sched.c 226.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

142 143
static inline int rt_policy(int policy)
{
144
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 146 147 148 149 150 151 152 153
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
154
/*
I
Ingo Molnar 已提交
155
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
156
 */
I
Ingo Molnar 已提交
157 158 159 160 161
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

162
struct rt_bandwidth {
I
Ingo Molnar 已提交
163 164 165 166 167
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
201 202
	spin_lock_init(&rt_b->rt_runtime_lock);

203 204 205
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
206
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
207 208
}

209 210 211
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
212 213 214 215 216 217
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

218
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 220 221 222 223 224 225 226 227 228 229 230
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 232
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
233 234 235 236 237 238 239 240 241 242 243
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

244 245 246 247 248 249
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

250
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
251

252 253
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
254 255
struct cfs_rq;

P
Peter Zijlstra 已提交
256 257
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
258
/* task group related information */
259
struct task_group {
260
#ifdef CONFIG_CGROUP_SCHED
261 262
	struct cgroup_subsys_state css;
#endif
263 264

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
265 266 267 268 269
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
270 271 272 273 274 275
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

276
	struct rt_bandwidth rt_bandwidth;
277
#endif
278

279
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
280
	struct list_head list;
P
Peter Zijlstra 已提交
281 282 283 284

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
285 286
};

D
Dhaval Giani 已提交
287
#ifdef CONFIG_USER_SCHED
288 289 290 291 292 293 294 295

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

296
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
297 298 299 300
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301
#endif /* CONFIG_FAIR_GROUP_SCHED */
302 303 304 305

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
307
#else /* !CONFIG_USER_SCHED */
308
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
309
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
310

311
/* task_group_lock serializes add/remove of task groups and also changes to
312 313
 * a task group's cpu shares.
 */
314
static DEFINE_SPINLOCK(task_group_lock);
315

316 317 318
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
319
#else /* !CONFIG_USER_SCHED */
320
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
321
#endif /* CONFIG_USER_SCHED */
322

323
/*
324 325 326 327
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
328 329 330
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
331
#define MIN_SHARES	2
332
#define MAX_SHARES	(1UL << 18)
333

334 335 336
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
337
/* Default task group.
I
Ingo Molnar 已提交
338
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
339
 */
340
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
341 342

/* return group to which a task belongs */
343
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
344
{
345
	struct task_group *tg;
346

347
#ifdef CONFIG_USER_SCHED
348
	tg = p->user->tg;
349
#elif defined(CONFIG_CGROUP_SCHED)
350 351
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
352
#else
I
Ingo Molnar 已提交
353
	tg = &init_task_group;
354
#endif
355
	return tg;
S
Srivatsa Vaddagiri 已提交
356 357 358
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
359
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
360
{
361
#ifdef CONFIG_FAIR_GROUP_SCHED
362 363
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
364
#endif
P
Peter Zijlstra 已提交
365

366
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
367 368
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
369
#endif
S
Srivatsa Vaddagiri 已提交
370 371 372 373
}

#else

P
Peter Zijlstra 已提交
374
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 376 377 378
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
379

380
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
381

I
Ingo Molnar 已提交
382 383 384 385 386 387
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
388
	u64 min_vruntime;
I
Ingo Molnar 已提交
389 390 391

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
392 393 394 395 396 397

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
398 399
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
400
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
401

P
Peter Zijlstra 已提交
402
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
403

404
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
405 406
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
407 408
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
409 410 411 412 413 414
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
415 416
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
417 418 419

#ifdef CONFIG_SMP
	/*
420
	 * the part of load.weight contributed by tasks
421
	 */
422
	unsigned long task_weight;
423

424 425 426 427 428 429 430
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
431

432 433 434 435
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
436 437 438 439 440

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
441
#endif
I
Ingo Molnar 已提交
442 443
#endif
};
L
Linus Torvalds 已提交
444

I
Ingo Molnar 已提交
445 446 447
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
448
	unsigned long rt_nr_running;
449
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
450 451
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
452
#ifdef CONFIG_SMP
453
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
454
	int overloaded;
P
Peter Zijlstra 已提交
455
#endif
P
Peter Zijlstra 已提交
456
	int rt_throttled;
P
Peter Zijlstra 已提交
457
	u64 rt_time;
P
Peter Zijlstra 已提交
458
	u64 rt_runtime;
I
Ingo Molnar 已提交
459
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
460
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
461

462
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
463 464
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
465 466 467 468 469
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
470 471
};

G
Gregory Haskins 已提交
472 473 474 475
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
476 477
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
478 479 480 481 482 483 484 485
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
486

I
Ingo Molnar 已提交
487
	/*
488 489 490 491
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
492
	atomic_t rto_count;
493 494 495
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
496 497
};

498 499 500 501
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
502 503 504 505
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
506 507 508 509 510 511 512
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
513
struct rq {
514 515
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
516 517 518 519 520 521

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
522 523
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
524
	unsigned char idle_at_tick;
525
#ifdef CONFIG_NO_HZ
526
	unsigned long last_tick_seen;
527 528
	unsigned char in_nohz_recently;
#endif
529 530
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
531 532 533 534
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
535 536
	struct rt_rq rt;

I
Ingo Molnar 已提交
537
#ifdef CONFIG_FAIR_GROUP_SCHED
538 539
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
540 541
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
542
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
543 544 545 546 547 548 549 550 551 552
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

553
	struct task_struct *curr, *idle;
554
	unsigned long next_balance;
L
Linus Torvalds 已提交
555
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
556

557
	u64 clock;
I
Ingo Molnar 已提交
558

L
Linus Torvalds 已提交
559 560 561
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
562
	struct root_domain *rd;
L
Linus Torvalds 已提交
563 564 565 566 567
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
568 569
	/* cpu of this runqueue: */
	int cpu;
570
	int online;
L
Linus Torvalds 已提交
571

572
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
573

574
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
575 576 577
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
578
#ifdef CONFIG_SCHED_HRTICK
579 580 581 582
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
583 584 585
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
586 587 588 589 590
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
591 592 593 594
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
595 596

	/* schedule() stats */
597 598 599
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
600 601

	/* try_to_wake_up() stats */
602 603
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
604 605

	/* BKL stats */
606
	unsigned int bkl_count;
L
Linus Torvalds 已提交
607 608 609
#endif
};

610
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
611

612
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
613
{
614
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
615 616
}

617 618 619 620 621 622 623 624 625
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
626 627
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
628
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
629 630 631 632
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
633 634
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
635 636 637 638 639 640

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

641 642 643 644 645
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
646 647 648 649 650 651 652 653 654
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
673 674 675
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
676 677 678 679

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
680
enum {
P
Peter Zijlstra 已提交
681
#include "sched_features.h"
I
Ingo Molnar 已提交
682 683
};

P
Peter Zijlstra 已提交
684 685 686 687 688
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
689
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
690 691 692 693 694 695 696 697 698
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

699
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
700 701 702 703 704 705
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

706
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
734
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
764
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
807

808 809 810 811 812 813
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
814 815
/*
 * ratelimit for updating the group shares.
816
 * default: 0.25ms
P
Peter Zijlstra 已提交
817
 */
818
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
819

820 821 822 823 824 825 826
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
827
/*
P
Peter Zijlstra 已提交
828
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
829 830
 * default: 1s
 */
P
Peter Zijlstra 已提交
831
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
832

833 834
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
835 836 837 838 839
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
840

841 842 843 844 845 846 847
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
848
	if (sysctl_sched_rt_runtime < 0)
849 850 851 852
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
853

L
Linus Torvalds 已提交
854
#ifndef prepare_arch_switch
855 856 857 858 859 860
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

861 862 863 864 865
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

866
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
867
static inline int task_running(struct rq *rq, struct task_struct *p)
868
{
869
	return task_current(rq, p);
870 871
}

872
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
873 874 875
{
}

876
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
877
{
878 879 880 881
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
882 883 884 885 886 887 888
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

889 890 891 892
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
893
static inline int task_running(struct rq *rq, struct task_struct *p)
894 895 896 897
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
898
	return task_current(rq, p);
899 900 901
#endif
}

902
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

919
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
920 921 922 923 924 925 926 927 928 929 930 931
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
932
#endif
933 934
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
935

936 937 938 939
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
940
static inline struct rq *__task_rq_lock(struct task_struct *p)
941 942
	__acquires(rq->lock)
{
943 944 945 946 947
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
948 949 950 951
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
952 953
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
954
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
955 956
 * explicitly disabling preemption.
 */
957
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
958 959
	__acquires(rq->lock)
{
960
	struct rq *rq;
L
Linus Torvalds 已提交
961

962 963 964 965 966 967
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
968 969 970 971
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

972 973 974 975 976 977 978 979
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
980
static void __task_rq_unlock(struct rq *rq)
981 982 983 984 985
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

986
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
987 988 989 990 991 992
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
993
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
994
 */
A
Alexey Dobriyan 已提交
995
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
996 997
	__acquires(rq->lock)
{
998
	struct rq *rq;
L
Linus Torvalds 已提交
999 1000 1001 1002 1003 1004 1005 1006

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1028
	if (!cpu_active(cpu_of(rq)))
1029
		return 0;
P
Peter Zijlstra 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1050
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1051 1052 1053 1054 1055 1056
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1057
#ifdef CONFIG_SMP
1058 1059 1060 1061
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1062
{
1063
	struct rq *rq = arg;
1064

1065 1066 1067 1068
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1069 1070
}

1071 1072 1073 1074 1075 1076
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1077
{
1078 1079
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1080

1081
	hrtimer_set_expires(timer, time);
1082 1083 1084 1085 1086 1087 1088

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1103
		hrtick_clear(cpu_rq(cpu));
1104 1105 1106 1107 1108 1109
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1110
static __init void init_hrtick(void)
1111 1112 1113
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1124

A
Andrew Morton 已提交
1125
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1126 1127
{
}
1128
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1129

1130
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1131
{
1132 1133
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1134

1135 1136 1137 1138
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1139

1140 1141
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
1142
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
P
Peter Zijlstra 已提交
1143
}
A
Andrew Morton 已提交
1144
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1145 1146 1147 1148 1149 1150 1151 1152
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1153 1154 1155
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1156
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1157

I
Ingo Molnar 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1171
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1172 1173 1174 1175 1176
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1177
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1178 1179
		return;

1180
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1243
#endif /* CONFIG_NO_HZ */
1244

1245
#else /* !CONFIG_SMP */
1246
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1247 1248
{
	assert_spin_locked(&task_rq(p)->lock);
1249
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1250
}
1251
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1252

1253 1254 1255 1256 1257 1258 1259 1260
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1261 1262 1263
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1264
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1265

1266 1267 1268
/*
 * delta *= weight / lw
 */
1269
static unsigned long
1270 1271 1272 1273 1274
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1275 1276 1277 1278 1279 1280 1281
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1282 1283 1284 1285 1286

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1287
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1288
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1289 1290
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1291
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1292

1293
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1294 1295
}

1296
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1297 1298
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1299
	lw->inv_weight = 0;
1300 1301
}

1302
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1303 1304
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1305
	lw->inv_weight = 0;
1306 1307
}

1308 1309 1310 1311
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1312
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1313 1314 1315 1316
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1328 1329 1330
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1331 1332
 */
static const int prio_to_weight[40] = {
1333 1334 1335 1336 1337 1338 1339 1340
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1341 1342
};

1343 1344 1345 1346 1347 1348 1349
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1350
static const u32 prio_to_wmult[40] = {
1351 1352 1353 1354 1355 1356 1357 1358
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1359
};
1360

I
Ingo Molnar 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1386

1387 1388 1389 1390 1391 1392
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1403
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1404
typedef int (*tg_visitor)(struct task_group *, void *);
1405 1406 1407 1408 1409

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1410
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1411 1412
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1413
	int ret;
1414 1415 1416 1417

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1418 1419 1420
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1421 1422 1423 1424 1425 1426 1427
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1428 1429 1430
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1431 1432 1433 1434 1435

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1436
out_unlock:
1437
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1438 1439

	return ret;
1440 1441
}

P
Peter Zijlstra 已提交
1442 1443 1444
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1445
}
P
Peter Zijlstra 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1456
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1457

1458 1459
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1460 1461
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1462 1463 1464 1465 1466

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1467 1468 1469 1470 1471 1472 1473

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1474 1475
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1476
{
1477 1478 1479 1480
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1481
	if (!tg->se[cpu])
1482 1483
		return;

1484
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1496 1497 1498
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1499 1500 1501 1502 1503 1504
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1505
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1506
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1507

1508 1509 1510 1511
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1512

1513 1514 1515 1516 1517 1518
		spin_lock_irqsave(&rq->lock, flags);
		/*
		 * record the actual number of shares, not the boosted amount.
		 */
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
		tg->cfs_rq[cpu]->rq_weight = rq_weight;
1519

1520 1521 1522
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1523
}
1524 1525

/*
1526 1527 1528
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1529
 */
P
Peter Zijlstra 已提交
1530
static int tg_shares_up(struct task_group *tg, void *data)
1531
{
1532 1533
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1534
	struct sched_domain *sd = data;
1535
	int i;
1536

1537 1538 1539
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1540 1541
	}

1542 1543 1544 1545 1546
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1547

P
Peter Zijlstra 已提交
1548 1549 1550
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1551 1552
	for_each_cpu_mask(i, sd->span)
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1553 1554

	return 0;
1555 1556 1557
}

/*
1558 1559 1560
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1561
 */
P
Peter Zijlstra 已提交
1562
static int tg_load_down(struct task_group *tg, void *data)
1563
{
1564
	unsigned long load;
P
Peter Zijlstra 已提交
1565
	long cpu = (long)data;
1566

1567 1568 1569 1570 1571 1572 1573
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1574

1575
	tg->cfs_rq[cpu]->h_load = load;
1576

P
Peter Zijlstra 已提交
1577
	return 0;
1578 1579
}

1580
static void update_shares(struct sched_domain *sd)
1581
{
P
Peter Zijlstra 已提交
1582 1583 1584 1585 1586
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1587
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1588
	}
1589 1590
}

1591 1592 1593 1594 1595 1596 1597
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1598
static void update_h_load(long cpu)
1599
{
P
Peter Zijlstra 已提交
1600
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1601 1602 1603 1604
}

#else

1605
static inline void update_shares(struct sched_domain *sd)
1606 1607 1608
{
}

1609 1610 1611 1612
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1613 1614 1615 1616
#endif

#endif

V
Vegard Nossum 已提交
1617
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1618 1619
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1620
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1621 1622 1623
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1624
#endif
1625

I
Ingo Molnar 已提交
1626 1627
#include "sched_stats.h"
#include "sched_idletask.c"
1628 1629
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1630 1631 1632 1633 1634
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1635 1636
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1637

1638
static void inc_nr_running(struct rq *rq)
1639 1640 1641 1642
{
	rq->nr_running++;
}

1643
static void dec_nr_running(struct rq *rq)
1644 1645 1646 1647
{
	rq->nr_running--;
}

1648 1649 1650
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1651 1652 1653 1654
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1655

I
Ingo Molnar 已提交
1656 1657 1658 1659 1660 1661 1662 1663
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1664

I
Ingo Molnar 已提交
1665 1666
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1667 1668
}

1669 1670 1671 1672 1673 1674
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1675
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1676
{
I
Ingo Molnar 已提交
1677
	sched_info_queued(p);
1678
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1679
	p->se.on_rq = 1;
1680 1681
}

1682
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1683
{
1684 1685 1686 1687 1688 1689
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1690
	sched_info_dequeued(p);
1691
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1692
	p->se.on_rq = 0;
1693 1694
}

1695
/*
I
Ingo Molnar 已提交
1696
 * __normal_prio - return the priority that is based on the static prio
1697 1698 1699
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1700
	return p->static_prio;
1701 1702
}

1703 1704 1705 1706 1707 1708 1709
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1710
static inline int normal_prio(struct task_struct *p)
1711 1712 1713
{
	int prio;

1714
	if (task_has_rt_policy(p))
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1728
static int effective_prio(struct task_struct *p)
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1741
/*
I
Ingo Molnar 已提交
1742
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1743
 */
I
Ingo Molnar 已提交
1744
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1745
{
1746
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1747
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1748

1749
	enqueue_task(rq, p, wakeup);
1750
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1751 1752 1753 1754 1755
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1756
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1757
{
1758
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1759 1760
		rq->nr_uninterruptible++;

1761
	dequeue_task(rq, p, sleep);
1762
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1763 1764 1765 1766 1767 1768
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1769
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1770 1771 1772 1773
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1774 1775
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1776
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1777
#ifdef CONFIG_SMP
1778 1779 1780 1781 1782 1783
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1784 1785
	task_thread_info(p)->cpu = cpu;
#endif
1786 1787
}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1800
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1801

1802 1803 1804 1805 1806 1807
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1808 1809 1810
/*
 * Is this task likely cache-hot:
 */
1811
static int
1812 1813 1814 1815
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1816 1817 1818
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1819 1820 1821
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1822 1823
		return 1;

1824 1825 1826
	if (p->sched_class != &fair_sched_class)
		return 0;

1827 1828 1829 1830 1831
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1832 1833 1834 1835 1836 1837
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1838
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1839
{
I
Ingo Molnar 已提交
1840 1841
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1842 1843
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1844
	u64 clock_offset;
I
Ingo Molnar 已提交
1845 1846

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1847 1848 1849 1850

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1851 1852 1853 1854
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1855
#endif
1856
	if (old_cpu != new_cpu) {
1857 1858
		p->se.nr_migrations++;
#ifdef CONFIG_SCHEDSTATS
1859 1860
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
1861
#endif
1862
	}
1863 1864
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1865 1866

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1867 1868
}

1869
struct migration_req {
L
Linus Torvalds 已提交
1870 1871
	struct list_head list;

1872
	struct task_struct *task;
L
Linus Torvalds 已提交
1873 1874 1875
	int dest_cpu;

	struct completion done;
1876
};
L
Linus Torvalds 已提交
1877 1878 1879 1880 1881

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1882
static int
1883
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1884
{
1885
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1886 1887 1888 1889 1890

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1891
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1892 1893 1894 1895 1896 1897 1898 1899
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1900

L
Linus Torvalds 已提交
1901 1902 1903 1904 1905 1906
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1907 1908 1909 1910 1911 1912 1913
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1914 1915 1916 1917 1918 1919
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1920
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1921 1922
{
	unsigned long flags;
I
Ingo Molnar 已提交
1923
	int running, on_rq;
R
Roland McGrath 已提交
1924
	unsigned long ncsw;
1925
	struct rq *rq;
L
Linus Torvalds 已提交
1926

1927 1928 1929 1930 1931 1932 1933 1934
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1935

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1947 1948 1949
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1950
			cpu_relax();
R
Roland McGrath 已提交
1951
		}
1952

1953 1954 1955 1956 1957 1958
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1959
		trace_sched_wait_task(rq, p);
1960 1961
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1962
		ncsw = 0;
1963
		if (!match_state || p->state == match_state)
1964
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1965
		task_rq_unlock(rq, &flags);
1966

R
Roland McGrath 已提交
1967 1968 1969 1970 1971 1972
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1983

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1997

1998 1999 2000 2001 2002 2003 2004
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2005 2006

	return ncsw;
L
Linus Torvalds 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2022
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2034 2035
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2036 2037 2038 2039
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2040
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2041
{
2042
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2043
	unsigned long total = weighted_cpuload(cpu);
2044

2045
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2046
		return total;
2047

I
Ingo Molnar 已提交
2048
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2049 2050 2051
}

/*
2052 2053
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2054
 */
A
Alexey Dobriyan 已提交
2055
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2056
{
2057
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2058
	unsigned long total = weighted_cpuload(cpu);
2059

2060
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2061
		return total;
2062

I
Ingo Molnar 已提交
2063
	return max(rq->cpu_load[type-1], total);
2064 2065
}

N
Nick Piggin 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2083 2084
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2085
			continue;
2086

N
Nick Piggin 已提交
2087 2088 2089 2090 2091
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2092
		for_each_cpu_mask_nr(i, group->cpumask) {
N
Nick Piggin 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2103 2104
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2105 2106 2107 2108 2109 2110 2111 2112

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2113
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2114 2115 2116 2117 2118 2119 2120

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2121
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2122
 */
I
Ingo Molnar 已提交
2123
static int
2124 2125
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2126 2127 2128 2129 2130
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2131
	/* Traverse only the allowed CPUs */
2132
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2133

2134
	for_each_cpu_mask_nr(i, *tmp) {
2135
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2161

2162
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2163 2164 2165
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2166 2167
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2168 2169
		if (tmp->flags & flag)
			sd = tmp;
2170
	}
N
Nick Piggin 已提交
2171

2172 2173 2174
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2175
	while (sd) {
2176
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2177
		struct sched_group *group;
2178 2179 2180 2181 2182 2183
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2184 2185 2186

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2187 2188 2189 2190
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2191

2192
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2193 2194 2195 2196 2197
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2198

2199
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2216

T
Thomas Gleixner 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2252
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2253
{
2254
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2255 2256
	unsigned long flags;
	long old_state;
2257
	struct rq *rq;
L
Linus Torvalds 已提交
2258

2259 2260 2261
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2278
	smp_wmb();
L
Linus Torvalds 已提交
2279 2280 2281 2282 2283
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2284
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2285 2286 2287
		goto out_running;

	cpu = task_cpu(p);
2288
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2289 2290 2291 2292 2293 2294
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2295 2296 2297
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2298 2299 2300 2301 2302 2303
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2304
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2305 2306 2307 2308 2309 2310
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2324
#endif /* CONFIG_SCHEDSTATS */
2325

L
Linus Torvalds 已提交
2326 2327
out_activate:
#endif /* CONFIG_SMP */
2328 2329 2330 2331 2332 2333 2334 2335 2336
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2337
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2338
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2339 2340 2341
	success = 1;

out_running:
2342
	trace_sched_wakeup(rq, p);
2343
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2344

L
Linus Torvalds 已提交
2345
	p->state = TASK_RUNNING;
2346 2347 2348 2349
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2350
out:
2351 2352
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2353 2354 2355 2356 2357
	task_rq_unlock(rq, &flags);

	return success;
}

2358
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2359
{
2360
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2361 2362 2363
}
EXPORT_SYMBOL(wake_up_process);

2364
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2365 2366 2367 2368 2369 2370 2371
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2372 2373 2374 2375 2376 2377 2378
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2379
	p->se.prev_sum_exec_runtime	= 0;
2380
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2381 2382
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2383 2384 2385

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2386 2387 2388 2389 2390 2391
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2392
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2393
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2394
#endif
N
Nick Piggin 已提交
2395

P
Peter Zijlstra 已提交
2396
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2397
	p->se.on_rq = 0;
2398
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2399

2400 2401 2402 2403
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2404 2405 2406 2407 2408 2409 2410
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2425
	set_task_cpu(p, cpu);
2426 2427 2428 2429 2430

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2431 2432
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2433

2434
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2435
	if (likely(sched_info_on()))
2436
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2437
#endif
2438
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2439 2440
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2441
#ifdef CONFIG_PREEMPT
2442
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2443
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2444
#endif
N
Nick Piggin 已提交
2445
	put_cpu();
L
Linus Torvalds 已提交
2446 2447 2448 2449 2450 2451 2452 2453 2454
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2455
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2456 2457
{
	unsigned long flags;
I
Ingo Molnar 已提交
2458
	struct rq *rq;
L
Linus Torvalds 已提交
2459 2460

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2461
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2462
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2463 2464 2465

	p->prio = effective_prio(p);

2466
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2467
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2468 2469
	} else {
		/*
I
Ingo Molnar 已提交
2470 2471
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2472
		 */
2473
		p->sched_class->task_new(rq, p);
2474
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2475
	}
2476
	trace_sched_wakeup_new(rq, p);
2477
	check_preempt_curr(rq, p, 0);
2478 2479 2480 2481
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2482
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2483 2484
}

2485 2486 2487
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2488 2489
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2490 2491 2492 2493 2494 2495 2496 2497 2498
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2499
 * @notifier: notifier struct to unregister
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2529
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2541
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2542

2543 2544 2545
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2546
 * @prev: the current task that is being switched out
2547 2548 2549 2550 2551 2552 2553 2554 2555
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2556 2557 2558
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2559
{
2560
	fire_sched_out_preempt_notifiers(prev, next);
T
Thomas Gleixner 已提交
2561
	perf_counter_task_sched_out(prev, cpu_of(rq));
2562 2563 2564 2565
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2566 2567
/**
 * finish_task_switch - clean up after a task-switch
2568
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2569 2570
 * @prev: the thread we just switched away from.
 *
2571 2572 2573 2574
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2575 2576
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2577
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2578 2579 2580
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2581
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2582 2583 2584
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2585
	long prev_state;
L
Linus Torvalds 已提交
2586 2587 2588 2589 2590

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2591
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2592 2593
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2594
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2595 2596 2597 2598 2599
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2600
	prev_state = prev->state;
2601
	finish_arch_switch(prev);
T
Thomas Gleixner 已提交
2602
	perf_counter_task_sched_in(current, cpu_of(rq));
2603
	finish_lock_switch(rq, prev);
2604 2605 2606 2607
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2608

2609
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2610 2611
	if (mm)
		mmdrop(mm);
2612
	if (unlikely(prev_state == TASK_DEAD)) {
2613 2614 2615
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2616
		 */
2617
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2618
		put_task_struct(prev);
2619
	}
L
Linus Torvalds 已提交
2620 2621 2622 2623 2624 2625
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2626
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2627 2628
	__releases(rq->lock)
{
2629 2630
	struct rq *rq = this_rq();

2631 2632 2633 2634 2635
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2636
	if (current->set_child_tid)
2637
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2638 2639 2640 2641 2642 2643
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2644
static inline void
2645
context_switch(struct rq *rq, struct task_struct *prev,
2646
	       struct task_struct *next)
L
Linus Torvalds 已提交
2647
{
I
Ingo Molnar 已提交
2648
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2649

2650
	prepare_task_switch(rq, prev, next);
2651
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2652 2653
	mm = next->mm;
	oldmm = prev->active_mm;
2654 2655 2656 2657 2658 2659 2660
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2661
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2662 2663 2664 2665 2666 2667
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2668
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2669 2670 2671
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2672 2673 2674 2675 2676 2677 2678
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2679
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2680
#endif
L
Linus Torvalds 已提交
2681 2682 2683 2684

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2685 2686 2687 2688 2689 2690 2691
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2715
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2730 2731
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2732

2733
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2734 2735 2736 2737 2738 2739 2740 2741 2742
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2743
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2744 2745 2746 2747 2748
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2764
/*
I
Ingo Molnar 已提交
2765 2766
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2767
 */
I
Ingo Molnar 已提交
2768
static void update_cpu_load(struct rq *this_rq)
2769
{
2770
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2783 2784 2785 2786 2787 2788 2789
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2790 2791
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2792 2793
}

I
Ingo Molnar 已提交
2794 2795
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2796 2797 2798 2799 2800 2801
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2802
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2803 2804 2805
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2806
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2807 2808 2809 2810
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2811
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2812
			spin_lock(&rq1->lock);
2813
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2814 2815
		} else {
			spin_lock(&rq2->lock);
2816
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2817 2818
		}
	}
2819 2820
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2821 2822 2823 2824 2825 2826 2827 2828
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2829
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2843
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2844 2845 2846 2847
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2848 2849
	int ret = 0;

2850 2851 2852 2853 2854
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2855
	if (unlikely(!spin_trylock(&busiest->lock))) {
2856
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2857 2858
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
2859
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
S
Steven Rostedt 已提交
2860
			ret = 1;
L
Linus Torvalds 已提交
2861
		} else
2862
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2863
	}
S
Steven Rostedt 已提交
2864
	return ret;
L
Linus Torvalds 已提交
2865 2866
}

2867 2868 2869 2870 2871 2872 2873
static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

L
Linus Torvalds 已提交
2874 2875 2876
/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2877
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2878 2879
 * the cpu_allowed mask is restored.
 */
2880
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2881
{
2882
	struct migration_req req;
L
Linus Torvalds 已提交
2883
	unsigned long flags;
2884
	struct rq *rq;
L
Linus Torvalds 已提交
2885 2886 2887

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2888
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2889 2890
		goto out;

2891
	trace_sched_migrate_task(rq, p, dest_cpu);
L
Linus Torvalds 已提交
2892 2893 2894 2895
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2896

L
Linus Torvalds 已提交
2897 2898 2899 2900 2901
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2902

L
Linus Torvalds 已提交
2903 2904 2905 2906 2907 2908 2909
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2910 2911
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2912 2913 2914 2915
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2916
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2917
	put_cpu();
N
Nick Piggin 已提交
2918 2919
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2920 2921 2922 2923 2924 2925
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2926 2927
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2928
{
2929
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2930
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2931
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2932 2933 2934 2935
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2936
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2937 2938 2939 2940 2941
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2942
static
2943
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2944
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2945
		     int *all_pinned)
L
Linus Torvalds 已提交
2946 2947 2948 2949 2950 2951 2952
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2953 2954
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2955
		return 0;
2956
	}
2957 2958
	*all_pinned = 0;

2959 2960
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2961
		return 0;
2962
	}
L
Linus Torvalds 已提交
2963

2964 2965 2966 2967 2968 2969
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2970 2971
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2972
#ifdef CONFIG_SCHEDSTATS
2973
		if (task_hot(p, rq->clock, sd)) {
2974
			schedstat_inc(sd, lb_hot_gained[idle]);
2975 2976
			schedstat_inc(p, se.nr_forced_migrations);
		}
2977 2978 2979 2980
#endif
		return 1;
	}

2981 2982
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2983
		return 0;
2984
	}
L
Linus Torvalds 已提交
2985 2986 2987
	return 1;
}

2988 2989 2990 2991 2992
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2993
{
2994
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2995 2996
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2997

2998
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2999 3000
		goto out;

3001 3002
	pinned = 1;

L
Linus Torvalds 已提交
3003
	/*
I
Ingo Molnar 已提交
3004
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3005
	 */
I
Ingo Molnar 已提交
3006 3007
	p = iterator->start(iterator->arg);
next:
3008
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3009
		goto out;
3010 3011

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3012 3013 3014
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3015 3016
	}

I
Ingo Molnar 已提交
3017
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3018
	pulled++;
I
Ingo Molnar 已提交
3019
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3020

3021
	/*
3022
	 * We only want to steal up to the prescribed amount of weighted load.
3023
	 */
3024
	if (rem_load_move > 0) {
3025 3026
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3027 3028
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3029 3030 3031
	}
out:
	/*
3032
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3033 3034 3035 3036
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3037 3038 3039

	if (all_pinned)
		*all_pinned = pinned;
3040 3041

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3042 3043
}

I
Ingo Molnar 已提交
3044
/*
P
Peter Williams 已提交
3045 3046 3047
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3048 3049 3050 3051
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3052
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3053 3054 3055
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3056
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3057
	unsigned long total_load_moved = 0;
3058
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3059 3060

	do {
P
Peter Williams 已提交
3061 3062
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3063
				max_load_move - total_load_moved,
3064
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3065
		class = class->next;
3066 3067 3068 3069

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3070
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3071

P
Peter Williams 已提交
3072 3073 3074
	return total_load_moved > 0;
}

3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3111
	const struct sched_class *class;
P
Peter Williams 已提交
3112 3113

	for (class = sched_class_highest; class; class = class->next)
3114
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3115 3116 3117
			return 1;

	return 0;
I
Ingo Molnar 已提交
3118 3119
}

L
Linus Torvalds 已提交
3120 3121
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3122 3123
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3124 3125 3126
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3127
		   unsigned long *imbalance, enum cpu_idle_type idle,
3128
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3129 3130 3131
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3132
	unsigned long max_pull;
3133 3134
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3135
	int load_idx, group_imb = 0;
3136 3137 3138 3139 3140 3141
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3142 3143

	max_load = this_load = total_load = total_pwr = 0;
3144 3145
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3146

I
Ingo Molnar 已提交
3147
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3148
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3149
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3150 3151 3152
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3153 3154

	do {
3155
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3156 3157
		int local_group;
		int i;
3158
		int __group_imb = 0;
3159
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3160
		unsigned long sum_nr_running, sum_weighted_load;
3161 3162
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3163 3164 3165

		local_group = cpu_isset(this_cpu, group->cpumask);

3166 3167 3168
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3169
		/* Tally up the load of all CPUs in the group */
3170
		sum_weighted_load = sum_nr_running = avg_load = 0;
3171 3172
		sum_avg_load_per_task = avg_load_per_task = 0;

3173 3174
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3175

3176
		for_each_cpu_mask_nr(i, group->cpumask) {
3177 3178 3179 3180 3181 3182
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3183

3184
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3185 3186
				*sd_idle = 0;

L
Linus Torvalds 已提交
3187
			/* Bias balancing toward cpus of our domain */
3188 3189 3190 3191 3192 3193
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3194
				load = target_load(i, load_idx);
3195
			} else {
N
Nick Piggin 已提交
3196
				load = source_load(i, load_idx);
3197 3198 3199 3200 3201
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3202 3203

			avg_load += load;
3204
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3205
			sum_weighted_load += weighted_cpuload(i);
3206 3207

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3208 3209
		}

3210 3211 3212
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3213 3214
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3215
		 */
3216 3217
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3218 3219 3220 3221
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3222
		total_load += avg_load;
3223
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3224 3225

		/* Adjust by relative CPU power of the group */
3226 3227
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3228

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3243 3244
			__group_imb = 1;

3245
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3246

L
Linus Torvalds 已提交
3247 3248 3249
		if (local_group) {
			this_load = avg_load;
			this = group;
3250 3251 3252
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3253
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3254 3255
			max_load = avg_load;
			busiest = group;
3256 3257
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3258
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3259
		}
3260 3261 3262 3263 3264 3265

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3266 3267 3268
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3269 3270 3271 3272 3273 3274 3275 3276 3277

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3278
		/*
3279 3280
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3281 3282
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3283
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3284
			goto group_next;
3285

I
Ingo Molnar 已提交
3286
		/*
3287
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3288 3289 3290 3291 3292
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3293 3294
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3295 3296
			group_min = group;
			min_nr_running = sum_nr_running;
3297 3298
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3299
		}
3300

I
Ingo Molnar 已提交
3301
		/*
3302
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3314
		}
3315 3316
group_next:
#endif
L
Linus Torvalds 已提交
3317 3318 3319
		group = group->next;
	} while (group != sd->groups);

3320
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3321 3322 3323 3324 3325 3326 3327 3328
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3329
	busiest_load_per_task /= busiest_nr_running;
3330 3331 3332
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3333 3334 3335 3336 3337 3338 3339 3340
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3341
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3342 3343
	 * appear as very large values with unsigned longs.
	 */
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3356 3357

	/* Don't want to pull so many tasks that a group would go idle */
3358
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3359

L
Linus Torvalds 已提交
3360
	/* How much load to actually move to equalise the imbalance */
3361 3362
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3363 3364
			/ SCHED_LOAD_SCALE;

3365 3366 3367 3368 3369 3370
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3371
	if (*imbalance < busiest_load_per_task) {
3372
		unsigned long tmp, pwr_now, pwr_move;
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3383
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3384

3385
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3386
					busiest_load_per_task * imbn) {
3387
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3397 3398 3399 3400
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3401 3402 3403
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3404 3405
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3406
		if (max_load > tmp)
3407
			pwr_move += busiest->__cpu_power *
3408
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3409 3410

		/* Amount of load we'd add */
3411
		if (max_load * busiest->__cpu_power <
3412
				busiest_load_per_task * SCHED_LOAD_SCALE)
3413 3414
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3415
		else
3416 3417 3418 3419
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3420 3421 3422
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3423 3424
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3425 3426 3427 3428 3429
	}

	return busiest;

out_balanced:
3430
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3431
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3432
		goto ret;
L
Linus Torvalds 已提交
3433

3434 3435 3436 3437 3438
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3439
ret:
L
Linus Torvalds 已提交
3440 3441 3442 3443 3444 3445 3446
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3447
static struct rq *
I
Ingo Molnar 已提交
3448
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3449
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3450
{
3451
	struct rq *busiest = NULL, *rq;
3452
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3453 3454
	int i;

3455
	for_each_cpu_mask_nr(i, group->cpumask) {
I
Ingo Molnar 已提交
3456
		unsigned long wl;
3457 3458 3459 3460

		if (!cpu_isset(i, *cpus))
			continue;

3461
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3462
		wl = weighted_cpuload(i);
3463

I
Ingo Molnar 已提交
3464
		if (rq->nr_running == 1 && wl > imbalance)
3465
			continue;
L
Linus Torvalds 已提交
3466

I
Ingo Molnar 已提交
3467 3468
		if (wl > max_load) {
			max_load = wl;
3469
			busiest = rq;
L
Linus Torvalds 已提交
3470 3471 3472 3473 3474 3475
		}
	}

	return busiest;
}

3476 3477 3478 3479 3480 3481
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3482 3483 3484 3485
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3486
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3487
			struct sched_domain *sd, enum cpu_idle_type idle,
3488
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3489
{
P
Peter Williams 已提交
3490
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3491 3492
	struct sched_group *group;
	unsigned long imbalance;
3493
	struct rq *busiest;
3494
	unsigned long flags;
N
Nick Piggin 已提交
3495

3496 3497
	cpus_setall(*cpus);

3498 3499 3500
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3501
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3502
	 * portraying it as CPU_NOT_IDLE.
3503
	 */
I
Ingo Molnar 已提交
3504
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3505
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3506
		sd_idle = 1;
L
Linus Torvalds 已提交
3507

3508
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3509

3510
redo:
3511
	update_shares(sd);
3512
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3513
				   cpus, balance);
3514

3515
	if (*balance == 0)
3516 3517
		goto out_balanced;

L
Linus Torvalds 已提交
3518 3519 3520 3521 3522
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3523
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3524 3525 3526 3527 3528
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3529
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3530 3531 3532

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3533
	ld_moved = 0;
L
Linus Torvalds 已提交
3534 3535 3536 3537
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3538
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3539 3540
		 * correctly treated as an imbalance.
		 */
3541
		local_irq_save(flags);
N
Nick Piggin 已提交
3542
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3543
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3544
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3545
		double_rq_unlock(this_rq, busiest);
3546
		local_irq_restore(flags);
3547

3548 3549 3550
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3551
		if (ld_moved && this_cpu != smp_processor_id())
3552 3553
			resched_cpu(this_cpu);

3554
		/* All tasks on this runqueue were pinned by CPU affinity */
3555
		if (unlikely(all_pinned)) {
3556 3557
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3558
				goto redo;
3559
			goto out_balanced;
3560
		}
L
Linus Torvalds 已提交
3561
	}
3562

P
Peter Williams 已提交
3563
	if (!ld_moved) {
L
Linus Torvalds 已提交
3564 3565 3566 3567 3568
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3569
			spin_lock_irqsave(&busiest->lock, flags);
3570 3571 3572 3573 3574

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3575
				spin_unlock_irqrestore(&busiest->lock, flags);
3576 3577 3578 3579
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3580 3581 3582
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3583
				active_balance = 1;
L
Linus Torvalds 已提交
3584
			}
3585
			spin_unlock_irqrestore(&busiest->lock, flags);
3586
			if (active_balance)
L
Linus Torvalds 已提交
3587 3588 3589 3590 3591 3592
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3593
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3594
		}
3595
	} else
L
Linus Torvalds 已提交
3596 3597
		sd->nr_balance_failed = 0;

3598
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3599 3600
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3601 3602 3603 3604 3605 3606 3607 3608 3609
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3610 3611
	}

P
Peter Williams 已提交
3612
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3613
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3614 3615 3616
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3617 3618 3619 3620

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3621
	sd->nr_balance_failed = 0;
3622 3623

out_one_pinned:
L
Linus Torvalds 已提交
3624
	/* tune up the balancing interval */
3625 3626
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3627 3628
		sd->balance_interval *= 2;

3629
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3630
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3631 3632 3633 3634
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3635 3636
	if (ld_moved)
		update_shares(sd);
3637
	return ld_moved;
L
Linus Torvalds 已提交
3638 3639 3640 3641 3642 3643
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3644
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3645 3646
 * this_rq is locked.
 */
3647
static int
3648 3649
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3650 3651
{
	struct sched_group *group;
3652
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3653
	unsigned long imbalance;
P
Peter Williams 已提交
3654
	int ld_moved = 0;
N
Nick Piggin 已提交
3655
	int sd_idle = 0;
3656
	int all_pinned = 0;
3657 3658

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3659

3660 3661 3662 3663
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3664
	 * portraying it as CPU_NOT_IDLE.
3665 3666 3667
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3668
		sd_idle = 1;
L
Linus Torvalds 已提交
3669

3670
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3671
redo:
3672
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3673
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3674
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3675
	if (!group) {
I
Ingo Molnar 已提交
3676
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3677
		goto out_balanced;
L
Linus Torvalds 已提交
3678 3679
	}

3680
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3681
	if (!busiest) {
I
Ingo Molnar 已提交
3682
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3683
		goto out_balanced;
L
Linus Torvalds 已提交
3684 3685
	}

N
Nick Piggin 已提交
3686 3687
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3688
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3689

P
Peter Williams 已提交
3690
	ld_moved = 0;
3691 3692 3693
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3694 3695
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3696
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3697 3698
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3699
		double_unlock_balance(this_rq, busiest);
3700

3701
		if (unlikely(all_pinned)) {
3702 3703
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3704 3705
				goto redo;
		}
3706 3707
	}

P
Peter Williams 已提交
3708
	if (!ld_moved) {
I
Ingo Molnar 已提交
3709
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3710 3711
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3712 3713
			return -1;
	} else
3714
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3715

3716
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3717
	return ld_moved;
3718 3719

out_balanced:
I
Ingo Molnar 已提交
3720
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3721
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3722
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3723
		return -1;
3724
	sd->nr_balance_failed = 0;
3725

3726
	return 0;
L
Linus Torvalds 已提交
3727 3728 3729 3730 3731 3732
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3733
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3734 3735
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3736 3737
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3738
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3739 3740

	for_each_domain(this_cpu, sd) {
3741 3742 3743 3744 3745 3746
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3747
			/* If we've pulled tasks over stop searching: */
3748 3749
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3750 3751 3752 3753 3754 3755

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3756
	}
I
Ingo Molnar 已提交
3757
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3758 3759 3760 3761 3762
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3763
	}
L
Linus Torvalds 已提交
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3774
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3775
{
3776
	int target_cpu = busiest_rq->push_cpu;
3777 3778
	struct sched_domain *sd;
	struct rq *target_rq;
3779

3780
	/* Is there any task to move? */
3781 3782 3783 3784
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3785 3786

	/*
3787
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3788
	 * we need to fix it. Originally reported by
3789
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3790
	 */
3791
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3792

3793 3794
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3795 3796
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3797 3798

	/* Search for an sd spanning us and the target CPU. */
3799
	for_each_domain(target_cpu, sd) {
3800
		if ((sd->flags & SD_LOAD_BALANCE) &&
3801
		    cpu_isset(busiest_cpu, sd->span))
3802
				break;
3803
	}
3804

3805
	if (likely(sd)) {
3806
		schedstat_inc(sd, alb_count);
3807

P
Peter Williams 已提交
3808 3809
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3810 3811 3812 3813
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3814
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3815 3816
}

3817 3818 3819
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3820
	cpumask_t cpu_mask;
3821 3822 3823 3824 3825
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3826
/*
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3837
 *
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3857
		if (!cpu_active(cpu) &&
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3894 3895 3896 3897 3898
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3899
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3900
{
3901 3902
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3903 3904
	unsigned long interval;
	struct sched_domain *sd;
3905
	/* Earliest time when we have to do rebalance again */
3906
	unsigned long next_balance = jiffies + 60*HZ;
3907
	int update_next_balance = 0;
3908
	int need_serialize;
3909
	cpumask_t tmp;
L
Linus Torvalds 已提交
3910

3911
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3912 3913 3914 3915
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3916
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3917 3918 3919 3920 3921 3922
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3923 3924 3925
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3926
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3927

3928
		if (need_serialize) {
3929 3930 3931 3932
			if (!spin_trylock(&balancing))
				goto out;
		}

3933
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3934
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3935 3936
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3937 3938 3939
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3940
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3941
			}
3942
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3943
		}
3944
		if (need_serialize)
3945 3946
			spin_unlock(&balancing);
out:
3947
		if (time_after(next_balance, sd->last_balance + interval)) {
3948
			next_balance = sd->last_balance + interval;
3949 3950
			update_next_balance = 1;
		}
3951 3952 3953 3954 3955 3956 3957 3958

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3959
	}
3960 3961 3962 3963 3964 3965 3966 3967

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3968 3969 3970 3971 3972 3973 3974 3975 3976
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3977 3978 3979 3980
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3981

I
Ingo Molnar 已提交
3982
	rebalance_domains(this_cpu, idle);
3983 3984 3985 3986 3987 3988 3989

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3990 3991
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3992 3993 3994 3995
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3996
		cpu_clear(this_cpu, cpus);
3997
		for_each_cpu_mask_nr(balance_cpu, cpus) {
3998 3999 4000 4001 4002 4003 4004 4005
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4006
			rebalance_domains(balance_cpu, CPU_IDLE);
4007 4008

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4009 4010
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4023
static inline void trigger_load_balance(struct rq *rq, int cpu)
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4050
			if (ilb < nr_cpu_ids)
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4075
}
I
Ingo Molnar 已提交
4076 4077 4078

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4079 4080 4081
/*
 * on UP we do not need to balance between CPUs:
 */
4082
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4083 4084
{
}
I
Ingo Molnar 已提交
4085

L
Linus Torvalds 已提交
4086 4087 4088 4089 4090 4091 4092
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4093 4094
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4095
 */
4096
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4097 4098
{
	unsigned long flags;
4099
	struct rq *rq;
4100
	u64 ns = 0;
4101

4102
	rq = task_rq_lock(p, &flags);
4103

4104
	if (task_current(rq, p)) {
4105 4106
		u64 delta_exec;

I
Ingo Molnar 已提交
4107 4108
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4109
		if ((s64)delta_exec > 0)
4110
			ns = delta_exec;
4111
	}
4112

4113
	task_rq_unlock(rq, &flags);
4114

L
Linus Torvalds 已提交
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);
4129
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4130 4131 4132 4133 4134 4135 4136

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4137 4138
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4139 4140
}

4141 4142 4143 4144 4145
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4146
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4147 4148 4149 4150 4151 4152 4153
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
4154
	account_group_user_time(p, cputime);
4155 4156 4157 4158 4159 4160
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4181
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4182 4183
	cputime64_t tmp;

4184 4185 4186 4187
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4188

L
Linus Torvalds 已提交
4189
	p->stime = cputime_add(p->stime, cputime);
4190
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4191 4192 4193 4194 4195 4196 4197

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4198
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4199
		cpustat->system = cputime64_add(cpustat->system, tmp);
4200
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4201 4202 4203 4204 4205 4206 4207
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4219 4220 4221 4222 4223 4224 4225 4226 4227
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4228
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4229 4230 4231

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
4232
		account_group_system_time(p, steal);
L
Linus Torvalds 已提交
4233 4234 4235 4236
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4237
	} else
L
Linus Torvalds 已提交
4238 4239 4240
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4311
	struct task_struct *curr = rq->curr;
4312 4313

	sched_clock_tick();
I
Ingo Molnar 已提交
4314 4315

	spin_lock(&rq->lock);
4316
	update_rq_clock(rq);
4317
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4318
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4319
	spin_unlock(&rq->lock);
4320

4321
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4322 4323
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4324
#endif
T
Thomas Gleixner 已提交
4325
	perf_counter_task_tick(curr, cpu);
L
Linus Torvalds 已提交
4326 4327
}

4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4340

4341
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4342
{
4343
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4344 4345 4346
	/*
	 * Underflow?
	 */
4347 4348
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4349
#endif
L
Linus Torvalds 已提交
4350
	preempt_count() += val;
4351
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4352 4353 4354
	/*
	 * Spinlock count overflowing soon?
	 */
4355 4356
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4357 4358 4359
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4360 4361 4362
}
EXPORT_SYMBOL(add_preempt_count);

4363
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4364
{
4365
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4366 4367 4368
	/*
	 * Underflow?
	 */
4369 4370
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4371 4372 4373
	/*
	 * Is the spinlock portion underflowing?
	 */
4374 4375 4376
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4377
#endif
4378

4379 4380
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4381 4382 4383 4384 4385 4386 4387
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4388
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4389
 */
I
Ingo Molnar 已提交
4390
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4391
{
4392 4393 4394 4395 4396
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4397
	debug_show_held_locks(prev);
4398
	print_modules();
I
Ingo Molnar 已提交
4399 4400
	if (irqs_disabled())
		print_irqtrace_events(prev);
4401 4402 4403 4404 4405

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4406
}
L
Linus Torvalds 已提交
4407

I
Ingo Molnar 已提交
4408 4409 4410 4411 4412
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4413
	/*
I
Ingo Molnar 已提交
4414
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4415 4416 4417
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4418
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4419 4420
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4421 4422
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4423
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4424 4425
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4426 4427
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4428 4429
	}
#endif
I
Ingo Molnar 已提交
4430 4431 4432 4433 4434 4435
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4436
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4437
{
4438
	const struct sched_class *class;
I
Ingo Molnar 已提交
4439
	struct task_struct *p;
L
Linus Torvalds 已提交
4440 4441

	/*
I
Ingo Molnar 已提交
4442 4443
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4444
	 */
I
Ingo Molnar 已提交
4445
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4446
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4447 4448
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4449 4450
	}

I
Ingo Molnar 已提交
4451 4452
	class = sched_class_highest;
	for ( ; ; ) {
4453
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4454 4455 4456 4457 4458 4459 4460 4461 4462
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4463

I
Ingo Molnar 已提交
4464 4465 4466 4467 4468 4469
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4470
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4471
	struct rq *rq;
4472
	int cpu;
I
Ingo Molnar 已提交
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4486

4487
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4488
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4489

4490
	spin_lock_irq(&rq->lock);
4491
	update_rq_clock(rq);
4492
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4493 4494

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4495
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4496
			prev->state = TASK_RUNNING;
4497
		else
4498
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4499
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4500 4501
	}

4502 4503 4504 4505
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4506

I
Ingo Molnar 已提交
4507
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4508 4509
		idle_balance(cpu, rq);

4510
	prev->sched_class->put_prev_task(rq, prev);
4511
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4512 4513

	if (likely(prev != next)) {
4514 4515
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4516 4517 4518 4519
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4520
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4521 4522 4523 4524 4525 4526
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4527 4528 4529
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4530
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4531
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4532

L
Linus Torvalds 已提交
4533 4534 4535 4536 4537 4538 4539 4540
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4541
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4542
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4543 4544 4545 4546 4547
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4548

L
Linus Torvalds 已提交
4549 4550
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4551
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4552
	 */
N
Nick Piggin 已提交
4553
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4554 4555
		return;

4556 4557 4558 4559
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4560

4561 4562 4563 4564 4565 4566
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4567 4568 4569 4570
}
EXPORT_SYMBOL(preempt_schedule);

/*
4571
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4572 4573 4574 4575 4576 4577 4578
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4579

4580
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4581 4582
	BUG_ON(ti->preempt_count || !irqs_disabled());

4583 4584 4585 4586 4587 4588
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4589

4590 4591 4592 4593 4594 4595
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4596 4597 4598 4599
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4600 4601
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4602
{
4603
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4604 4605 4606 4607
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4608 4609
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4610 4611 4612
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4613
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4614 4615 4616 4617 4618
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4619
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4620

4621
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4622 4623
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4624
		if (curr->func(curr, mode, sync, key) &&
4625
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4626 4627 4628 4629 4630 4631 4632 4633 4634
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4635
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4636
 */
4637
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4638
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4651
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4652 4653 4654 4655 4656
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4657
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4669
void
I
Ingo Molnar 已提交
4670
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4687 4688 4689 4690 4691 4692 4693 4694 4695
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4696
void complete(struct completion *x)
L
Linus Torvalds 已提交
4697 4698 4699 4700 4701
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4702
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4703 4704 4705 4706
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4707 4708 4709 4710 4711 4712
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4713
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4714 4715 4716 4717 4718
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4719
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4720 4721 4722 4723
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4724 4725
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4726 4727 4728 4729 4730 4731 4732
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4733
			if (signal_pending_state(state, current)) {
4734 4735
				timeout = -ERESTARTSYS;
				break;
4736 4737
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4738 4739 4740
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4741
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4742
		__remove_wait_queue(&x->wait, &wait);
4743 4744
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4745 4746
	}
	x->done--;
4747
	return timeout ?: 1;
L
Linus Torvalds 已提交
4748 4749
}

4750 4751
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4752 4753 4754 4755
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4756
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4757
	spin_unlock_irq(&x->wait.lock);
4758 4759
	return timeout;
}
L
Linus Torvalds 已提交
4760

4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4771
void __sched wait_for_completion(struct completion *x)
4772 4773
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4774
}
4775
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4776

4777 4778 4779 4780 4781 4782 4783 4784 4785
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4786
unsigned long __sched
4787
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4788
{
4789
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4790
}
4791
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4792

4793 4794 4795 4796 4797 4798 4799
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4800
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4801
{
4802 4803 4804 4805
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4806
}
4807
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4808

4809 4810 4811 4812 4813 4814 4815 4816
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4817
unsigned long __sched
4818 4819
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4820
{
4821
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4822
}
4823
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4824

4825 4826 4827 4828 4829 4830 4831
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4832 4833 4834 4835 4836 4837 4838 4839 4840
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4887 4888
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4889
{
I
Ingo Molnar 已提交
4890 4891 4892 4893
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4894

4895
	__set_current_state(state);
L
Linus Torvalds 已提交
4896

4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4911 4912 4913
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4914
long __sched
I
Ingo Molnar 已提交
4915
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4916
{
4917
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4918 4919 4920
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4921
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4922
{
4923
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4924 4925 4926
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4927
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4928
{
4929
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4930 4931 4932
}
EXPORT_SYMBOL(sleep_on_timeout);

4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4945
void rt_mutex_setprio(struct task_struct *p, int prio)
4946 4947
{
	unsigned long flags;
4948
	int oldprio, on_rq, running;
4949
	struct rq *rq;
4950
	const struct sched_class *prev_class = p->sched_class;
4951 4952 4953 4954

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4955
	update_rq_clock(rq);
4956

4957
	oldprio = p->prio;
I
Ingo Molnar 已提交
4958
	on_rq = p->se.on_rq;
4959
	running = task_current(rq, p);
4960
	if (on_rq)
4961
		dequeue_task(rq, p, 0);
4962 4963
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4964 4965 4966 4967 4968 4969

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4970 4971
	p->prio = prio;

4972 4973
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4974
	if (on_rq) {
4975
		enqueue_task(rq, p, 0);
4976 4977

		check_class_changed(rq, p, prev_class, oldprio, running);
4978 4979 4980 4981 4982 4983
	}
	task_rq_unlock(rq, &flags);
}

#endif

4984
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4985
{
I
Ingo Molnar 已提交
4986
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4987
	unsigned long flags;
4988
	struct rq *rq;
L
Linus Torvalds 已提交
4989 4990 4991 4992 4993 4994 4995 4996

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4997
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4998 4999 5000 5001
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5002
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5003
	 */
5004
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5005 5006 5007
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5008
	on_rq = p->se.on_rq;
5009
	if (on_rq)
5010
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5011 5012

	p->static_prio = NICE_TO_PRIO(nice);
5013
	set_load_weight(p);
5014 5015 5016
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5017

I
Ingo Molnar 已提交
5018
	if (on_rq) {
5019
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5020
		/*
5021 5022
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5023
		 */
5024
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5025 5026 5027 5028 5029 5030 5031
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5032 5033 5034 5035 5036
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5037
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5038
{
5039 5040
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5041

M
Matt Mackall 已提交
5042 5043 5044 5045
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5057
	long nice, retval;
L
Linus Torvalds 已提交
5058 5059 5060 5061 5062 5063

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5064 5065
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5066 5067 5068 5069 5070 5071 5072 5073 5074
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5075 5076 5077
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5096
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5097 5098 5099 5100 5101 5102 5103 5104
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5105
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5106 5107 5108
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5109
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5124
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5125 5126 5127 5128 5129 5130 5131 5132
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5133
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5134
{
5135
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5136 5137 5138
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5139 5140
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5141
{
I
Ingo Molnar 已提交
5142
	BUG_ON(p->se.on_rq);
5143

L
Linus Torvalds 已提交
5144
	p->policy = policy;
I
Ingo Molnar 已提交
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5157
	p->rt_priority = prio;
5158 5159 5160
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5161
	set_load_weight(p);
L
Linus Torvalds 已提交
5162 5163
}

5164 5165
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5166
{
5167
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5168
	unsigned long flags;
5169
	const struct sched_class *prev_class = p->sched_class;
5170
	struct rq *rq;
L
Linus Torvalds 已提交
5171

5172 5173
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5174 5175 5176 5177 5178
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5179 5180
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5181
		return -EINVAL;
L
Linus Torvalds 已提交
5182 5183
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5184 5185
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5186 5187
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5188
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5189
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5190
		return -EINVAL;
5191
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5192 5193
		return -EINVAL;

5194 5195 5196
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5197
	if (user && !capable(CAP_SYS_NICE)) {
5198
		if (rt_policy(policy)) {
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5215 5216 5217 5218 5219 5220
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5221

5222 5223 5224 5225 5226
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5227

5228
	if (user) {
5229
#ifdef CONFIG_RT_GROUP_SCHED
5230 5231 5232 5233
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5234 5235
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5236
			return -EPERM;
5237 5238
#endif

5239 5240 5241 5242 5243
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5244 5245 5246 5247 5248
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5249 5250 5251 5252
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5253
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5254 5255 5256
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5257 5258
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5259 5260
		goto recheck;
	}
I
Ingo Molnar 已提交
5261
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5262
	on_rq = p->se.on_rq;
5263
	running = task_current(rq, p);
5264
	if (on_rq)
5265
		deactivate_task(rq, p, 0);
5266 5267
	if (running)
		p->sched_class->put_prev_task(rq, p);
5268

L
Linus Torvalds 已提交
5269
	oldprio = p->prio;
I
Ingo Molnar 已提交
5270
	__setscheduler(rq, p, policy, param->sched_priority);
5271

5272 5273
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5274 5275
	if (on_rq) {
		activate_task(rq, p, 0);
5276 5277

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5278
	}
5279 5280 5281
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5282 5283
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5284 5285
	return 0;
}
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5300 5301
EXPORT_SYMBOL_GPL(sched_setscheduler);

5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5319 5320
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5321 5322 5323
{
	struct sched_param lparam;
	struct task_struct *p;
5324
	int retval;
L
Linus Torvalds 已提交
5325 5326 5327 5328 5329

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5330 5331 5332

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5333
	p = find_process_by_pid(pid);
5334 5335 5336
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5337

L
Linus Torvalds 已提交
5338 5339 5340 5341 5342 5343 5344 5345 5346
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5347 5348
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5349
{
5350 5351 5352 5353
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5373
	struct task_struct *p;
5374
	int retval;
L
Linus Torvalds 已提交
5375 5376

	if (pid < 0)
5377
		return -EINVAL;
L
Linus Torvalds 已提交
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5399
	struct task_struct *p;
5400
	int retval;
L
Linus Torvalds 已提交
5401 5402

	if (!param || pid < 0)
5403
		return -EINVAL;
L
Linus Torvalds 已提交
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5430
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5431 5432
{
	cpumask_t cpus_allowed;
5433
	cpumask_t new_mask = *in_mask;
5434 5435
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5436

5437
	get_online_cpus();
L
Linus Torvalds 已提交
5438 5439 5440 5441 5442
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5443
		put_online_cpus();
L
Linus Torvalds 已提交
5444 5445 5446 5447 5448
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5449
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5460 5461 5462 5463
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5464
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5465
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5466
 again:
5467
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5468

P
Paul Menage 已提交
5469
	if (!retval) {
5470
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5481 5482
out_unlock:
	put_task_struct(p);
5483
	put_online_cpus();
L
Linus Torvalds 已提交
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5514
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5515 5516 5517 5518
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5519
	struct task_struct *p;
L
Linus Torvalds 已提交
5520 5521
	int retval;

5522
	get_online_cpus();
L
Linus Torvalds 已提交
5523 5524 5525 5526 5527 5528 5529
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5530 5531 5532 5533
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5534
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5535 5536 5537

out_unlock:
	read_unlock(&tasklist_lock);
5538
	put_online_cpus();
L
Linus Torvalds 已提交
5539

5540
	return retval;
L
Linus Torvalds 已提交
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5571 5572
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5573 5574 5575
 */
asmlinkage long sys_sched_yield(void)
{
5576
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5577

5578
	schedstat_inc(rq, yld_count);
5579
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5580 5581 5582 5583 5584 5585

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5586
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5587 5588 5589 5590 5591 5592 5593 5594
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5595
static void __cond_resched(void)
L
Linus Torvalds 已提交
5596
{
5597 5598 5599
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5600 5601 5602 5603 5604
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5605 5606 5607 5608 5609 5610 5611
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5612
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5613
{
5614 5615
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5616 5617 5618 5619 5620
		__cond_resched();
		return 1;
	}
	return 0;
}
5621
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5622 5623 5624 5625 5626

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5627
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5628 5629 5630
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5631
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5632
{
N
Nick Piggin 已提交
5633
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5634 5635
	int ret = 0;

N
Nick Piggin 已提交
5636
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5637
		spin_unlock(lock);
N
Nick Piggin 已提交
5638 5639 5640 5641
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5642
		ret = 1;
L
Linus Torvalds 已提交
5643 5644
		spin_lock(lock);
	}
J
Jan Kara 已提交
5645
	return ret;
L
Linus Torvalds 已提交
5646 5647 5648 5649 5650 5651 5652
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5653
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5654
		local_bh_enable();
L
Linus Torvalds 已提交
5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5666
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5677
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5678 5679 5680 5681 5682 5683 5684
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5685
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5686

5687
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5688 5689 5690
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5691
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5692 5693 5694 5695 5696
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5697
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5698 5699
	long ret;

5700
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5701 5702 5703
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5704
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5725
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5726
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5750
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5751
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5768
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5769
	unsigned int time_slice;
5770
	int retval;
L
Linus Torvalds 已提交
5771 5772 5773
	struct timespec t;

	if (pid < 0)
5774
		return -EINVAL;
L
Linus Torvalds 已提交
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5786 5787 5788 5789 5790 5791
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5792
		time_slice = DEF_TIMESLICE;
5793
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5794 5795 5796 5797 5798
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5799 5800
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5801 5802
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5803
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5804
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5805 5806
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5807

L
Linus Torvalds 已提交
5808 5809 5810 5811 5812
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5813
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5814

5815
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5816 5817
{
	unsigned long free = 0;
5818
	unsigned state;
L
Linus Torvalds 已提交
5819 5820

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5821
	printk(KERN_INFO "%-13.13s %c", p->comm,
5822
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5823
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5824
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5825
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5826
	else
I
Ingo Molnar 已提交
5827
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5828 5829
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5830
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5831
	else
I
Ingo Molnar 已提交
5832
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5833 5834 5835
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5836
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5837 5838
		while (!*n)
			n++;
5839
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5840 5841
	}
#endif
5842
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5843
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5844

5845
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5846 5847
}

I
Ingo Molnar 已提交
5848
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5849
{
5850
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5851

5852 5853 5854
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5855
#else
5856 5857
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5858 5859 5860 5861 5862 5863 5864 5865
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5866
		if (!state_filter || (p->state & state_filter))
5867
			sched_show_task(p);
L
Linus Torvalds 已提交
5868 5869
	} while_each_thread(g, p);

5870 5871
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5872 5873 5874
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5875
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5876 5877 5878 5879 5880
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5881 5882
}

I
Ingo Molnar 已提交
5883 5884
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5885
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5886 5887
}

5888 5889 5890 5891 5892 5893 5894 5895
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5896
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5897
{
5898
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5899 5900
	unsigned long flags;

5901 5902
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5903 5904 5905
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5906
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5907
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5908
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5909 5910

	rq->curr = rq->idle = idle;
5911 5912 5913
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5914 5915 5916
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5917 5918 5919
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5920
	task_thread_info(idle)->preempt_count = 0;
5921
#endif
I
Ingo Molnar 已提交
5922 5923 5924 5925
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
5960 5961

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
5962 5963
}

L
Linus Torvalds 已提交
5964 5965 5966 5967
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5968
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5987
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5988 5989
 * call is not atomic; no spinlocks may be held.
 */
5990
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5991
{
5992
	struct migration_req req;
L
Linus Torvalds 已提交
5993
	unsigned long flags;
5994
	struct rq *rq;
5995
	int ret = 0;
L
Linus Torvalds 已提交
5996 5997

	rq = task_rq_lock(p, &flags);
5998
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5999 6000 6001 6002
		ret = -EINVAL;
		goto out;
	}

6003 6004 6005 6006 6007 6008
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

6009
	if (p->sched_class->set_cpus_allowed)
6010
		p->sched_class->set_cpus_allowed(p, new_mask);
6011
	else {
6012 6013
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
6014 6015
	}

L
Linus Torvalds 已提交
6016
	/* Can the task run on the task's current CPU? If so, we're done */
6017
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
6018 6019
		goto out;

6020
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
6021 6022 6023 6024 6025 6026 6027 6028 6029
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6030

L
Linus Torvalds 已提交
6031 6032
	return ret;
}
6033
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6034 6035

/*
I
Ingo Molnar 已提交
6036
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6037 6038 6039 6040 6041 6042
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6043 6044
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6045
 */
6046
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6047
{
6048
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6049
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6050

6051
	if (unlikely(!cpu_active(dest_cpu)))
6052
		return ret;
L
Linus Torvalds 已提交
6053 6054 6055 6056 6057 6058 6059

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6060
		goto done;
L
Linus Torvalds 已提交
6061 6062
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
6063
		goto fail;
L
Linus Torvalds 已提交
6064

I
Ingo Molnar 已提交
6065
	on_rq = p->se.on_rq;
6066
	if (on_rq)
6067
		deactivate_task(rq_src, p, 0);
6068

L
Linus Torvalds 已提交
6069
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6070 6071
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6072
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6073
	}
L
Linus Torvalds 已提交
6074
done:
6075
	ret = 1;
L
Linus Torvalds 已提交
6076
fail:
L
Linus Torvalds 已提交
6077
	double_rq_unlock(rq_src, rq_dest);
6078
	return ret;
L
Linus Torvalds 已提交
6079 6080 6081 6082 6083 6084 6085
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6086
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6087 6088
{
	int cpu = (long)data;
6089
	struct rq *rq;
L
Linus Torvalds 已提交
6090 6091 6092 6093 6094 6095

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6096
		struct migration_req *req;
L
Linus Torvalds 已提交
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6119
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6120 6121
		list_del_init(head->next);

N
Nick Piggin 已提交
6122 6123 6124
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6154
/*
6155
 * Figure out where task on dead CPU should go, use force if necessary.
6156 6157
 * NOTE: interrupts should be disabled by the caller
 */
6158
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6159
{
6160
	unsigned long flags;
L
Linus Torvalds 已提交
6161
	cpumask_t mask;
6162 6163
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6164

6165 6166 6167 6168 6169 6170 6171
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6172
		if (dest_cpu >= nr_cpu_ids)
6173 6174 6175
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6176
		if (dest_cpu >= nr_cpu_ids) {
6177 6178 6179
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6180 6181 6182 6183
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6184
			 * cpuset_cpus_allowed() will not block. It must be
6185 6186
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6187
			rq = task_rq_lock(p, &flags);
6188
			p->cpus_allowed = cpus_allowed;
6189 6190
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6191

6192 6193 6194 6195 6196
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6197
			if (p->mm && printk_ratelimit()) {
6198 6199
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6200 6201
					task_pid_nr(p), p->comm, dead_cpu);
			}
6202
		}
6203
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6204 6205 6206 6207 6208 6209 6210 6211 6212
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6213
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6214
{
6215
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6229
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6230

6231
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6232

6233 6234
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6235 6236
			continue;

6237 6238 6239
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6240

6241
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6242 6243
}

I
Ingo Molnar 已提交
6244 6245
/*
 * Schedules idle task to be the next runnable task on current CPU.
6246 6247
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6248 6249 6250
 */
void sched_idle_next(void)
{
6251
	int this_cpu = smp_processor_id();
6252
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6253 6254 6255 6256
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6257
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6258

6259 6260 6261
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6262 6263 6264
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6265
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6266

6267 6268
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6269 6270 6271 6272

	spin_unlock_irqrestore(&rq->lock, flags);
}

6273 6274
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6288
/* called under rq->lock with disabled interrupts */
6289
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6290
{
6291
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6292 6293

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6294
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6295 6296

	/* Cannot have done final schedule yet: would have vanished. */
6297
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6298

6299
	get_task_struct(p);
L
Linus Torvalds 已提交
6300 6301 6302

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6303
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6304 6305
	 * fine.
	 */
6306
	spin_unlock_irq(&rq->lock);
6307
	move_task_off_dead_cpu(dead_cpu, p);
6308
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6309

6310
	put_task_struct(p);
L
Linus Torvalds 已提交
6311 6312 6313 6314 6315
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6316
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6317
	struct task_struct *next;
6318

I
Ingo Molnar 已提交
6319 6320 6321
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6322
		update_rq_clock(rq);
6323
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6324 6325
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6326
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6327
		migrate_dead(dead_cpu, next);
6328

L
Linus Torvalds 已提交
6329 6330 6331 6332
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6333 6334 6335
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6336 6337
	{
		.procname	= "sched_domain",
6338
		.mode		= 0555,
6339
	},
I
Ingo Molnar 已提交
6340
	{0, },
6341 6342 6343
};

static struct ctl_table sd_ctl_root[] = {
6344
	{
6345
		.ctl_name	= CTL_KERN,
6346
		.procname	= "kernel",
6347
		.mode		= 0555,
6348 6349
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6350
	{0, },
6351 6352 6353 6354 6355
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6356
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6357 6358 6359 6360

	return entry;
}

6361 6362
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6363
	struct ctl_table *entry;
6364

6365 6366 6367
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6368
	 * will always be set. In the lowest directory the names are
6369 6370 6371
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6372 6373
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6374 6375 6376
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6377 6378 6379 6380 6381

	kfree(*tablep);
	*tablep = NULL;
}

6382
static void
6383
set_table_entry(struct ctl_table *entry,
6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6397
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6398

6399 6400 6401
	if (table == NULL)
		return NULL;

6402
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6403
		sizeof(long), 0644, proc_doulongvec_minmax);
6404
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6405
		sizeof(long), 0644, proc_doulongvec_minmax);
6406
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6407
		sizeof(int), 0644, proc_dointvec_minmax);
6408
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6409
		sizeof(int), 0644, proc_dointvec_minmax);
6410
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6411
		sizeof(int), 0644, proc_dointvec_minmax);
6412
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6413
		sizeof(int), 0644, proc_dointvec_minmax);
6414
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6415
		sizeof(int), 0644, proc_dointvec_minmax);
6416
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6417
		sizeof(int), 0644, proc_dointvec_minmax);
6418
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6419
		sizeof(int), 0644, proc_dointvec_minmax);
6420
	set_table_entry(&table[9], "cache_nice_tries",
6421 6422
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6423
	set_table_entry(&table[10], "flags", &sd->flags,
6424
		sizeof(int), 0644, proc_dointvec_minmax);
6425 6426 6427
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6428 6429 6430 6431

	return table;
}

6432
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6433 6434 6435 6436 6437 6438 6439 6440 6441
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6442 6443
	if (table == NULL)
		return NULL;
6444 6445 6446 6447 6448

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6449
		entry->mode = 0555;
6450 6451 6452 6453 6454 6455 6456 6457
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6458
static void register_sched_domain_sysctl(void)
6459 6460 6461 6462 6463
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6464 6465 6466
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6467 6468 6469
	if (entry == NULL)
		return;

6470
	for_each_online_cpu(i) {
6471 6472
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6473
		entry->mode = 0555;
6474
		entry->child = sd_alloc_ctl_cpu_table(i);
6475
		entry++;
6476
	}
6477 6478

	WARN_ON(sd_sysctl_header);
6479 6480
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6481

6482
/* may be called multiple times per register */
6483 6484
static void unregister_sched_domain_sysctl(void)
{
6485 6486
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6487
	sd_sysctl_header = NULL;
6488 6489
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6490
}
6491
#else
6492 6493 6494 6495
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6496 6497 6498 6499
{
}
#endif

6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6530 6531 6532 6533
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6534 6535
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6536 6537
{
	struct task_struct *p;
6538
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6539
	unsigned long flags;
6540
	struct rq *rq;
L
Linus Torvalds 已提交
6541 6542

	switch (action) {
6543

L
Linus Torvalds 已提交
6544
	case CPU_UP_PREPARE:
6545
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6546
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6547 6548 6549 6550 6551
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6552
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6553 6554 6555
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6556

L
Linus Torvalds 已提交
6557
	case CPU_ONLINE:
6558
	case CPU_ONLINE_FROZEN:
6559
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6560
		wake_up_process(cpu_rq(cpu)->migration_thread);
6561 6562 6563 6564 6565 6566

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6567 6568

			set_rq_online(rq);
6569 6570
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6571
		break;
6572

L
Linus Torvalds 已提交
6573 6574
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6575
	case CPU_UP_CANCELED_FROZEN:
6576 6577
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6578
		/* Unbind it from offline cpu so it can run. Fall thru. */
6579 6580
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6581 6582 6583
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6584

L
Linus Torvalds 已提交
6585
	case CPU_DEAD:
6586
	case CPU_DEAD_FROZEN:
6587
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6588 6589 6590 6591 6592
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6593
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6594
		update_rq_clock(rq);
6595
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6596
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6597 6598
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6599
		migrate_dead_tasks(cpu);
6600
		spin_unlock_irq(&rq->lock);
6601
		cpuset_unlock();
L
Linus Torvalds 已提交
6602 6603 6604
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6605 6606 6607 6608 6609
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6610 6611
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6612 6613
			struct migration_req *req;

L
Linus Torvalds 已提交
6614
			req = list_entry(rq->migration_queue.next,
6615
					 struct migration_req, list);
L
Linus Torvalds 已提交
6616
			list_del_init(&req->list);
B
Brian King 已提交
6617
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
6618
			complete(&req->done);
B
Brian King 已提交
6619
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6620 6621 6622
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6623

6624 6625
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6626 6627 6628 6629 6630
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6631
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6632 6633 6634
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6635 6636 6637 6638 6639 6640 6641 6642
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6643
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6644 6645 6646 6647
	.notifier_call = migration_call,
	.priority = 10
};

6648
static int __init migration_init(void)
L
Linus Torvalds 已提交
6649 6650
{
	void *cpu = (void *)(long)smp_processor_id();
6651
	int err;
6652 6653

	/* Start one for the boot CPU: */
6654 6655
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6656 6657
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6658 6659

	return err;
L
Linus Torvalds 已提交
6660
}
6661
early_initcall(migration_init);
L
Linus Torvalds 已提交
6662 6663 6664
#endif

#ifdef CONFIG_SMP
6665

6666
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6667

6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6690 6691
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6692
{
I
Ingo Molnar 已提交
6693
	struct sched_group *group = sd->groups;
6694
	char str[256];
L
Linus Torvalds 已提交
6695

6696
	cpulist_scnprintf(str, sizeof(str), sd->span);
6697
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6698 6699 6700 6701 6702 6703 6704 6705 6706

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6707 6708
	}

6709 6710
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6711 6712 6713 6714 6715 6716 6717 6718 6719

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6720

I
Ingo Molnar 已提交
6721
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6722
	do {
I
Ingo Molnar 已提交
6723 6724 6725
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6726 6727 6728
			break;
		}

I
Ingo Molnar 已提交
6729 6730 6731 6732 6733 6734
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6735

I
Ingo Molnar 已提交
6736 6737 6738 6739 6740
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6741

6742
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6743 6744 6745 6746
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6747

6748
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6749

6750
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6751
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6752

I
Ingo Molnar 已提交
6753 6754 6755
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6756

6757
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6758
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6759

6760
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6761 6762 6763 6764
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6765

I
Ingo Molnar 已提交
6766 6767
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6768
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6769
	int level = 0;
L
Linus Torvalds 已提交
6770

I
Ingo Molnar 已提交
6771 6772 6773 6774
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6775

I
Ingo Molnar 已提交
6776 6777
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6778 6779 6780 6781 6782 6783
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6784
	for (;;) {
6785
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6786
			break;
L
Linus Torvalds 已提交
6787 6788
		level++;
		sd = sd->parent;
6789
		if (!sd)
I
Ingo Molnar 已提交
6790 6791
			break;
	}
6792
	kfree(groupmask);
L
Linus Torvalds 已提交
6793
}
6794
#else /* !CONFIG_SCHED_DEBUG */
6795
# define sched_domain_debug(sd, cpu) do { } while (0)
6796
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6797

6798
static int sd_degenerate(struct sched_domain *sd)
6799 6800 6801 6802 6803 6804 6805 6806
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6807 6808 6809
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6823 6824
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6843 6844 6845
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6846 6847 6848 6849 6850 6851 6852
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6853 6854 6855 6856 6857 6858 6859 6860 6861
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6862 6863
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6864

6865 6866
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6867 6868 6869 6870 6871 6872 6873
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6874
	cpu_set(rq->cpu, rd->span);
6875
	if (cpu_isset(rq->cpu, cpu_online_map))
6876
		set_rq_online(rq);
G
Gregory Haskins 已提交
6877 6878 6879 6880

	spin_unlock_irqrestore(&rq->lock, flags);
}

6881
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6882 6883 6884
{
	memset(rd, 0, sizeof(*rd));

6885 6886
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6887 6888

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6889 6890 6891 6892
}

static void init_defrootdomain(void)
{
6893
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6894 6895 6896
	atomic_set(&def_root_domain.refcount, 1);
}

6897
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6898 6899 6900 6901 6902 6903 6904
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6905
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6906 6907 6908 6909

	return rd;
}

L
Linus Torvalds 已提交
6910
/*
I
Ingo Molnar 已提交
6911
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6912 6913
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6914 6915
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6916
{
6917
	struct rq *rq = cpu_rq(cpu);
6918 6919 6920
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6921
	for (tmp = sd; tmp; ) {
6922 6923 6924
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6925

6926
		if (sd_parent_degenerate(tmp, parent)) {
6927
			tmp->parent = parent->parent;
6928 6929
			if (parent->parent)
				parent->parent->child = tmp;
6930 6931
		} else
			tmp = tmp->parent;
6932 6933
	}

6934
	if (sd && sd_degenerate(sd)) {
6935
		sd = sd->parent;
6936 6937 6938
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6939 6940 6941

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6942
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6943
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6944 6945 6946
}

/* cpus with isolated domains */
6947
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6948 6949 6950 6951

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6952 6953
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6954 6955 6956 6957 6958 6959 6960 6961 6962

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6963
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6964 6965

/*
6966 6967 6968 6969
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6970 6971 6972 6973 6974
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6975
static void
6976
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6977
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6978 6979 6980
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6981 6982 6983 6984
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6985 6986
	cpus_clear(*covered);

6987
	for_each_cpu_mask_nr(i, *span) {
6988
		struct sched_group *sg;
6989
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6990 6991
		int j;

6992
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6993 6994
			continue;

6995
		cpus_clear(sg->cpumask);
6996
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6997

6998
		for_each_cpu_mask_nr(j, *span) {
6999
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7000 7001
				continue;

7002
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7014
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7015

7016
#ifdef CONFIG_NUMA
7017

7018 7019 7020 7021 7022
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7023
 * Find the next node to include in a given scheduling domain. Simply
7024 7025 7026 7027
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7028
static int find_next_best_node(int node, nodemask_t *used_nodes)
7029 7030 7031 7032 7033
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7034
	for (i = 0; i < nr_node_ids; i++) {
7035
		/* Start at @node */
7036
		n = (node + i) % nr_node_ids;
7037 7038 7039 7040 7041

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7042
		if (node_isset(n, *used_nodes))
7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7054
	node_set(best_node, *used_nodes);
7055 7056 7057 7058 7059 7060
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7061
 * @span: resulting cpumask
7062
 *
I
Ingo Molnar 已提交
7063
 * Given a node, construct a good cpumask for its sched_domain to span. It
7064 7065 7066
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7067
static void sched_domain_node_span(int node, cpumask_t *span)
7068
{
7069 7070
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
7071
	int i;
7072

7073
	cpus_clear(*span);
7074
	nodes_clear(used_nodes);
7075

7076
	cpus_or(*span, *span, *nodemask);
7077
	node_set(node, used_nodes);
7078 7079

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7080
		int next_node = find_next_best_node(node, &used_nodes);
7081

7082
		node_to_cpumask_ptr_next(nodemask, next_node);
7083
		cpus_or(*span, *span, *nodemask);
7084 7085
	}
}
7086
#endif /* CONFIG_NUMA */
7087

7088
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7089

7090
/*
7091
 * SMT sched-domains:
7092
 */
L
Linus Torvalds 已提交
7093 7094
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7095
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7096

I
Ingo Molnar 已提交
7097
static int
7098 7099
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
7100
{
7101 7102
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
7103 7104
	return cpu;
}
7105
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7106

7107 7108 7109
/*
 * multi-core sched-domains:
 */
7110 7111
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
7112
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7113
#endif /* CONFIG_SCHED_MC */
7114 7115

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7116
static int
7117 7118
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
7119
{
7120
	int group;
7121 7122 7123 7124

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7125 7126 7127
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
7128 7129
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7130
static int
7131 7132
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
7133
{
7134 7135
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
7136 7137 7138 7139
	return cpu;
}
#endif

L
Linus Torvalds 已提交
7140
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7141
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7142

I
Ingo Molnar 已提交
7143
static int
7144 7145
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
7146
{
7147
	int group;
7148
#ifdef CONFIG_SCHED_MC
7149 7150 7151
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7152
#elif defined(CONFIG_SCHED_SMT)
7153 7154 7155
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7156
#else
7157
	group = cpu;
L
Linus Torvalds 已提交
7158
#endif
7159 7160 7161
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7162 7163 7164 7165
}

#ifdef CONFIG_NUMA
/*
7166 7167 7168
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7169
 */
7170
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7171
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7172

7173
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7174
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7175

7176
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7177
				 struct sched_group **sg, cpumask_t *nodemask)
7178
{
7179 7180
	int group;

7181 7182 7183
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7184 7185 7186 7187

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7188
}
7189

7190 7191 7192 7193 7194 7195 7196
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7197
	do {
7198
		for_each_cpu_mask_nr(j, sg->cpumask) {
7199
			struct sched_domain *sd;
7200

7201 7202 7203 7204 7205 7206 7207 7208
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7209

7210 7211 7212 7213
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7214
}
7215
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7216

7217
#ifdef CONFIG_NUMA
7218
/* Free memory allocated for various sched_group structures */
7219
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7220
{
7221
	int cpu, i;
7222

7223
	for_each_cpu_mask_nr(cpu, *cpu_map) {
7224 7225 7226 7227 7228 7229
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7230
		for (i = 0; i < nr_node_ids; i++) {
7231 7232
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7233 7234 7235
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7252
#else /* !CONFIG_NUMA */
7253
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7254 7255
{
}
7256
#endif /* CONFIG_NUMA */
7257

7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7284 7285
	sd->groups->__cpu_power = 0;

7286 7287 7288 7289 7290 7291 7292 7293 7294 7295
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7296
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7297 7298 7299 7300 7301 7302 7303 7304
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7305
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7306 7307 7308 7309
		group = group->next;
	} while (group != child->groups);
}

7310 7311 7312 7313 7314
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7315 7316 7317 7318 7319 7320
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7321
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7322

7323 7324 7325 7326 7327
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7328
	sd->level = SD_LV_##type;				\
7329
	SD_INIT_NAME(sd, type);					\
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7378 7379 7380 7381
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7382 7383 7384 7385 7386 7387
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7413
/*
7414 7415
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7416
 */
7417 7418
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7419 7420
{
	int i;
G
Gregory Haskins 已提交
7421
	struct root_domain *rd;
7422 7423
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7424 7425
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7426
	int sd_allnodes = 0;
7427 7428 7429 7430

	/*
	 * Allocate the per-node list of sched groups
	 */
7431
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7432
				    GFP_KERNEL);
7433 7434
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7435
		return -ENOMEM;
7436 7437
	}
#endif
L
Linus Torvalds 已提交
7438

7439
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7440 7441
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7442 7443 7444
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7445 7446 7447
		return -ENOMEM;
	}

7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7467
	/*
7468
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7469
	 */
7470
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7471
		struct sched_domain *sd = NULL, *p;
7472
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7473

7474 7475
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7476 7477

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7478
		if (cpus_weight(*cpu_map) >
7479
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7480
			sd = &per_cpu(allnodes_domains, i);
7481
			SD_INIT(sd, ALLNODES);
7482
			set_domain_attribute(sd, attr);
7483
			sd->span = *cpu_map;
7484
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7485
			p = sd;
7486
			sd_allnodes = 1;
7487 7488 7489
		} else
			p = NULL;

L
Linus Torvalds 已提交
7490
		sd = &per_cpu(node_domains, i);
7491
		SD_INIT(sd, NODE);
7492
		set_domain_attribute(sd, attr);
7493
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7494
		sd->parent = p;
7495 7496
		if (p)
			p->child = sd;
7497
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7498 7499 7500 7501
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7502
		SD_INIT(sd, CPU);
7503
		set_domain_attribute(sd, attr);
7504
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7505
		sd->parent = p;
7506 7507
		if (p)
			p->child = sd;
7508
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7509

7510 7511 7512
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7513
		SD_INIT(sd, MC);
7514
		set_domain_attribute(sd, attr);
7515 7516 7517
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7518
		p->child = sd;
7519
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7520 7521
#endif

L
Linus Torvalds 已提交
7522 7523 7524
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7525
		SD_INIT(sd, SIBLING);
7526
		set_domain_attribute(sd, attr);
7527
		sd->span = per_cpu(cpu_sibling_map, i);
7528
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7529
		sd->parent = p;
7530
		p->child = sd;
7531
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7532 7533 7534 7535 7536
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7537
	for_each_cpu_mask_nr(i, *cpu_map) {
7538 7539 7540 7541 7542 7543
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7544 7545
			continue;

I
Ingo Molnar 已提交
7546
		init_sched_build_groups(this_sibling_map, cpu_map,
7547 7548
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7549 7550 7551
	}
#endif

7552 7553
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7554
	for_each_cpu_mask_nr(i, *cpu_map) {
7555 7556 7557 7558 7559 7560
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7561
			continue;
7562

I
Ingo Molnar 已提交
7563
		init_sched_build_groups(this_core_map, cpu_map,
7564 7565
					&cpu_to_core_group,
					send_covered, tmpmask);
7566 7567 7568
	}
#endif

L
Linus Torvalds 已提交
7569
	/* Set up physical groups */
7570
	for (i = 0; i < nr_node_ids; i++) {
7571 7572
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7573

7574 7575 7576
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7577 7578
			continue;

7579 7580 7581
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7582 7583 7584 7585
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7586 7587 7588 7589 7590 7591 7592
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7593

7594
	for (i = 0; i < nr_node_ids; i++) {
7595 7596
		/* Set up node groups */
		struct sched_group *sg, *prev;
7597 7598 7599
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7600 7601
		int j;

7602 7603 7604 7605 7606
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7607
			sched_group_nodes[i] = NULL;
7608
			continue;
7609
		}
7610

7611
		sched_domain_node_span(i, domainspan);
7612
		cpus_and(*domainspan, *domainspan, *cpu_map);
7613

7614
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7615 7616 7617 7618 7619
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7620
		sched_group_nodes[i] = sg;
7621
		for_each_cpu_mask_nr(j, *nodemask) {
7622
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7623

7624 7625 7626
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7627
		sg->__cpu_power = 0;
7628
		sg->cpumask = *nodemask;
7629
		sg->next = sg;
7630
		cpus_or(*covered, *covered, *nodemask);
7631 7632
		prev = sg;

7633
		for (j = 0; j < nr_node_ids; j++) {
7634
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7635
			int n = (i + j) % nr_node_ids;
7636
			node_to_cpumask_ptr(pnodemask, n);
7637

7638 7639 7640 7641
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7642 7643
				break;

7644 7645
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7646 7647
				continue;

7648 7649
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7650 7651 7652
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7653
				goto error;
7654
			}
7655
			sg->__cpu_power = 0;
7656
			sg->cpumask = *tmpmask;
7657
			sg->next = prev->next;
7658
			cpus_or(*covered, *covered, *tmpmask);
7659 7660 7661 7662
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7663 7664 7665
#endif

	/* Calculate CPU power for physical packages and nodes */
7666
#ifdef CONFIG_SCHED_SMT
7667
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7668 7669
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7670
		init_sched_groups_power(i, sd);
7671
	}
L
Linus Torvalds 已提交
7672
#endif
7673
#ifdef CONFIG_SCHED_MC
7674
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7675 7676
		struct sched_domain *sd = &per_cpu(core_domains, i);

7677
		init_sched_groups_power(i, sd);
7678 7679
	}
#endif
7680

7681
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7682 7683
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7684
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7685 7686
	}

7687
#ifdef CONFIG_NUMA
7688
	for (i = 0; i < nr_node_ids; i++)
7689
		init_numa_sched_groups_power(sched_group_nodes[i]);
7690

7691 7692
	if (sd_allnodes) {
		struct sched_group *sg;
7693

7694 7695
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7696 7697
		init_numa_sched_groups_power(sg);
	}
7698 7699
#endif

L
Linus Torvalds 已提交
7700
	/* Attach the domains */
7701
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7702 7703 7704
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7705 7706
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7707 7708 7709
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7710
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7711
	}
7712

7713
	SCHED_CPUMASK_FREE((void *)allmasks);
7714 7715
	return 0;

7716
#ifdef CONFIG_NUMA
7717
error:
7718 7719
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7720
	kfree(rd);
7721
	return -ENOMEM;
7722
#endif
L
Linus Torvalds 已提交
7723
}
P
Paul Jackson 已提交
7724

7725 7726 7727 7728 7729
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7730 7731
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7732 7733
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7734 7735 7736 7737 7738 7739 7740 7741

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7742 7743 7744 7745
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7746
/*
I
Ingo Molnar 已提交
7747
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7748 7749
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7750
 */
7751
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7752
{
7753 7754
	int err;

7755
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7756 7757 7758 7759 7760
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7761
	dattr_cur = NULL;
7762
	err = build_sched_domains(doms_cur);
7763
	register_sched_domain_sysctl();
7764 7765

	return err;
7766 7767
}

7768 7769
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7770
{
7771
	free_sched_groups(cpu_map, tmpmask);
7772
}
L
Linus Torvalds 已提交
7773

7774 7775 7776 7777
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7778
static void detach_destroy_domains(const cpumask_t *cpu_map)
7779
{
7780
	cpumask_t tmpmask;
7781 7782
	int i;

7783 7784
	unregister_sched_domain_sysctl();

7785
	for_each_cpu_mask_nr(i, *cpu_map)
G
Gregory Haskins 已提交
7786
		cpu_attach_domain(NULL, &def_root_domain, i);
7787
	synchronize_sched();
7788
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7789 7790
}

7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7807 7808
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7809
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7810 7811 7812 7813
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7814 7815 7816
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7817 7818 7819
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7820 7821
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
7822 7823 7824 7825
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
7826
 *
7827 7828 7829
 * If doms_new == NULL it will be replaced with cpu_online_map.
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7830
 *
P
Paul Jackson 已提交
7831 7832
 * Call with hotplug lock held
 */
7833 7834
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7835
{
7836
	int i, j, n;
P
Paul Jackson 已提交
7837

7838
	mutex_lock(&sched_domains_mutex);
7839

7840 7841 7842
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7843
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7844 7845 7846

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7847
		for (j = 0; j < n; j++) {
7848 7849
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7850 7851 7852 7853 7854 7855 7856 7857
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7858 7859 7860 7861 7862 7863 7864
	if (doms_new == NULL) {
		ndoms_cur = 0;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
		dattr_new = NULL;
	}

P
Paul Jackson 已提交
7865 7866 7867
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7868 7869
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7870 7871 7872
				goto match2;
		}
		/* no match - add a new doms_new */
7873 7874
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7875 7876 7877 7878 7879 7880 7881
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7882
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7883
	doms_cur = doms_new;
7884
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7885
	ndoms_cur = ndoms_new;
7886 7887

	register_sched_domain_sysctl();
7888

7889
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7890 7891
}

7892
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7893
int arch_reinit_sched_domains(void)
7894
{
7895
	get_online_cpus();
7896 7897 7898 7899

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7900
	rebuild_sched_domains();
7901
	put_online_cpus();
7902

7903
	return 0;
7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7924 7925
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7926 7927 7928
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7929
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7930
					    const char *buf, size_t count)
7931 7932 7933
{
	return sched_power_savings_store(buf, count, 0);
}
7934 7935 7936
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7937 7938 7939
#endif

#ifdef CONFIG_SCHED_SMT
7940 7941
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7942 7943 7944
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7945
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7946
					     const char *buf, size_t count)
7947 7948 7949
{
	return sched_power_savings_store(buf, count, 1);
}
7950 7951
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7971
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7972

7973
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7974
/*
7975 7976
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7977 7978 7979
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7980 7981 7982 7983 7984 7985
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
7986
		partition_sched_domains(1, NULL, NULL);
7987 7988 7989 7990 7991 7992 7993 7994 7995 7996
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7997
{
P
Peter Zijlstra 已提交
7998 7999
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8000 8001
	switch (action) {
	case CPU_DOWN_PREPARE:
8002
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8003
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8004 8005 8006
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8007
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8008
	case CPU_ONLINE:
8009
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8010
		enable_runtime(cpu_rq(cpu));
8011 8012
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8013 8014 8015 8016 8017 8018 8019
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8020 8021
	cpumask_t non_isolated_cpus;

8022 8023 8024 8025 8026
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8027
	get_online_cpus();
8028
	mutex_lock(&sched_domains_mutex);
8029
	arch_init_sched_domains(&cpu_online_map);
8030
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
8031 8032
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
8033
	mutex_unlock(&sched_domains_mutex);
8034
	put_online_cpus();
8035 8036

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8037 8038
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8039 8040 8041 8042 8043
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8044
	init_hrtick();
8045 8046

	/* Move init over to a non-isolated CPU */
8047
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8048
		BUG();
I
Ingo Molnar 已提交
8049
	sched_init_granularity();
L
Linus Torvalds 已提交
8050 8051 8052 8053
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8054
	sched_init_granularity();
L
Linus Torvalds 已提交
8055 8056 8057 8058 8059 8060 8061 8062 8063 8064
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8065
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8066 8067
{
	cfs_rq->tasks_timeline = RB_ROOT;
8068
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8069 8070 8071
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8072
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8073 8074
}

P
Peter Zijlstra 已提交
8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8088
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8089 8090
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8091 8092 8093 8094 8095 8096 8097
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8098 8099
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8100

8101
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8102
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8103 8104
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8105 8106
}

P
Peter Zijlstra 已提交
8107
#ifdef CONFIG_FAIR_GROUP_SCHED
8108 8109 8110
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8111
{
8112
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8113 8114 8115 8116 8117 8118 8119
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8120 8121 8122 8123
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8124 8125 8126 8127 8128
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8129 8130
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8131
	se->load.inv_weight = 0;
8132
	se->parent = parent;
P
Peter Zijlstra 已提交
8133
}
8134
#endif
P
Peter Zijlstra 已提交
8135

8136
#ifdef CONFIG_RT_GROUP_SCHED
8137 8138 8139
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8140
{
8141 8142
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8143 8144 8145 8146
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8147
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8148 8149 8150 8151
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8152 8153 8154
	if (!rt_se)
		return;

8155 8156 8157 8158 8159
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8160
	rt_se->my_q = rt_rq;
8161
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8162 8163 8164 8165
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8166 8167
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8168
	int i, j;
8169 8170 8171 8172 8173 8174 8175
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8176 8177 8178
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8179 8180 8181 8182 8183 8184
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8185
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8186 8187 8188 8189 8190 8191 8192

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8193 8194 8195 8196 8197 8198 8199

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8200 8201
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8202 8203 8204 8205 8206
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8207 8208 8209 8210 8211 8212 8213 8214
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8215 8216
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8217
	}
I
Ingo Molnar 已提交
8218

G
Gregory Haskins 已提交
8219 8220 8221 8222
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8223 8224 8225 8226 8227 8228
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8229 8230 8231
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8232 8233
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8234

8235
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8236
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8237 8238 8239 8240 8241 8242
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8243 8244
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8245

8246
	for_each_possible_cpu(i) {
8247
		struct rq *rq;
L
Linus Torvalds 已提交
8248 8249 8250

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8251
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8252
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8253
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8254
#ifdef CONFIG_FAIR_GROUP_SCHED
8255
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8256
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8277
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8278
#elif defined CONFIG_USER_SCHED
8279 8280
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8292
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8293
				&per_cpu(init_cfs_rq, i),
8294 8295
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8296

8297
#endif
D
Dhaval Giani 已提交
8298 8299 8300
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8301
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8302
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8303
#ifdef CONFIG_CGROUP_SCHED
8304
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8305
#elif defined CONFIG_USER_SCHED
8306
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8307
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8308
				&per_cpu(init_rt_rq, i),
8309 8310
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8311
#endif
I
Ingo Molnar 已提交
8312
#endif
L
Linus Torvalds 已提交
8313

I
Ingo Molnar 已提交
8314 8315
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8316
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8317
		rq->sd = NULL;
G
Gregory Haskins 已提交
8318
		rq->rd = NULL;
L
Linus Torvalds 已提交
8319
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8320
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8321
		rq->push_cpu = 0;
8322
		rq->cpu = i;
8323
		rq->online = 0;
L
Linus Torvalds 已提交
8324 8325
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8326
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8327
#endif
P
Peter Zijlstra 已提交
8328
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8329 8330 8331
		atomic_set(&rq->nr_iowait, 0);
	}

8332
	set_load_weight(&init_task);
8333

8334 8335 8336 8337
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8338
#ifdef CONFIG_SMP
8339
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8340 8341
#endif

8342 8343 8344 8345
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8359 8360 8361 8362
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8363 8364

	scheduler_running = 1;
L
Linus Torvalds 已提交
8365 8366 8367 8368 8369
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8370
#ifdef in_atomic
L
Linus Torvalds 已提交
8371 8372
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8392 8393 8394 8395 8396 8397
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8398 8399 8400
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8401

8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8413 8414
void normalize_rt_tasks(void)
{
8415
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8416
	unsigned long flags;
8417
	struct rq *rq;
L
Linus Torvalds 已提交
8418

8419
	read_lock_irqsave(&tasklist_lock, flags);
8420
	do_each_thread(g, p) {
8421 8422 8423 8424 8425 8426
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8427 8428
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8429 8430 8431
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8432
#endif
I
Ingo Molnar 已提交
8433 8434 8435 8436 8437 8438 8439 8440

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8441
			continue;
I
Ingo Molnar 已提交
8442
		}
L
Linus Torvalds 已提交
8443

8444
		spin_lock(&p->pi_lock);
8445
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8446

8447
		normalize_task(rq, p);
8448

8449
		__task_rq_unlock(rq);
8450
		spin_unlock(&p->pi_lock);
8451 8452
	} while_each_thread(g, p);

8453
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8454 8455 8456
}

#endif /* CONFIG_MAGIC_SYSRQ */
8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8475
struct task_struct *curr_task(int cpu)
8476 8477 8478 8479 8480 8481 8482 8483 8484 8485
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8486 8487
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8488 8489 8490 8491 8492 8493 8494
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8495
void set_curr_task(int cpu, struct task_struct *p)
8496 8497 8498 8499 8500
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8501

8502 8503
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8518 8519
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8520 8521
{
	struct cfs_rq *cfs_rq;
8522
	struct sched_entity *se, *parent_se;
8523
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8524 8525
	int i;

8526
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8527 8528
	if (!tg->cfs_rq)
		goto err;
8529
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8530 8531
	if (!tg->se)
		goto err;
8532 8533

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8534 8535

	for_each_possible_cpu(i) {
8536
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8537

P
Peter Zijlstra 已提交
8538 8539
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8540 8541 8542
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8543 8544
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8545 8546 8547
		if (!se)
			goto err;

8548 8549
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8568
#else /* !CONFG_FAIR_GROUP_SCHED */
8569 8570 8571 8572
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8573 8574
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8586
#endif /* CONFIG_FAIR_GROUP_SCHED */
8587 8588

#ifdef CONFIG_RT_GROUP_SCHED
8589 8590 8591 8592
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8593 8594
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8606 8607
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8608 8609
{
	struct rt_rq *rt_rq;
8610
	struct sched_rt_entity *rt_se, *parent_se;
8611 8612 8613
	struct rq *rq;
	int i;

8614
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8615 8616
	if (!tg->rt_rq)
		goto err;
8617
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8618 8619 8620
	if (!tg->rt_se)
		goto err;

8621 8622
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8623 8624 8625 8626

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8627 8628 8629 8630
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8631

P
Peter Zijlstra 已提交
8632 8633 8634 8635
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8636

8637 8638
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8639 8640
	}

8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8657
#else /* !CONFIG_RT_GROUP_SCHED */
8658 8659 8660 8661
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8662 8663
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8675
#endif /* CONFIG_RT_GROUP_SCHED */
8676

8677
#ifdef CONFIG_GROUP_SCHED
8678 8679 8680 8681 8682 8683 8684 8685
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8686
struct task_group *sched_create_group(struct task_group *parent)
8687 8688 8689 8690 8691 8692 8693 8694 8695
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8696
	if (!alloc_fair_sched_group(tg, parent))
8697 8698
		goto err;

8699
	if (!alloc_rt_sched_group(tg, parent))
8700 8701
		goto err;

8702
	spin_lock_irqsave(&task_group_lock, flags);
8703
	for_each_possible_cpu(i) {
8704 8705
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8706
	}
P
Peter Zijlstra 已提交
8707
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8708 8709 8710 8711 8712

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8713
	list_add_rcu(&tg->siblings, &parent->children);
8714
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8715

8716
	return tg;
S
Srivatsa Vaddagiri 已提交
8717 8718

err:
P
Peter Zijlstra 已提交
8719
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8720 8721 8722
	return ERR_PTR(-ENOMEM);
}

8723
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8724
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8725 8726
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8727
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8728 8729
}

8730
/* Destroy runqueue etc associated with a task group */
8731
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8732
{
8733
	unsigned long flags;
8734
	int i;
S
Srivatsa Vaddagiri 已提交
8735

8736
	spin_lock_irqsave(&task_group_lock, flags);
8737
	for_each_possible_cpu(i) {
8738 8739
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8740
	}
P
Peter Zijlstra 已提交
8741
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8742
	list_del_rcu(&tg->siblings);
8743
	spin_unlock_irqrestore(&task_group_lock, flags);
8744 8745

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8746
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8747 8748
}

8749
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8750 8751 8752
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8753 8754
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8755 8756 8757 8758 8759 8760 8761 8762 8763
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8764
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8765 8766
	on_rq = tsk->se.on_rq;

8767
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8768
		dequeue_task(rq, tsk, 0);
8769 8770
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8771

P
Peter Zijlstra 已提交
8772
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8773

P
Peter Zijlstra 已提交
8774 8775 8776 8777 8778
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8779 8780 8781
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8782
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8783 8784 8785

	task_rq_unlock(rq, &flags);
}
8786
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8787

8788
#ifdef CONFIG_FAIR_GROUP_SCHED
8789
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8790 8791 8792 8793 8794
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8795
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8796 8797 8798
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8799
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8800

8801
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8802
		enqueue_entity(cfs_rq, se, 0);
8803
}
8804

8805 8806 8807 8808 8809 8810 8811 8812 8813
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8814 8815
}

8816 8817
static DEFINE_MUTEX(shares_mutex);

8818
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8819 8820
{
	int i;
8821
	unsigned long flags;
8822

8823 8824 8825 8826 8827 8828
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8829 8830
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8831 8832
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8833

8834
	mutex_lock(&shares_mutex);
8835
	if (tg->shares == shares)
8836
		goto done;
S
Srivatsa Vaddagiri 已提交
8837

8838
	spin_lock_irqsave(&task_group_lock, flags);
8839 8840
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8841
	list_del_rcu(&tg->siblings);
8842
	spin_unlock_irqrestore(&task_group_lock, flags);
8843 8844 8845 8846 8847 8848 8849 8850

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8851
	tg->shares = shares;
8852 8853 8854 8855 8856
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8857
		set_se_shares(tg->se[i], shares);
8858
	}
S
Srivatsa Vaddagiri 已提交
8859

8860 8861 8862 8863
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8864
	spin_lock_irqsave(&task_group_lock, flags);
8865 8866
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8867
	list_add_rcu(&tg->siblings, &tg->parent->children);
8868
	spin_unlock_irqrestore(&task_group_lock, flags);
8869
done:
8870
	mutex_unlock(&shares_mutex);
8871
	return 0;
S
Srivatsa Vaddagiri 已提交
8872 8873
}

8874 8875 8876 8877
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8878
#endif
8879

8880
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8881
/*
P
Peter Zijlstra 已提交
8882
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8883
 */
P
Peter Zijlstra 已提交
8884 8885 8886 8887 8888
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8889
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8890

P
Peter Zijlstra 已提交
8891
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8892 8893
}

P
Peter Zijlstra 已提交
8894 8895
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8896
{
P
Peter Zijlstra 已提交
8897
	struct task_struct *g, *p;
8898

P
Peter Zijlstra 已提交
8899 8900 8901 8902
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8903

P
Peter Zijlstra 已提交
8904 8905
	return 0;
}
8906

P
Peter Zijlstra 已提交
8907 8908 8909 8910 8911
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8912

P
Peter Zijlstra 已提交
8913 8914 8915 8916 8917 8918
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8919

P
Peter Zijlstra 已提交
8920 8921
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8922

P
Peter Zijlstra 已提交
8923 8924 8925
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8926 8927
	}

8928 8929 8930 8931 8932
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8933

8934 8935 8936
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8937 8938
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8939

P
Peter Zijlstra 已提交
8940
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8941

8942 8943 8944 8945 8946
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8947

8948 8949 8950
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8951 8952 8953
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8954

P
Peter Zijlstra 已提交
8955 8956 8957 8958
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8959

P
Peter Zijlstra 已提交
8960
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8961
	}
P
Peter Zijlstra 已提交
8962

P
Peter Zijlstra 已提交
8963 8964 8965 8966
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8967 8968
}

P
Peter Zijlstra 已提交
8969
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8970
{
P
Peter Zijlstra 已提交
8971 8972 8973 8974 8975 8976 8977
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8978 8979
}

8980 8981
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8982
{
P
Peter Zijlstra 已提交
8983
	int i, err = 0;
P
Peter Zijlstra 已提交
8984 8985

	mutex_lock(&rt_constraints_mutex);
8986
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8987 8988
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8989
		goto unlock;
P
Peter Zijlstra 已提交
8990 8991

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8992 8993
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8994 8995 8996 8997 8998 8999 9000 9001 9002

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
9003
 unlock:
9004
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
9005 9006 9007
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
9008 9009
}

9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9022 9023 9024 9025
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9026
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9027 9028
		return -1;

9029
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9030 9031 9032
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9033 9034 9035 9036 9037 9038 9039 9040

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9041 9042 9043
	if (rt_period == 0)
		return -EINVAL;

9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9058
	u64 runtime, period;
9059 9060
	int ret = 0;

9061 9062 9063
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9064 9065 9066 9067 9068 9069 9070 9071
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9072

9073
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9074
	read_lock(&tasklist_lock);
9075
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9076
	read_unlock(&tasklist_lock);
9077 9078 9079 9080
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9081
#else /* !CONFIG_RT_GROUP_SCHED */
9082 9083
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9084 9085 9086
	unsigned long flags;
	int i;

9087 9088 9089
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9090 9091 9092 9093 9094 9095 9096 9097 9098 9099
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9100 9101
	return 0;
}
9102
#endif /* CONFIG_RT_GROUP_SCHED */
9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9133

9134
#ifdef CONFIG_CGROUP_SCHED
9135 9136

/* return corresponding task_group object of a cgroup */
9137
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9138
{
9139 9140
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9141 9142 9143
}

static struct cgroup_subsys_state *
9144
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9145
{
9146
	struct task_group *tg, *parent;
9147

9148
	if (!cgrp->parent) {
9149 9150 9151 9152
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9153 9154
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9155 9156 9157 9158 9159 9160
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9161 9162
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9163
{
9164
	struct task_group *tg = cgroup_tg(cgrp);
9165 9166 9167 9168

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9169 9170 9171
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9172
{
9173 9174
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9175
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9176 9177
		return -EINVAL;
#else
9178 9179 9180
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9181
#endif
9182 9183 9184 9185 9186

	return 0;
}

static void
9187
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9188 9189 9190 9191 9192
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9193
#ifdef CONFIG_FAIR_GROUP_SCHED
9194
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9195
				u64 shareval)
9196
{
9197
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9198 9199
}

9200
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9201
{
9202
	struct task_group *tg = cgroup_tg(cgrp);
9203 9204 9205

	return (u64) tg->shares;
}
9206
#endif /* CONFIG_FAIR_GROUP_SCHED */
9207

9208
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9209
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9210
				s64 val)
P
Peter Zijlstra 已提交
9211
{
9212
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9213 9214
}

9215
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9216
{
9217
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9218
}
9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9230
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9231

9232
static struct cftype cpu_files[] = {
9233
#ifdef CONFIG_FAIR_GROUP_SCHED
9234 9235
	{
		.name = "shares",
9236 9237
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9238
	},
9239 9240
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9241
	{
P
Peter Zijlstra 已提交
9242
		.name = "rt_runtime_us",
9243 9244
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9245
	},
9246 9247
	{
		.name = "rt_period_us",
9248 9249
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9250
	},
9251
#endif
9252 9253 9254 9255
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9256
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9257 9258 9259
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9260 9261 9262 9263 9264 9265 9266
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9267 9268 9269
	.early_init	= 1,
};

9270
#endif	/* CONFIG_CGROUP_SCHED */
9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9291
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9292
{
9293
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9306
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9323
static void
9324
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9325
{
9326
	struct cpuacct *ca = cgroup_ca(cgrp);
9327 9328 9329 9330 9331 9332

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9333
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9334
{
9335
	struct cpuacct *ca = cgroup_ca(cgrp);
9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9377 9378 9379
static struct cftype files[] = {
	{
		.name = "usage",
9380 9381
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9382 9383 9384
	},
};

9385
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9386
{
9387
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */