ifdef CONFIG_NUMA
#ifndef SD_NODE_INIT
#error Please define an appropriate SD_NODE_INIT in include/asm/topology.h!!!
......
......@@ -4779,7 +4779,7 @@ static int sd_parent_degenerate(struct sched_domain *sd,
* Attach the domain 'sd' to 'cpu' as its base domain. Callers must
* hold the hotplug lock.
*/
void cpu_attach_domain(struct sched_domain *sd, int cpu)
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
{
runqueue_t *rq = cpu_rq(cpu);
struct sched_domain *tmp;
......@@ -4802,7 +4802,7 @@ void cpu_attach_domain(struct sched_domain *sd, int cpu)
}
/* cpus with isolated domains */
cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
......@@ -4830,8 +4830,8 @@ __setup ("isolcpus=", isolated_cpu_setup);
* covered by the given span, and will set each group's ->cpumask correctly,
* and ->cpu_power to 0.
*/
void init_sched_build_groups(struct sched_group groups[],
cpumask_t span, int (*group_fn)(int cpu))
static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
int (*group_fn)(int cpu))
{
struct sched_group *first = NULL, *last = NULL;
cpumask_t covered = CPU_MASK_NONE;
......@@ -4864,12 +4864,85 @@ void init_sched_build_groups(struct sched_group groups[],
last->next = first;
}
#define SD_NODES_PER_DOMAIN 16
#ifdef ARCH_HAS_SCHED_DOMAIN
extern void build_sched_domains(const cpumask_t *cpu_map);
extern void arch_init_sched_domains(const cpumask_t *cpu_map);
extern void arch_destroy_sched_domains(const cpumask_t *cpu_map);
#else
#ifdef CONFIG_NUMA
/**
* find_next_best_node - find the next node to include in a sched_domain
* @node: node whose sched_domain we're building
* @used_nodes: nodes already in the sched_domain
*
* Find the next node to include in a given scheduling domain. Simply
* finds the closest node not already in the @used_nodes map.
*
* Should use nodemask_t.
*/
static int find_next_best_node(int node, unsigned long *used_nodes)
{
int i, n, val, min_val, best_node = 0;
min_val = INT_MAX;
for (i = 0; i < MAX_NUMNODES; i++) {
/* Start at @node */
n = (node + i) % MAX_NUMNODES;
if (!nr_cpus_node(n))
continue;
/* Skip already used nodes */
if (test_bit(n, used_nodes))
continue;
/* Simple min distance search */
val = node_distance(node, n);
if (val < min_val) {
min_val = val;
best_node = n;
}
}
set_bit(best_node, used_nodes);
return best_node;
}
/**
* sched_domain_node_span - get a cpumask for a node's sched_domain
* @node: node whose cpumask we're constructing
* @size: number of nodes to include in this span
*
* Given a node, construct a good cpumask for its sched_domain to span. It
* should be one that prevents unnecessary balancing, but also spreads tasks
* out optimally.
*/
static cpumask_t sched_domain_node_span(int node)
{
int i;
cpumask_t span, nodemask;
DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
cpus_clear(span);
bitmap_zero(used_nodes, MAX_NUMNODES);
nodemask = node_to_cpumask(node);
cpus_or(span, span, nodemask);
set_bit(node, used_nodes);
for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
int next_node = find_next_best_node(node, used_nodes);
nodemask = node_to_cpumask(next_node);
cpus_or(span, span, nodemask);
}
return span;
}
#endif
/*
* At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
* can switch it on easily if needed.
*/
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
static struct sched_group sched_group_cpus[NR_CPUS];
......@@ -4891,36 +4964,20 @@ static int cpu_to_phys_group(int cpu)
}
#ifdef CONFIG_NUMA
static DEFINE_PER_CPU(struct sched_domain, node_domains);
static struct sched_group sched_group_nodes[MAX_NUMNODES];
static int cpu_to_node_group(int cpu)
{
return cpu_to_node(cpu);
}
#endif
#if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
/*
* The domains setup code relies on siblings not spanning
* multiple nodes. Make sure the architecture has a proper
* siblings map:
* The init_sched_build_groups can't handle what we want to do with node
* groups, so roll our own. Now each node has its own list of groups which
* gets dynamically allocated.
*/
static void check_sibling_maps(void)
{
int i, j;
static DEFINE_PER_CPU(struct sched_domain, node_domains);
static struct sched_group *sched_group_nodes[MAX_NUMNODES];
for_each_online_cpu(i) {
for_each_cpu_mask(j, cpu_sibling_map[i]) {
if (cpu_to_node(i) != cpu_to_node(j)) {
printk(KERN_INFO "warning: CPU %d siblings map "
"to different node - isolating "
"them.\n", i);
cpu_sibling_map[i] = cpumask_of_cpu(i);
break;
}
}
}
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
static struct sched_group sched_group_allnodes[MAX_NUMNODES];
static int cpu_to_allnodes_group(int cpu)
{
return cpu_to_node(cpu);
}
#endif
......@@ -4928,7 +4985,7 @@ static void check_sibling_maps(void)
* Build sched domains for a given set of cpus and attach the sched domains
* to the individual cpus
*/
static void build_sched_domains(const cpumask_t *cpu_map)
void build_sched_domains(const cpumask_t *cpu_map)
{
int i;
......@@ -4943,11 +5000,22 @@ static void build_sched_domains(const cpumask_t *cpu_map)
cpus_and(nodemask, nodemask, *cpu_map);
#ifdef CONFIG_NUMA
if (num_online_cpus()
> SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
sd = &per_cpu(allnodes_domains, i);
*sd = SD_ALLNODES_INIT;
sd->span = *cpu_map;
group = cpu_to_allnodes_group(i);
sd->groups = &sched_group_allnodes[group];
p = sd;
} else
p = NULL;
sd = &per_cpu(node_domains, i);
group = cpu_to_node_group(i);
*sd = SD_NODE_INIT;
sd->span = *cpu_map;
sd->groups = &sched_group_nodes[group];
sd->span = sched_domain_node_span(cpu_to_node(i));
sd->parent = p;
cpus_and(sd->span, sd->span, *cpu_map);
#endif
p = sd;
......@@ -4972,7 +5040,7 @@ static void build_sched_domains(const cpumask_t *cpu_map)
#ifdef CONFIG_SCHED_SMT
/* Set up CPU (sibling) groups */
for_each_online_cpu(i) {
for_each_cpu_mask(i, *cpu_map) {
cpumask_t this_sibling_map = cpu_sibling_map[i];
cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
if (i != first_cpu(this_sibling_map))
......@@ -4997,8 +5065,74 @@ static void build_sched_domains(const cpumask_t *cpu_map)
#ifdef CONFIG_NUMA
/* Set up node groups */
init_sched_build_groups(sched_group_nodes, *cpu_map,
&cpu_to_node_group);
init_sched_build_groups(sched_group_allnodes, *cpu_map,
&cpu_to_allnodes_group);
for (i = 0; i < MAX_NUMNODES; i++) {
/* Set up node groups */
struct sched_group *sg, *prev;
cpumask_t nodemask = node_to_cpumask(i);
cpumask_t domainspan;
cpumask_t covered = CPU_MASK_NONE;
int j;
cpus_and(nodemask, nodemask, *cpu_map);
if (cpus_empty(nodemask))
continue;
domainspan = sched_domain_node_span(i);
cpus_and(domainspan, domainspan, *cpu_map);
sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
sched_group_nodes[i] = sg;
for_each_cpu_mask(j, nodemask) {
struct sched_domain *sd;
sd = &per_cpu(node_domains, j);
sd->groups = sg;
if (sd->groups == NULL) {
/* Turn off balancing if we have no groups */
sd->flags = 0;
}
}
if (!sg) {
printk(KERN_WARNING
"Can not alloc domain group for node %d\n", i);
continue;
}
sg->cpu_power = 0;
sg->cpumask = nodemask;
cpus_or(covered, covered, nodemask);
prev = sg;
for (j = 0; j < MAX_NUMNODES; j++) {
cpumask_t tmp, notcovered;
int n = (i + j) % MAX_NUMNODES;
cpus_complement(notcovered, covered);
cpus_and(tmp, notcovered, *cpu_map);
cpus_and(tmp, tmp, domainspan);
if (cpus_empty(tmp))
break;
nodemask = node_to_cpumask(n);
cpus_and(tmp, tmp, nodemask);
if (cpus_empty(tmp))
continue;
sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
if (!sg) {
printk(KERN_WARNING
"Can not alloc domain group for node %d\n", j);
break;
}
sg->cpu_power = 0;
sg->cpumask = tmp;
cpus_or(covered, covered, tmp);
prev->next = sg;
prev = sg;
}
prev->next = sched_group_nodes[i];
}
#endif
/* Calculate CPU power for physical packages and nodes */
......@@ -5017,14 +5151,46 @@ static void build_sched_domains(const cpumask_t *cpu_map)
sd->groups->cpu_power = power;
#ifdef CONFIG_NUMA
if (i == first_cpu(sd->groups->cpumask)) {
/* Only add "power" once for each physical package. */
sd = &per_cpu(node_domains, i);
sd->groups->cpu_power += power;
sd = &per_cpu(allnodes_domains, i);
if (sd->groups) {
power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
(cpus_weight(sd->groups->cpumask)-1) / 10;
sd->groups->cpu_power = power;
}
#endif
}
#ifdef CONFIG_NUMA
for (i = 0; i < MAX_NUMNODES; i++) {
struct sched_group *sg = sched_group_nodes[i];
int j;
if (sg == NULL)
continue;
next_sg:
for_each_cpu_mask(j, sg->cpumask) {
struct sched_domain *sd;
int power;
sd = &per_cpu(phys_domains, j);
if (j != first_cpu(sd->groups->cpumask)) {
/*
* Only add "power" once for each
* physical package.
*/
continue;
}
power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
(cpus_weight(sd->groups->cpumask)-1) / 10;
sg->cpu_power += power;
}
sg = sg->next;
if (sg != sched_group_nodes[i])
goto next_sg;
}
#endif
/* Attach the domains */
for_each_cpu_mask(i, *cpu_map) {
struct sched_domain *sd;
......@@ -5039,13 +5205,10 @@ static void build_sched_domains(const cpumask_t *cpu_map)
/*
* Set up scheduler domains and groups. Callers must hold the hotplug lock.
*/
static void arch_init_sched_domains(cpumask_t *cpu_map)
static void arch_init_sched_domains(const cpumask_t *cpu_map)
{
cpumask_t cpu_default_map;
#if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
check_sibling_maps();
#endif
/*
* Setup mask for cpus without special case scheduling requirements.
* For now this just excludes isolated cpus, but could be used to
......@@ -5058,10 +5221,29 @@ static void arch_init_sched_domains(cpumask_t *cpu_map)
static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
{
/* Do nothing: everything is statically allocated. */
}
#ifdef CONFIG_NUMA
int i;
for (i = 0; i < MAX_NUMNODES; i++) {
cpumask_t nodemask = node_to_cpumask(i);
struct sched_group *oldsg, *sg = sched_group_nodes[i];
#endif /* ARCH_HAS_SCHED_DOMAIN */
cpus_and(nodemask, nodemask, *cpu_map);
if (cpus_empty(nodemask))
continue;
if (sg == NULL)
continue;
sg = sg->next;
next_sg:
oldsg = sg;
sg = sg->next;
kfree(oldsg);
if (oldsg != sched_group_nodes[i])
goto next_sg;
sched_group_nodes[i] = NULL;
}
#endif
}
/*
* Detach sched domains from a group of cpus specified in cpu_map
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册