sched.c 163.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
J
Jens Axboe 已提交
64
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
65

66
#include <asm/tlb.h>
L
Linus Torvalds 已提交
67

68 69 70 71 72 73 74 75 76 77
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107 108 109 110 111 112 113
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
136 137 138
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

139
/*
I
Ingo Molnar 已提交
140
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 142
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
143
static unsigned int static_prio_timeslice(int static_prio)
144
{
I
Ingo Molnar 已提交
145 146 147 148 149 150 151
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
152 153
}

154 155 156 157 158 159 160 161 162 163 164 165
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
166
/*
I
Ingo Molnar 已提交
167
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
168
 */
I
Ingo Molnar 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
196
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
197 198 199 200 201 202 203 204 205 206 207 208
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
209

I
Ingo Molnar 已提交
210 211 212 213 214 215 216
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
217 218 219 220 221 222 223
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
224
struct rq {
I
Ingo Molnar 已提交
225
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
226 227 228 229 230 231

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
232 233
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
234
	unsigned char idle_at_tick;
235 236 237
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
238 239 240 241 242 243 244
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
245
#endif
I
Ingo Molnar 已提交
246
	struct rt_rq  rt;
L
Linus Torvalds 已提交
247 248 249 250 251 252 253 254 255

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

256
	struct task_struct *curr, *idle;
257
	unsigned long next_balance;
L
Linus Torvalds 已提交
258
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
259 260 261 262 263

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
264 265
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
266
	u64 tick_timestamp;
I
Ingo Molnar 已提交
267

L
Linus Torvalds 已提交
268 269 270 271 272 273 274 275
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
276
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
277

278
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
301
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
302 303
};

304
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
305
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
306

I
Ingo Molnar 已提交
307 308 309 310 311
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

312 313 314 315 316 317 318 319 320
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
321
/*
I
Ingo Molnar 已提交
322 323
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
324
 */
I
Ingo Molnar 已提交
325
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
326 327 328 329 330 331
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
332 333 334
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
335 336 337 338 339 340 341 342 343 344
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
345 346 347 348 349
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
350 351 352 353 354 355 356 357 358 359
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
360
}
I
Ingo Molnar 已提交
361

I
Ingo Molnar 已提交
362 363 364 365
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
366 367
}

N
Nick Piggin 已提交
368 369
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
370
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
371 372 373 374
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
375 376
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
377 378 379 380 381 382

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

383 384 385 386 387 388 389 390
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
391
	struct rq *rq;
392

393
	local_irq_save(flags);
I
Ingo Molnar 已提交
394 395 396
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
397
	local_irq_restore(flags);
398 399 400 401

	return now;
}

I
Ingo Molnar 已提交
402 403 404 405 406 407 408 409 410 411 412 413
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
414
#ifndef prepare_arch_switch
415 416 417 418 419 420 421
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
422
static inline int task_running(struct rq *rq, struct task_struct *p)
423 424 425 426
{
	return rq->curr == p;
}

427
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
428 429 430
{
}

431
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
432
{
433 434 435 436
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
437 438 439 440 441 442 443
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

444 445 446 447
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
448
static inline int task_running(struct rq *rq, struct task_struct *p)
449 450 451 452 453 454 455 456
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

457
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

474
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
475 476 477 478 479 480 481 482 483 484 485 486
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
487
#endif
488 489
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
490

491 492 493 494
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
495
static inline struct rq *__task_rq_lock(struct task_struct *p)
496 497
	__acquires(rq->lock)
{
498
	struct rq *rq;
499 500 501 502 503 504 505 506 507 508 509

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
510 511 512 513 514
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
515
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
516 517
	__acquires(rq->lock)
{
518
	struct rq *rq;
L
Linus Torvalds 已提交
519 520 521 522 523 524 525 526 527 528 529 530

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

531
static inline void __task_rq_unlock(struct rq *rq)
532 533 534 535 536
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

537
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
538 539 540 541 542 543
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
544
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
545
 */
546
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
547 548
	__acquires(rq->lock)
{
549
	struct rq *rq;
L
Linus Torvalds 已提交
550 551 552 553 554 555 556 557

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

558
/*
559
 * We are going deep-idle (irqs are disabled):
560
 */
561
void sched_clock_idle_sleep_event(void)
562
{
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
579

580 581 582 583 584 585 586 587 588 589 590
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
591
}
592
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
593

I
Ingo Molnar 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
static u64 div64_likely32(u64 divident, unsigned long divisor)
{
#if BITS_PER_LONG == 32
	if (likely(divident <= 0xffffffffULL))
		return (u32)divident / divisor;
	do_div(divident, divisor);

	return divident;
#else
	return divident / divisor;
#endif
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
667 668 669
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
670
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
671

672
static unsigned long
673 674 675 676 677 678
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
679
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
680 681 682 683 684

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
685
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
686
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
687 688
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
689
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
690

691
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

static void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

712 713 714 715 716 717 718 719 720
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
721 722 723 724 725 726 727 728 729 730 731
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
732 733 734
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
735 736
 */
static const int prio_to_weight[40] = {
737 738 739 740 741 742 743 744
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
745 746
};

747 748 749 750 751 752 753
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
754
static const u32 prio_to_wmult[40] = {
755 756 757 758 759 760 761 762
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
763
};
764

I
Ingo Molnar 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
782
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
783 784 785 786 787 788 789 790 791 792 793

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
 * total load (rq->ls.load.weight) on the runqueue, while
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
 * This function is called /before/ updating rq->ls.load
 * and when switching tasks.
 */
809
static inline void inc_load(struct rq *rq, const struct task_struct *p)
810 811 812 813
{
	update_load_add(&rq->ls.load, p->se.load.weight);
}

814
static inline void dec_load(struct rq *rq, const struct task_struct *p)
815 816 817 818
{
	update_load_sub(&rq->ls.load, p->se.load.weight);
}

819
static void inc_nr_running(struct task_struct *p, struct rq *rq)
820 821
{
	rq->nr_running++;
822
	inc_load(rq, p);
823 824
}

825
static void dec_nr_running(struct task_struct *p, struct rq *rq)
826 827
{
	rq->nr_running--;
828
	dec_load(rq, p);
829 830
}

831 832
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
833 834
	p->se.wait_runtime = 0;

835
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
836 837 838 839
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
840

I
Ingo Molnar 已提交
841 842 843 844 845 846 847 848
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
849

I
Ingo Molnar 已提交
850 851
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
852 853
}

854
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
855
{
I
Ingo Molnar 已提交
856
	sched_info_queued(p);
857
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
858
	p->se.on_rq = 1;
859 860
}

861
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
862
{
863
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
864
	p->se.on_rq = 0;
865 866
}

867
/*
I
Ingo Molnar 已提交
868
 * __normal_prio - return the priority that is based on the static prio
869 870 871
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
872
	return p->static_prio;
873 874
}

875 876 877 878 879 880 881
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
882
static inline int normal_prio(struct task_struct *p)
883 884 885
{
	int prio;

886
	if (task_has_rt_policy(p))
887 888 889 890 891 892 893 894 895 896 897 898 899
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
900
static int effective_prio(struct task_struct *p)
901 902 903 904 905 906 907 908 909 910 911 912
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
913
/*
I
Ingo Molnar 已提交
914
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
915
 */
I
Ingo Molnar 已提交
916
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
917
{
I
Ingo Molnar 已提交
918 919
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
920

921
	enqueue_task(rq, p, wakeup);
922
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
923 924 925
}

/*
I
Ingo Molnar 已提交
926
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
927
 */
I
Ingo Molnar 已提交
928
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
929
{
I
Ingo Molnar 已提交
930
	update_rq_clock(rq);
L
Linus Torvalds 已提交
931

I
Ingo Molnar 已提交
932 933
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
934

935
	enqueue_task(rq, p, 0);
936
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
937 938 939 940 941
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
942
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
943
{
I
Ingo Molnar 已提交
944 945 946
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

947
	dequeue_task(rq, p, sleep);
948
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
949 950 951 952 953 954
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
955
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
956 957 958 959
{
	return cpu_curr(task_cpu(p)) == p;
}

960 961 962
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
I
Ingo Molnar 已提交
963 964 965 966 967 968 969 970 971
	return cpu_rq(cpu)->ls.load.weight;
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
972 973
}

L
Linus Torvalds 已提交
974
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
975

I
Ingo Molnar 已提交
976
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
977
{
I
Ingo Molnar 已提交
978 979 980 981 982
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
	u64 clock_offset, fair_clock_offset;

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
983 984
	fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;

I
Ingo Molnar 已提交
985 986
	if (p->se.wait_start_fair)
		p->se.wait_start_fair -= fair_clock_offset;
I
Ingo Molnar 已提交
987 988 989 990 991 992
	if (p->se.sleep_start_fair)
		p->se.sleep_start_fair -= fair_clock_offset;

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
993 994 995 996
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
I
Ingo Molnar 已提交
997
#endif
I
Ingo Molnar 已提交
998 999

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1000 1001
}

1002
struct migration_req {
L
Linus Torvalds 已提交
1003 1004
	struct list_head list;

1005
	struct task_struct *task;
L
Linus Torvalds 已提交
1006 1007 1008
	int dest_cpu;

	struct completion done;
1009
};
L
Linus Torvalds 已提交
1010 1011 1012 1013 1014

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1015
static int
1016
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1017
{
1018
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1019 1020 1021 1022 1023

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1024
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1025 1026 1027 1028 1029 1030 1031 1032
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1033

L
Linus Torvalds 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1046
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1047 1048
{
	unsigned long flags;
I
Ingo Molnar 已提交
1049
	int running, on_rq;
1050
	struct rq *rq;
L
Linus Torvalds 已提交
1051 1052

repeat:
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1080
	rq = task_rq_lock(p, &flags);
1081
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1082
	on_rq = p->se.on_rq;
1083 1084 1085 1086 1087 1088 1089 1090 1091
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1092 1093 1094
		cpu_relax();
		goto repeat;
	}
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1105
	if (unlikely(on_rq)) {
1106 1107 1108 1109 1110 1111 1112 1113 1114
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1130
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1142 1143
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1144 1145 1146 1147
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1148
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1149
{
1150
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1151
	unsigned long total = weighted_cpuload(cpu);
1152

1153
	if (type == 0)
I
Ingo Molnar 已提交
1154
		return total;
1155

I
Ingo Molnar 已提交
1156
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1157 1158 1159
}

/*
1160 1161
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1162
 */
N
Nick Piggin 已提交
1163
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1164
{
1165
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1166
	unsigned long total = weighted_cpuload(cpu);
1167

N
Nick Piggin 已提交
1168
	if (type == 0)
I
Ingo Molnar 已提交
1169
		return total;
1170

I
Ingo Molnar 已提交
1171
	return max(rq->cpu_load[type-1], total);
1172 1173 1174 1175 1176 1177 1178
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1179
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1180
	unsigned long total = weighted_cpuload(cpu);
1181 1182
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1183
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1184 1185
}

N
Nick Piggin 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1203 1204 1205 1206
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1223 1224
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1225 1226 1227 1228 1229 1230 1231 1232

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1233
nextgroup:
N
Nick Piggin 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1243
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1244
 */
I
Ingo Molnar 已提交
1245 1246
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1247
{
1248
	cpumask_t tmp;
N
Nick Piggin 已提交
1249 1250 1251 1252
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1253 1254 1255 1256
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1257
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1283

1284
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1285 1286 1287
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1288 1289
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1290 1291
		if (tmp->flags & flag)
			sd = tmp;
1292
	}
N
Nick Piggin 已提交
1293 1294 1295 1296

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1297 1298 1299 1300 1301 1302
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1303 1304 1305

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1306 1307 1308 1309
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1310

1311
		new_cpu = find_idlest_cpu(group, t, cpu);
1312 1313 1314 1315 1316
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1317

1318
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1345
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1346 1347 1348 1349 1350
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1361 1362 1363 1364
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1365
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1366 1367 1368 1369
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1370
		} else {
N
Nick Piggin 已提交
1371
			break;
I
Ingo Molnar 已提交
1372
		}
L
Linus Torvalds 已提交
1373 1374 1375 1376
	}
	return cpu;
}
#else
1377
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1397
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1398 1399 1400 1401
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1402
	struct rq *rq;
L
Linus Torvalds 已提交
1403
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1404
	struct sched_domain *sd, *this_sd = NULL;
1405
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1406 1407 1408 1409 1410 1411 1412 1413
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1414
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1424 1425
	new_cpu = cpu;

L
Linus Torvalds 已提交
1426 1427 1428
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1429 1430 1431 1432 1433 1434 1435 1436
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1437 1438 1439
		}
	}

N
Nick Piggin 已提交
1440
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1441 1442 1443
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1444
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1445
	 */
N
Nick Piggin 已提交
1446 1447 1448
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1449

1450 1451
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1452 1453
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1454

N
Nick Piggin 已提交
1455 1456
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1457 1458
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1459 1460 1461
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1462

L
Linus Torvalds 已提交
1463
			/*
1464 1465 1466
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1467
			 */
1468
			if (sync)
I
Ingo Molnar 已提交
1469
				tl -= current->se.load.weight;
1470 1471

			if ((tl <= load &&
1472
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1473
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1507
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1508 1509 1510 1511 1512 1513 1514 1515
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1516
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1517
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1518 1519 1520 1521 1522 1523 1524 1525
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1526 1527
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1538
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1539 1540 1541 1542 1543 1544
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1545
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1546 1547 1548 1549 1550 1551 1552
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1553 1554 1555 1556 1557 1558 1559 1560
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.wait_start_fair		= 0;
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1561
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1562
	p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
1563 1564 1565 1566
	p->se.sleep_start_fair		= 0;

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1567 1568 1569 1570 1571 1572 1573
	p->se.sum_wait_runtime		= 0;
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1574
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1575 1576 1577
	p->se.wait_max			= 0;
	p->se.wait_runtime_overruns	= 0;
	p->se.wait_runtime_underruns	= 0;
I
Ingo Molnar 已提交
1578
#endif
N
Nick Piggin 已提交
1579

I
Ingo Molnar 已提交
1580 1581
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1582

1583 1584 1585 1586
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1587 1588 1589 1590 1591 1592 1593
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1609 1610 1611 1612 1613 1614

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1615
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1616
	if (likely(sched_info_on()))
1617
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1618
#endif
1619
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1620 1621
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1622
#ifdef CONFIG_PREEMPT
1623
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1624
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1625
#endif
N
Nick Piggin 已提交
1626
	put_cpu();
L
Linus Torvalds 已提交
1627 1628 1629 1630 1631 1632 1633 1634 1635
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1636
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1637 1638
{
	unsigned long flags;
I
Ingo Molnar 已提交
1639 1640
	struct rq *rq;
	int this_cpu;
L
Linus Torvalds 已提交
1641 1642

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1643
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1644
	this_cpu = smp_processor_id(); /* parent's CPU */
I
Ingo Molnar 已提交
1645
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1646 1647 1648

	p->prio = effective_prio(p);

1649 1650 1651 1652 1653
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

1654 1655
	if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
							!current->se.on_rq) {
I
Ingo Molnar 已提交
1656
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1657 1658
	} else {
		/*
I
Ingo Molnar 已提交
1659 1660
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1661
		 */
1662
		p->sched_class->task_new(rq, p);
1663
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1664
	}
I
Ingo Molnar 已提交
1665 1666
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1667 1668
}

1669 1670 1671
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1672 1673
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1674 1675 1676 1677 1678 1679 1680 1681 1682
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1683
 * @notifier: notifier struct to unregister
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1727 1728 1729
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1730
 * @prev: the current task that is being switched out
1731 1732 1733 1734 1735 1736 1737 1738 1739
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1740 1741 1742
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1743
{
1744
	fire_sched_out_preempt_notifiers(prev, next);
1745 1746 1747 1748
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1749 1750
/**
 * finish_task_switch - clean up after a task-switch
1751
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1752 1753
 * @prev: the thread we just switched away from.
 *
1754 1755 1756 1757
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1758 1759 1760 1761 1762 1763
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1764
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1765 1766 1767
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1768
	long prev_state;
L
Linus Torvalds 已提交
1769 1770 1771 1772 1773

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1774
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1775 1776
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1777
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1778 1779 1780 1781 1782
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1783
	prev_state = prev->state;
1784 1785
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1786
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1787 1788
	if (mm)
		mmdrop(mm);
1789
	if (unlikely(prev_state == TASK_DEAD)) {
1790 1791 1792
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1793
		 */
1794
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1795
		put_task_struct(prev);
1796
	}
L
Linus Torvalds 已提交
1797 1798 1799 1800 1801 1802
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1803
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1804 1805
	__releases(rq->lock)
{
1806 1807
	struct rq *rq = this_rq();

1808 1809 1810 1811 1812
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1813 1814 1815 1816 1817 1818 1819 1820
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1821
static inline void
1822
context_switch(struct rq *rq, struct task_struct *prev,
1823
	       struct task_struct *next)
L
Linus Torvalds 已提交
1824
{
I
Ingo Molnar 已提交
1825
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1826

1827
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1828 1829
	mm = next->mm;
	oldmm = prev->active_mm;
1830 1831 1832 1833 1834 1835 1836
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1837
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1838 1839 1840 1841 1842 1843
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1844
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1845 1846 1847
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1848 1849 1850 1851 1852 1853 1854
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1855
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1856
#endif
L
Linus Torvalds 已提交
1857 1858 1859 1860

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1861 1862 1863 1864 1865 1866 1867
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1891
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1906 1907
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1908

1909
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1919
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1920 1921 1922 1923 1924
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1940
/*
I
Ingo Molnar 已提交
1941 1942
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1943
 */
I
Ingo Molnar 已提交
1944
static void update_cpu_load(struct rq *this_rq)
1945
{
1946
	unsigned long this_load = this_rq->ls.load.weight;
I
Ingo Molnar 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
1959 1960 1961 1962 1963 1964 1965
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
1966 1967
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
1968 1969
}

I
Ingo Molnar 已提交
1970 1971
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
1972 1973 1974 1975 1976 1977
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
1978
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1979 1980 1981
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
1982
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
1983 1984 1985 1986
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
1987
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
1988 1989 1990 1991 1992 1993 1994
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
1995 1996
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
1997 1998 1999 2000 2001 2002 2003 2004
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2005
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2019
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2020 2021 2022 2023
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2024 2025 2026 2027 2028
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2029
	if (unlikely(!spin_trylock(&busiest->lock))) {
2030
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2045
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2046
{
2047
	struct migration_req req;
L
Linus Torvalds 已提交
2048
	unsigned long flags;
2049
	struct rq *rq;
L
Linus Torvalds 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2060

L
Linus Torvalds 已提交
2061 2062 2063 2064 2065
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2066

L
Linus Torvalds 已提交
2067 2068 2069 2070 2071 2072 2073
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2074 2075
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2076 2077 2078 2079
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2080
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2081
	put_cpu();
N
Nick Piggin 已提交
2082 2083
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2084 2085 2086 2087 2088 2089
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2090 2091
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2092
{
2093
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2094
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2095
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2096 2097 2098 2099
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2100
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2101 2102 2103 2104 2105
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2106
static
2107
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2108
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2109
		     int *all_pinned)
L
Linus Torvalds 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2119 2120 2121 2122
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2123 2124 2125 2126

	return 1;
}

I
Ingo Molnar 已提交
2127
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2128
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2129
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2130
		      int *all_pinned, unsigned long *load_moved,
2131
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2132
{
I
Ingo Molnar 已提交
2133 2134 2135
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2136

2137
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2138 2139
		goto out;

2140 2141
	pinned = 1;

L
Linus Torvalds 已提交
2142
	/*
I
Ingo Molnar 已提交
2143
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2144
	 */
I
Ingo Molnar 已提交
2145 2146 2147
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2148
		goto out;
2149 2150 2151 2152 2153
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2154 2155
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2156
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2157 2158 2159
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2160 2161
	}

I
Ingo Molnar 已提交
2162
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2163
	pulled++;
I
Ingo Molnar 已提交
2164
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2165

2166 2167 2168 2169 2170
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2171 2172
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2173 2174
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2175 2176 2177 2178 2179 2180 2181 2182
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2183 2184 2185

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2186
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2187 2188 2189
	return pulled;
}

I
Ingo Molnar 已提交
2190
/*
P
Peter Williams 已提交
2191 2192 2193
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2194 2195 2196 2197
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2198
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2199 2200 2201 2202
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2203
	unsigned long total_load_moved = 0;
2204
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2205 2206

	do {
P
Peter Williams 已提交
2207 2208 2209
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2210
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2211
		class = class->next;
P
Peter Williams 已提交
2212
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2213

P
Peter Williams 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct sched_class *class;
2228
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2229 2230 2231

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2232 2233
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2234 2235 2236
			return 1;

	return 0;
I
Ingo Molnar 已提交
2237 2238
}

L
Linus Torvalds 已提交
2239 2240
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2241 2242
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2243 2244 2245
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2246 2247
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2248 2249 2250
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2251
	unsigned long max_pull;
2252 2253
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2254
	int load_idx;
2255 2256 2257 2258 2259 2260
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2261 2262

	max_load = this_load = total_load = total_pwr = 0;
2263 2264
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2265
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2266
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2267
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2268 2269 2270
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2271 2272

	do {
2273
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2274 2275
		int local_group;
		int i;
2276
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2277
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2278 2279 2280

		local_group = cpu_isset(this_cpu, group->cpumask);

2281 2282 2283
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2284
		/* Tally up the load of all CPUs in the group */
2285
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2286 2287

		for_each_cpu_mask(i, group->cpumask) {
2288 2289 2290 2291 2292 2293
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2294

2295
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2296 2297
				*sd_idle = 0;

L
Linus Torvalds 已提交
2298
			/* Bias balancing toward cpus of our domain */
2299 2300 2301 2302 2303 2304
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2305
				load = target_load(i, load_idx);
2306
			} else
N
Nick Piggin 已提交
2307
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2308 2309

			avg_load += load;
2310
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2311
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2312 2313
		}

2314 2315 2316
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2317 2318
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2319
		 */
2320 2321
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2322 2323 2324 2325
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2326
		total_load += avg_load;
2327
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2328 2329

		/* Adjust by relative CPU power of the group */
2330 2331
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2332

2333
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2334

L
Linus Torvalds 已提交
2335 2336 2337
		if (local_group) {
			this_load = avg_load;
			this = group;
2338 2339 2340
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2341
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2342 2343
			max_load = avg_load;
			busiest = group;
2344 2345
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2346
		}
2347 2348 2349 2350 2351 2352

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2353 2354 2355
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2356 2357 2358 2359 2360 2361 2362 2363 2364

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2365
		/*
2366 2367
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2368 2369
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2370
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2371
			goto group_next;
2372

I
Ingo Molnar 已提交
2373
		/*
2374
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2375 2376 2377 2378 2379
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2380 2381
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2382 2383
			group_min = group;
			min_nr_running = sum_nr_running;
2384 2385
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2386
		}
2387

I
Ingo Molnar 已提交
2388
		/*
2389
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2401
		}
2402 2403
group_next:
#endif
L
Linus Torvalds 已提交
2404 2405 2406
		group = group->next;
	} while (group != sd->groups);

2407
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2408 2409 2410 2411 2412 2413 2414 2415
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2416
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2440 2441

	/* Don't want to pull so many tasks that a group would go idle */
2442
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2443

L
Linus Torvalds 已提交
2444
	/* How much load to actually move to equalise the imbalance */
2445 2446
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2447 2448
			/ SCHED_LOAD_SCALE;

2449 2450 2451 2452 2453 2454
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2455
	if (*imbalance < busiest_load_per_task) {
2456
		unsigned long tmp, pwr_now, pwr_move;
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2468

I
Ingo Molnar 已提交
2469 2470
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2471
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2472 2473 2474 2475 2476 2477 2478 2479 2480
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2481 2482 2483 2484
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2485 2486 2487
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2488 2489
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2490
		if (max_load > tmp)
2491
			pwr_move += busiest->__cpu_power *
2492
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2493 2494

		/* Amount of load we'd add */
2495
		if (max_load * busiest->__cpu_power <
2496
				busiest_load_per_task * SCHED_LOAD_SCALE)
2497 2498
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2499
		else
2500 2501 2502 2503
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2504 2505 2506
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2507 2508
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2509 2510 2511 2512 2513
	}

	return busiest;

out_balanced:
2514
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2515
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2516
		goto ret;
L
Linus Torvalds 已提交
2517

2518 2519 2520 2521 2522
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2523
ret:
L
Linus Torvalds 已提交
2524 2525 2526 2527 2528 2529 2530
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2531
static struct rq *
I
Ingo Molnar 已提交
2532
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2533
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2534
{
2535
	struct rq *busiest = NULL, *rq;
2536
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2537 2538 2539
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2540
		unsigned long wl;
2541 2542 2543 2544

		if (!cpu_isset(i, *cpus))
			continue;

2545
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2546
		wl = weighted_cpuload(i);
2547

I
Ingo Molnar 已提交
2548
		if (rq->nr_running == 1 && wl > imbalance)
2549
			continue;
L
Linus Torvalds 已提交
2550

I
Ingo Molnar 已提交
2551 2552
		if (wl > max_load) {
			max_load = wl;
2553
			busiest = rq;
L
Linus Torvalds 已提交
2554 2555 2556 2557 2558 2559
		}
	}

	return busiest;
}

2560 2561 2562 2563 2564 2565
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2566 2567 2568 2569
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2570
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2571
			struct sched_domain *sd, enum cpu_idle_type idle,
2572
			int *balance)
L
Linus Torvalds 已提交
2573
{
P
Peter Williams 已提交
2574
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2575 2576
	struct sched_group *group;
	unsigned long imbalance;
2577
	struct rq *busiest;
2578
	cpumask_t cpus = CPU_MASK_ALL;
2579
	unsigned long flags;
N
Nick Piggin 已提交
2580

2581 2582 2583
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2584
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2585
	 * portraying it as CPU_NOT_IDLE.
2586
	 */
I
Ingo Molnar 已提交
2587
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2588
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2589
		sd_idle = 1;
L
Linus Torvalds 已提交
2590 2591 2592

	schedstat_inc(sd, lb_cnt[idle]);

2593 2594
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2595 2596
				   &cpus, balance);

2597
	if (*balance == 0)
2598 2599
		goto out_balanced;

L
Linus Torvalds 已提交
2600 2601 2602 2603 2604
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2605
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2606 2607 2608 2609 2610
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2611
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2612 2613 2614

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2615
	ld_moved = 0;
L
Linus Torvalds 已提交
2616 2617 2618 2619
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2620
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2621 2622
		 * correctly treated as an imbalance.
		 */
2623
		local_irq_save(flags);
N
Nick Piggin 已提交
2624
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2625
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2626
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2627
		double_rq_unlock(this_rq, busiest);
2628
		local_irq_restore(flags);
2629

2630 2631 2632
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2633
		if (ld_moved && this_cpu != smp_processor_id())
2634 2635
			resched_cpu(this_cpu);

2636
		/* All tasks on this runqueue were pinned by CPU affinity */
2637 2638 2639 2640
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2641
			goto out_balanced;
2642
		}
L
Linus Torvalds 已提交
2643
	}
2644

P
Peter Williams 已提交
2645
	if (!ld_moved) {
L
Linus Torvalds 已提交
2646 2647 2648 2649 2650
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2651
			spin_lock_irqsave(&busiest->lock, flags);
2652 2653 2654 2655 2656

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2657
				spin_unlock_irqrestore(&busiest->lock, flags);
2658 2659 2660 2661
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2662 2663 2664
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2665
				active_balance = 1;
L
Linus Torvalds 已提交
2666
			}
2667
			spin_unlock_irqrestore(&busiest->lock, flags);
2668
			if (active_balance)
L
Linus Torvalds 已提交
2669 2670 2671 2672 2673 2674
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2675
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2676
		}
2677
	} else
L
Linus Torvalds 已提交
2678 2679
		sd->nr_balance_failed = 0;

2680
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2681 2682
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2683 2684 2685 2686 2687 2688 2689 2690 2691
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2692 2693
	}

P
Peter Williams 已提交
2694
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2695
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2696
		return -1;
P
Peter Williams 已提交
2697
	return ld_moved;
L
Linus Torvalds 已提交
2698 2699 2700 2701

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2702
	sd->nr_balance_failed = 0;
2703 2704

out_one_pinned:
L
Linus Torvalds 已提交
2705
	/* tune up the balancing interval */
2706 2707
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2708 2709
		sd->balance_interval *= 2;

2710
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2711
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2712
		return -1;
L
Linus Torvalds 已提交
2713 2714 2715 2716 2717 2718 2719
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2720
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2721 2722
 * this_rq is locked.
 */
2723
static int
2724
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2725 2726
{
	struct sched_group *group;
2727
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2728
	unsigned long imbalance;
P
Peter Williams 已提交
2729
	int ld_moved = 0;
N
Nick Piggin 已提交
2730
	int sd_idle = 0;
2731
	int all_pinned = 0;
2732
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2733

2734 2735 2736 2737
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2738
	 * portraying it as CPU_NOT_IDLE.
2739 2740 2741
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2742
		sd_idle = 1;
L
Linus Torvalds 已提交
2743

I
Ingo Molnar 已提交
2744
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2745
redo:
I
Ingo Molnar 已提交
2746
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2747
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2748
	if (!group) {
I
Ingo Molnar 已提交
2749
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2750
		goto out_balanced;
L
Linus Torvalds 已提交
2751 2752
	}

I
Ingo Molnar 已提交
2753
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2754
				&cpus);
N
Nick Piggin 已提交
2755
	if (!busiest) {
I
Ingo Molnar 已提交
2756
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2757
		goto out_balanced;
L
Linus Torvalds 已提交
2758 2759
	}

N
Nick Piggin 已提交
2760 2761
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2762
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2763

P
Peter Williams 已提交
2764
	ld_moved = 0;
2765 2766 2767
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2768 2769
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2770
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2771 2772
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2773
		spin_unlock(&busiest->lock);
2774

2775
		if (unlikely(all_pinned)) {
2776 2777 2778 2779
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2780 2781
	}

P
Peter Williams 已提交
2782
	if (!ld_moved) {
I
Ingo Molnar 已提交
2783
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2784 2785
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2786 2787
			return -1;
	} else
2788
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2789

P
Peter Williams 已提交
2790
	return ld_moved;
2791 2792

out_balanced:
I
Ingo Molnar 已提交
2793
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2794
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2795
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2796
		return -1;
2797
	sd->nr_balance_failed = 0;
2798

2799
	return 0;
L
Linus Torvalds 已提交
2800 2801 2802 2803 2804 2805
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2806
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2807 2808
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2809 2810
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2811 2812

	for_each_domain(this_cpu, sd) {
2813 2814 2815 2816 2817 2818
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2819
			/* If we've pulled tasks over stop searching: */
2820
			pulled_task = load_balance_newidle(this_cpu,
2821 2822 2823 2824 2825 2826 2827
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2828
	}
I
Ingo Molnar 已提交
2829
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2830 2831 2832 2833 2834
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2835
	}
L
Linus Torvalds 已提交
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2846
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2847
{
2848
	int target_cpu = busiest_rq->push_cpu;
2849 2850
	struct sched_domain *sd;
	struct rq *target_rq;
2851

2852
	/* Is there any task to move? */
2853 2854 2855 2856
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2857 2858

	/*
2859 2860 2861
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2862
	 */
2863
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2864

2865 2866
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2867 2868
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2869 2870

	/* Search for an sd spanning us and the target CPU. */
2871
	for_each_domain(target_cpu, sd) {
2872
		if ((sd->flags & SD_LOAD_BALANCE) &&
2873
		    cpu_isset(busiest_cpu, sd->span))
2874
				break;
2875
	}
2876

2877 2878
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2879

P
Peter Williams 已提交
2880 2881
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2882 2883 2884 2885
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2886
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2887 2888
}

2889 2890 2891 2892 2893 2894 2895 2896 2897
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2898
/*
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2909
 *
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
2966 2967 2968 2969 2970
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
2971
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
2972
{
2973 2974
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
2975 2976
	unsigned long interval;
	struct sched_domain *sd;
2977
	/* Earliest time when we have to do rebalance again */
2978
	unsigned long next_balance = jiffies + 60*HZ;
2979
	int update_next_balance = 0;
L
Linus Torvalds 已提交
2980

2981
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
2982 2983 2984 2985
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
2986
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
2987 2988 2989 2990 2991 2992
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
2993 2994 2995
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
2996

2997 2998 2999 3000 3001
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3002
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3003
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3004 3005
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3006 3007 3008
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3009
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3010
			}
3011
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3012
		}
3013 3014 3015
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3016
		if (time_after(next_balance, sd->last_balance + interval)) {
3017
			next_balance = sd->last_balance + interval;
3018 3019
			update_next_balance = 1;
		}
3020 3021 3022 3023 3024 3025 3026 3027

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3028
	}
3029 3030 3031 3032 3033 3034 3035 3036

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3037 3038 3039 3040 3041 3042 3043 3044 3045
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3046 3047 3048 3049
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3050

I
Ingo Molnar 已提交
3051
	rebalance_domains(this_cpu, idle);
3052 3053 3054 3055 3056 3057 3058

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3059 3060
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3061 3062 3063 3064
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3065
		cpu_clear(this_cpu, cpus);
3066 3067 3068 3069 3070 3071 3072 3073 3074
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3075
			rebalance_domains(balance_cpu, CPU_IDLE);
3076 3077

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3078 3079
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3092
static inline void trigger_load_balance(struct rq *rq, int cpu)
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3144
}
I
Ingo Molnar 已提交
3145 3146 3147

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3148 3149 3150
/*
 * on UP we do not need to balance between CPUs:
 */
3151
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3152 3153
{
}
I
Ingo Molnar 已提交
3154 3155 3156 3157 3158 3159

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3160
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3161 3162 3163 3164 3165 3166
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3167 3168 3169 3170 3171 3172 3173
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3174 3175
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3176
 */
3177
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3178 3179
{
	unsigned long flags;
3180 3181
	u64 ns, delta_exec;
	struct rq *rq;
3182

3183 3184 3185
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3186 3187
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3188 3189 3190 3191
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3192

L
Linus Torvalds 已提交
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3227
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3257
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3280
	struct task_struct *curr = rq->curr;
3281
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3282 3283

	spin_lock(&rq->lock);
3284
	__update_rq_clock(rq);
3285 3286 3287 3288 3289 3290
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3291
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3292 3293 3294
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3295

3296
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3297 3298
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3299
#endif
L
Linus Torvalds 已提交
3300 3301 3302 3303 3304 3305 3306 3307 3308
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3309 3310
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3311 3312 3313 3314
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3315 3316
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3317 3318 3319 3320 3321 3322 3323 3324
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3325 3326
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3327 3328 3329
	/*
	 * Is the spinlock portion underflowing?
	 */
3330 3331 3332 3333
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3334 3335 3336 3337 3338 3339 3340
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3341
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3342
 */
I
Ingo Molnar 已提交
3343
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3344
{
I
Ingo Molnar 已提交
3345 3346 3347 3348 3349 3350 3351
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3352

I
Ingo Molnar 已提交
3353 3354 3355 3356 3357
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3358 3359 3360 3361 3362
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3363 3364 3365
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3366 3367
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3368 3369 3370 3371 3372 3373 3374
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3375
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3376 3377 3378
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3379 3380

	/*
I
Ingo Molnar 已提交
3381 3382
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3383
	 */
I
Ingo Molnar 已提交
3384
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3385
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3386 3387
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3388 3389
	}

I
Ingo Molnar 已提交
3390 3391
	class = sched_class_highest;
	for ( ; ; ) {
3392
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3393 3394 3395 3396 3397 3398 3399 3400 3401
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3402

I
Ingo Molnar 已提交
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3425 3426

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3427
	clear_tsk_need_resched(prev);
I
Ingo Molnar 已提交
3428
	__update_rq_clock(rq);
L
Linus Torvalds 已提交
3429 3430 3431

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3432
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3433
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3434
		} else {
3435
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3436
		}
I
Ingo Molnar 已提交
3437
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3438 3439
	}

I
Ingo Molnar 已提交
3440
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3441 3442
		idle_balance(cpu, rq);

3443
	prev->sched_class->put_prev_task(rq, prev);
3444
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3445 3446

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3447

L
Linus Torvalds 已提交
3448 3449 3450 3451 3452
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3453
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3454 3455 3456
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3457 3458 3459
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3460
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3461
	}
L
Linus Torvalds 已提交
3462 3463 3464 3465 3466 3467 3468 3469
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3470
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3485
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3513
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3525
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3555 3556
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3557
{
3558
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3574
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3575

3576
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3577 3578
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3579
		if (curr->func(curr, mode, sync, key) &&
3580
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3581 3582 3583 3584 3585 3586 3587 3588 3589
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3590
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3591 3592
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3593
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3612
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3624 3625
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3669

L
Linus Torvalds 已提交
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3788 3789 3790 3791 3792
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3793
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3794
}
L
Linus Torvalds 已提交
3795

I
Ingo Molnar 已提交
3796 3797 3798 3799 3800 3801 3802
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3803

I
Ingo Molnar 已提交
3804
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3805
{
I
Ingo Molnar 已提交
3806 3807 3808 3809
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3810 3811 3812

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3813
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3814
	schedule();
I
Ingo Molnar 已提交
3815
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3816 3817 3818
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3819
long __sched
I
Ingo Molnar 已提交
3820
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3821
{
I
Ingo Molnar 已提交
3822 3823 3824 3825
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3826 3827 3828

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3829
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3830
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3831
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3832 3833 3834 3835 3836

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3837
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3838
{
I
Ingo Molnar 已提交
3839 3840 3841 3842
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3843 3844 3845

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3846
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3847
	schedule();
I
Ingo Molnar 已提交
3848
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3849 3850 3851
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3852
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3853
{
I
Ingo Molnar 已提交
3854 3855 3856 3857
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3858 3859 3860

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3861
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3862
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3863
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3864 3865 3866 3867 3868

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3881
void rt_mutex_setprio(struct task_struct *p, int prio)
3882 3883
{
	unsigned long flags;
I
Ingo Molnar 已提交
3884
	int oldprio, on_rq;
3885
	struct rq *rq;
3886 3887 3888 3889

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3890
	update_rq_clock(rq);
3891

3892
	oldprio = p->prio;
I
Ingo Molnar 已提交
3893 3894
	on_rq = p->se.on_rq;
	if (on_rq)
3895
		dequeue_task(rq, p, 0);
I
Ingo Molnar 已提交
3896 3897 3898 3899 3900 3901

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3902 3903
	p->prio = prio;

I
Ingo Molnar 已提交
3904
	if (on_rq) {
3905
		enqueue_task(rq, p, 0);
3906 3907
		/*
		 * Reschedule if we are currently running on this runqueue and
3908 3909
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3910
		 */
3911 3912 3913
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3914 3915 3916
		} else {
			check_preempt_curr(rq, p);
		}
3917 3918 3919 3920 3921 3922
	}
	task_rq_unlock(rq, &flags);
}

#endif

3923
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3924
{
I
Ingo Molnar 已提交
3925
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3926
	unsigned long flags;
3927
	struct rq *rq;
L
Linus Torvalds 已提交
3928 3929 3930 3931 3932 3933 3934 3935

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3936
	update_rq_clock(rq);
L
Linus Torvalds 已提交
3937 3938 3939 3940
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3941
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3942
	 */
3943
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3944 3945 3946
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3947 3948
	on_rq = p->se.on_rq;
	if (on_rq) {
3949
		dequeue_task(rq, p, 0);
3950
		dec_load(rq, p);
3951
	}
L
Linus Torvalds 已提交
3952 3953

	p->static_prio = NICE_TO_PRIO(nice);
3954
	set_load_weight(p);
3955 3956 3957
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3958

I
Ingo Molnar 已提交
3959
	if (on_rq) {
3960
		enqueue_task(rq, p, 0);
3961
		inc_load(rq, p);
L
Linus Torvalds 已提交
3962
		/*
3963 3964
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3965
		 */
3966
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3967 3968 3969 3970 3971 3972 3973
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3974 3975 3976 3977 3978
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3979
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3980
{
3981 3982
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3983

M
Matt Mackall 已提交
3984 3985 3986 3987
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
3999
	long nice, retval;
L
Linus Torvalds 已提交
4000 4001 4002 4003 4004 4005

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4006 4007
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4008 4009 4010 4011 4012 4013 4014 4015 4016
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4017 4018 4019
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4038
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4039 4040 4041 4042 4043 4044 4045 4046
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4047
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4066
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4067 4068 4069 4070 4071 4072 4073 4074
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4075
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4076 4077 4078 4079 4080
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4081 4082
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4083
{
I
Ingo Molnar 已提交
4084
	BUG_ON(p->se.on_rq);
4085

L
Linus Torvalds 已提交
4086
	p->policy = policy;
I
Ingo Molnar 已提交
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4099
	p->rt_priority = prio;
4100 4101 4102
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4103
	set_load_weight(p);
L
Linus Torvalds 已提交
4104 4105 4106
}

/**
4107
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4108 4109 4110
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4111
 *
4112
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4113
 */
I
Ingo Molnar 已提交
4114 4115
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4116
{
I
Ingo Molnar 已提交
4117
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4118
	unsigned long flags;
4119
	struct rq *rq;
L
Linus Torvalds 已提交
4120

4121 4122
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4123 4124 4125 4126 4127
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4128 4129
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4130
		return -EINVAL;
L
Linus Torvalds 已提交
4131 4132
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4133 4134
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4135 4136
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4137
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4138
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4139
		return -EINVAL;
4140
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4141 4142
		return -EINVAL;

4143 4144 4145 4146
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4147
		if (rt_policy(policy)) {
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4164 4165 4166 4167 4168 4169
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4170

4171 4172 4173 4174 4175
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4176 4177 4178 4179

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4180 4181 4182 4183 4184
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4185 4186 4187 4188
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4189
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4190 4191 4192
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4193 4194
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4195 4196
		goto recheck;
	}
I
Ingo Molnar 已提交
4197
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4198
	on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
4199
	if (on_rq)
4200
		deactivate_task(rq, p, 0);
L
Linus Torvalds 已提交
4201
	oldprio = p->prio;
I
Ingo Molnar 已提交
4202 4203 4204
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4205 4206
		/*
		 * Reschedule if we are currently running on this runqueue and
4207 4208
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4209
		 */
4210 4211 4212
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4213 4214 4215
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4216
	}
4217 4218 4219
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4220 4221
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4222 4223 4224 4225
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4226 4227
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4228 4229 4230
{
	struct sched_param lparam;
	struct task_struct *p;
4231
	int retval;
L
Linus Torvalds 已提交
4232 4233 4234 4235 4236

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4237 4238 4239

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4240
	p = find_process_by_pid(pid);
4241 4242 4243
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4244

L
Linus Torvalds 已提交
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4257 4258 4259 4260
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4280
	struct task_struct *p;
L
Linus Torvalds 已提交
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4308
	struct task_struct *p;
L
Linus Torvalds 已提交
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4343 4344
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4345

4346
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4347 4348 4349 4350 4351
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4352
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4369 4370 4371 4372
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4373 4374 4375 4376 4377 4378
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4379
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4420
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4421 4422 4423
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4424
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4425 4426
EXPORT_SYMBOL(cpu_online_map);

4427
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4428
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4429 4430 4431 4432
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4433
	struct task_struct *p;
L
Linus Torvalds 已提交
4434 4435
	int retval;

4436
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4437 4438 4439 4440 4441 4442 4443
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4444 4445 4446 4447
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4448
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4449 4450 4451

out_unlock:
	read_unlock(&tasklist_lock);
4452
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4453

4454
	return retval;
L
Linus Torvalds 已提交
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4485 4486
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4487 4488 4489
 */
asmlinkage long sys_sched_yield(void)
{
4490
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4491 4492

	schedstat_inc(rq, yld_cnt);
4493
	current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4494 4495 4496 4497 4498 4499

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4500
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4501 4502 4503 4504 4505 4506 4507 4508
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4509
static void __cond_resched(void)
L
Linus Torvalds 已提交
4510
{
4511 4512 4513
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4514 4515 4516 4517 4518
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4519 4520 4521 4522 4523 4524 4525 4526 4527
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4528 4529
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4545
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4546
{
J
Jan Kara 已提交
4547 4548
	int ret = 0;

L
Linus Torvalds 已提交
4549 4550 4551
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4552
		ret = 1;
L
Linus Torvalds 已提交
4553 4554
		spin_lock(lock);
	}
4555
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4556
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4557 4558 4559
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4560
		ret = 1;
L
Linus Torvalds 已提交
4561 4562
		spin_lock(lock);
	}
J
Jan Kara 已提交
4563
	return ret;
L
Linus Torvalds 已提交
4564 4565 4566 4567 4568 4569 4570
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4571
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4572
		local_bh_enable();
L
Linus Torvalds 已提交
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4584
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4603
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4604

4605
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4606 4607 4608
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4609
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4610 4611 4612 4613 4614
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4615
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4616 4617
	long ret;

4618
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4619 4620 4621
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4622
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4643
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4644
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4668
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4669
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4686
	struct task_struct *p;
L
Linus Torvalds 已提交
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4703
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4704
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4705 4706 4707 4708 4709 4710 4711 4712 4713
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4714
static const char stat_nam[] = "RSDTtZX";
4715 4716

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4717 4718
{
	unsigned long free = 0;
4719
	unsigned state;
L
Linus Torvalds 已提交
4720 4721

	state = p->state ? __ffs(p->state) + 1 : 0;
4722 4723
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4724
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4725
	if (state == TASK_RUNNING)
4726
		printk(" running  ");
L
Linus Torvalds 已提交
4727
	else
4728
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4729 4730
#else
	if (state == TASK_RUNNING)
4731
		printk("  running task    ");
L
Linus Torvalds 已提交
4732 4733 4734 4735 4736
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4737
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4738 4739
		while (!*n)
			n++;
4740
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4741 4742
	}
#endif
4743
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4744 4745 4746 4747 4748

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4749
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4750
{
4751
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4752

4753 4754 4755
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4756
#else
4757 4758
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4759 4760 4761 4762 4763 4764 4765 4766
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4767
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4768
			show_task(p);
L
Linus Torvalds 已提交
4769 4770
	} while_each_thread(g, p);

4771 4772
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4773 4774 4775
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4776
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4777 4778 4779 4780 4781
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4782 4783
}

I
Ingo Molnar 已提交
4784 4785
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4786
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4787 4788
}

4789 4790 4791 4792 4793 4794 4795 4796
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4797
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4798
{
4799
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4800 4801
	unsigned long flags;

I
Ingo Molnar 已提交
4802 4803 4804
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4805
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4806
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4807
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4808 4809 4810

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4811 4812 4813
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4814 4815 4816 4817
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4818
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4819
#else
A
Al Viro 已提交
4820
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4821
#endif
I
Ingo Molnar 已提交
4822 4823 4824 4825
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4841
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4863
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4864
{
4865
	struct migration_req req;
L
Linus Torvalds 已提交
4866
	unsigned long flags;
4867
	struct rq *rq;
4868
	int ret = 0;
L
Linus Torvalds 已提交
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4891

L
Linus Torvalds 已提交
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4904 4905
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4906
 */
4907
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4908
{
4909
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4910
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4911 4912

	if (unlikely(cpu_is_offline(dest_cpu)))
4913
		return ret;
L
Linus Torvalds 已提交
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4926
	on_rq = p->se.on_rq;
4927
	if (on_rq)
4928
		deactivate_task(rq_src, p, 0);
4929

L
Linus Torvalds 已提交
4930
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4931 4932 4933
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4934
	}
4935
	ret = 1;
L
Linus Torvalds 已提交
4936 4937
out:
	double_rq_unlock(rq_src, rq_dest);
4938
	return ret;
L
Linus Torvalds 已提交
4939 4940 4941 4942 4943 4944 4945
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4946
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4947 4948
{
	int cpu = (long)data;
4949
	struct rq *rq;
L
Linus Torvalds 已提交
4950 4951 4952 4953 4954 4955

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
4956
		struct migration_req *req;
L
Linus Torvalds 已提交
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
4979
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
4980 4981
		list_del_init(head->next);

N
Nick Piggin 已提交
4982 4983 4984
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5003 5004 5005 5006
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5007
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5008
{
5009
	unsigned long flags;
L
Linus Torvalds 已提交
5010
	cpumask_t mask;
5011 5012
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5013

5014
restart:
L
Linus Torvalds 已提交
5015 5016
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5017
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5018 5019 5020 5021
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5022
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5023 5024 5025

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5026 5027 5028
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5029
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5030 5031 5032 5033 5034 5035

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5036
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5037 5038
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5039
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5040
	}
5041
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5042
		goto restart;
L
Linus Torvalds 已提交
5043 5044 5045 5046 5047 5048 5049 5050 5051
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5052
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5053
{
5054
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5068
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5069 5070 5071

	write_lock_irq(&tasklist_lock);

5072 5073
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5074 5075
			continue;

5076 5077 5078
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5079 5080 5081 5082

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5083 5084
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5085
 * It does so by boosting its priority to highest possible and adding it to
5086
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5087 5088 5089
 */
void sched_idle_next(void)
{
5090
	int this_cpu = smp_processor_id();
5091
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5092 5093 5094 5095
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5096
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5097

5098 5099 5100
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5101 5102 5103
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5104
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5105 5106

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5107
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5108 5109 5110 5111

	spin_unlock_irqrestore(&rq->lock, flags);
}

5112 5113
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5127
/* called under rq->lock with disabled interrupts */
5128
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5129
{
5130
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5131 5132

	/* Must be exiting, otherwise would be on tasklist. */
5133
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5134 5135

	/* Cannot have done final schedule yet: would have vanished. */
5136
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5137

5138
	get_task_struct(p);
L
Linus Torvalds 已提交
5139 5140 5141 5142 5143

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5144
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5145
	 */
5146
	spin_unlock(&rq->lock);
5147
	move_task_off_dead_cpu(dead_cpu, p);
5148
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5149

5150
	put_task_struct(p);
L
Linus Torvalds 已提交
5151 5152 5153 5154 5155
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5156
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5157
	struct task_struct *next;
5158

I
Ingo Molnar 已提交
5159 5160 5161
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5162
		update_rq_clock(rq);
5163
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5164 5165 5166
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5167

L
Linus Torvalds 已提交
5168 5169 5170 5171
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5172 5173 5174
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5175 5176
	{
		.procname	= "sched_domain",
5177
		.mode		= 0555,
5178
	},
5179 5180 5181 5182
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5183
	{
5184
		.ctl_name	= CTL_KERN,
5185
		.procname	= "kernel",
5186
		.mode		= 0555,
5187 5188
		.child		= sd_ctl_dir,
	},
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
5204
set_table_entry(struct ctl_table *entry,
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
	struct ctl_table *table = sd_alloc_ctl_entry(14);

5220
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5221
		sizeof(long), 0644, proc_doulongvec_minmax);
5222
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5223
		sizeof(long), 0644, proc_doulongvec_minmax);
5224
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5225
		sizeof(int), 0644, proc_dointvec_minmax);
5226
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5227
		sizeof(int), 0644, proc_dointvec_minmax);
5228
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5229
		sizeof(int), 0644, proc_dointvec_minmax);
5230
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5231
		sizeof(int), 0644, proc_dointvec_minmax);
5232
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5233
		sizeof(int), 0644, proc_dointvec_minmax);
5234
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5235
		sizeof(int), 0644, proc_dointvec_minmax);
5236
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5237
		sizeof(int), 0644, proc_dointvec_minmax);
5238
	set_table_entry(&table[10], "cache_nice_tries",
5239 5240
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5241
	set_table_entry(&table[12], "flags", &sd->flags,
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5262
		entry->mode = 0555;
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5282
		entry->mode = 0555;
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5293 5294 5295 5296
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5297 5298
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5299 5300
{
	struct task_struct *p;
5301
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5302
	unsigned long flags;
5303
	struct rq *rq;
L
Linus Torvalds 已提交
5304 5305

	switch (action) {
5306 5307 5308 5309
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5310
	case CPU_UP_PREPARE:
5311
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5312
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5313 5314 5315 5316 5317
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5318
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5319 5320 5321
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5322

L
Linus Torvalds 已提交
5323
	case CPU_ONLINE:
5324
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5325 5326 5327
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5328

L
Linus Torvalds 已提交
5329 5330
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5331
	case CPU_UP_CANCELED_FROZEN:
5332 5333
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5334
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5335 5336
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5337 5338 5339
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5340

L
Linus Torvalds 已提交
5341
	case CPU_DEAD:
5342
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5343 5344 5345 5346 5347 5348
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5349
		update_rq_clock(rq);
5350
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5351
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5352 5353
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5354 5355 5356 5357 5358 5359
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5360
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5361 5362 5363
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5364 5365
			struct migration_req *req;

L
Linus Torvalds 已提交
5366
			req = list_entry(rq->migration_queue.next,
5367
					 struct migration_req, list);
L
Linus Torvalds 已提交
5368 5369 5370 5371 5372 5373
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5374 5375 5376
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5377 5378 5379 5380 5381 5382 5383
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5384
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5385 5386 5387 5388 5389 5390 5391
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5392
	int err;
5393 5394

	/* Start one for the boot CPU: */
5395 5396
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5397 5398
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5399

L
Linus Torvalds 已提交
5400 5401 5402 5403 5404
	return 0;
}
#endif

#ifdef CONFIG_SMP
5405 5406 5407 5408 5409

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5410
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5411 5412 5413 5414 5415
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5416 5417 5418 5419 5420
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5440 5441
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5442 5443 5444 5445 5446 5447
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5448 5449
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5450
		if (!cpu_isset(cpu, group->cpumask))
5451 5452
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5465
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5466
				printk("\n");
5467 5468
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5491 5492
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5493 5494 5495

		level++;
		sd = sd->parent;
5496 5497
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5498

5499 5500 5501
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5502 5503 5504 5505

	} while (sd);
}
#else
5506
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5507 5508
#endif

5509
static int sd_degenerate(struct sched_domain *sd)
5510 5511 5512 5513 5514 5515 5516 5517
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5518 5519 5520
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5534 5535
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5554 5555 5556
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5557 5558 5559 5560 5561 5562 5563
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5564 5565 5566 5567
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5568
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5569
{
5570
	struct rq *rq = cpu_rq(cpu);
5571 5572 5573 5574 5575 5576 5577
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5578
		if (sd_parent_degenerate(tmp, parent)) {
5579
			tmp->parent = parent->parent;
5580 5581 5582
			if (parent->parent)
				parent->parent->child = tmp;
		}
5583 5584
	}

5585
	if (sd && sd_degenerate(sd)) {
5586
		sd = sd->parent;
5587 5588 5589
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5590 5591 5592

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5593
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5594 5595 5596
}

/* cpus with isolated domains */
5597
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5615 5616 5617 5618
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5619 5620 5621 5622 5623
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5624
static void
5625 5626 5627
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5628 5629 5630 5631 5632 5633
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5634 5635
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5636 5637 5638 5639 5640 5641
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5642
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5643 5644

		for_each_cpu_mask(j, span) {
5645
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5660
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5661

5662
#ifdef CONFIG_NUMA
5663

5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5716 5717
	cpumask_t span, nodemask;
	int i;
5718 5719 5720 5721 5722 5723 5724 5725 5726 5727

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5728

5729 5730 5731 5732 5733 5734 5735 5736
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5737
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5738

5739
/*
5740
 * SMT sched-domains:
5741
 */
L
Linus Torvalds 已提交
5742 5743
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5744
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5745

5746 5747
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5748
{
5749 5750
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5751 5752 5753 5754
	return cpu;
}
#endif

5755 5756 5757
/*
 * multi-core sched-domains:
 */
5758 5759
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5760
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5761 5762 5763
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5764 5765
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5766
{
5767
	int group;
5768 5769
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5770 5771 5772 5773
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5774 5775
}
#elif defined(CONFIG_SCHED_MC)
5776 5777
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5778
{
5779 5780
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5781 5782 5783 5784
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5785
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5786
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5787

5788 5789
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5790
{
5791
	int group;
5792
#ifdef CONFIG_SCHED_MC
5793
	cpumask_t mask = cpu_coregroup_map(cpu);
5794
	cpus_and(mask, mask, *cpu_map);
5795
	group = first_cpu(mask);
5796
#elif defined(CONFIG_SCHED_SMT)
5797 5798
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5799
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5800
#else
5801
	group = cpu;
L
Linus Torvalds 已提交
5802
#endif
5803 5804 5805
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5806 5807 5808 5809
}

#ifdef CONFIG_NUMA
/*
5810 5811 5812
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5813
 */
5814
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5815
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5816

5817
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5818
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5819

5820 5821
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5822
{
5823 5824 5825 5826 5827 5828 5829 5830 5831
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5832
}
5833

5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5854
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5855 5856 5857 5858 5859
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5860 5861
#endif

5862
#ifdef CONFIG_NUMA
5863 5864 5865
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5866
	int cpu, i;
5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5897 5898 5899 5900 5901
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5902

5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5929 5930
	sd->groups->__cpu_power = 0;

5931 5932 5933 5934 5935 5936 5937 5938 5939 5940
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5941
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5942 5943 5944 5945 5946 5947 5948 5949
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5950
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5951 5952 5953 5954
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
5955
/*
5956 5957
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
5958
 */
5959
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
5960 5961
{
	int i;
5962 5963
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
5964
	int sd_allnodes = 0;
5965 5966 5967 5968

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
5969
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5970
					   GFP_KERNEL);
5971 5972
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
5973
		return -ENOMEM;
5974 5975 5976
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
5977 5978

	/*
5979
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
5980
	 */
5981
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5982 5983 5984
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

5985
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
5986 5987

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
5988 5989
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5990 5991 5992
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
5993
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
5994
			p = sd;
5995
			sd_allnodes = 1;
5996 5997 5998
		} else
			p = NULL;

L
Linus Torvalds 已提交
5999 6000
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6001 6002
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6003 6004
		if (p)
			p->child = sd;
6005
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6006 6007 6008 6009 6010 6011 6012
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6013 6014
		if (p)
			p->child = sd;
6015
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6016

6017 6018 6019 6020 6021 6022 6023
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6024
		p->child = sd;
6025
		cpu_to_core_group(i, cpu_map, &sd->groups);
6026 6027
#endif

L
Linus Torvalds 已提交
6028 6029 6030 6031 6032
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6033
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6034
		sd->parent = p;
6035
		p->child = sd;
6036
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6037 6038 6039 6040 6041
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6042
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6043
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6044
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6045 6046 6047
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6048 6049
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6050 6051 6052
	}
#endif

6053 6054 6055 6056 6057 6058 6059
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6060 6061
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6062 6063 6064
	}
#endif

L
Linus Torvalds 已提交
6065 6066 6067 6068
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6069
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6070 6071 6072
		if (cpus_empty(nodemask))
			continue;

6073
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6074 6075 6076 6077
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6078
	if (sd_allnodes)
I
Ingo Molnar 已提交
6079 6080
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6091 6092
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6093
			continue;
6094
		}
6095 6096 6097 6098

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6099
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6100 6101 6102 6103 6104
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6105 6106 6107
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6108

6109 6110 6111
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6112
		sg->__cpu_power = 0;
6113
		sg->cpumask = nodemask;
6114
		sg->next = sg;
6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6133 6134
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6135 6136 6137
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6138
				goto error;
6139
			}
6140
			sg->__cpu_power = 0;
6141
			sg->cpumask = tmp;
6142
			sg->next = prev->next;
6143 6144 6145 6146 6147
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6148 6149 6150
#endif

	/* Calculate CPU power for physical packages and nodes */
6151
#ifdef CONFIG_SCHED_SMT
6152
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6153 6154
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6155
		init_sched_groups_power(i, sd);
6156
	}
L
Linus Torvalds 已提交
6157
#endif
6158
#ifdef CONFIG_SCHED_MC
6159
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6160 6161
		struct sched_domain *sd = &per_cpu(core_domains, i);

6162
		init_sched_groups_power(i, sd);
6163 6164
	}
#endif
6165

6166
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6167 6168
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6169
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6170 6171
	}

6172
#ifdef CONFIG_NUMA
6173 6174
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6175

6176 6177
	if (sd_allnodes) {
		struct sched_group *sg;
6178

6179
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6180 6181
		init_numa_sched_groups_power(sg);
	}
6182 6183
#endif

L
Linus Torvalds 已提交
6184
	/* Attach the domains */
6185
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6186 6187 6188
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6189 6190
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6191 6192 6193 6194 6195
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6196 6197 6198

	return 0;

6199
#ifdef CONFIG_NUMA
6200 6201 6202
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6203
#endif
L
Linus Torvalds 已提交
6204
}
6205 6206 6207
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6208
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6209 6210
{
	cpumask_t cpu_default_map;
6211
	int err;
L
Linus Torvalds 已提交
6212

6213 6214 6215 6216 6217 6218 6219
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6220 6221 6222
	err = build_sched_domains(&cpu_default_map);

	return err;
6223 6224 6225
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6226
{
6227
	free_sched_groups(cpu_map);
6228
}
L
Linus Torvalds 已提交
6229

6230 6231 6232 6233
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6234
static void detach_destroy_domains(const cpumask_t *cpu_map)
6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6252
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6253 6254
{
	cpumask_t change_map;
6255
	int err = 0;
6256 6257 6258 6259 6260 6261 6262 6263

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6264 6265 6266 6267 6268
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6269 6270
}

6271
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6272
static int arch_reinit_sched_domains(void)
6273 6274 6275
{
	int err;

6276
	mutex_lock(&sched_hotcpu_mutex);
6277 6278
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6279
	mutex_unlock(&sched_hotcpu_mutex);
6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6306 6307
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6308 6309 6310
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6311 6312
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6313 6314 6315 6316 6317 6318 6319
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6320 6321
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6322 6323 6324
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6345 6346
#endif

L
Linus Torvalds 已提交
6347 6348 6349
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6350
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6351 6352 6353 6354 6355 6356 6357
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6358
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6359
	case CPU_DOWN_PREPARE:
6360
	case CPU_DOWN_PREPARE_FROZEN:
6361
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6362 6363 6364
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6365
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6366
	case CPU_DOWN_FAILED:
6367
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6368
	case CPU_ONLINE:
6369
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6370
	case CPU_DEAD:
6371
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6372 6373 6374 6375 6376 6377 6378 6379 6380
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6381
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6382 6383 6384 6385 6386 6387

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6388 6389
	cpumask_t non_isolated_cpus;

6390
	mutex_lock(&sched_hotcpu_mutex);
6391
	arch_init_sched_domains(&cpu_online_map);
6392
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6393 6394
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6395
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6396 6397
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6398

6399 6400
	init_sched_domain_sysctl();

6401 6402 6403
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6415

L
Linus Torvalds 已提交
6416 6417 6418 6419 6420
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6421 6422 6423 6424 6425 6426 6427 6428 6429
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->fair_clock = 1;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6430 6431
void __init sched_init(void)
{
6432
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6433 6434 6435 6436 6437 6438 6439 6440
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6441

6442
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6443
		struct rt_prio_array *array;
6444
		struct rq *rq;
L
Linus Torvalds 已提交
6445 6446 6447

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6448
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6449
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6450 6451 6452 6453 6454 6455
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
L
Linus Torvalds 已提交
6456

I
Ingo Molnar 已提交
6457 6458
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6459
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6460
		rq->sd = NULL;
L
Linus Torvalds 已提交
6461
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6462
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6463
		rq->push_cpu = 0;
6464
		rq->cpu = i;
L
Linus Torvalds 已提交
6465 6466 6467 6468 6469
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6470 6471 6472 6473
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6474
		}
6475
		highest_cpu = i;
I
Ingo Molnar 已提交
6476 6477
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6478 6479
	}

6480
	set_load_weight(&init_task);
6481

6482 6483 6484 6485
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6486
#ifdef CONFIG_SMP
6487
	nr_cpu_ids = highest_cpu + 1;
6488 6489 6490
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6491 6492 6493 6494
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6508 6509 6510 6511
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6512 6513 6514 6515 6516
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6517
#ifdef in_atomic
L
Linus Torvalds 已提交
6518 6519 6520 6521 6522 6523 6524
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6525
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6526 6527 6528
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6529
		debug_show_held_locks(current);
6530 6531
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6542
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6543
	unsigned long flags;
6544
	struct rq *rq;
I
Ingo Molnar 已提交
6545
	int on_rq;
L
Linus Torvalds 已提交
6546 6547

	read_lock_irq(&tasklist_lock);
6548
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6549 6550
		p->se.fair_key			= 0;
		p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
6551
		p->se.exec_start		= 0;
I
Ingo Molnar 已提交
6552
		p->se.wait_start_fair		= 0;
I
Ingo Molnar 已提交
6553 6554
		p->se.sleep_start_fair		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6555 6556 6557
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6558
#endif
I
Ingo Molnar 已提交
6559 6560 6561 6562 6563 6564 6565 6566 6567 6568
		task_rq(p)->cfs.fair_clock	= 0;
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6569
			continue;
I
Ingo Molnar 已提交
6570
		}
L
Linus Torvalds 已提交
6571

6572 6573
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6574 6575 6576 6577 6578 6579 6580
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6581

I
Ingo Molnar 已提交
6582
		update_rq_clock(rq);
I
Ingo Molnar 已提交
6583
		on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
6584 6585
		if (on_rq)
			deactivate_task(rq, p, 0);
I
Ingo Molnar 已提交
6586 6587
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
I
Ingo Molnar 已提交
6588
			activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6589 6590
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6591 6592 6593
#ifdef CONFIG_SMP
 out_unlock:
#endif
6594 6595
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6596 6597
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6598 6599 6600 6601
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6620
struct task_struct *curr_task(int cpu)
6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6640
void set_curr_task(int cpu, struct task_struct *p)
6641 6642 6643 6644 6645
{
	cpu_curr(cpu) = p;
}

#endif