sched.c 225.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

142 143
static inline int rt_policy(int policy)
{
144
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 146 147 148 149 150 151 152 153
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
154
/*
I
Ingo Molnar 已提交
155
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
156
 */
I
Ingo Molnar 已提交
157 158 159 160 161
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

162
struct rt_bandwidth {
I
Ingo Molnar 已提交
163 164 165 166 167
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
201 202
	spin_lock_init(&rt_b->rt_runtime_lock);

203 204 205
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
206
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
207 208
}

209 210 211
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
212 213 214 215 216 217
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

218
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 220 221 222 223 224 225 226 227 228 229 230
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 232
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
233 234 235 236 237 238 239 240 241 242 243
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

244 245 246 247 248 249
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

250
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
251

252 253
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
254 255
struct cfs_rq;

P
Peter Zijlstra 已提交
256 257
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
258
/* task group related information */
259
struct task_group {
260
#ifdef CONFIG_CGROUP_SCHED
261 262
	struct cgroup_subsys_state css;
#endif
263 264

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
265 266 267 268 269
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
270 271 272 273 274 275
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

276
	struct rt_bandwidth rt_bandwidth;
277
#endif
278

279
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
280
	struct list_head list;
P
Peter Zijlstra 已提交
281 282 283 284

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
285 286
};

D
Dhaval Giani 已提交
287
#ifdef CONFIG_USER_SCHED
288 289 290 291 292 293 294 295

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

296
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
297 298 299 300
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301
#endif /* CONFIG_FAIR_GROUP_SCHED */
302 303 304 305

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
307
#else /* !CONFIG_USER_SCHED */
308
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
309
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
310

311
/* task_group_lock serializes add/remove of task groups and also changes to
312 313
 * a task group's cpu shares.
 */
314
static DEFINE_SPINLOCK(task_group_lock);
315

316 317 318
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
319
#else /* !CONFIG_USER_SCHED */
320
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
321
#endif /* CONFIG_USER_SCHED */
322

323
/*
324 325 326 327
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
328 329 330
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
331
#define MIN_SHARES	2
332
#define MAX_SHARES	(1UL << 18)
333

334 335 336
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
337
/* Default task group.
I
Ingo Molnar 已提交
338
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
339
 */
340
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
341 342

/* return group to which a task belongs */
343
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
344
{
345
	struct task_group *tg;
346

347
#ifdef CONFIG_USER_SCHED
348
	tg = p->cred->user->tg;
349
#elif defined(CONFIG_CGROUP_SCHED)
350 351
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
352
#else
I
Ingo Molnar 已提交
353
	tg = &init_task_group;
354
#endif
355
	return tg;
S
Srivatsa Vaddagiri 已提交
356 357 358
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
359
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
360
{
361
#ifdef CONFIG_FAIR_GROUP_SCHED
362 363
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
364
#endif
P
Peter Zijlstra 已提交
365

366
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
367 368
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
369
#endif
S
Srivatsa Vaddagiri 已提交
370 371 372 373
}

#else

P
Peter Zijlstra 已提交
374
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 376 377 378
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
379

380
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
381

I
Ingo Molnar 已提交
382 383 384 385 386 387
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
388
	u64 min_vruntime;
I
Ingo Molnar 已提交
389 390 391

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
392 393 394 395 396 397

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
398 399
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
400
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
401 402 403

	unsigned long nr_spread_over;

404
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
405 406
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
407 408
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
409 410 411 412 413 414
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
415 416
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
417 418 419

#ifdef CONFIG_SMP
	/*
420
	 * the part of load.weight contributed by tasks
421
	 */
422
	unsigned long task_weight;
423

424 425 426 427 428 429 430
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
431

432 433 434 435
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
436 437 438 439 440

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
441
#endif
I
Ingo Molnar 已提交
442 443
#endif
};
L
Linus Torvalds 已提交
444

I
Ingo Molnar 已提交
445 446 447
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
448
	unsigned long rt_nr_running;
449
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
450 451
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
452
#ifdef CONFIG_SMP
453
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
454
	int overloaded;
P
Peter Zijlstra 已提交
455
#endif
P
Peter Zijlstra 已提交
456
	int rt_throttled;
P
Peter Zijlstra 已提交
457
	u64 rt_time;
P
Peter Zijlstra 已提交
458
	u64 rt_runtime;
I
Ingo Molnar 已提交
459
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
460
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
461

462
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
463 464
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
465 466 467 468 469
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
470 471
};

G
Gregory Haskins 已提交
472 473 474 475
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
476 477
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
478 479 480 481 482 483 484 485
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
486

I
Ingo Molnar 已提交
487
	/*
488 489 490 491
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
492
	atomic_t rto_count;
493 494 495
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
496 497
};

498 499 500 501
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
502 503 504 505
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
506 507 508 509 510 511 512
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
513
struct rq {
514 515
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
516 517 518 519 520 521

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
522 523
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
524
	unsigned char idle_at_tick;
525
#ifdef CONFIG_NO_HZ
526
	unsigned long last_tick_seen;
527 528
	unsigned char in_nohz_recently;
#endif
529 530
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
531 532 533 534
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
535 536
	struct rt_rq rt;

I
Ingo Molnar 已提交
537
#ifdef CONFIG_FAIR_GROUP_SCHED
538 539
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
540 541
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
542
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
543 544 545 546 547 548 549 550 551 552
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

553
	struct task_struct *curr, *idle;
554
	unsigned long next_balance;
L
Linus Torvalds 已提交
555
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
556

557
	u64 clock;
I
Ingo Molnar 已提交
558

L
Linus Torvalds 已提交
559 560 561
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
562
	struct root_domain *rd;
L
Linus Torvalds 已提交
563 564 565 566 567
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
568 569
	/* cpu of this runqueue: */
	int cpu;
570
	int online;
L
Linus Torvalds 已提交
571

572
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
573

574
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
575 576 577
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
578
#ifdef CONFIG_SCHED_HRTICK
579 580 581 582
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
583 584 585
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
586 587 588 589 590
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
591 592 593 594
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
595 596

	/* schedule() stats */
597 598 599
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
600 601

	/* try_to_wake_up() stats */
602 603
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
604 605

	/* BKL stats */
606
	unsigned int bkl_count;
L
Linus Torvalds 已提交
607 608 609
#endif
};

610
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
611

612
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
613
{
614
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
615 616
}

617 618 619 620 621 622 623 624 625
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
626 627
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
628
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
629 630 631 632
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
633 634
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
635 636 637 638 639 640

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

641 642 643 644 645
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
646 647 648 649 650 651 652 653 654
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
673 674 675
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
676 677 678 679

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
680
enum {
P
Peter Zijlstra 已提交
681
#include "sched_features.h"
I
Ingo Molnar 已提交
682 683
};

P
Peter Zijlstra 已提交
684 685 686 687 688
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
689
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
690 691 692 693 694 695 696 697 698
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

699
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
700 701 702 703 704 705
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

706
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
734
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
764
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
807

808 809 810 811 812 813
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
814 815
/*
 * ratelimit for updating the group shares.
816
 * default: 0.25ms
P
Peter Zijlstra 已提交
817
 */
818
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
819

820 821 822 823 824 825 826
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
827
/*
P
Peter Zijlstra 已提交
828
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
829 830
 * default: 1s
 */
P
Peter Zijlstra 已提交
831
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
832

833 834
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
835 836 837 838 839
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
840

841 842 843 844 845 846 847
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
848
	if (sysctl_sched_rt_runtime < 0)
849 850 851 852
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
853

L
Linus Torvalds 已提交
854
#ifndef prepare_arch_switch
855 856 857 858 859 860
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

861 862 863 864 865
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

866
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
867
static inline int task_running(struct rq *rq, struct task_struct *p)
868
{
869
	return task_current(rq, p);
870 871
}

872
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
873 874 875
{
}

876
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
877
{
878 879 880 881
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
882 883 884 885 886 887 888
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

889 890 891 892
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
893
static inline int task_running(struct rq *rq, struct task_struct *p)
894 895 896 897
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
898
	return task_current(rq, p);
899 900 901
#endif
}

902
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

919
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
920 921 922 923 924 925 926 927 928 929 930 931
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
932
#endif
933 934
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
935

936 937 938 939
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
940
static inline struct rq *__task_rq_lock(struct task_struct *p)
941 942
	__acquires(rq->lock)
{
943 944 945 946 947
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
948 949 950 951
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
952 953
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
954
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
955 956
 * explicitly disabling preemption.
 */
957
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
958 959
	__acquires(rq->lock)
{
960
	struct rq *rq;
L
Linus Torvalds 已提交
961

962 963 964 965 966 967
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
968 969 970 971
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
972
static void __task_rq_unlock(struct rq *rq)
973 974 975 976 977
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

978
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
979 980 981 982 983 984
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
985
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
986
 */
A
Alexey Dobriyan 已提交
987
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
988 989
	__acquires(rq->lock)
{
990
	struct rq *rq;
L
Linus Torvalds 已提交
991 992 993 994 995 996 997 998

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1020
	if (!cpu_active(cpu_of(rq)))
1021
		return 0;
P
Peter Zijlstra 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1042
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1043 1044 1045 1046 1047 1048
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1049
#ifdef CONFIG_SMP
1050 1051 1052 1053
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1054
{
1055
	struct rq *rq = arg;
1056

1057 1058 1059 1060
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1061 1062
}

1063 1064 1065 1066 1067 1068
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1069
{
1070 1071
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1072

1073
	hrtimer_set_expires(timer, time);
1074 1075 1076 1077 1078 1079 1080

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1095
		hrtick_clear(cpu_rq(cpu));
1096 1097 1098 1099 1100 1101
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1102
static __init void init_hrtick(void)
1103 1104 1105
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1116

A
Andrew Morton 已提交
1117
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1118 1119
{
}
1120
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1121

1122
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1123
{
1124 1125
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1126

1127 1128 1129 1130
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1131

1132 1133
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
1134
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
P
Peter Zijlstra 已提交
1135
}
A
Andrew Morton 已提交
1136
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1137 1138 1139 1140 1141 1142 1143 1144
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1145 1146 1147
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1148
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1149

I
Ingo Molnar 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1163
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1164 1165 1166 1167 1168
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1169
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1170 1171
		return;

1172
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1235
#endif /* CONFIG_NO_HZ */
1236

1237
#else /* !CONFIG_SMP */
1238
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1239 1240
{
	assert_spin_locked(&task_rq(p)->lock);
1241
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1242
}
1243
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1244

1245 1246 1247 1248 1249 1250 1251 1252
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1253 1254 1255
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1256
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1257

1258 1259 1260
/*
 * delta *= weight / lw
 */
1261
static unsigned long
1262 1263 1264 1265 1266
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1267 1268 1269 1270 1271 1272 1273
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1274 1275 1276 1277 1278

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1279
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1280
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1281 1282
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1283
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1284

1285
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1286 1287
}

1288
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1289 1290
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1291
	lw->inv_weight = 0;
1292 1293
}

1294
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1295 1296
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1297
	lw->inv_weight = 0;
1298 1299
}

1300 1301 1302 1303
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1304
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1305 1306 1307 1308
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1320 1321 1322
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1323 1324
 */
static const int prio_to_weight[40] = {
1325 1326 1327 1328 1329 1330 1331 1332
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1333 1334
};

1335 1336 1337 1338 1339 1340 1341
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1342
static const u32 prio_to_wmult[40] = {
1343 1344 1345 1346 1347 1348 1349 1350
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1351
};
1352

I
Ingo Molnar 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1378

1379 1380 1381 1382 1383 1384
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1395
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1396
typedef int (*tg_visitor)(struct task_group *, void *);
1397 1398 1399 1400 1401

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1402
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1403 1404
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1405
	int ret;
1406 1407 1408 1409

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1410 1411 1412
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1413 1414 1415 1416 1417 1418 1419
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1420 1421 1422
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1423 1424 1425 1426 1427

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1428
out_unlock:
1429
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1430 1431

	return ret;
1432 1433
}

P
Peter Zijlstra 已提交
1434 1435 1436
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1437
}
P
Peter Zijlstra 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1456 1457 1458 1459 1460 1461 1462

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1463 1464
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1465
{
1466 1467 1468 1469
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1470
	if (!tg->se[cpu])
1471 1472
		return;

1473
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1485 1486 1487
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1488 1489 1490 1491 1492 1493
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1494
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1495
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1496

1497 1498 1499 1500
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1501

1502 1503 1504 1505 1506 1507
		spin_lock_irqsave(&rq->lock, flags);
		/*
		 * record the actual number of shares, not the boosted amount.
		 */
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
		tg->cfs_rq[cpu]->rq_weight = rq_weight;
1508

1509 1510 1511
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1512
}
1513 1514

/*
1515 1516 1517
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1518
 */
P
Peter Zijlstra 已提交
1519
static int tg_shares_up(struct task_group *tg, void *data)
1520
{
1521 1522
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1523
	struct sched_domain *sd = data;
1524
	int i;
1525

1526 1527 1528
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1529 1530
	}

1531 1532 1533 1534 1535
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1536

P
Peter Zijlstra 已提交
1537 1538 1539
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1540 1541
	for_each_cpu_mask(i, sd->span)
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1542 1543

	return 0;
1544 1545 1546
}

/*
1547 1548 1549
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1550
 */
P
Peter Zijlstra 已提交
1551
static int tg_load_down(struct task_group *tg, void *data)
1552
{
1553
	unsigned long load;
P
Peter Zijlstra 已提交
1554
	long cpu = (long)data;
1555

1556 1557 1558 1559 1560 1561 1562
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1563

1564
	tg->cfs_rq[cpu]->h_load = load;
1565

P
Peter Zijlstra 已提交
1566
	return 0;
1567 1568
}

1569
static void update_shares(struct sched_domain *sd)
1570
{
P
Peter Zijlstra 已提交
1571 1572 1573 1574 1575
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1576
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1577
	}
1578 1579
}

1580 1581 1582 1583 1584 1585 1586
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1587
static void update_h_load(long cpu)
1588
{
P
Peter Zijlstra 已提交
1589
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1590 1591 1592 1593
}

#else

1594
static inline void update_shares(struct sched_domain *sd)
1595 1596 1597
{
}

1598 1599 1600 1601
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1602 1603 1604 1605
#endif

#endif

V
Vegard Nossum 已提交
1606
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1607 1608
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1609
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1610 1611 1612
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1613
#endif
1614

I
Ingo Molnar 已提交
1615 1616
#include "sched_stats.h"
#include "sched_idletask.c"
1617 1618
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1619 1620 1621 1622 1623
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1624 1625
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1626

1627
static void inc_nr_running(struct rq *rq)
1628 1629 1630 1631
{
	rq->nr_running++;
}

1632
static void dec_nr_running(struct rq *rq)
1633 1634 1635 1636
{
	rq->nr_running--;
}

1637 1638 1639
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1640 1641 1642 1643
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1644

I
Ingo Molnar 已提交
1645 1646 1647 1648 1649 1650 1651 1652
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1653

I
Ingo Molnar 已提交
1654 1655
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1656 1657
}

1658 1659 1660 1661 1662 1663
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1664
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1665
{
I
Ingo Molnar 已提交
1666
	sched_info_queued(p);
1667
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1668
	p->se.on_rq = 1;
1669 1670
}

1671
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1672
{
1673 1674 1675 1676 1677 1678
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1679
	sched_info_dequeued(p);
1680
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1681
	p->se.on_rq = 0;
1682 1683
}

1684
/*
I
Ingo Molnar 已提交
1685
 * __normal_prio - return the priority that is based on the static prio
1686 1687 1688
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1689
	return p->static_prio;
1690 1691
}

1692 1693 1694 1695 1696 1697 1698
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1699
static inline int normal_prio(struct task_struct *p)
1700 1701 1702
{
	int prio;

1703
	if (task_has_rt_policy(p))
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1717
static int effective_prio(struct task_struct *p)
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1730
/*
I
Ingo Molnar 已提交
1731
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1732
 */
I
Ingo Molnar 已提交
1733
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1734
{
1735
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1736
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1737

1738
	enqueue_task(rq, p, wakeup);
1739
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1740 1741 1742 1743 1744
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1745
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1746
{
1747
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1748 1749
		rq->nr_uninterruptible++;

1750
	dequeue_task(rq, p, sleep);
1751
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1752 1753 1754 1755 1756 1757
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1758
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1759 1760 1761 1762
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1763 1764
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1765
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1766
#ifdef CONFIG_SMP
1767 1768 1769 1770 1771 1772
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1773 1774
	task_thread_info(p)->cpu = cpu;
#endif
1775 1776
}

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1789
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1790

1791 1792 1793 1794 1795 1796
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1797 1798 1799
/*
 * Is this task likely cache-hot:
 */
1800
static int
1801 1802 1803 1804
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1805 1806 1807
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1808
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1809 1810
		return 1;

1811 1812 1813
	if (p->sched_class != &fair_sched_class)
		return 0;

1814 1815 1816 1817 1818
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1819 1820 1821 1822 1823 1824
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1825
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1826
{
I
Ingo Molnar 已提交
1827 1828
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1829 1830
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1831
	u64 clock_offset;
I
Ingo Molnar 已提交
1832 1833

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1834 1835 1836 1837

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1838 1839 1840 1841
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1842 1843 1844 1845 1846
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1847
#endif
1848 1849
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1850 1851

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1852 1853
}

1854
struct migration_req {
L
Linus Torvalds 已提交
1855 1856
	struct list_head list;

1857
	struct task_struct *task;
L
Linus Torvalds 已提交
1858 1859 1860
	int dest_cpu;

	struct completion done;
1861
};
L
Linus Torvalds 已提交
1862 1863 1864 1865 1866

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1867
static int
1868
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1869
{
1870
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1871 1872 1873 1874 1875

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1876
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1877 1878 1879 1880 1881 1882 1883 1884
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1885

L
Linus Torvalds 已提交
1886 1887 1888 1889 1890 1891
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1892 1893 1894 1895 1896 1897 1898
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1899 1900 1901 1902 1903 1904
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1905
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1906 1907
{
	unsigned long flags;
I
Ingo Molnar 已提交
1908
	int running, on_rq;
R
Roland McGrath 已提交
1909
	unsigned long ncsw;
1910
	struct rq *rq;
L
Linus Torvalds 已提交
1911

1912 1913 1914 1915 1916 1917 1918 1919
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1920

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1932 1933 1934
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1935
			cpu_relax();
R
Roland McGrath 已提交
1936
		}
1937

1938 1939 1940 1941 1942 1943
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1944
		trace_sched_wait_task(rq, p);
1945 1946
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1947
		ncsw = 0;
1948
		if (!match_state || p->state == match_state)
1949
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1950
		task_rq_unlock(rq, &flags);
1951

R
Roland McGrath 已提交
1952 1953 1954 1955 1956 1957
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1968

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1982

1983 1984 1985 1986 1987 1988 1989
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1990 1991

	return ncsw;
L
Linus Torvalds 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2007
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2019 2020
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2021 2022 2023 2024
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2025
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2026
{
2027
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2028
	unsigned long total = weighted_cpuload(cpu);
2029

2030
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2031
		return total;
2032

I
Ingo Molnar 已提交
2033
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2034 2035 2036
}

/*
2037 2038
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2039
 */
A
Alexey Dobriyan 已提交
2040
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2041
{
2042
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2043
	unsigned long total = weighted_cpuload(cpu);
2044

2045
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2046
		return total;
2047

I
Ingo Molnar 已提交
2048
	return max(rq->cpu_load[type-1], total);
2049 2050
}

N
Nick Piggin 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2068 2069
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2070
			continue;
2071

N
Nick Piggin 已提交
2072 2073 2074 2075 2076
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2077
		for_each_cpu_mask_nr(i, group->cpumask) {
N
Nick Piggin 已提交
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2088 2089
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2090 2091 2092 2093 2094 2095 2096 2097

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2098
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2099 2100 2101 2102 2103 2104 2105

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2106
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2107
 */
I
Ingo Molnar 已提交
2108
static int
2109 2110
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2111 2112 2113 2114 2115
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2116
	/* Traverse only the allowed CPUs */
2117
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2118

2119
	for_each_cpu_mask_nr(i, *tmp) {
2120
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2146

2147
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2148 2149 2150
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2151 2152
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2153 2154
		if (tmp->flags & flag)
			sd = tmp;
2155
	}
N
Nick Piggin 已提交
2156

2157 2158 2159
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2160
	while (sd) {
2161
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2162
		struct sched_group *group;
2163 2164 2165 2166 2167 2168
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2169 2170 2171

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2172 2173 2174 2175
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2176

2177
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2178 2179 2180 2181 2182
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2183

2184
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2216
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2217
{
2218
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2219 2220
	unsigned long flags;
	long old_state;
2221
	struct rq *rq;
L
Linus Torvalds 已提交
2222

2223 2224 2225
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2242
	smp_wmb();
L
Linus Torvalds 已提交
2243 2244 2245 2246 2247
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2248
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2249 2250 2251
		goto out_running;

	cpu = task_cpu(p);
2252
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2253 2254 2255 2256 2257 2258
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2259 2260 2261
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2262 2263 2264 2265 2266 2267
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2268
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2269 2270 2271 2272 2273 2274
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2288
#endif /* CONFIG_SCHEDSTATS */
2289

L
Linus Torvalds 已提交
2290 2291
out_activate:
#endif /* CONFIG_SMP */
2292 2293 2294 2295 2296 2297 2298 2299 2300
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2301
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2302
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2303 2304 2305
	success = 1;

out_running:
2306
	trace_sched_wakeup(rq, p);
2307
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2308

L
Linus Torvalds 已提交
2309
	p->state = TASK_RUNNING;
2310 2311 2312 2313
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2314
out:
2315 2316
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2317 2318 2319 2320 2321
	task_rq_unlock(rq, &flags);

	return success;
}

2322
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2323
{
2324
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2325 2326 2327
}
EXPORT_SYMBOL(wake_up_process);

2328
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2329 2330 2331 2332 2333 2334 2335
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2336 2337 2338 2339 2340 2341 2342
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2343
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2344 2345
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2346 2347 2348

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2349 2350 2351 2352 2353 2354
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2355
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2356
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2357
#endif
N
Nick Piggin 已提交
2358

P
Peter Zijlstra 已提交
2359
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2360
	p->se.on_rq = 0;
2361
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2362

2363 2364 2365 2366
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2367 2368 2369 2370 2371 2372 2373
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2388
	set_task_cpu(p, cpu);
2389 2390 2391 2392 2393

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2394 2395
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2396

2397
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2398
	if (likely(sched_info_on()))
2399
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2400
#endif
2401
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2402 2403
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2404
#ifdef CONFIG_PREEMPT
2405
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2406
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2407
#endif
N
Nick Piggin 已提交
2408
	put_cpu();
L
Linus Torvalds 已提交
2409 2410 2411 2412 2413 2414 2415 2416 2417
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2418
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2419 2420
{
	unsigned long flags;
I
Ingo Molnar 已提交
2421
	struct rq *rq;
L
Linus Torvalds 已提交
2422 2423

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2424
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2425
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2426 2427 2428

	p->prio = effective_prio(p);

2429
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2430
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2431 2432
	} else {
		/*
I
Ingo Molnar 已提交
2433 2434
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2435
		 */
2436
		p->sched_class->task_new(rq, p);
2437
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2438
	}
2439
	trace_sched_wakeup_new(rq, p);
2440
	check_preempt_curr(rq, p, 0);
2441 2442 2443 2444
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2445
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2446 2447
}

2448 2449 2450
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2451 2452
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2453 2454 2455 2456 2457 2458 2459 2460 2461
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2462
 * @notifier: notifier struct to unregister
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2492
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2504
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2505

2506 2507 2508
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2509
 * @prev: the current task that is being switched out
2510 2511 2512 2513 2514 2515 2516 2517 2518
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2519 2520 2521
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2522
{
2523
	fire_sched_out_preempt_notifiers(prev, next);
2524 2525 2526 2527
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2528 2529
/**
 * finish_task_switch - clean up after a task-switch
2530
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2531 2532
 * @prev: the thread we just switched away from.
 *
2533 2534 2535 2536
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2537 2538
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2539
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2540 2541 2542
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2543
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2544 2545 2546
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2547
	long prev_state;
L
Linus Torvalds 已提交
2548 2549 2550 2551 2552

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2553
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2554 2555
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2556
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2557 2558 2559 2560 2561
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2562
	prev_state = prev->state;
2563 2564
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2565 2566 2567 2568
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2569

2570
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2571 2572
	if (mm)
		mmdrop(mm);
2573
	if (unlikely(prev_state == TASK_DEAD)) {
2574 2575 2576
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2577
		 */
2578
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2579
		put_task_struct(prev);
2580
	}
L
Linus Torvalds 已提交
2581 2582 2583 2584 2585 2586
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2587
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2588 2589
	__releases(rq->lock)
{
2590 2591
	struct rq *rq = this_rq();

2592 2593 2594 2595 2596
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2597
	if (current->set_child_tid)
2598
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2599 2600 2601 2602 2603 2604
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2605
static inline void
2606
context_switch(struct rq *rq, struct task_struct *prev,
2607
	       struct task_struct *next)
L
Linus Torvalds 已提交
2608
{
I
Ingo Molnar 已提交
2609
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2610

2611
	prepare_task_switch(rq, prev, next);
2612
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2613 2614
	mm = next->mm;
	oldmm = prev->active_mm;
2615 2616 2617 2618 2619 2620 2621
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2622
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2623 2624 2625 2626 2627 2628
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2629
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2630 2631 2632
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2633 2634 2635 2636 2637 2638 2639
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2640
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2641
#endif
L
Linus Torvalds 已提交
2642 2643 2644 2645

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2646 2647 2648 2649 2650 2651 2652
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2676
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2691 2692
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2693

2694
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2704
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2705 2706 2707 2708 2709
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2725
/*
I
Ingo Molnar 已提交
2726 2727
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2728
 */
I
Ingo Molnar 已提交
2729
static void update_cpu_load(struct rq *this_rq)
2730
{
2731
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2744 2745 2746 2747 2748 2749 2750
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2751 2752
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2753 2754
}

I
Ingo Molnar 已提交
2755 2756
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2757 2758 2759 2760 2761 2762
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2763
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2764 2765 2766
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2767
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2768 2769 2770 2771
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2772
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2773
			spin_lock(&rq1->lock);
2774
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2775 2776
		} else {
			spin_lock(&rq2->lock);
2777
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2778 2779
		}
	}
2780 2781
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2782 2783 2784 2785 2786 2787 2788 2789
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2790
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2804
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2805 2806 2807 2808
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2809 2810
	int ret = 0;

2811 2812 2813 2814 2815
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2816
	if (unlikely(!spin_trylock(&busiest->lock))) {
2817
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2818 2819
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
2820
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
S
Steven Rostedt 已提交
2821
			ret = 1;
L
Linus Torvalds 已提交
2822
		} else
2823
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2824
	}
S
Steven Rostedt 已提交
2825
	return ret;
L
Linus Torvalds 已提交
2826 2827
}

2828 2829 2830 2831 2832 2833 2834
static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

L
Linus Torvalds 已提交
2835 2836 2837
/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2838
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2839 2840
 * the cpu_allowed mask is restored.
 */
2841
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2842
{
2843
	struct migration_req req;
L
Linus Torvalds 已提交
2844
	unsigned long flags;
2845
	struct rq *rq;
L
Linus Torvalds 已提交
2846 2847 2848

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2849
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2850 2851
		goto out;

2852
	trace_sched_migrate_task(rq, p, dest_cpu);
L
Linus Torvalds 已提交
2853 2854 2855 2856
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2857

L
Linus Torvalds 已提交
2858 2859 2860 2861 2862
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2863

L
Linus Torvalds 已提交
2864 2865 2866 2867 2868 2869 2870
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2871 2872
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2873 2874 2875 2876
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2877
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2878
	put_cpu();
N
Nick Piggin 已提交
2879 2880
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2881 2882 2883 2884 2885 2886
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2887 2888
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2889
{
2890
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2891
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2892
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2893 2894 2895 2896
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2897
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2898 2899 2900 2901 2902
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2903
static
2904
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2905
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2906
		     int *all_pinned)
L
Linus Torvalds 已提交
2907 2908 2909 2910 2911 2912 2913
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2914 2915
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2916
		return 0;
2917
	}
2918 2919
	*all_pinned = 0;

2920 2921
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2922
		return 0;
2923
	}
L
Linus Torvalds 已提交
2924

2925 2926 2927 2928 2929 2930
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2931 2932
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2933
#ifdef CONFIG_SCHEDSTATS
2934
		if (task_hot(p, rq->clock, sd)) {
2935
			schedstat_inc(sd, lb_hot_gained[idle]);
2936 2937
			schedstat_inc(p, se.nr_forced_migrations);
		}
2938 2939 2940 2941
#endif
		return 1;
	}

2942 2943
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2944
		return 0;
2945
	}
L
Linus Torvalds 已提交
2946 2947 2948
	return 1;
}

2949 2950 2951 2952 2953
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2954
{
2955
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2956 2957
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2958

2959
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2960 2961
		goto out;

2962 2963
	pinned = 1;

L
Linus Torvalds 已提交
2964
	/*
I
Ingo Molnar 已提交
2965
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2966
	 */
I
Ingo Molnar 已提交
2967 2968
	p = iterator->start(iterator->arg);
next:
2969
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2970
		goto out;
2971 2972

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2973 2974 2975
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2976 2977
	}

I
Ingo Molnar 已提交
2978
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2979
	pulled++;
I
Ingo Molnar 已提交
2980
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2981

2982
	/*
2983
	 * We only want to steal up to the prescribed amount of weighted load.
2984
	 */
2985
	if (rem_load_move > 0) {
2986 2987
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2988 2989
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2990 2991 2992
	}
out:
	/*
2993
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2994 2995 2996 2997
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2998 2999 3000

	if (all_pinned)
		*all_pinned = pinned;
3001 3002

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3003 3004
}

I
Ingo Molnar 已提交
3005
/*
P
Peter Williams 已提交
3006 3007 3008
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3009 3010 3011 3012
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3013
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3014 3015 3016
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3017
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3018
	unsigned long total_load_moved = 0;
3019
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3020 3021

	do {
P
Peter Williams 已提交
3022 3023
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3024
				max_load_move - total_load_moved,
3025
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3026
		class = class->next;
3027 3028 3029 3030

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3031
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3032

P
Peter Williams 已提交
3033 3034 3035
	return total_load_moved > 0;
}

3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3072
	const struct sched_class *class;
P
Peter Williams 已提交
3073 3074

	for (class = sched_class_highest; class; class = class->next)
3075
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3076 3077 3078
			return 1;

	return 0;
I
Ingo Molnar 已提交
3079 3080
}

L
Linus Torvalds 已提交
3081 3082
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3083 3084
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3085 3086 3087
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3088
		   unsigned long *imbalance, enum cpu_idle_type idle,
3089
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3090 3091 3092
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3093
	unsigned long max_pull;
3094 3095
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3096
	int load_idx, group_imb = 0;
3097 3098 3099 3100 3101 3102
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3103 3104

	max_load = this_load = total_load = total_pwr = 0;
3105 3106
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3107

I
Ingo Molnar 已提交
3108
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3109
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3110
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3111 3112 3113
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3114 3115

	do {
3116
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3117 3118
		int local_group;
		int i;
3119
		int __group_imb = 0;
3120
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3121
		unsigned long sum_nr_running, sum_weighted_load;
3122 3123
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3124 3125 3126

		local_group = cpu_isset(this_cpu, group->cpumask);

3127 3128 3129
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3130
		/* Tally up the load of all CPUs in the group */
3131
		sum_weighted_load = sum_nr_running = avg_load = 0;
3132 3133
		sum_avg_load_per_task = avg_load_per_task = 0;

3134 3135
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3136

3137
		for_each_cpu_mask_nr(i, group->cpumask) {
3138 3139 3140 3141 3142 3143
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3144

3145
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3146 3147
				*sd_idle = 0;

L
Linus Torvalds 已提交
3148
			/* Bias balancing toward cpus of our domain */
3149 3150 3151 3152 3153 3154
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3155
				load = target_load(i, load_idx);
3156
			} else {
N
Nick Piggin 已提交
3157
				load = source_load(i, load_idx);
3158 3159 3160 3161 3162
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3163 3164

			avg_load += load;
3165
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3166
			sum_weighted_load += weighted_cpuload(i);
3167 3168

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3169 3170
		}

3171 3172 3173
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3174 3175
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3176
		 */
3177 3178
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3179 3180 3181 3182
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3183
		total_load += avg_load;
3184
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3185 3186

		/* Adjust by relative CPU power of the group */
3187 3188
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3189

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3204 3205
			__group_imb = 1;

3206
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3207

L
Linus Torvalds 已提交
3208 3209 3210
		if (local_group) {
			this_load = avg_load;
			this = group;
3211 3212 3213
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3214
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3215 3216
			max_load = avg_load;
			busiest = group;
3217 3218
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3219
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3220
		}
3221 3222 3223 3224 3225 3226

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3227 3228 3229
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3230 3231 3232 3233 3234 3235 3236 3237 3238

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3239
		/*
3240 3241
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3242 3243
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3244
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3245
			goto group_next;
3246

I
Ingo Molnar 已提交
3247
		/*
3248
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3249 3250 3251 3252 3253
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3254 3255
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3256 3257
			group_min = group;
			min_nr_running = sum_nr_running;
3258 3259
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3260
		}
3261

I
Ingo Molnar 已提交
3262
		/*
3263
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3275
		}
3276 3277
group_next:
#endif
L
Linus Torvalds 已提交
3278 3279 3280
		group = group->next;
	} while (group != sd->groups);

3281
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3282 3283 3284 3285 3286 3287 3288 3289
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3290
	busiest_load_per_task /= busiest_nr_running;
3291 3292 3293
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3294 3295 3296 3297 3298 3299 3300 3301
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3302
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3303 3304
	 * appear as very large values with unsigned longs.
	 */
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3317 3318

	/* Don't want to pull so many tasks that a group would go idle */
3319
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3320

L
Linus Torvalds 已提交
3321
	/* How much load to actually move to equalise the imbalance */
3322 3323
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3324 3325
			/ SCHED_LOAD_SCALE;

3326 3327 3328 3329 3330 3331
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3332
	if (*imbalance < busiest_load_per_task) {
3333
		unsigned long tmp, pwr_now, pwr_move;
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3344
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3345

3346
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3347
					busiest_load_per_task * imbn) {
3348
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3349 3350 3351 3352 3353 3354 3355 3356 3357
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3358 3359 3360 3361
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3362 3363 3364
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3365 3366
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3367
		if (max_load > tmp)
3368
			pwr_move += busiest->__cpu_power *
3369
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3370 3371

		/* Amount of load we'd add */
3372
		if (max_load * busiest->__cpu_power <
3373
				busiest_load_per_task * SCHED_LOAD_SCALE)
3374 3375
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3376
		else
3377 3378 3379 3380
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3381 3382 3383
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3384 3385
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3386 3387 3388 3389 3390
	}

	return busiest;

out_balanced:
3391
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3392
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3393
		goto ret;
L
Linus Torvalds 已提交
3394

3395 3396 3397 3398 3399
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3400
ret:
L
Linus Torvalds 已提交
3401 3402 3403 3404 3405 3406 3407
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3408
static struct rq *
I
Ingo Molnar 已提交
3409
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3410
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3411
{
3412
	struct rq *busiest = NULL, *rq;
3413
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3414 3415
	int i;

3416
	for_each_cpu_mask_nr(i, group->cpumask) {
I
Ingo Molnar 已提交
3417
		unsigned long wl;
3418 3419 3420 3421

		if (!cpu_isset(i, *cpus))
			continue;

3422
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3423
		wl = weighted_cpuload(i);
3424

I
Ingo Molnar 已提交
3425
		if (rq->nr_running == 1 && wl > imbalance)
3426
			continue;
L
Linus Torvalds 已提交
3427

I
Ingo Molnar 已提交
3428 3429
		if (wl > max_load) {
			max_load = wl;
3430
			busiest = rq;
L
Linus Torvalds 已提交
3431 3432 3433 3434 3435 3436
		}
	}

	return busiest;
}

3437 3438 3439 3440 3441 3442
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3443 3444 3445 3446
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3447
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3448
			struct sched_domain *sd, enum cpu_idle_type idle,
3449
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3450
{
P
Peter Williams 已提交
3451
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3452 3453
	struct sched_group *group;
	unsigned long imbalance;
3454
	struct rq *busiest;
3455
	unsigned long flags;
N
Nick Piggin 已提交
3456

3457 3458
	cpus_setall(*cpus);

3459 3460 3461
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3462
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3463
	 * portraying it as CPU_NOT_IDLE.
3464
	 */
I
Ingo Molnar 已提交
3465
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3466
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3467
		sd_idle = 1;
L
Linus Torvalds 已提交
3468

3469
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3470

3471
redo:
3472
	update_shares(sd);
3473
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3474
				   cpus, balance);
3475

3476
	if (*balance == 0)
3477 3478
		goto out_balanced;

L
Linus Torvalds 已提交
3479 3480 3481 3482 3483
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3484
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3485 3486 3487 3488 3489
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3490
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3491 3492 3493

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3494
	ld_moved = 0;
L
Linus Torvalds 已提交
3495 3496 3497 3498
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3499
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3500 3501
		 * correctly treated as an imbalance.
		 */
3502
		local_irq_save(flags);
N
Nick Piggin 已提交
3503
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3504
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3505
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3506
		double_rq_unlock(this_rq, busiest);
3507
		local_irq_restore(flags);
3508

3509 3510 3511
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3512
		if (ld_moved && this_cpu != smp_processor_id())
3513 3514
			resched_cpu(this_cpu);

3515
		/* All tasks on this runqueue were pinned by CPU affinity */
3516
		if (unlikely(all_pinned)) {
3517 3518
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3519
				goto redo;
3520
			goto out_balanced;
3521
		}
L
Linus Torvalds 已提交
3522
	}
3523

P
Peter Williams 已提交
3524
	if (!ld_moved) {
L
Linus Torvalds 已提交
3525 3526 3527 3528 3529
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3530
			spin_lock_irqsave(&busiest->lock, flags);
3531 3532 3533 3534 3535

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3536
				spin_unlock_irqrestore(&busiest->lock, flags);
3537 3538 3539 3540
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3541 3542 3543
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3544
				active_balance = 1;
L
Linus Torvalds 已提交
3545
			}
3546
			spin_unlock_irqrestore(&busiest->lock, flags);
3547
			if (active_balance)
L
Linus Torvalds 已提交
3548 3549 3550 3551 3552 3553
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3554
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3555
		}
3556
	} else
L
Linus Torvalds 已提交
3557 3558
		sd->nr_balance_failed = 0;

3559
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3560 3561
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3562 3563 3564 3565 3566 3567 3568 3569 3570
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3571 3572
	}

P
Peter Williams 已提交
3573
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3574
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3575 3576 3577
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3578 3579 3580 3581

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3582
	sd->nr_balance_failed = 0;
3583 3584

out_one_pinned:
L
Linus Torvalds 已提交
3585
	/* tune up the balancing interval */
3586 3587
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3588 3589
		sd->balance_interval *= 2;

3590
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3591
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3592 3593 3594 3595
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3596 3597
	if (ld_moved)
		update_shares(sd);
3598
	return ld_moved;
L
Linus Torvalds 已提交
3599 3600 3601 3602 3603 3604
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3605
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3606 3607
 * this_rq is locked.
 */
3608
static int
3609 3610
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3611 3612
{
	struct sched_group *group;
3613
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3614
	unsigned long imbalance;
P
Peter Williams 已提交
3615
	int ld_moved = 0;
N
Nick Piggin 已提交
3616
	int sd_idle = 0;
3617
	int all_pinned = 0;
3618 3619

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3620

3621 3622 3623 3624
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3625
	 * portraying it as CPU_NOT_IDLE.
3626 3627 3628
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3629
		sd_idle = 1;
L
Linus Torvalds 已提交
3630

3631
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3632
redo:
3633
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3634
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3635
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3636
	if (!group) {
I
Ingo Molnar 已提交
3637
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3638
		goto out_balanced;
L
Linus Torvalds 已提交
3639 3640
	}

3641
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3642
	if (!busiest) {
I
Ingo Molnar 已提交
3643
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3644
		goto out_balanced;
L
Linus Torvalds 已提交
3645 3646
	}

N
Nick Piggin 已提交
3647 3648
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3649
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3650

P
Peter Williams 已提交
3651
	ld_moved = 0;
3652 3653 3654
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3655 3656
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3657
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3658 3659
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3660
		double_unlock_balance(this_rq, busiest);
3661

3662
		if (unlikely(all_pinned)) {
3663 3664
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3665 3666
				goto redo;
		}
3667 3668
	}

P
Peter Williams 已提交
3669
	if (!ld_moved) {
I
Ingo Molnar 已提交
3670
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3671 3672
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3673 3674
			return -1;
	} else
3675
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3676

3677
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3678
	return ld_moved;
3679 3680

out_balanced:
I
Ingo Molnar 已提交
3681
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3682
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3683
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3684
		return -1;
3685
	sd->nr_balance_failed = 0;
3686

3687
	return 0;
L
Linus Torvalds 已提交
3688 3689 3690 3691 3692 3693
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3694
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3695 3696
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3697 3698
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3699
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3700 3701

	for_each_domain(this_cpu, sd) {
3702 3703 3704 3705 3706 3707
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3708
			/* If we've pulled tasks over stop searching: */
3709 3710
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3711 3712 3713 3714 3715 3716

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3717
	}
I
Ingo Molnar 已提交
3718
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3719 3720 3721 3722 3723
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3724
	}
L
Linus Torvalds 已提交
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3735
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3736
{
3737
	int target_cpu = busiest_rq->push_cpu;
3738 3739
	struct sched_domain *sd;
	struct rq *target_rq;
3740

3741
	/* Is there any task to move? */
3742 3743 3744 3745
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3746 3747

	/*
3748
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3749
	 * we need to fix it. Originally reported by
3750
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3751
	 */
3752
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3753

3754 3755
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3756 3757
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3758 3759

	/* Search for an sd spanning us and the target CPU. */
3760
	for_each_domain(target_cpu, sd) {
3761
		if ((sd->flags & SD_LOAD_BALANCE) &&
3762
		    cpu_isset(busiest_cpu, sd->span))
3763
				break;
3764
	}
3765

3766
	if (likely(sd)) {
3767
		schedstat_inc(sd, alb_count);
3768

P
Peter Williams 已提交
3769 3770
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3771 3772 3773 3774
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3775
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3776 3777
}

3778 3779 3780
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3781
	cpumask_t cpu_mask;
3782 3783 3784 3785 3786
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3787
/*
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3798
 *
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3818
		if (!cpu_active(cpu) &&
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3855 3856 3857 3858 3859
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3860
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3861
{
3862 3863
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3864 3865
	unsigned long interval;
	struct sched_domain *sd;
3866
	/* Earliest time when we have to do rebalance again */
3867
	unsigned long next_balance = jiffies + 60*HZ;
3868
	int update_next_balance = 0;
3869
	int need_serialize;
3870
	cpumask_t tmp;
L
Linus Torvalds 已提交
3871

3872
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3873 3874 3875 3876
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3877
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3878 3879 3880 3881 3882 3883
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3884 3885 3886
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3887
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3888

3889
		if (need_serialize) {
3890 3891 3892 3893
			if (!spin_trylock(&balancing))
				goto out;
		}

3894
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3895
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3896 3897
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3898 3899 3900
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3901
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3902
			}
3903
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3904
		}
3905
		if (need_serialize)
3906 3907
			spin_unlock(&balancing);
out:
3908
		if (time_after(next_balance, sd->last_balance + interval)) {
3909
			next_balance = sd->last_balance + interval;
3910 3911
			update_next_balance = 1;
		}
3912 3913 3914 3915 3916 3917 3918 3919

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3920
	}
3921 3922 3923 3924 3925 3926 3927 3928

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3929 3930 3931 3932 3933 3934 3935 3936 3937
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3938 3939 3940 3941
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3942

I
Ingo Molnar 已提交
3943
	rebalance_domains(this_cpu, idle);
3944 3945 3946 3947 3948 3949 3950

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3951 3952
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3953 3954 3955 3956
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3957
		cpu_clear(this_cpu, cpus);
3958
		for_each_cpu_mask_nr(balance_cpu, cpus) {
3959 3960 3961 3962 3963 3964 3965 3966
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3967
			rebalance_domains(balance_cpu, CPU_IDLE);
3968 3969

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3970 3971
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3984
static inline void trigger_load_balance(struct rq *rq, int cpu)
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4011
			if (ilb < nr_cpu_ids)
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4036
}
I
Ingo Molnar 已提交
4037 4038 4039

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4040 4041 4042
/*
 * on UP we do not need to balance between CPUs:
 */
4043
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4044 4045
{
}
I
Ingo Molnar 已提交
4046

L
Linus Torvalds 已提交
4047 4048 4049 4050 4051 4052 4053
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4054 4055
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4056
 */
4057
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4058 4059
{
	unsigned long flags;
4060
	struct rq *rq;
4061
	u64 ns = 0;
4062

4063
	rq = task_rq_lock(p, &flags);
4064

4065
	if (task_current(rq, p)) {
4066 4067
		u64 delta_exec;

I
Ingo Molnar 已提交
4068 4069
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4070
		if ((s64)delta_exec > 0)
4071
			ns = delta_exec;
4072
	}
4073

4074
	task_rq_unlock(rq, &flags);
4075

L
Linus Torvalds 已提交
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);
4090
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4091 4092 4093 4094 4095 4096 4097

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4098 4099
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4100 4101
}

4102 4103 4104 4105 4106
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4107
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4108 4109 4110 4111 4112 4113 4114
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
4115
	account_group_user_time(p, cputime);
4116 4117 4118 4119 4120 4121
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4142
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4143 4144
	cputime64_t tmp;

4145 4146 4147 4148
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4149

L
Linus Torvalds 已提交
4150
	p->stime = cputime_add(p->stime, cputime);
4151
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4152 4153 4154 4155 4156 4157 4158

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4159
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4160
		cpustat->system = cputime64_add(cpustat->system, tmp);
4161
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4162 4163 4164 4165 4166 4167 4168
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4180 4181 4182 4183 4184 4185 4186 4187 4188
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4189
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4190 4191 4192

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
4193
		account_group_system_time(p, steal);
L
Linus Torvalds 已提交
4194 4195 4196 4197
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4198
	} else
L
Linus Torvalds 已提交
4199 4200 4201
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4272
	struct task_struct *curr = rq->curr;
4273 4274

	sched_clock_tick();
I
Ingo Molnar 已提交
4275 4276

	spin_lock(&rq->lock);
4277
	update_rq_clock(rq);
4278
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4279
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4280
	spin_unlock(&rq->lock);
4281

4282
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4283 4284
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4285
#endif
L
Linus Torvalds 已提交
4286 4287
}

4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4300

4301
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4302
{
4303
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4304 4305 4306
	/*
	 * Underflow?
	 */
4307 4308
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4309
#endif
L
Linus Torvalds 已提交
4310
	preempt_count() += val;
4311
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4312 4313 4314
	/*
	 * Spinlock count overflowing soon?
	 */
4315 4316
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4317 4318 4319
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4320 4321 4322
}
EXPORT_SYMBOL(add_preempt_count);

4323
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4324
{
4325
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4326 4327 4328
	/*
	 * Underflow?
	 */
4329 4330
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4331 4332 4333
	/*
	 * Is the spinlock portion underflowing?
	 */
4334 4335 4336
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4337
#endif
4338

4339 4340
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4341 4342 4343 4344 4345 4346 4347
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4348
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4349
 */
I
Ingo Molnar 已提交
4350
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4351
{
4352 4353 4354 4355 4356
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4357
	debug_show_held_locks(prev);
4358
	print_modules();
I
Ingo Molnar 已提交
4359 4360
	if (irqs_disabled())
		print_irqtrace_events(prev);
4361 4362 4363 4364 4365

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4366
}
L
Linus Torvalds 已提交
4367

I
Ingo Molnar 已提交
4368 4369 4370 4371 4372
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4373
	/*
I
Ingo Molnar 已提交
4374
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4375 4376 4377
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4378
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4379 4380
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4381 4382
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4383
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4384 4385
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4386 4387
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4388 4389
	}
#endif
I
Ingo Molnar 已提交
4390 4391 4392 4393 4394 4395
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4396
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4397
{
4398
	const struct sched_class *class;
I
Ingo Molnar 已提交
4399
	struct task_struct *p;
L
Linus Torvalds 已提交
4400 4401

	/*
I
Ingo Molnar 已提交
4402 4403
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4404
	 */
I
Ingo Molnar 已提交
4405
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4406
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4407 4408
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4409 4410
	}

I
Ingo Molnar 已提交
4411 4412
	class = sched_class_highest;
	for ( ; ; ) {
4413
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4414 4415 4416 4417 4418 4419 4420 4421 4422
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4423

I
Ingo Molnar 已提交
4424 4425 4426 4427 4428 4429
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4430
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4431
	struct rq *rq;
4432
	int cpu;
I
Ingo Molnar 已提交
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4446

4447
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4448
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4449

4450
	spin_lock_irq(&rq->lock);
4451
	update_rq_clock(rq);
4452
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4453 4454

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4455
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4456
			prev->state = TASK_RUNNING;
4457
		else
4458
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4459
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4460 4461
	}

4462 4463 4464 4465
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4466

I
Ingo Molnar 已提交
4467
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4468 4469
		idle_balance(cpu, rq);

4470
	prev->sched_class->put_prev_task(rq, prev);
4471
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4472 4473

	if (likely(prev != next)) {
4474 4475
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4476 4477 4478 4479
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4480
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4481 4482 4483 4484 4485 4486
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4487 4488 4489
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4490
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4491
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4492

L
Linus Torvalds 已提交
4493 4494 4495 4496 4497 4498 4499 4500
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4501
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4502
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4503 4504 4505 4506 4507
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4508

L
Linus Torvalds 已提交
4509 4510
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4511
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4512
	 */
N
Nick Piggin 已提交
4513
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4514 4515
		return;

4516 4517 4518 4519
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4520

4521 4522 4523 4524 4525 4526
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4527 4528 4529 4530
}
EXPORT_SYMBOL(preempt_schedule);

/*
4531
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4532 4533 4534 4535 4536 4537 4538
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4539

4540
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4541 4542
	BUG_ON(ti->preempt_count || !irqs_disabled());

4543 4544 4545 4546 4547 4548
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4549

4550 4551 4552 4553 4554 4555
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4556 4557 4558 4559
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4560 4561
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4562
{
4563
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4564 4565 4566 4567
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4568 4569
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4570 4571 4572
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4573
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4574 4575 4576 4577 4578
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4579
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4580

4581
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4582 4583
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4584
		if (curr->func(curr, mode, sync, key) &&
4585
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4586 4587 4588 4589 4590 4591 4592 4593 4594
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4595
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4596
 */
4597
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4598
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4611
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4612 4613 4614 4615 4616
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4617
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4629
void
I
Ingo Molnar 已提交
4630
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4647 4648 4649 4650 4651 4652 4653 4654 4655
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4656
void complete(struct completion *x)
L
Linus Torvalds 已提交
4657 4658 4659 4660 4661
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4662
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4663 4664 4665 4666
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4667 4668 4669 4670 4671 4672
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4673
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4674 4675 4676 4677 4678
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4679
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4680 4681 4682 4683
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4684 4685
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4686 4687 4688 4689 4690 4691 4692
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4693
			if (signal_pending_state(state, current)) {
4694 4695
				timeout = -ERESTARTSYS;
				break;
4696 4697
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4698 4699 4700
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4701
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4702
		__remove_wait_queue(&x->wait, &wait);
4703 4704
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4705 4706
	}
	x->done--;
4707
	return timeout ?: 1;
L
Linus Torvalds 已提交
4708 4709
}

4710 4711
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4712 4713 4714 4715
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4716
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4717
	spin_unlock_irq(&x->wait.lock);
4718 4719
	return timeout;
}
L
Linus Torvalds 已提交
4720

4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4731
void __sched wait_for_completion(struct completion *x)
4732 4733
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4734
}
4735
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4736

4737 4738 4739 4740 4741 4742 4743 4744 4745
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4746
unsigned long __sched
4747
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4748
{
4749
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4750
}
4751
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4752

4753 4754 4755 4756 4757 4758 4759
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4760
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4761
{
4762 4763 4764 4765
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4766
}
4767
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4768

4769 4770 4771 4772 4773 4774 4775 4776
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4777
unsigned long __sched
4778 4779
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4780
{
4781
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4782
}
4783
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4784

4785 4786 4787 4788 4789 4790 4791
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4792 4793 4794 4795 4796 4797 4798 4799 4800
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4847 4848
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4849
{
I
Ingo Molnar 已提交
4850 4851 4852 4853
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4854

4855
	__set_current_state(state);
L
Linus Torvalds 已提交
4856

4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4871 4872 4873
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4874
long __sched
I
Ingo Molnar 已提交
4875
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4876
{
4877
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4878 4879 4880
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4881
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4882
{
4883
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4884 4885 4886
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4887
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4888
{
4889
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4890 4891 4892
}
EXPORT_SYMBOL(sleep_on_timeout);

4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4905
void rt_mutex_setprio(struct task_struct *p, int prio)
4906 4907
{
	unsigned long flags;
4908
	int oldprio, on_rq, running;
4909
	struct rq *rq;
4910
	const struct sched_class *prev_class = p->sched_class;
4911 4912 4913 4914

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4915
	update_rq_clock(rq);
4916

4917
	oldprio = p->prio;
I
Ingo Molnar 已提交
4918
	on_rq = p->se.on_rq;
4919
	running = task_current(rq, p);
4920
	if (on_rq)
4921
		dequeue_task(rq, p, 0);
4922 4923
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4924 4925 4926 4927 4928 4929

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4930 4931
	p->prio = prio;

4932 4933
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4934
	if (on_rq) {
4935
		enqueue_task(rq, p, 0);
4936 4937

		check_class_changed(rq, p, prev_class, oldprio, running);
4938 4939 4940 4941 4942 4943
	}
	task_rq_unlock(rq, &flags);
}

#endif

4944
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4945
{
I
Ingo Molnar 已提交
4946
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4947
	unsigned long flags;
4948
	struct rq *rq;
L
Linus Torvalds 已提交
4949 4950 4951 4952 4953 4954 4955 4956

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4957
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4958 4959 4960 4961
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4962
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4963
	 */
4964
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4965 4966 4967
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4968
	on_rq = p->se.on_rq;
4969
	if (on_rq)
4970
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4971 4972

	p->static_prio = NICE_TO_PRIO(nice);
4973
	set_load_weight(p);
4974 4975 4976
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4977

I
Ingo Molnar 已提交
4978
	if (on_rq) {
4979
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4980
		/*
4981 4982
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4983
		 */
4984
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4985 4986 4987 4988 4989 4990 4991
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4992 4993 4994 4995 4996
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4997
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4998
{
4999 5000
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5001

M
Matt Mackall 已提交
5002 5003 5004 5005
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5017
	long nice, retval;
L
Linus Torvalds 已提交
5018 5019 5020 5021 5022 5023

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5024 5025
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5026 5027 5028 5029 5030 5031 5032 5033 5034
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5035 5036 5037
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5056
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5057 5058 5059 5060 5061 5062 5063 5064
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5065
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5066 5067 5068
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5069
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5084
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5085 5086 5087 5088 5089 5090 5091 5092
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5093
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5094
{
5095
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5096 5097 5098
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5099 5100
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5101
{
I
Ingo Molnar 已提交
5102
	BUG_ON(p->se.on_rq);
5103

L
Linus Torvalds 已提交
5104
	p->policy = policy;
I
Ingo Molnar 已提交
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5117
	p->rt_priority = prio;
5118 5119 5120
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5121
	set_load_weight(p);
L
Linus Torvalds 已提交
5122 5123
}

5124 5125
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5126
{
5127
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5128
	unsigned long flags;
5129
	const struct sched_class *prev_class = p->sched_class;
5130
	struct rq *rq;
5131
	uid_t euid;
L
Linus Torvalds 已提交
5132

5133 5134
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5135 5136 5137 5138 5139
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5140 5141
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5142
		return -EINVAL;
L
Linus Torvalds 已提交
5143 5144
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5145 5146
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5147 5148
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5149
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5150
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5151
		return -EINVAL;
5152
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5153 5154
		return -EINVAL;

5155 5156 5157
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5158
	if (user && !capable(CAP_SYS_NICE)) {
5159
		if (rt_policy(policy)) {
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5176 5177 5178 5179 5180 5181
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5182

5183
		/* can't change other user's priorities */
5184
		euid = current_euid();
5185 5186
		if (euid != p->cred->euid &&
		    euid != p->cred->uid)
5187 5188
			return -EPERM;
	}
L
Linus Torvalds 已提交
5189

5190
	if (user) {
5191
#ifdef CONFIG_RT_GROUP_SCHED
5192 5193 5194 5195
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5196 5197
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5198
			return -EPERM;
5199 5200
#endif

5201 5202 5203 5204 5205
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5206 5207 5208 5209 5210
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5211 5212 5213 5214
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5215
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5216 5217 5218
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5219 5220
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5221 5222
		goto recheck;
	}
I
Ingo Molnar 已提交
5223
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5224
	on_rq = p->se.on_rq;
5225
	running = task_current(rq, p);
5226
	if (on_rq)
5227
		deactivate_task(rq, p, 0);
5228 5229
	if (running)
		p->sched_class->put_prev_task(rq, p);
5230

L
Linus Torvalds 已提交
5231
	oldprio = p->prio;
I
Ingo Molnar 已提交
5232
	__setscheduler(rq, p, policy, param->sched_priority);
5233

5234 5235
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5236 5237
	if (on_rq) {
		activate_task(rq, p, 0);
5238 5239

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5240
	}
5241 5242 5243
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5244 5245
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5246 5247
	return 0;
}
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5262 5263
EXPORT_SYMBOL_GPL(sched_setscheduler);

5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5281 5282
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5283 5284 5285
{
	struct sched_param lparam;
	struct task_struct *p;
5286
	int retval;
L
Linus Torvalds 已提交
5287 5288 5289 5290 5291

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5292 5293 5294

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5295
	p = find_process_by_pid(pid);
5296 5297 5298
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5299

L
Linus Torvalds 已提交
5300 5301 5302 5303 5304 5305 5306 5307 5308
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5309 5310
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5311
{
5312 5313 5314 5315
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5335
	struct task_struct *p;
5336
	int retval;
L
Linus Torvalds 已提交
5337 5338

	if (pid < 0)
5339
		return -EINVAL;
L
Linus Torvalds 已提交
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5361
	struct task_struct *p;
5362
	int retval;
L
Linus Torvalds 已提交
5363 5364

	if (!param || pid < 0)
5365
		return -EINVAL;
L
Linus Torvalds 已提交
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5392
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5393 5394
{
	cpumask_t cpus_allowed;
5395
	cpumask_t new_mask = *in_mask;
5396
	struct task_struct *p;
5397
	uid_t euid;
5398
	int retval;
L
Linus Torvalds 已提交
5399

5400
	get_online_cpus();
L
Linus Torvalds 已提交
5401 5402 5403 5404 5405
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5406
		put_online_cpus();
L
Linus Torvalds 已提交
5407 5408 5409 5410 5411
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5412
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5413 5414 5415 5416 5417
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

5418
	euid = current_euid();
L
Linus Torvalds 已提交
5419
	retval = -EPERM;
5420 5421 5422
	if (euid != p->cred->euid &&
	    euid != p->cred->uid &&
	    !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
5423 5424
		goto out_unlock;

5425 5426 5427 5428
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5429
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5430
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5431
 again:
5432
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5433

P
Paul Menage 已提交
5434
	if (!retval) {
5435
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5446 5447
out_unlock:
	put_task_struct(p);
5448
	put_online_cpus();
L
Linus Torvalds 已提交
5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5479
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5480 5481 5482 5483
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5484
	struct task_struct *p;
L
Linus Torvalds 已提交
5485 5486
	int retval;

5487
	get_online_cpus();
L
Linus Torvalds 已提交
5488 5489 5490 5491 5492 5493 5494
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5495 5496 5497 5498
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5499
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5500 5501 5502

out_unlock:
	read_unlock(&tasklist_lock);
5503
	put_online_cpus();
L
Linus Torvalds 已提交
5504

5505
	return retval;
L
Linus Torvalds 已提交
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5536 5537
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5538 5539 5540
 */
asmlinkage long sys_sched_yield(void)
{
5541
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5542

5543
	schedstat_inc(rq, yld_count);
5544
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5545 5546 5547 5548 5549 5550

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5551
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5552 5553 5554 5555 5556 5557 5558 5559
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5560
static void __cond_resched(void)
L
Linus Torvalds 已提交
5561
{
5562 5563 5564
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5565 5566 5567 5568 5569
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5570 5571 5572 5573 5574 5575 5576
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5577
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5578
{
5579 5580
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5581 5582 5583 5584 5585
		__cond_resched();
		return 1;
	}
	return 0;
}
5586
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5587 5588 5589 5590 5591

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5592
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5593 5594 5595
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5596
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5597
{
N
Nick Piggin 已提交
5598
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5599 5600
	int ret = 0;

N
Nick Piggin 已提交
5601
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5602
		spin_unlock(lock);
N
Nick Piggin 已提交
5603 5604 5605 5606
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5607
		ret = 1;
L
Linus Torvalds 已提交
5608 5609
		spin_lock(lock);
	}
J
Jan Kara 已提交
5610
	return ret;
L
Linus Torvalds 已提交
5611 5612 5613 5614 5615 5616 5617
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5618
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5619
		local_bh_enable();
L
Linus Torvalds 已提交
5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5631
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5642
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5643 5644 5645 5646 5647 5648 5649
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5650
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5651

5652
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5653 5654 5655
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5656
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5657 5658 5659 5660 5661
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5662
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5663 5664
	long ret;

5665
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5666 5667 5668
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5669
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5690
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5691
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5715
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5716
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5733
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5734
	unsigned int time_slice;
5735
	int retval;
L
Linus Torvalds 已提交
5736 5737 5738
	struct timespec t;

	if (pid < 0)
5739
		return -EINVAL;
L
Linus Torvalds 已提交
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5751 5752 5753 5754 5755 5756
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5757
		time_slice = DEF_TIMESLICE;
5758
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5759 5760 5761 5762 5763
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5764 5765
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5766 5767
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5768
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5769
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5770 5771
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5772

L
Linus Torvalds 已提交
5773 5774 5775 5776 5777
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5778
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5779

5780
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5781 5782
{
	unsigned long free = 0;
5783
	unsigned state;
L
Linus Torvalds 已提交
5784 5785

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5786
	printk(KERN_INFO "%-13.13s %c", p->comm,
5787
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5788
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5789
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5790
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5791
	else
I
Ingo Molnar 已提交
5792
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5793 5794
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5795
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5796
	else
I
Ingo Molnar 已提交
5797
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5798 5799 5800
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5801
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5802 5803
		while (!*n)
			n++;
5804
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5805 5806
	}
#endif
5807
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5808
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5809

5810
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5811 5812
}

I
Ingo Molnar 已提交
5813
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5814
{
5815
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5816

5817 5818 5819
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5820
#else
5821 5822
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5823 5824 5825 5826 5827 5828 5829 5830
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5831
		if (!state_filter || (p->state & state_filter))
5832
			sched_show_task(p);
L
Linus Torvalds 已提交
5833 5834
	} while_each_thread(g, p);

5835 5836
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5837 5838 5839
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5840
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5841 5842 5843 5844 5845
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5846 5847
}

I
Ingo Molnar 已提交
5848 5849
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5850
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5851 5852
}

5853 5854 5855 5856 5857 5858 5859 5860
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5861
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5862
{
5863
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5864 5865
	unsigned long flags;

I
Ingo Molnar 已提交
5866 5867 5868
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5869
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5870
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5871
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5872 5873 5874

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5875 5876 5877
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5878 5879 5880
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5881 5882 5883
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5884
	task_thread_info(idle)->preempt_count = 0;
5885
#endif
I
Ingo Molnar 已提交
5886 5887 5888 5889
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
5924 5925

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
5926 5927
}

L
Linus Torvalds 已提交
5928 5929 5930 5931
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5932
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5951
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5952 5953
 * call is not atomic; no spinlocks may be held.
 */
5954
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5955
{
5956
	struct migration_req req;
L
Linus Torvalds 已提交
5957
	unsigned long flags;
5958
	struct rq *rq;
5959
	int ret = 0;
L
Linus Torvalds 已提交
5960 5961

	rq = task_rq_lock(p, &flags);
5962
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5963 5964 5965 5966
		ret = -EINVAL;
		goto out;
	}

5967 5968 5969 5970 5971 5972
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5973
	if (p->sched_class->set_cpus_allowed)
5974
		p->sched_class->set_cpus_allowed(p, new_mask);
5975
	else {
5976 5977
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5978 5979
	}

L
Linus Torvalds 已提交
5980
	/* Can the task run on the task's current CPU? If so, we're done */
5981
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5982 5983
		goto out;

5984
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5985 5986 5987 5988 5989 5990 5991 5992 5993
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5994

L
Linus Torvalds 已提交
5995 5996
	return ret;
}
5997
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5998 5999

/*
I
Ingo Molnar 已提交
6000
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6001 6002 6003 6004 6005 6006
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6007 6008
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6009
 */
6010
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6011
{
6012
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6013
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6014

6015
	if (unlikely(!cpu_active(dest_cpu)))
6016
		return ret;
L
Linus Torvalds 已提交
6017 6018 6019 6020 6021 6022 6023

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6024
		goto done;
L
Linus Torvalds 已提交
6025 6026
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
6027
		goto fail;
L
Linus Torvalds 已提交
6028

I
Ingo Molnar 已提交
6029
	on_rq = p->se.on_rq;
6030
	if (on_rq)
6031
		deactivate_task(rq_src, p, 0);
6032

L
Linus Torvalds 已提交
6033
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6034 6035
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6036
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6037
	}
L
Linus Torvalds 已提交
6038
done:
6039
	ret = 1;
L
Linus Torvalds 已提交
6040
fail:
L
Linus Torvalds 已提交
6041
	double_rq_unlock(rq_src, rq_dest);
6042
	return ret;
L
Linus Torvalds 已提交
6043 6044 6045 6046 6047 6048 6049
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6050
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6051 6052
{
	int cpu = (long)data;
6053
	struct rq *rq;
L
Linus Torvalds 已提交
6054 6055 6056 6057 6058 6059

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6060
		struct migration_req *req;
L
Linus Torvalds 已提交
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6083
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6084 6085
		list_del_init(head->next);

N
Nick Piggin 已提交
6086 6087 6088
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6118
/*
6119
 * Figure out where task on dead CPU should go, use force if necessary.
6120 6121
 * NOTE: interrupts should be disabled by the caller
 */
6122
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6123
{
6124
	unsigned long flags;
L
Linus Torvalds 已提交
6125
	cpumask_t mask;
6126 6127
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6128

6129 6130 6131 6132 6133 6134 6135
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6136
		if (dest_cpu >= nr_cpu_ids)
6137 6138 6139
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6140
		if (dest_cpu >= nr_cpu_ids) {
6141 6142 6143
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6144 6145 6146 6147
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6148
			 * cpuset_cpus_allowed() will not block. It must be
6149 6150
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6151
			rq = task_rq_lock(p, &flags);
6152
			p->cpus_allowed = cpus_allowed;
6153 6154
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6155

6156 6157 6158 6159 6160
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6161
			if (p->mm && printk_ratelimit()) {
6162 6163
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6164 6165
					task_pid_nr(p), p->comm, dead_cpu);
			}
6166
		}
6167
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6168 6169 6170 6171 6172 6173 6174 6175 6176
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6177
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6178
{
6179
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6193
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6194

6195
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6196

6197 6198
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6199 6200
			continue;

6201 6202 6203
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6204

6205
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6206 6207
}

I
Ingo Molnar 已提交
6208 6209
/*
 * Schedules idle task to be the next runnable task on current CPU.
6210 6211
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6212 6213 6214
 */
void sched_idle_next(void)
{
6215
	int this_cpu = smp_processor_id();
6216
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6217 6218 6219 6220
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6221
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6222

6223 6224 6225
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6226 6227 6228
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6229
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6230

6231 6232
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6233 6234 6235 6236

	spin_unlock_irqrestore(&rq->lock, flags);
}

6237 6238
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6252
/* called under rq->lock with disabled interrupts */
6253
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6254
{
6255
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6256 6257

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6258
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6259 6260

	/* Cannot have done final schedule yet: would have vanished. */
6261
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6262

6263
	get_task_struct(p);
L
Linus Torvalds 已提交
6264 6265 6266

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6267
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6268 6269
	 * fine.
	 */
6270
	spin_unlock_irq(&rq->lock);
6271
	move_task_off_dead_cpu(dead_cpu, p);
6272
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6273

6274
	put_task_struct(p);
L
Linus Torvalds 已提交
6275 6276 6277 6278 6279
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6280
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6281
	struct task_struct *next;
6282

I
Ingo Molnar 已提交
6283 6284 6285
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6286
		update_rq_clock(rq);
6287
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6288 6289
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6290
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6291
		migrate_dead(dead_cpu, next);
6292

L
Linus Torvalds 已提交
6293 6294 6295 6296
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6297 6298 6299
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6300 6301
	{
		.procname	= "sched_domain",
6302
		.mode		= 0555,
6303
	},
I
Ingo Molnar 已提交
6304
	{0, },
6305 6306 6307
};

static struct ctl_table sd_ctl_root[] = {
6308
	{
6309
		.ctl_name	= CTL_KERN,
6310
		.procname	= "kernel",
6311
		.mode		= 0555,
6312 6313
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6314
	{0, },
6315 6316 6317 6318 6319
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6320
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6321 6322 6323 6324

	return entry;
}

6325 6326
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6327
	struct ctl_table *entry;
6328

6329 6330 6331
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6332
	 * will always be set. In the lowest directory the names are
6333 6334 6335
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6336 6337
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6338 6339 6340
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6341 6342 6343 6344 6345

	kfree(*tablep);
	*tablep = NULL;
}

6346
static void
6347
set_table_entry(struct ctl_table *entry,
6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6361
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6362

6363 6364 6365
	if (table == NULL)
		return NULL;

6366
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6367
		sizeof(long), 0644, proc_doulongvec_minmax);
6368
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6369
		sizeof(long), 0644, proc_doulongvec_minmax);
6370
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6371
		sizeof(int), 0644, proc_dointvec_minmax);
6372
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6373
		sizeof(int), 0644, proc_dointvec_minmax);
6374
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6375
		sizeof(int), 0644, proc_dointvec_minmax);
6376
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6377
		sizeof(int), 0644, proc_dointvec_minmax);
6378
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6379
		sizeof(int), 0644, proc_dointvec_minmax);
6380
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6381
		sizeof(int), 0644, proc_dointvec_minmax);
6382
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6383
		sizeof(int), 0644, proc_dointvec_minmax);
6384
	set_table_entry(&table[9], "cache_nice_tries",
6385 6386
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6387
	set_table_entry(&table[10], "flags", &sd->flags,
6388
		sizeof(int), 0644, proc_dointvec_minmax);
6389 6390 6391
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6392 6393 6394 6395

	return table;
}

6396
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6397 6398 6399 6400 6401 6402 6403 6404 6405
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6406 6407
	if (table == NULL)
		return NULL;
6408 6409 6410 6411 6412

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6413
		entry->mode = 0555;
6414 6415 6416 6417 6418 6419 6420 6421
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6422
static void register_sched_domain_sysctl(void)
6423 6424 6425 6426 6427
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6428 6429 6430
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6431 6432 6433
	if (entry == NULL)
		return;

6434
	for_each_online_cpu(i) {
6435 6436
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6437
		entry->mode = 0555;
6438
		entry->child = sd_alloc_ctl_cpu_table(i);
6439
		entry++;
6440
	}
6441 6442

	WARN_ON(sd_sysctl_header);
6443 6444
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6445

6446
/* may be called multiple times per register */
6447 6448
static void unregister_sched_domain_sysctl(void)
{
6449 6450
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6451
	sd_sysctl_header = NULL;
6452 6453
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6454
}
6455
#else
6456 6457 6458 6459
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6460 6461 6462 6463
{
}
#endif

6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6494 6495 6496 6497
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6498 6499
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6500 6501
{
	struct task_struct *p;
6502
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6503
	unsigned long flags;
6504
	struct rq *rq;
L
Linus Torvalds 已提交
6505 6506

	switch (action) {
6507

L
Linus Torvalds 已提交
6508
	case CPU_UP_PREPARE:
6509
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6510
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6511 6512 6513 6514 6515
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6516
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6517 6518 6519
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6520

L
Linus Torvalds 已提交
6521
	case CPU_ONLINE:
6522
	case CPU_ONLINE_FROZEN:
6523
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6524
		wake_up_process(cpu_rq(cpu)->migration_thread);
6525 6526 6527 6528 6529 6530

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6531 6532

			set_rq_online(rq);
6533 6534
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6535
		break;
6536

L
Linus Torvalds 已提交
6537 6538
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6539
	case CPU_UP_CANCELED_FROZEN:
6540 6541
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6542
		/* Unbind it from offline cpu so it can run. Fall thru. */
6543 6544
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6545 6546 6547
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6548

L
Linus Torvalds 已提交
6549
	case CPU_DEAD:
6550
	case CPU_DEAD_FROZEN:
6551
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6552 6553 6554 6555 6556
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6557
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6558
		update_rq_clock(rq);
6559
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6560
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6561 6562
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6563
		migrate_dead_tasks(cpu);
6564
		spin_unlock_irq(&rq->lock);
6565
		cpuset_unlock();
L
Linus Torvalds 已提交
6566 6567 6568
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6569 6570 6571 6572 6573
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6574 6575
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6576 6577
			struct migration_req *req;

L
Linus Torvalds 已提交
6578
			req = list_entry(rq->migration_queue.next,
6579
					 struct migration_req, list);
L
Linus Torvalds 已提交
6580 6581 6582 6583 6584
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6585

6586 6587
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6588 6589 6590 6591 6592
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6593
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6594 6595 6596
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6597 6598 6599 6600 6601 6602 6603 6604
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6605
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6606 6607 6608 6609
	.notifier_call = migration_call,
	.priority = 10
};

6610
static int __init migration_init(void)
L
Linus Torvalds 已提交
6611 6612
{
	void *cpu = (void *)(long)smp_processor_id();
6613
	int err;
6614 6615

	/* Start one for the boot CPU: */
6616 6617
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6618 6619
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6620 6621

	return err;
L
Linus Torvalds 已提交
6622
}
6623
early_initcall(migration_init);
L
Linus Torvalds 已提交
6624 6625 6626
#endif

#ifdef CONFIG_SMP
6627

6628
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6629

6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6652 6653
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6654
{
I
Ingo Molnar 已提交
6655
	struct sched_group *group = sd->groups;
6656
	char str[256];
L
Linus Torvalds 已提交
6657

6658
	cpulist_scnprintf(str, sizeof(str), sd->span);
6659
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6660 6661 6662 6663 6664 6665 6666 6667 6668

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6669 6670
	}

6671 6672
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6673 6674 6675 6676 6677 6678 6679 6680 6681

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6682

I
Ingo Molnar 已提交
6683
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6684
	do {
I
Ingo Molnar 已提交
6685 6686 6687
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6688 6689 6690
			break;
		}

I
Ingo Molnar 已提交
6691 6692 6693 6694 6695 6696
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6697

I
Ingo Molnar 已提交
6698 6699 6700 6701 6702
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6703

6704
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6705 6706 6707 6708
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6709

6710
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6711

6712
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6713
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6714

I
Ingo Molnar 已提交
6715 6716 6717
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6718

6719
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6720
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6721

6722
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6723 6724 6725 6726
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6727

I
Ingo Molnar 已提交
6728 6729
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6730
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6731
	int level = 0;
L
Linus Torvalds 已提交
6732

I
Ingo Molnar 已提交
6733 6734 6735 6736
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6737

I
Ingo Molnar 已提交
6738 6739
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6740 6741 6742 6743 6744 6745
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6746
	for (;;) {
6747
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6748
			break;
L
Linus Torvalds 已提交
6749 6750
		level++;
		sd = sd->parent;
6751
		if (!sd)
I
Ingo Molnar 已提交
6752 6753
			break;
	}
6754
	kfree(groupmask);
L
Linus Torvalds 已提交
6755
}
6756
#else /* !CONFIG_SCHED_DEBUG */
6757
# define sched_domain_debug(sd, cpu) do { } while (0)
6758
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6759

6760
static int sd_degenerate(struct sched_domain *sd)
6761 6762 6763 6764 6765 6766 6767 6768
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6769 6770 6771
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6785 6786
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6805 6806 6807
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6808 6809 6810 6811 6812 6813 6814
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6815 6816 6817 6818 6819 6820 6821 6822 6823
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6824 6825
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6826

6827 6828
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6829 6830 6831 6832 6833 6834 6835
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6836
	cpu_set(rq->cpu, rd->span);
6837
	if (cpu_isset(rq->cpu, cpu_online_map))
6838
		set_rq_online(rq);
G
Gregory Haskins 已提交
6839 6840 6841 6842

	spin_unlock_irqrestore(&rq->lock, flags);
}

6843
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6844 6845 6846
{
	memset(rd, 0, sizeof(*rd));

6847 6848
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6849 6850

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6851 6852 6853 6854
}

static void init_defrootdomain(void)
{
6855
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6856 6857 6858
	atomic_set(&def_root_domain.refcount, 1);
}

6859
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6860 6861 6862 6863 6864 6865 6866
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6867
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6868 6869 6870 6871

	return rd;
}

L
Linus Torvalds 已提交
6872
/*
I
Ingo Molnar 已提交
6873
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6874 6875
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6876 6877
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6878
{
6879
	struct rq *rq = cpu_rq(cpu);
6880 6881 6882 6883 6884 6885 6886
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6887
		if (sd_parent_degenerate(tmp, parent)) {
6888
			tmp->parent = parent->parent;
6889 6890 6891
			if (parent->parent)
				parent->parent->child = tmp;
		}
6892 6893
	}

6894
	if (sd && sd_degenerate(sd)) {
6895
		sd = sd->parent;
6896 6897 6898
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6899 6900 6901

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6902
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6903
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6904 6905 6906
}

/* cpus with isolated domains */
6907
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6908 6909 6910 6911

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6912 6913
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6914 6915 6916 6917 6918 6919 6920 6921 6922

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6923
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6924 6925

/*
6926 6927 6928 6929
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6930 6931 6932 6933 6934
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6935
static void
6936
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6937
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6938 6939 6940
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6941 6942 6943 6944
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6945 6946
	cpus_clear(*covered);

6947
	for_each_cpu_mask_nr(i, *span) {
6948
		struct sched_group *sg;
6949
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6950 6951
		int j;

6952
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6953 6954
			continue;

6955
		cpus_clear(sg->cpumask);
6956
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6957

6958
		for_each_cpu_mask_nr(j, *span) {
6959
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6960 6961
				continue;

6962
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6974
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6975

6976
#ifdef CONFIG_NUMA
6977

6978 6979 6980 6981 6982
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6983
 * Find the next node to include in a given scheduling domain. Simply
6984 6985 6986 6987
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6988
static int find_next_best_node(int node, nodemask_t *used_nodes)
6989 6990 6991 6992 6993
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6994
	for (i = 0; i < nr_node_ids; i++) {
6995
		/* Start at @node */
6996
		n = (node + i) % nr_node_ids;
6997 6998 6999 7000 7001

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7002
		if (node_isset(n, *used_nodes))
7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7014
	node_set(best_node, *used_nodes);
7015 7016 7017 7018 7019 7020
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7021
 * @span: resulting cpumask
7022
 *
I
Ingo Molnar 已提交
7023
 * Given a node, construct a good cpumask for its sched_domain to span. It
7024 7025 7026
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7027
static void sched_domain_node_span(int node, cpumask_t *span)
7028
{
7029 7030
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
7031
	int i;
7032

7033
	cpus_clear(*span);
7034
	nodes_clear(used_nodes);
7035

7036
	cpus_or(*span, *span, *nodemask);
7037
	node_set(node, used_nodes);
7038 7039

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7040
		int next_node = find_next_best_node(node, &used_nodes);
7041

7042
		node_to_cpumask_ptr_next(nodemask, next_node);
7043
		cpus_or(*span, *span, *nodemask);
7044 7045
	}
}
7046
#endif /* CONFIG_NUMA */
7047

7048
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7049

7050
/*
7051
 * SMT sched-domains:
7052
 */
L
Linus Torvalds 已提交
7053 7054
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7055
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7056

I
Ingo Molnar 已提交
7057
static int
7058 7059
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
7060
{
7061 7062
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
7063 7064
	return cpu;
}
7065
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7066

7067 7068 7069
/*
 * multi-core sched-domains:
 */
7070 7071
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
7072
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7073
#endif /* CONFIG_SCHED_MC */
7074 7075

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7076
static int
7077 7078
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
7079
{
7080
	int group;
7081 7082 7083 7084

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7085 7086 7087
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
7088 7089
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7090
static int
7091 7092
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
7093
{
7094 7095
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
7096 7097 7098 7099
	return cpu;
}
#endif

L
Linus Torvalds 已提交
7100
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7101
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7102

I
Ingo Molnar 已提交
7103
static int
7104 7105
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
7106
{
7107
	int group;
7108
#ifdef CONFIG_SCHED_MC
7109 7110 7111
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7112
#elif defined(CONFIG_SCHED_SMT)
7113 7114 7115
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7116
#else
7117
	group = cpu;
L
Linus Torvalds 已提交
7118
#endif
7119 7120 7121
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7122 7123 7124 7125
}

#ifdef CONFIG_NUMA
/*
7126 7127 7128
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7129
 */
7130
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7131
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7132

7133
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7134
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7135

7136
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7137
				 struct sched_group **sg, cpumask_t *nodemask)
7138
{
7139 7140
	int group;

7141 7142 7143
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7144 7145 7146 7147

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7148
}
7149

7150 7151 7152 7153 7154 7155 7156
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7157
	do {
7158
		for_each_cpu_mask_nr(j, sg->cpumask) {
7159
			struct sched_domain *sd;
7160

7161 7162 7163 7164 7165 7166 7167 7168
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7169

7170 7171 7172 7173
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7174
}
7175
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7176

7177
#ifdef CONFIG_NUMA
7178
/* Free memory allocated for various sched_group structures */
7179
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7180
{
7181
	int cpu, i;
7182

7183
	for_each_cpu_mask_nr(cpu, *cpu_map) {
7184 7185 7186 7187 7188 7189
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7190
		for (i = 0; i < nr_node_ids; i++) {
7191 7192
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7193 7194 7195
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7212
#else /* !CONFIG_NUMA */
7213
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7214 7215
{
}
7216
#endif /* CONFIG_NUMA */
7217

7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7244 7245
	sd->groups->__cpu_power = 0;

7246 7247 7248 7249 7250 7251 7252 7253 7254 7255
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7256
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7257 7258 7259 7260 7261 7262 7263 7264
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7265
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7266 7267 7268 7269
		group = group->next;
	} while (group != child->groups);
}

7270 7271 7272 7273 7274
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7275 7276 7277 7278 7279 7280
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7281
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7282

7283 7284 7285 7286 7287
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7288
	sd->level = SD_LV_##type;				\
7289
	SD_INIT_NAME(sd, type);					\
7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7338 7339 7340 7341
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7342 7343 7344 7345 7346 7347
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7373
/*
7374 7375
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7376
 */
7377 7378
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7379 7380
{
	int i;
G
Gregory Haskins 已提交
7381
	struct root_domain *rd;
7382 7383
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7384 7385
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7386
	int sd_allnodes = 0;
7387 7388 7389 7390

	/*
	 * Allocate the per-node list of sched groups
	 */
7391
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7392
				    GFP_KERNEL);
7393 7394
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7395
		return -ENOMEM;
7396 7397
	}
#endif
L
Linus Torvalds 已提交
7398

7399
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7400 7401
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7402 7403 7404
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7405 7406 7407
		return -ENOMEM;
	}

7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7427
	/*
7428
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7429
	 */
7430
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7431
		struct sched_domain *sd = NULL, *p;
7432
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7433

7434 7435
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7436 7437

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7438
		if (cpus_weight(*cpu_map) >
7439
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7440
			sd = &per_cpu(allnodes_domains, i);
7441
			SD_INIT(sd, ALLNODES);
7442
			set_domain_attribute(sd, attr);
7443
			sd->span = *cpu_map;
7444
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7445
			p = sd;
7446
			sd_allnodes = 1;
7447 7448 7449
		} else
			p = NULL;

L
Linus Torvalds 已提交
7450
		sd = &per_cpu(node_domains, i);
7451
		SD_INIT(sd, NODE);
7452
		set_domain_attribute(sd, attr);
7453
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7454
		sd->parent = p;
7455 7456
		if (p)
			p->child = sd;
7457
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7458 7459 7460 7461
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7462
		SD_INIT(sd, CPU);
7463
		set_domain_attribute(sd, attr);
7464
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7465
		sd->parent = p;
7466 7467
		if (p)
			p->child = sd;
7468
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7469

7470 7471 7472
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7473
		SD_INIT(sd, MC);
7474
		set_domain_attribute(sd, attr);
7475 7476 7477
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7478
		p->child = sd;
7479
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7480 7481
#endif

L
Linus Torvalds 已提交
7482 7483 7484
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7485
		SD_INIT(sd, SIBLING);
7486
		set_domain_attribute(sd, attr);
7487
		sd->span = per_cpu(cpu_sibling_map, i);
7488
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7489
		sd->parent = p;
7490
		p->child = sd;
7491
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7492 7493 7494 7495 7496
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7497
	for_each_cpu_mask_nr(i, *cpu_map) {
7498 7499 7500 7501 7502 7503
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7504 7505
			continue;

I
Ingo Molnar 已提交
7506
		init_sched_build_groups(this_sibling_map, cpu_map,
7507 7508
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7509 7510 7511
	}
#endif

7512 7513
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7514
	for_each_cpu_mask_nr(i, *cpu_map) {
7515 7516 7517 7518 7519 7520
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7521
			continue;
7522

I
Ingo Molnar 已提交
7523
		init_sched_build_groups(this_core_map, cpu_map,
7524 7525
					&cpu_to_core_group,
					send_covered, tmpmask);
7526 7527 7528
	}
#endif

L
Linus Torvalds 已提交
7529
	/* Set up physical groups */
7530
	for (i = 0; i < nr_node_ids; i++) {
7531 7532
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7533

7534 7535 7536
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7537 7538
			continue;

7539 7540 7541
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7542 7543 7544 7545
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7546 7547 7548 7549 7550 7551 7552
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7553

7554
	for (i = 0; i < nr_node_ids; i++) {
7555 7556
		/* Set up node groups */
		struct sched_group *sg, *prev;
7557 7558 7559
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7560 7561
		int j;

7562 7563 7564 7565 7566
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7567
			sched_group_nodes[i] = NULL;
7568
			continue;
7569
		}
7570

7571
		sched_domain_node_span(i, domainspan);
7572
		cpus_and(*domainspan, *domainspan, *cpu_map);
7573

7574
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7575 7576 7577 7578 7579
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7580
		sched_group_nodes[i] = sg;
7581
		for_each_cpu_mask_nr(j, *nodemask) {
7582
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7583

7584 7585 7586
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7587
		sg->__cpu_power = 0;
7588
		sg->cpumask = *nodemask;
7589
		sg->next = sg;
7590
		cpus_or(*covered, *covered, *nodemask);
7591 7592
		prev = sg;

7593
		for (j = 0; j < nr_node_ids; j++) {
7594
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7595
			int n = (i + j) % nr_node_ids;
7596
			node_to_cpumask_ptr(pnodemask, n);
7597

7598 7599 7600 7601
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7602 7603
				break;

7604 7605
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7606 7607
				continue;

7608 7609
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7610 7611 7612
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7613
				goto error;
7614
			}
7615
			sg->__cpu_power = 0;
7616
			sg->cpumask = *tmpmask;
7617
			sg->next = prev->next;
7618
			cpus_or(*covered, *covered, *tmpmask);
7619 7620 7621 7622
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7623 7624 7625
#endif

	/* Calculate CPU power for physical packages and nodes */
7626
#ifdef CONFIG_SCHED_SMT
7627
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7628 7629
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7630
		init_sched_groups_power(i, sd);
7631
	}
L
Linus Torvalds 已提交
7632
#endif
7633
#ifdef CONFIG_SCHED_MC
7634
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7635 7636
		struct sched_domain *sd = &per_cpu(core_domains, i);

7637
		init_sched_groups_power(i, sd);
7638 7639
	}
#endif
7640

7641
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7642 7643
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7644
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7645 7646
	}

7647
#ifdef CONFIG_NUMA
7648
	for (i = 0; i < nr_node_ids; i++)
7649
		init_numa_sched_groups_power(sched_group_nodes[i]);
7650

7651 7652
	if (sd_allnodes) {
		struct sched_group *sg;
7653

7654 7655
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7656 7657
		init_numa_sched_groups_power(sg);
	}
7658 7659
#endif

L
Linus Torvalds 已提交
7660
	/* Attach the domains */
7661
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7662 7663 7664
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7665 7666
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7667 7668 7669
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7670
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7671
	}
7672

7673
	SCHED_CPUMASK_FREE((void *)allmasks);
7674 7675
	return 0;

7676
#ifdef CONFIG_NUMA
7677
error:
7678 7679
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7680
	return -ENOMEM;
7681
#endif
L
Linus Torvalds 已提交
7682
}
P
Paul Jackson 已提交
7683

7684 7685 7686 7687 7688
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7689 7690
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7691 7692
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7693 7694 7695 7696 7697 7698 7699 7700

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7701 7702 7703 7704
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7705
/*
I
Ingo Molnar 已提交
7706
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7707 7708
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7709
 */
7710
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7711
{
7712 7713
	int err;

7714
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7715 7716 7717 7718 7719
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7720
	dattr_cur = NULL;
7721
	err = build_sched_domains(doms_cur);
7722
	register_sched_domain_sysctl();
7723 7724

	return err;
7725 7726
}

7727 7728
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7729
{
7730
	free_sched_groups(cpu_map, tmpmask);
7731
}
L
Linus Torvalds 已提交
7732

7733 7734 7735 7736
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7737
static void detach_destroy_domains(const cpumask_t *cpu_map)
7738
{
7739
	cpumask_t tmpmask;
7740 7741
	int i;

7742 7743
	unregister_sched_domain_sysctl();

7744
	for_each_cpu_mask_nr(i, *cpu_map)
G
Gregory Haskins 已提交
7745
		cpu_attach_domain(NULL, &def_root_domain, i);
7746
	synchronize_sched();
7747
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7748 7749
}

7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7766 7767
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7768
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7769 7770 7771 7772
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7773 7774 7775
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7776 7777 7778
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7779 7780
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7781 7782
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
7783
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7784
 *
7785 7786 7787 7788
 * If doms_new==NULL it will be replaced with cpu_online_map.
 * ndoms_new==0 is a special case for destroying existing domains.
 * It will not create the default domain.
 *
P
Paul Jackson 已提交
7789 7790
 * Call with hotplug lock held
 */
7791 7792
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7793
{
7794
	int i, j, n;
P
Paul Jackson 已提交
7795

7796
	mutex_lock(&sched_domains_mutex);
7797

7798 7799 7800
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7801
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7802 7803 7804

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7805
		for (j = 0; j < n; j++) {
7806 7807
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7808 7809 7810 7811 7812 7813 7814 7815
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7816 7817 7818 7819 7820 7821 7822
	if (doms_new == NULL) {
		ndoms_cur = 0;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
		dattr_new = NULL;
	}

P
Paul Jackson 已提交
7823 7824 7825
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7826 7827
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7828 7829 7830
				goto match2;
		}
		/* no match - add a new doms_new */
7831 7832
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7833 7834 7835 7836 7837 7838 7839
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7840
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7841
	doms_cur = doms_new;
7842
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7843
	ndoms_cur = ndoms_new;
7844 7845

	register_sched_domain_sysctl();
7846

7847
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7848 7849
}

7850
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7851
int arch_reinit_sched_domains(void)
7852
{
7853
	get_online_cpus();
7854 7855 7856 7857

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7858
	rebuild_sched_domains();
7859
	put_online_cpus();
7860

7861
	return 0;
7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7882 7883
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7884 7885 7886
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7887
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7888
					    const char *buf, size_t count)
7889 7890 7891
{
	return sched_power_savings_store(buf, count, 0);
}
7892 7893 7894
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7895 7896 7897
#endif

#ifdef CONFIG_SCHED_SMT
7898 7899
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7900 7901 7902
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7903
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7904
					     const char *buf, size_t count)
7905 7906 7907
{
	return sched_power_savings_store(buf, count, 1);
}
7908 7909
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7929
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7930

7931
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7932
/*
7933 7934
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7935 7936 7937
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7938 7939 7940 7941 7942 7943
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
7944
		partition_sched_domains(1, NULL, NULL);
7945 7946 7947 7948 7949 7950 7951 7952 7953 7954
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7955
{
P
Peter Zijlstra 已提交
7956 7957
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7958 7959
	switch (action) {
	case CPU_DOWN_PREPARE:
7960
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7961
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7962 7963 7964
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7965
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7966
	case CPU_ONLINE:
7967
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7968
		enable_runtime(cpu_rq(cpu));
7969 7970
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7971 7972 7973 7974 7975 7976 7977
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7978 7979
	cpumask_t non_isolated_cpus;

7980 7981 7982 7983 7984
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7985
	get_online_cpus();
7986
	mutex_lock(&sched_domains_mutex);
7987
	arch_init_sched_domains(&cpu_online_map);
7988
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7989 7990
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7991
	mutex_unlock(&sched_domains_mutex);
7992
	put_online_cpus();
7993 7994

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7995 7996
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7997 7998 7999 8000 8001
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8002
	init_hrtick();
8003 8004

	/* Move init over to a non-isolated CPU */
8005
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8006
		BUG();
I
Ingo Molnar 已提交
8007
	sched_init_granularity();
L
Linus Torvalds 已提交
8008 8009 8010 8011
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8012
	sched_init_granularity();
L
Linus Torvalds 已提交
8013 8014 8015 8016 8017 8018 8019 8020 8021 8022
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8023
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8024 8025
{
	cfs_rq->tasks_timeline = RB_ROOT;
8026
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8027 8028 8029
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8030
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8031 8032
}

P
Peter Zijlstra 已提交
8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8046
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8047 8048
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8049 8050 8051 8052 8053 8054 8055
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8056 8057
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8058

8059
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8060
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8061 8062
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8063 8064
}

P
Peter Zijlstra 已提交
8065
#ifdef CONFIG_FAIR_GROUP_SCHED
8066 8067 8068
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8069
{
8070
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8071 8072 8073 8074 8075 8076 8077
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8078 8079 8080 8081
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8082 8083 8084 8085 8086
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8087 8088
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8089
	se->load.inv_weight = 0;
8090
	se->parent = parent;
P
Peter Zijlstra 已提交
8091
}
8092
#endif
P
Peter Zijlstra 已提交
8093

8094
#ifdef CONFIG_RT_GROUP_SCHED
8095 8096 8097
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8098
{
8099 8100
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8101 8102 8103 8104
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8105
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8106 8107 8108 8109
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8110 8111 8112
	if (!rt_se)
		return;

8113 8114 8115 8116 8117
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8118
	rt_se->my_q = rt_rq;
8119
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8120 8121 8122 8123
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8124 8125
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8126
	int i, j;
8127 8128 8129 8130 8131 8132 8133
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8134 8135 8136
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8137 8138 8139 8140 8141 8142
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8143
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8144 8145 8146 8147 8148 8149 8150

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8151 8152 8153 8154 8155 8156 8157

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8158 8159
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8160 8161 8162 8163 8164
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8165 8166 8167 8168 8169 8170 8171 8172
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8173 8174
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8175
	}
I
Ingo Molnar 已提交
8176

G
Gregory Haskins 已提交
8177 8178 8179 8180
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8181 8182 8183 8184 8185 8186
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8187 8188 8189
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8190 8191
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8192

8193
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8194
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8195 8196 8197 8198 8199 8200
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8201 8202
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8203

8204
	for_each_possible_cpu(i) {
8205
		struct rq *rq;
L
Linus Torvalds 已提交
8206 8207 8208

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8209
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8210
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8211
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8212
#ifdef CONFIG_FAIR_GROUP_SCHED
8213
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8214
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8235
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8236
#elif defined CONFIG_USER_SCHED
8237 8238
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8250
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8251
				&per_cpu(init_cfs_rq, i),
8252 8253
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8254

8255
#endif
D
Dhaval Giani 已提交
8256 8257 8258
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8259
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8260
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8261
#ifdef CONFIG_CGROUP_SCHED
8262
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8263
#elif defined CONFIG_USER_SCHED
8264
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8265
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8266
				&per_cpu(init_rt_rq, i),
8267 8268
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8269
#endif
I
Ingo Molnar 已提交
8270
#endif
L
Linus Torvalds 已提交
8271

I
Ingo Molnar 已提交
8272 8273
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8274
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8275
		rq->sd = NULL;
G
Gregory Haskins 已提交
8276
		rq->rd = NULL;
L
Linus Torvalds 已提交
8277
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8278
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8279
		rq->push_cpu = 0;
8280
		rq->cpu = i;
8281
		rq->online = 0;
L
Linus Torvalds 已提交
8282 8283
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8284
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8285
#endif
P
Peter Zijlstra 已提交
8286
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8287 8288 8289
		atomic_set(&rq->nr_iowait, 0);
	}

8290
	set_load_weight(&init_task);
8291

8292 8293 8294 8295
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8296
#ifdef CONFIG_SMP
8297
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8298 8299
#endif

8300 8301 8302 8303
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8317 8318 8319 8320
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8321 8322

	scheduler_running = 1;
L
Linus Torvalds 已提交
8323 8324 8325 8326 8327
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8328
#ifdef in_atomic
L
Linus Torvalds 已提交
8329 8330
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8350 8351 8352 8353 8354 8355
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8356 8357 8358
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8359

8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8371 8372
void normalize_rt_tasks(void)
{
8373
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8374
	unsigned long flags;
8375
	struct rq *rq;
L
Linus Torvalds 已提交
8376

8377
	read_lock_irqsave(&tasklist_lock, flags);
8378
	do_each_thread(g, p) {
8379 8380 8381 8382 8383 8384
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8385 8386
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8387 8388 8389
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8390
#endif
I
Ingo Molnar 已提交
8391 8392 8393 8394 8395 8396 8397 8398

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8399
			continue;
I
Ingo Molnar 已提交
8400
		}
L
Linus Torvalds 已提交
8401

8402
		spin_lock(&p->pi_lock);
8403
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8404

8405
		normalize_task(rq, p);
8406

8407
		__task_rq_unlock(rq);
8408
		spin_unlock(&p->pi_lock);
8409 8410
	} while_each_thread(g, p);

8411
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8412 8413 8414
}

#endif /* CONFIG_MAGIC_SYSRQ */
8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8433
struct task_struct *curr_task(int cpu)
8434 8435 8436 8437 8438 8439 8440 8441 8442 8443
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8444 8445
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8446 8447 8448 8449 8450 8451 8452
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8453
void set_curr_task(int cpu, struct task_struct *p)
8454 8455 8456 8457 8458
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8459

8460 8461
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8476 8477
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8478 8479
{
	struct cfs_rq *cfs_rq;
8480
	struct sched_entity *se, *parent_se;
8481
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8482 8483
	int i;

8484
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8485 8486
	if (!tg->cfs_rq)
		goto err;
8487
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8488 8489
	if (!tg->se)
		goto err;
8490 8491

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8492 8493

	for_each_possible_cpu(i) {
8494
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8495

P
Peter Zijlstra 已提交
8496 8497
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8498 8499 8500
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8501 8502
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8503 8504 8505
		if (!se)
			goto err;

8506 8507
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8526
#else /* !CONFG_FAIR_GROUP_SCHED */
8527 8528 8529 8530
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8531 8532
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8544
#endif /* CONFIG_FAIR_GROUP_SCHED */
8545 8546

#ifdef CONFIG_RT_GROUP_SCHED
8547 8548 8549 8550
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8551 8552
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8564 8565
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8566 8567
{
	struct rt_rq *rt_rq;
8568
	struct sched_rt_entity *rt_se, *parent_se;
8569 8570 8571
	struct rq *rq;
	int i;

8572
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8573 8574
	if (!tg->rt_rq)
		goto err;
8575
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8576 8577 8578
	if (!tg->rt_se)
		goto err;

8579 8580
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8581 8582 8583 8584

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8585 8586 8587 8588
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8589

P
Peter Zijlstra 已提交
8590 8591 8592 8593
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8594

8595 8596
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8597 8598
	}

8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8615
#else /* !CONFIG_RT_GROUP_SCHED */
8616 8617 8618 8619
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8620 8621
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8633
#endif /* CONFIG_RT_GROUP_SCHED */
8634

8635
#ifdef CONFIG_GROUP_SCHED
8636 8637 8638 8639 8640 8641 8642 8643
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8644
struct task_group *sched_create_group(struct task_group *parent)
8645 8646 8647 8648 8649 8650 8651 8652 8653
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8654
	if (!alloc_fair_sched_group(tg, parent))
8655 8656
		goto err;

8657
	if (!alloc_rt_sched_group(tg, parent))
8658 8659
		goto err;

8660
	spin_lock_irqsave(&task_group_lock, flags);
8661
	for_each_possible_cpu(i) {
8662 8663
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8664
	}
P
Peter Zijlstra 已提交
8665
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8666 8667 8668 8669 8670

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8671
	list_add_rcu(&tg->siblings, &parent->children);
8672
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8673

8674
	return tg;
S
Srivatsa Vaddagiri 已提交
8675 8676

err:
P
Peter Zijlstra 已提交
8677
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8678 8679 8680
	return ERR_PTR(-ENOMEM);
}

8681
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8682
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8683 8684
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8685
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8686 8687
}

8688
/* Destroy runqueue etc associated with a task group */
8689
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8690
{
8691
	unsigned long flags;
8692
	int i;
S
Srivatsa Vaddagiri 已提交
8693

8694
	spin_lock_irqsave(&task_group_lock, flags);
8695
	for_each_possible_cpu(i) {
8696 8697
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8698
	}
P
Peter Zijlstra 已提交
8699
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8700
	list_del_rcu(&tg->siblings);
8701
	spin_unlock_irqrestore(&task_group_lock, flags);
8702 8703

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8704
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8705 8706
}

8707
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8708 8709 8710
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8711 8712
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8713 8714 8715 8716 8717 8718 8719 8720 8721
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8722
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8723 8724
	on_rq = tsk->se.on_rq;

8725
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8726
		dequeue_task(rq, tsk, 0);
8727 8728
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8729

P
Peter Zijlstra 已提交
8730
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8731

P
Peter Zijlstra 已提交
8732 8733 8734 8735 8736
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8737 8738 8739
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8740
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8741 8742 8743

	task_rq_unlock(rq, &flags);
}
8744
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8745

8746
#ifdef CONFIG_FAIR_GROUP_SCHED
8747
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8748 8749 8750 8751 8752
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8753
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8754 8755 8756
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8757
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8758

8759
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8760
		enqueue_entity(cfs_rq, se, 0);
8761
}
8762

8763 8764 8765 8766 8767 8768 8769 8770 8771
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8772 8773
}

8774 8775
static DEFINE_MUTEX(shares_mutex);

8776
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8777 8778
{
	int i;
8779
	unsigned long flags;
8780

8781 8782 8783 8784 8785 8786
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8787 8788
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8789 8790
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8791

8792
	mutex_lock(&shares_mutex);
8793
	if (tg->shares == shares)
8794
		goto done;
S
Srivatsa Vaddagiri 已提交
8795

8796
	spin_lock_irqsave(&task_group_lock, flags);
8797 8798
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8799
	list_del_rcu(&tg->siblings);
8800
	spin_unlock_irqrestore(&task_group_lock, flags);
8801 8802 8803 8804 8805 8806 8807 8808

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8809
	tg->shares = shares;
8810 8811 8812 8813 8814
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8815
		set_se_shares(tg->se[i], shares);
8816
	}
S
Srivatsa Vaddagiri 已提交
8817

8818 8819 8820 8821
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8822
	spin_lock_irqsave(&task_group_lock, flags);
8823 8824
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8825
	list_add_rcu(&tg->siblings, &tg->parent->children);
8826
	spin_unlock_irqrestore(&task_group_lock, flags);
8827
done:
8828
	mutex_unlock(&shares_mutex);
8829
	return 0;
S
Srivatsa Vaddagiri 已提交
8830 8831
}

8832 8833 8834 8835
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8836
#endif
8837

8838
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8839
/*
P
Peter Zijlstra 已提交
8840
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8841
 */
P
Peter Zijlstra 已提交
8842 8843 8844 8845 8846
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8847
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8848

P
Peter Zijlstra 已提交
8849
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8850 8851
}

P
Peter Zijlstra 已提交
8852 8853
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8854
{
P
Peter Zijlstra 已提交
8855
	struct task_struct *g, *p;
8856

P
Peter Zijlstra 已提交
8857 8858 8859 8860
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8861

P
Peter Zijlstra 已提交
8862 8863
	return 0;
}
8864

P
Peter Zijlstra 已提交
8865 8866 8867 8868 8869
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8870

P
Peter Zijlstra 已提交
8871 8872 8873 8874 8875 8876
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8877

P
Peter Zijlstra 已提交
8878 8879
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8880

P
Peter Zijlstra 已提交
8881 8882 8883
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8884 8885
	}

8886 8887 8888 8889 8890
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8891

8892 8893 8894
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8895 8896
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8897

P
Peter Zijlstra 已提交
8898
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8899

8900 8901 8902 8903 8904
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8905

8906 8907 8908
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8909 8910 8911
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8912

P
Peter Zijlstra 已提交
8913 8914 8915 8916
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8917

P
Peter Zijlstra 已提交
8918
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8919
	}
P
Peter Zijlstra 已提交
8920

P
Peter Zijlstra 已提交
8921 8922 8923 8924
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8925 8926
}

P
Peter Zijlstra 已提交
8927
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8928
{
P
Peter Zijlstra 已提交
8929 8930 8931 8932 8933 8934 8935
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8936 8937
}

8938 8939
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8940
{
P
Peter Zijlstra 已提交
8941
	int i, err = 0;
P
Peter Zijlstra 已提交
8942 8943

	mutex_lock(&rt_constraints_mutex);
8944
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8945 8946
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8947
		goto unlock;
P
Peter Zijlstra 已提交
8948 8949

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8950 8951
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8952 8953 8954 8955 8956 8957 8958 8959 8960

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8961
 unlock:
8962
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8963 8964 8965
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8966 8967
}

8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8980 8981 8982 8983
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8984
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8985 8986
		return -1;

8987
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8988 8989 8990
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8991 8992 8993 8994 8995 8996 8997 8998

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8999 9000 9001
	if (rt_period == 0)
		return -EINVAL;

9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9016
	u64 runtime, period;
9017 9018
	int ret = 0;

9019 9020 9021
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9022 9023 9024 9025 9026 9027 9028 9029
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9030

9031
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9032
	read_lock(&tasklist_lock);
9033
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9034
	read_unlock(&tasklist_lock);
9035 9036 9037 9038
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9039
#else /* !CONFIG_RT_GROUP_SCHED */
9040 9041
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9042 9043 9044
	unsigned long flags;
	int i;

9045 9046 9047
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9048 9049 9050 9051 9052 9053 9054 9055 9056 9057
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9058 9059
	return 0;
}
9060
#endif /* CONFIG_RT_GROUP_SCHED */
9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9091

9092
#ifdef CONFIG_CGROUP_SCHED
9093 9094

/* return corresponding task_group object of a cgroup */
9095
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9096
{
9097 9098
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9099 9100 9101
}

static struct cgroup_subsys_state *
9102
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9103
{
9104
	struct task_group *tg, *parent;
9105

9106
	if (!cgrp->parent) {
9107 9108 9109 9110
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9111 9112
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9113 9114 9115 9116 9117 9118
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9119 9120
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9121
{
9122
	struct task_group *tg = cgroup_tg(cgrp);
9123 9124 9125 9126

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9127 9128 9129
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9130
{
9131 9132
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9133
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9134 9135
		return -EINVAL;
#else
9136 9137 9138
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9139
#endif
9140 9141 9142 9143 9144

	return 0;
}

static void
9145
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9146 9147 9148 9149 9150
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9151
#ifdef CONFIG_FAIR_GROUP_SCHED
9152
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9153
				u64 shareval)
9154
{
9155
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9156 9157
}

9158
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9159
{
9160
	struct task_group *tg = cgroup_tg(cgrp);
9161 9162 9163

	return (u64) tg->shares;
}
9164
#endif /* CONFIG_FAIR_GROUP_SCHED */
9165

9166
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9167
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9168
				s64 val)
P
Peter Zijlstra 已提交
9169
{
9170
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9171 9172
}

9173
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9174
{
9175
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9176
}
9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9188
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9189

9190
static struct cftype cpu_files[] = {
9191
#ifdef CONFIG_FAIR_GROUP_SCHED
9192 9193
	{
		.name = "shares",
9194 9195
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9196
	},
9197 9198
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9199
	{
P
Peter Zijlstra 已提交
9200
		.name = "rt_runtime_us",
9201 9202
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9203
	},
9204 9205
	{
		.name = "rt_period_us",
9206 9207
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9208
	},
9209
#endif
9210 9211 9212 9213
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9214
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9215 9216 9217
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9218 9219 9220 9221 9222 9223 9224
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9225 9226 9227
	.early_init	= 1,
};

9228
#endif	/* CONFIG_CGROUP_SCHED */
9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9249
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9250
{
9251
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9264
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9281
static void
9282
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9283
{
9284
	struct cpuacct *ca = cgroup_ca(cgrp);
9285 9286 9287 9288 9289 9290

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9291
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9292
{
9293
	struct cpuacct *ca = cgroup_ca(cgrp);
9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9335 9336 9337
static struct cftype files[] = {
	{
		.name = "usage",
9338 9339
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9340 9341 9342
	},
};

9343
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9344
{
9345
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */