i915_gem.c 135.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41 42
#define RQ_BUG_ON(expr)

43
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45
static void
46 47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 50 51 52 53 54
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

55 56 57 58 59 60
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

61 62 63 64 65 66 67 68
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

69 70 71 72 73 74 75 76
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
77
	obj->fence_dirty = false;
78 79 80
	obj->fence_reg = I915_FENCE_REG_NONE;
}

81 82 83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
85
	spin_lock(&dev_priv->mm.object_stat_lock);
86 87
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
88
	spin_unlock(&dev_priv->mm.object_stat_lock);
89 90 91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99
}

100
static int
101
i915_gem_wait_for_error(struct i915_gpu_error *error)
102 103 104
{
	int ret;

105 106
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
107
	if (EXIT_COND)
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115 116 117
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123
	}
124
#undef EXIT_COND
125

126
	return 0;
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_i915_gem_get_aperture *args = data;
152 153
	struct drm_i915_gem_object *obj;
	size_t pinned;
154

155
	pinned = 0;
156
	mutex_lock(&dev->struct_mutex);
157
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
158
		if (i915_gem_obj_is_pinned(obj))
159
			pinned += i915_gem_obj_ggtt_size(obj);
160
	mutex_unlock(&dev->struct_mutex);
161

162
	args->aper_size = dev_priv->gtt.base.total;
163
	args->aper_available_size = args->aper_size - pinned;
164

165 166 167
	return 0;
}

168 169
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170
{
171 172 173 174 175
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227 228 229 230 231 232 233 234 235 236 237 238 239
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			page_cache_release(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342 343
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(dev);
372 373 374 375

out:
	intel_fb_obj_flush(obj, false);
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385 386
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_alloc_object(dev, size);
406 407 408
	if (obj == NULL)
		return -ENOMEM;

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432 433 434 435 436 437 438
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
439

440
	return i915_gem_create(file, dev,
441
			       args->size, &args->handle);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

470
static inline int
471 472
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

532 533 534
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
535
static int
536 537 538 539 540 541 542
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

543
	if (unlikely(page_do_bit17_swizzling))
544 545 546 547 548 549 550 551 552 553 554
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

555
	return ret ? -EFAULT : 0;
556 557
}

558 559 560 561
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
562
	if (unlikely(swizzled)) {
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

580 581 582 583 584 585 586 587 588 589 590 591
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
592 593 594
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
595 596 597 598 599 600 601 602 603 604 605

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

606
	return ret ? - EFAULT : 0;
607 608
}

609
static int
610 611 612 613
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
614
{
615
	char __user *user_data;
616
	ssize_t remain;
617
	loff_t offset;
618
	int shmem_page_offset, page_length, ret = 0;
619
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620
	int prefaulted = 0;
621
	int needs_clflush = 0;
622
	struct sg_page_iter sg_iter;
623

V
Ville Syrjälä 已提交
624
	user_data = to_user_ptr(args->data_ptr);
625 626
	remain = args->size;

627
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628

629
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630 631 632
	if (ret)
		return ret;

633
	offset = args->offset;
634

635 636
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
637
		struct page *page = sg_page_iter_page(&sg_iter);
638 639 640 641

		if (remain <= 0)
			break;

642 643 644 645 646
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
647
		shmem_page_offset = offset_in_page(offset);
648 649 650 651
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

652 653 654
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

655 656 657 658 659
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
660 661 662

		mutex_unlock(&dev->struct_mutex);

663
		if (likely(!i915.prefault_disable) && !prefaulted) {
664
			ret = fault_in_multipages_writeable(user_data, remain);
665 666 667 668 669 670 671
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
672

673 674 675
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
676

677
		mutex_lock(&dev->struct_mutex);
678 679

		if (ret)
680 681
			goto out;

682
next_page:
683
		remain -= page_length;
684
		user_data += page_length;
685 686 687
		offset += page_length;
	}

688
out:
689 690
	i915_gem_object_unpin_pages(obj);

691 692 693
	return ret;
}

694 695 696 697 698 699 700
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
701
		     struct drm_file *file)
702 703
{
	struct drm_i915_gem_pread *args = data;
704
	struct drm_i915_gem_object *obj;
705
	int ret = 0;
706

707 708 709 710
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
711
		       to_user_ptr(args->data_ptr),
712 713 714
		       args->size))
		return -EFAULT;

715
	ret = i915_mutex_lock_interruptible(dev);
716
	if (ret)
717
		return ret;
718

719
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
720
	if (&obj->base == NULL) {
721 722
		ret = -ENOENT;
		goto unlock;
723
	}
724

725
	/* Bounds check source.  */
726 727
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
728
		ret = -EINVAL;
729
		goto out;
C
Chris Wilson 已提交
730 731
	}

732 733 734 735 736 737 738 739
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
740 741
	trace_i915_gem_object_pread(obj, args->offset, args->size);

742
	ret = i915_gem_shmem_pread(dev, obj, args, file);
743

744
out:
745
	drm_gem_object_unreference(&obj->base);
746
unlock:
747
	mutex_unlock(&dev->struct_mutex);
748
	return ret;
749 750
}

751 752
/* This is the fast write path which cannot handle
 * page faults in the source data
753
 */
754 755 756 757 758 759

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
760
{
761 762
	void __iomem *vaddr_atomic;
	void *vaddr;
763
	unsigned long unwritten;
764

P
Peter Zijlstra 已提交
765
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
766 767 768
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
769
						      user_data, length);
P
Peter Zijlstra 已提交
770
	io_mapping_unmap_atomic(vaddr_atomic);
771
	return unwritten;
772 773
}

774 775 776 777
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
778
static int
779 780
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
781
			 struct drm_i915_gem_pwrite *args,
782
			 struct drm_file *file)
783
{
784
	struct drm_i915_private *dev_priv = dev->dev_private;
785
	ssize_t remain;
786
	loff_t offset, page_base;
787
	char __user *user_data;
D
Daniel Vetter 已提交
788 789
	int page_offset, page_length, ret;

790
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
791 792 793 794 795 796 797 798 799 800
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
801

V
Ville Syrjälä 已提交
802
	user_data = to_user_ptr(args->data_ptr);
803 804
	remain = args->size;

805
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
806

807 808
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);

809 810 811
	while (remain > 0) {
		/* Operation in this page
		 *
812 813 814
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
815
		 */
816 817
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
818 819 820 821 822
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
823 824
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
825
		 */
B
Ben Widawsky 已提交
826
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
827 828
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
829
			goto out_flush;
D
Daniel Vetter 已提交
830
		}
831

832 833 834
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
835 836
	}

837 838
out_flush:
	intel_fb_obj_flush(obj, false);
D
Daniel Vetter 已提交
839
out_unpin:
B
Ben Widawsky 已提交
840
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
841
out:
842
	return ret;
843 844
}

845 846 847 848
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
849
static int
850 851 852 853 854
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
855
{
856
	char *vaddr;
857
	int ret;
858

859
	if (unlikely(page_do_bit17_swizzling))
860
		return -EINVAL;
861

862 863 864 865
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
866 867
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
868 869 870 871
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
872

873
	return ret ? -EFAULT : 0;
874 875
}

876 877
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
878
static int
879 880 881 882 883
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
884
{
885 886
	char *vaddr;
	int ret;
887

888
	vaddr = kmap(page);
889
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
890 891 892
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
893 894
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
895 896
						user_data,
						page_length);
897 898 899 900 901
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
902 903 904
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
905
	kunmap(page);
906

907
	return ret ? -EFAULT : 0;
908 909 910
}

static int
911 912 913 914
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
915 916
{
	ssize_t remain;
917 918
	loff_t offset;
	char __user *user_data;
919
	int shmem_page_offset, page_length, ret = 0;
920
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
921
	int hit_slowpath = 0;
922 923
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
924
	struct sg_page_iter sg_iter;
925

V
Ville Syrjälä 已提交
926
	user_data = to_user_ptr(args->data_ptr);
927 928
	remain = args->size;

929
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
930

931 932 933 934 935
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
936
		needs_clflush_after = cpu_write_needs_clflush(obj);
937 938 939
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
940
	}
941 942 943 944 945
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
946

947 948 949 950
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

951 952
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);

953 954
	i915_gem_object_pin_pages(obj);

955
	offset = args->offset;
956
	obj->dirty = 1;
957

958 959
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
960
		struct page *page = sg_page_iter_page(&sg_iter);
961
		int partial_cacheline_write;
962

963 964 965
		if (remain <= 0)
			break;

966 967 968 969 970
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
971
		shmem_page_offset = offset_in_page(offset);
972 973 974 975 976

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

977 978 979 980 981 982 983
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

984 985 986
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

987 988 989 990 991 992
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
993 994 995

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
996 997 998 999
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1000

1001
		mutex_lock(&dev->struct_mutex);
1002 1003

		if (ret)
1004 1005
			goto out;

1006
next_page:
1007
		remain -= page_length;
1008
		user_data += page_length;
1009
		offset += page_length;
1010 1011
	}

1012
out:
1013 1014
	i915_gem_object_unpin_pages(obj);

1015
	if (hit_slowpath) {
1016 1017 1018 1019 1020 1021 1022
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1023 1024
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1025
		}
1026
	}
1027

1028
	if (needs_clflush_after)
1029
		i915_gem_chipset_flush(dev);
1030

1031
	intel_fb_obj_flush(obj, false);
1032
	return ret;
1033 1034 1035 1036 1037 1038 1039 1040 1041
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042
		      struct drm_file *file)
1043
{
1044
	struct drm_i915_private *dev_priv = dev->dev_private;
1045
	struct drm_i915_gem_pwrite *args = data;
1046
	struct drm_i915_gem_object *obj;
1047 1048 1049 1050 1051 1052
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1053
		       to_user_ptr(args->data_ptr),
1054 1055 1056
		       args->size))
		return -EFAULT;

1057
	if (likely(!i915.prefault_disable)) {
1058 1059 1060 1061 1062
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1063

1064 1065
	intel_runtime_pm_get(dev_priv);

1066
	ret = i915_mutex_lock_interruptible(dev);
1067
	if (ret)
1068
		goto put_rpm;
1069

1070
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071
	if (&obj->base == NULL) {
1072 1073
		ret = -ENOENT;
		goto unlock;
1074
	}
1075

1076
	/* Bounds check destination. */
1077 1078
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1079
		ret = -EINVAL;
1080
		goto out;
C
Chris Wilson 已提交
1081 1082
	}

1083 1084 1085 1086 1087 1088 1089 1090
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1091 1092
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1093
	ret = -EFAULT;
1094 1095 1096 1097 1098 1099
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1100 1101 1102
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1103
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1104 1105 1106
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1107
	}
1108

1109 1110 1111 1112 1113 1114
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1115

1116
out:
1117
	drm_gem_object_unreference(&obj->base);
1118
unlock:
1119
	mutex_unlock(&dev->struct_mutex);
1120 1121 1122
put_rpm:
	intel_runtime_pm_put(dev_priv);

1123 1124 1125
	return ret;
}

1126
int
1127
i915_gem_check_wedge(struct i915_gpu_error *error,
1128 1129
		     bool interruptible)
{
1130
	if (i915_reset_in_progress(error)) {
1131 1132 1133 1134 1135
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1136 1137
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1138 1139
			return -EIO;

1140 1141 1142 1143 1144 1145 1146
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1147 1148 1149 1150 1151 1152
	}

	return 0;
}

/*
1153
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1154
 */
1155
int
1156
i915_gem_check_olr(struct drm_i915_gem_request *req)
1157 1158 1159
{
	int ret;

1160
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1161 1162

	ret = 0;
1163
	if (req == req->ring->outstanding_lazy_request)
1164
		ret = i915_add_request(req->ring);
1165 1166 1167 1168

	return ret;
}

1169 1170 1171 1172 1173 1174
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1175
		       struct intel_engine_cs *ring)
1176 1177 1178 1179
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

D
Daniel Vetter 已提交
1180
static int __i915_spin_request(struct drm_i915_gem_request *req)
1181
{
1182 1183
	unsigned long timeout;

D
Daniel Vetter 已提交
1184
	if (i915_gem_request_get_ring(req)->irq_refcount)
1185 1186 1187 1188
		return -EBUSY;

	timeout = jiffies + 1;
	while (!need_resched()) {
D
Daniel Vetter 已提交
1189
		if (i915_gem_request_completed(req, true))
1190 1191 1192 1193
			return 0;

		if (time_after_eq(jiffies, timeout))
			break;
1194

1195 1196
		cpu_relax_lowlatency();
	}
D
Daniel Vetter 已提交
1197
	if (i915_gem_request_completed(req, false))
1198 1199 1200
		return 0;

	return -EAGAIN;
1201 1202
}

1203
/**
1204 1205 1206
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1207 1208 1209
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1210 1211 1212 1213 1214 1215 1216
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1217
 * Returns 0 if the request was found within the alloted time. Else returns the
1218 1219
 * errno with remaining time filled in timeout argument.
 */
1220
int __i915_wait_request(struct drm_i915_gem_request *req,
1221
			unsigned reset_counter,
1222
			bool interruptible,
1223
			s64 *timeout,
1224
			struct drm_i915_file_private *file_priv)
1225
{
1226
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1227
	struct drm_device *dev = ring->dev;
1228
	struct drm_i915_private *dev_priv = dev->dev_private;
1229 1230
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1231
	DEFINE_WAIT(wait);
1232
	unsigned long timeout_expire;
1233
	s64 before, now;
1234 1235
	int ret;

1236
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1237

1238 1239 1240
	if (list_empty(&req->list))
		return 0;

1241
	if (i915_gem_request_completed(req, true))
1242 1243
		return 0;

1244 1245
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1246

1247
	if (INTEL_INFO(dev)->gen >= 6)
1248
		gen6_rps_boost(dev_priv, file_priv);
1249

1250
	/* Record current time in case interrupted by signal, or wedged */
1251
	trace_i915_gem_request_wait_begin(req);
1252
	before = ktime_get_raw_ns();
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

	/* Optimistic spin for the next jiffie before touching IRQs */
	ret = __i915_spin_request(req);
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1264 1265
	for (;;) {
		struct timer_list timer;
1266

1267 1268
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1269

1270 1271
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1272 1273 1274 1275 1276 1277 1278 1279
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1280

1281
		if (i915_gem_request_completed(req, false)) {
1282 1283 1284
			ret = 0;
			break;
		}
1285

1286 1287 1288 1289 1290
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1291
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1292 1293 1294 1295 1296 1297
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1298 1299
			unsigned long expire;

1300
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1301
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1302 1303 1304
			mod_timer(&timer, expire);
		}

1305
		io_schedule();
1306 1307 1308 1309 1310 1311

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1312 1313
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1314 1315

	finish_wait(&ring->irq_queue, &wait);
1316

1317 1318 1319 1320
out:
	now = ktime_get_raw_ns();
	trace_i915_gem_request_wait_end(req);

1321
	if (timeout) {
1322 1323 1324
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1335 1336
	}

1337
	return ret;
1338 1339
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	put_pid(request->pid);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->ring;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1397
/**
1398
 * Waits for a request to be signaled, and cleans up the
1399 1400 1401
 * request and object lists appropriately for that event.
 */
int
1402
i915_wait_request(struct drm_i915_gem_request *req)
1403
{
1404 1405 1406
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1407 1408
	int ret;

1409 1410 1411 1412 1413 1414
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1415 1416
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1417
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1418 1419 1420
	if (ret)
		return ret;

1421
	ret = i915_gem_check_olr(req);
1422 1423 1424
	if (ret)
		return ret;

1425 1426
	ret = __i915_wait_request(req,
				  atomic_read(&dev_priv->gpu_error.reset_counter),
1427
				  interruptible, NULL, NULL);
1428 1429
	if (ret)
		return ret;
1430

1431
	__i915_gem_request_retire__upto(req);
1432 1433 1434
	return 0;
}

1435 1436 1437 1438
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1439
int
1440 1441 1442
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1443
	int ret, i;
1444

1445
	if (!obj->active)
1446 1447
		return 0;

1448 1449 1450 1451 1452
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
			i = obj->last_write_req->ring->id;
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
		RQ_BUG_ON(obj->active);
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
	int ring = req->ring->id;

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1489 1490
}

1491 1492 1493 1494 1495
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1496
					    struct drm_i915_file_private *file_priv,
1497 1498 1499 1500
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1501
	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1502
	unsigned reset_counter;
1503
	int ret, i, n = 0;
1504 1505 1506 1507

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1508
	if (!obj->active)
1509 1510
		return 0;

1511
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1512 1513 1514
	if (ret)
		return ret;

1515
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		ret = i915_gem_check_olr(req);
		if (ret)
			goto err;

		requests[n++] = i915_gem_request_reference(req);
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			ret = i915_gem_check_olr(req);
			if (ret)
				goto err;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1545
	mutex_unlock(&dev->struct_mutex);
1546 1547 1548
	for (i = 0; ret == 0 && i < n; i++)
		ret = __i915_wait_request(requests[i], reset_counter, true,
					  NULL, file_priv);
1549 1550
	mutex_lock(&dev->struct_mutex);

1551 1552 1553 1554 1555 1556 1557 1558
err:
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1559 1560
}

1561
/**
1562 1563
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1564 1565 1566
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1567
			  struct drm_file *file)
1568 1569
{
	struct drm_i915_gem_set_domain *args = data;
1570
	struct drm_i915_gem_object *obj;
1571 1572
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1573 1574
	int ret;

1575
	/* Only handle setting domains to types used by the CPU. */
1576
	if (write_domain & I915_GEM_GPU_DOMAINS)
1577 1578
		return -EINVAL;

1579
	if (read_domains & I915_GEM_GPU_DOMAINS)
1580 1581 1582 1583 1584 1585 1586 1587
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1588
	ret = i915_mutex_lock_interruptible(dev);
1589
	if (ret)
1590
		return ret;
1591

1592
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1593
	if (&obj->base == NULL) {
1594 1595
		ret = -ENOENT;
		goto unlock;
1596
	}
1597

1598 1599 1600 1601
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1602 1603 1604
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1605 1606 1607
	if (ret)
		goto unref;

1608
	if (read_domains & I915_GEM_DOMAIN_GTT)
1609
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1610
	else
1611
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1612

1613
unref:
1614
	drm_gem_object_unreference(&obj->base);
1615
unlock:
1616 1617 1618 1619 1620 1621 1622 1623 1624
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1625
			 struct drm_file *file)
1626 1627
{
	struct drm_i915_gem_sw_finish *args = data;
1628
	struct drm_i915_gem_object *obj;
1629 1630
	int ret = 0;

1631
	ret = i915_mutex_lock_interruptible(dev);
1632
	if (ret)
1633
		return ret;
1634

1635
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1636
	if (&obj->base == NULL) {
1637 1638
		ret = -ENOENT;
		goto unlock;
1639 1640 1641
	}

	/* Pinned buffers may be scanout, so flush the cache */
1642
	if (obj->pin_display)
1643
		i915_gem_object_flush_cpu_write_domain(obj);
1644

1645
	drm_gem_object_unreference(&obj->base);
1646
unlock:
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1667 1668 1669
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1670
		    struct drm_file *file)
1671 1672 1673 1674 1675
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1676 1677 1678 1679 1680 1681
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1682
	obj = drm_gem_object_lookup(dev, file, args->handle);
1683
	if (obj == NULL)
1684
		return -ENOENT;
1685

1686 1687 1688 1689 1690 1691 1692 1693
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1694
	addr = vm_mmap(obj->filp, 0, args->size,
1695 1696
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1710
	drm_gem_object_unreference_unlocked(obj);
1711 1712 1713 1714 1715 1716 1717 1718
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1737 1738
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1739
	struct drm_i915_private *dev_priv = dev->dev_private;
1740
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1741 1742 1743
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1744
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1745

1746 1747
	intel_runtime_pm_get(dev_priv);

1748 1749 1750 1751
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1752 1753 1754
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1755

C
Chris Wilson 已提交
1756 1757
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1758 1759 1760 1761 1762 1763 1764 1765 1766
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1767 1768
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1769
		ret = -EFAULT;
1770 1771 1772
		goto unlock;
	}

1773
	/* Use a partial view if the object is bigger than the aperture. */
1774 1775
	if (obj->base.size >= dev_priv->gtt.mappable_end &&
	    obj->tiling_mode == I915_TILING_NONE) {
1776
		static const unsigned int chunk_size = 256; // 1 MiB
1777

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1790 1791
	if (ret)
		goto unlock;
1792

1793 1794 1795
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1796

1797
	ret = i915_gem_object_get_fence(obj);
1798
	if (ret)
1799
		goto unpin;
1800

1801
	/* Finally, remap it using the new GTT offset */
1802 1803
	pfn = dev_priv->gtt.mappable_base +
		i915_gem_obj_ggtt_offset_view(obj, &view);
1804
	pfn >>= PAGE_SHIFT;
1805

1806 1807 1808 1809 1810 1811 1812 1813 1814
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1815

1816 1817
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1818 1819 1820 1821 1822
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1844
unpin:
1845
	i915_gem_object_ggtt_unpin_view(obj, &view);
1846
unlock:
1847
	mutex_unlock(&dev->struct_mutex);
1848
out:
1849
	switch (ret) {
1850
	case -EIO:
1851 1852 1853 1854 1855 1856 1857
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1858 1859 1860
			ret = VM_FAULT_SIGBUS;
			break;
		}
1861
	case -EAGAIN:
D
Daniel Vetter 已提交
1862 1863 1864 1865
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1866
		 */
1867 1868
	case 0:
	case -ERESTARTSYS:
1869
	case -EINTR:
1870 1871 1872 1873 1874
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1875 1876
		ret = VM_FAULT_NOPAGE;
		break;
1877
	case -ENOMEM:
1878 1879
		ret = VM_FAULT_OOM;
		break;
1880
	case -ENOSPC:
1881
	case -EFAULT:
1882 1883
		ret = VM_FAULT_SIGBUS;
		break;
1884
	default:
1885
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1886 1887
		ret = VM_FAULT_SIGBUS;
		break;
1888
	}
1889 1890 1891

	intel_runtime_pm_put(dev_priv);
	return ret;
1892 1893
}

1894 1895 1896 1897
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1898
 * Preserve the reservation of the mmapping with the DRM core code, but
1899 1900 1901 1902 1903 1904 1905 1906 1907
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1908
void
1909
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1910
{
1911 1912
	if (!obj->fault_mappable)
		return;
1913

1914 1915
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1916
	obj->fault_mappable = false;
1917 1918
}

1919 1920 1921 1922 1923 1924 1925 1926 1927
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1928
uint32_t
1929
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1930
{
1931
	uint32_t gtt_size;
1932 1933

	if (INTEL_INFO(dev)->gen >= 4 ||
1934 1935
	    tiling_mode == I915_TILING_NONE)
		return size;
1936 1937 1938

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1939
		gtt_size = 1024*1024;
1940
	else
1941
		gtt_size = 512*1024;
1942

1943 1944
	while (gtt_size < size)
		gtt_size <<= 1;
1945

1946
	return gtt_size;
1947 1948
}

1949 1950 1951 1952 1953
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1954
 * potential fence register mapping.
1955
 */
1956 1957 1958
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1959 1960 1961 1962 1963
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1964
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1965
	    tiling_mode == I915_TILING_NONE)
1966 1967
		return 4096;

1968 1969 1970 1971
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1972
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1973 1974
}

1975 1976 1977 1978 1979
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1980
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1981 1982
		return 0;

1983 1984
	dev_priv->mm.shrinker_no_lock_stealing = true;

1985 1986
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1987
		goto out;
1988 1989 1990 1991 1992 1993 1994 1995

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1996 1997 1998 1999 2000
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2001 2002
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2003
		goto out;
2004 2005

	i915_gem_shrink_all(dev_priv);
2006 2007 2008 2009 2010
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2011 2012 2013 2014 2015 2016 2017
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2018
int
2019 2020
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2021
		  uint32_t handle,
2022
		  uint64_t *offset)
2023
{
2024
	struct drm_i915_gem_object *obj;
2025 2026
	int ret;

2027
	ret = i915_mutex_lock_interruptible(dev);
2028
	if (ret)
2029
		return ret;
2030

2031
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2032
	if (&obj->base == NULL) {
2033 2034 2035
		ret = -ENOENT;
		goto unlock;
	}
2036

2037
	if (obj->madv != I915_MADV_WILLNEED) {
2038
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2039
		ret = -EFAULT;
2040
		goto out;
2041 2042
	}

2043 2044 2045
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2046

2047
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2048

2049
out:
2050
	drm_gem_object_unreference(&obj->base);
2051
unlock:
2052
	mutex_unlock(&dev->struct_mutex);
2053
	return ret;
2054 2055
}

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2077
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2078 2079
}

D
Daniel Vetter 已提交
2080 2081 2082
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2083
{
2084
	i915_gem_object_free_mmap_offset(obj);
2085

2086 2087
	if (obj->base.filp == NULL)
		return;
2088

D
Daniel Vetter 已提交
2089 2090 2091 2092 2093
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2094
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2095 2096
	obj->madv = __I915_MADV_PURGED;
}
2097

2098 2099 2100
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2101
{
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2116 2117
}

2118
static void
2119
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2120
{
2121 2122
	struct sg_page_iter sg_iter;
	int ret;
2123

2124
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2125

C
Chris Wilson 已提交
2126 2127 2128 2129 2130 2131
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2132
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2133 2134 2135
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

2136
	if (i915_gem_object_needs_bit17_swizzle(obj))
2137 2138
		i915_gem_object_save_bit_17_swizzle(obj);

2139 2140
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2141

2142
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2143
		struct page *page = sg_page_iter_page(&sg_iter);
2144

2145
		if (obj->dirty)
2146
			set_page_dirty(page);
2147

2148
		if (obj->madv == I915_MADV_WILLNEED)
2149
			mark_page_accessed(page);
2150

2151
		page_cache_release(page);
2152
	}
2153
	obj->dirty = 0;
2154

2155 2156
	sg_free_table(obj->pages);
	kfree(obj->pages);
2157
}
C
Chris Wilson 已提交
2158

2159
int
2160 2161 2162 2163
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2164
	if (obj->pages == NULL)
2165 2166
		return 0;

2167 2168 2169
	if (obj->pages_pin_count)
		return -EBUSY;

2170
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2171

2172 2173 2174
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2175
	list_del(&obj->global_list);
2176

2177
	ops->put_pages(obj);
2178
	obj->pages = NULL;
2179

2180
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2181 2182 2183 2184

	return 0;
}

2185
static int
C
Chris Wilson 已提交
2186
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2187
{
C
Chris Wilson 已提交
2188
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2189 2190
	int page_count, i;
	struct address_space *mapping;
2191 2192
	struct sg_table *st;
	struct scatterlist *sg;
2193
	struct sg_page_iter sg_iter;
2194
	struct page *page;
2195
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2196
	gfp_t gfp;
2197

C
Chris Wilson 已提交
2198 2199 2200 2201 2202 2203 2204
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2205 2206 2207 2208
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2209
	page_count = obj->base.size / PAGE_SIZE;
2210 2211
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2212
		return -ENOMEM;
2213
	}
2214

2215 2216 2217 2218 2219
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2220
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2221
	gfp = mapping_gfp_mask(mapping);
2222
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2223
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2224 2225 2226
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2227 2228
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2229 2230 2231 2232 2233
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2234 2235 2236 2237 2238 2239 2240 2241
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2242
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2243 2244 2245
			if (IS_ERR(page))
				goto err_pages;
		}
2246 2247 2248 2249 2250 2251 2252 2253
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2254 2255 2256 2257 2258 2259 2260 2261 2262
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2263 2264 2265

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2266
	}
2267 2268 2269 2270
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2271 2272
	obj->pages = st;

2273
	if (i915_gem_object_needs_bit17_swizzle(obj))
2274 2275
		i915_gem_object_do_bit_17_swizzle(obj);

2276 2277 2278 2279
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2280 2281 2282
	return 0;

err_pages:
2283 2284
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2285
		page_cache_release(sg_page_iter_page(&sg_iter));
2286 2287
	sg_free_table(st);
	kfree(st);
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2301 2302
}

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2317
	if (obj->pages)
2318 2319
		return 0;

2320
	if (obj->madv != I915_MADV_WILLNEED) {
2321
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2322
		return -EFAULT;
2323 2324
	}

2325 2326
	BUG_ON(obj->pages_pin_count);

2327 2328 2329 2330
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2331
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2332 2333 2334 2335

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2336
	return 0;
2337 2338
}

2339 2340
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct intel_engine_cs *ring)
2341
{
2342
	struct drm_i915_gem_object *obj = vma->obj;
2343 2344

	/* Add a reference if we're newly entering the active list. */
2345
	if (obj->active == 0)
2346
		drm_gem_object_reference(&obj->base);
2347
	obj->active |= intel_ring_flag(ring);
2348

2349 2350 2351
	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
	i915_gem_request_assign(&obj->last_read_req[ring->id],
				intel_ring_get_request(ring));
2352

2353
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2354 2355
}

2356 2357
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2358
{
2359 2360 2361 2362 2363
	RQ_BUG_ON(obj->last_write_req == NULL);
	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));

	i915_gem_request_assign(&obj->last_write_req, NULL);
	intel_fb_obj_flush(obj, true);
B
Ben Widawsky 已提交
2364 2365
}

2366
static void
2367
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2368
{
2369
	struct i915_vma *vma;
2370

2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
	RQ_BUG_ON(!(obj->active & (1 << ring)));

	list_del_init(&obj->ring_list[ring]);
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2383

2384 2385 2386
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2387
	}
2388

2389
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2390
	drm_gem_object_unreference(&obj->base);
2391 2392
}

2393
static int
2394
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2395
{
2396
	struct drm_i915_private *dev_priv = dev->dev_private;
2397
	struct intel_engine_cs *ring;
2398
	int ret, i, j;
2399

2400
	/* Carefully retire all requests without writing to the rings */
2401
	for_each_ring(ring, dev_priv, i) {
2402 2403 2404
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2405 2406
	}
	i915_gem_retire_requests(dev);
2407 2408

	/* Finally reset hw state */
2409
	for_each_ring(ring, dev_priv, i) {
2410
		intel_ring_init_seqno(ring, seqno);
2411

2412 2413
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2414
	}
2415

2416
	return 0;
2417 2418
}

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2445 2446
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2447
{
2448 2449 2450 2451
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2452
		int ret = i915_gem_init_seqno(dev, 0);
2453 2454
		if (ret)
			return ret;
2455

2456 2457
		dev_priv->next_seqno = 1;
	}
2458

2459
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2460
	return 0;
2461 2462
}

2463
int __i915_add_request(struct intel_engine_cs *ring,
2464
		       struct drm_file *file,
2465
		       struct drm_i915_gem_object *obj)
2466
{
2467
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2468
	struct drm_i915_gem_request *request;
2469
	struct intel_ringbuffer *ringbuf;
2470
	u32 request_start;
2471 2472
	int ret;

2473
	request = ring->outstanding_lazy_request;
2474 2475 2476 2477
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
2478
		ringbuf = request->ctx->engine[ring->id].ringbuf;
2479 2480 2481 2482
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2483 2484 2485 2486 2487 2488 2489
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2490
	if (i915.enable_execlists) {
2491
		ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2492 2493 2494 2495 2496 2497 2498
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2499

2500 2501 2502 2503 2504
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2505
	request->postfix = intel_ring_get_tail(ringbuf);
2506

2507
	if (i915.enable_execlists) {
2508
		ret = ring->emit_request(ringbuf, request);
2509 2510 2511 2512 2513 2514
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
2515 2516

		request->tail = intel_ring_get_tail(ringbuf);
2517
	}
2518

2519 2520 2521 2522 2523 2524 2525 2526
	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2527
	request->batch_obj = obj;
2528

2529 2530 2531 2532 2533 2534 2535 2536
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2537

2538
	request->emitted_jiffies = jiffies;
2539
	list_add_tail(&request->list, &ring->request_list);
2540
	request->file_priv = NULL;
2541

C
Chris Wilson 已提交
2542 2543 2544
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2545
		spin_lock(&file_priv->mm.lock);
2546
		request->file_priv = file_priv;
2547
		list_add_tail(&request->client_list,
2548
			      &file_priv->mm.request_list);
2549
		spin_unlock(&file_priv->mm.lock);
2550 2551

		request->pid = get_pid(task_pid(current));
2552
	}
2553

2554
	trace_i915_gem_request_add(request);
2555
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2556

2557
	i915_queue_hangcheck(ring->dev);
2558

2559 2560 2561 2562
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2563

2564
	return 0;
2565 2566
}

2567
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2568
				   const struct intel_context *ctx)
2569
{
2570
	unsigned long elapsed;
2571

2572 2573 2574
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2575 2576
		return true;

2577 2578
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2579
		if (!i915_gem_context_is_default(ctx)) {
2580
			DRM_DEBUG("context hanging too fast, banning!\n");
2581
			return true;
2582 2583 2584
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2585
			return true;
2586
		}
2587 2588 2589 2590 2591
	}

	return false;
}

2592
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2593
				  struct intel_context *ctx,
2594
				  const bool guilty)
2595
{
2596 2597 2598 2599
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2600

2601 2602 2603
	hs = &ctx->hang_stats;

	if (guilty) {
2604
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2605 2606 2607 2608
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2609 2610 2611
	}
}

2612 2613 2614 2615 2616 2617
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2618 2619
	if (ctx) {
		if (i915.enable_execlists) {
2620
			struct intel_engine_cs *ring = req->ring;
2621

2622 2623 2624
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2625

2626 2627
		i915_gem_context_unreference(ctx);
	}
2628

2629
	kmem_cache_free(req->i915->requests, req);
2630 2631
}

2632 2633 2634
int i915_gem_request_alloc(struct intel_engine_cs *ring,
			   struct intel_context *ctx)
{
2635
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
D
Daniel Vetter 已提交
2636
	struct drm_i915_gem_request *req;
2637 2638 2639 2640 2641
	int ret;

	if (ring->outstanding_lazy_request)
		return 0;

D
Daniel Vetter 已提交
2642 2643
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2644 2645
		return -ENOMEM;

D
Daniel Vetter 已提交
2646 2647
	kref_init(&req->ref);
	req->i915 = dev_priv;
2648

D
Daniel Vetter 已提交
2649
	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2650
	if (ret) {
D
Daniel Vetter 已提交
2651
		kfree(req);
2652 2653 2654
		return ret;
	}

D
Daniel Vetter 已提交
2655
	req->ring = ring;
2656 2657

	if (i915.enable_execlists)
D
Daniel Vetter 已提交
2658
		ret = intel_logical_ring_alloc_request_extras(req, ctx);
2659
	else
D
Daniel Vetter 已提交
2660
		ret = intel_ring_alloc_request_extras(req);
2661
	if (ret) {
D
Daniel Vetter 已提交
2662
		kfree(req);
2663 2664 2665
		return ret;
	}

D
Daniel Vetter 已提交
2666
	ring->outstanding_lazy_request = req;
2667
	return 0;
2668 2669
}

2670
struct drm_i915_gem_request *
2671
i915_gem_find_active_request(struct intel_engine_cs *ring)
2672
{
2673 2674 2675
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2676
		if (i915_gem_request_completed(request, false))
2677
			continue;
2678

2679
		return request;
2680
	}
2681 2682 2683 2684 2685

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2686
				       struct intel_engine_cs *ring)
2687 2688 2689 2690
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2691
	request = i915_gem_find_active_request(ring);
2692 2693 2694 2695 2696 2697

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2698
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2699 2700

	list_for_each_entry_continue(request, &ring->request_list, list)
2701
		i915_set_reset_status(dev_priv, request->ctx, false);
2702
}
2703

2704
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2705
					struct intel_engine_cs *ring)
2706
{
2707
	while (!list_empty(&ring->active_list)) {
2708
		struct drm_i915_gem_object *obj;
2709

2710 2711
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
2712
				       ring_list[ring->id]);
2713

2714
		i915_gem_object_retire__read(obj, ring->id);
2715
	}
2716

2717 2718 2719 2720 2721 2722
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2723
		struct drm_i915_gem_request *submit_req;
2724 2725

		submit_req = list_first_entry(&ring->execlist_queue,
2726
				struct drm_i915_gem_request,
2727 2728
				execlist_link);
		list_del(&submit_req->execlist_link);
2729 2730 2731 2732

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2733
		i915_gem_request_unreference(submit_req);
2734 2735
	}

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

2750
		i915_gem_request_retire(request);
2751
	}
2752

2753 2754
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2755 2756
}

2757
void i915_gem_restore_fences(struct drm_device *dev)
2758 2759 2760 2761
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2762
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2763
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2764

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2775 2776 2777
	}
}

2778
void i915_gem_reset(struct drm_device *dev)
2779
{
2780
	struct drm_i915_private *dev_priv = dev->dev_private;
2781
	struct intel_engine_cs *ring;
2782
	int i;
2783

2784 2785 2786 2787 2788 2789 2790 2791
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2792
	for_each_ring(ring, dev_priv, i)
2793
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2794

2795 2796
	i915_gem_context_reset(dev);

2797
	i915_gem_restore_fences(dev);
2798 2799

	WARN_ON(i915_verify_lists(dev));
2800 2801 2802 2803 2804
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2805
void
2806
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2807
{
C
Chris Wilson 已提交
2808
	WARN_ON(i915_verify_lists(ring->dev));
2809

2810 2811 2812
	if (list_empty(&ring->active_list))
		return;

2813 2814 2815 2816
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2817
	 */
2818
	while (!list_empty(&ring->request_list)) {
2819 2820
		struct drm_i915_gem_request *request;

2821
		request = list_first_entry(&ring->request_list,
2822 2823 2824
					   struct drm_i915_gem_request,
					   list);

2825
		if (!i915_gem_request_completed(request, true))
2826 2827
			break;

2828
		i915_gem_request_retire(request);
2829
	}
2830

2831 2832 2833 2834 2835 2836 2837 2838 2839
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
2840
				      ring_list[ring->id]);
2841

2842
		if (!list_empty(&obj->last_read_req[ring->id]->list))
2843 2844
			break;

2845
		i915_gem_object_retire__read(obj, ring->id);
2846 2847
	}

2848 2849
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2850
		ring->irq_put(ring);
2851
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2852
	}
2853

C
Chris Wilson 已提交
2854
	WARN_ON(i915_verify_lists(ring->dev));
2855 2856
}

2857
bool
2858 2859
i915_gem_retire_requests(struct drm_device *dev)
{
2860
	struct drm_i915_private *dev_priv = dev->dev_private;
2861
	struct intel_engine_cs *ring;
2862
	bool idle = true;
2863
	int i;
2864

2865
	for_each_ring(ring, dev_priv, i) {
2866
		i915_gem_retire_requests_ring(ring);
2867
		idle &= list_empty(&ring->request_list);
2868 2869 2870 2871 2872 2873 2874 2875 2876
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2877 2878 2879 2880 2881 2882 2883 2884
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2885 2886
}

2887
static void
2888 2889
i915_gem_retire_work_handler(struct work_struct *work)
{
2890 2891 2892
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2893
	bool idle;
2894

2895
	/* Come back later if the device is busy... */
2896 2897 2898 2899
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2900
	}
2901
	if (!idle)
2902 2903
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2904
}
2905

2906 2907 2908 2909 2910
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2911
	struct drm_device *dev = dev_priv->dev;
2912 2913
	struct intel_engine_cs *ring;
	int i;
2914

2915 2916 2917
	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2918 2919 2920 2921 2922 2923 2924 2925 2926

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
2927

2928 2929
		mutex_unlock(&dev->struct_mutex);
	}
2930 2931
}

2932 2933 2934 2935 2936 2937 2938 2939
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2940 2941 2942 2943
	int ret, i;

	if (!obj->active)
		return 0;
2944

2945 2946
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_request *req;
2947

2948 2949 2950 2951 2952 2953 2954 2955
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		ret = i915_gem_check_olr(req);
2956 2957 2958
		if (ret)
			return ret;

2959 2960 2961 2962 2963
		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
2964 2965 2966 2967 2968
	}

	return 0;
}

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2994
	struct drm_i915_private *dev_priv = dev->dev_private;
2995 2996
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2997
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
2998
	unsigned reset_counter;
2999 3000
	int i, n = 0;
	int ret;
3001

3002 3003 3004
	if (args->flags != 0)
		return -EINVAL;

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3015 3016
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3017 3018 3019
	if (ret)
		goto out;

3020
	if (!obj->active)
3021
		goto out;
3022 3023

	/* Do this after OLR check to make sure we make forward progress polling
3024
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3025
	 */
3026
	if (args->timeout_ns == 0) {
3027 3028 3029 3030 3031
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3032
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3033 3034 3035 3036 3037 3038 3039 3040

	for (i = 0; i < I915_NUM_RINGS; i++) {
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3041 3042
	mutex_unlock(&dev->struct_mutex);

3043 3044 3045 3046 3047 3048 3049
	for (i = 0; i < n; i++) {
		if (ret == 0)
			ret = __i915_wait_request(req[i], reset_counter, true,
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
						  file->driver_priv);
		i915_gem_request_unreference__unlocked(req[i]);
	}
3050
	return ret;
3051 3052 3053 3054 3055 3056 3057

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
		       struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *from;
	int ret;

	from = i915_gem_request_get_ring(req);
	if (to == from)
		return 0;

	if (i915_gem_request_completed(req, true))
		return 0;

	ret = i915_gem_check_olr(req);
	if (ret)
		return ret;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
		ret = __i915_wait_request(req,
					  atomic_read(&to_i915(obj->base.dev)->gpu_error.reset_counter),
					  to_i915(obj->base.dev)->mm.interruptible, NULL, NULL);
		if (ret)
			return ret;

		i915_gem_object_retire_request(obj, req);
	} else {
		int idx = intel_ring_sync_index(from, to);
		u32 seqno = i915_gem_request_get_seqno(req);

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

		trace_i915_gem_ring_sync_to(from, to, req);
		ret = to->semaphore.sync_to(to, from, seqno);
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3108 3109 3110 3111 3112 3113 3114 3115
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
 * rather than a particular GPU ring. Conceptually we serialise writes
 * between engines inside the GPU. We only allow on engine to write
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3127 3128 3129
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3130 3131
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3132
		     struct intel_engine_cs *to)
3133
{
3134 3135 3136
	const bool readonly = obj->base.pending_write_domain == 0;
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
	int ret, i, n;
3137

3138
	if (!obj->active)
3139 3140
		return 0;

3141 3142
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3143

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++)
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
		ret = __i915_gem_object_sync(obj, to, req[i]);
		if (ret)
			return ret;
	}
3158

3159
	return 0;
3160 3161
}

3162 3163 3164 3165 3166 3167 3168
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3169 3170 3171
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3172 3173 3174
	/* Wait for any direct GTT access to complete */
	mb();

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3186
int i915_vma_unbind(struct i915_vma *vma)
3187
{
3188
	struct drm_i915_gem_object *obj = vma->obj;
3189
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3190
	int ret;
3191

3192
	if (list_empty(&vma->vma_link))
3193 3194
		return 0;

3195 3196 3197 3198
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3199

B
Ben Widawsky 已提交
3200
	if (vma->pin_count)
3201
		return -EBUSY;
3202

3203 3204
	BUG_ON(obj->pages == NULL);

3205
	ret = i915_gem_object_wait_rendering(obj, false);
3206
	if (ret)
3207 3208 3209 3210 3211 3212
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3213 3214
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3215
		i915_gem_object_finish_gtt(obj);
3216

3217 3218 3219 3220 3221
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3222

3223
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3224

3225
	vma->vm->unbind_vma(vma);
3226
	vma->bound = 0;
3227

3228
	list_del_init(&vma->mm_list);
3229 3230 3231 3232 3233 3234 3235 3236 3237
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3238

B
Ben Widawsky 已提交
3239 3240 3241 3242
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3243
	 * no more VMAs exist. */
3244 3245
	if (list_empty(&obj->vma_list)) {
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3246
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3247
	}
3248

3249 3250 3251 3252 3253 3254
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3255
	return 0;
3256 3257
}

3258
int i915_gpu_idle(struct drm_device *dev)
3259
{
3260
	struct drm_i915_private *dev_priv = dev->dev_private;
3261
	struct intel_engine_cs *ring;
3262
	int ret, i;
3263 3264

	/* Flush everything onto the inactive list. */
3265
	for_each_ring(ring, dev_priv, i) {
3266 3267 3268 3269 3270
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3271

3272
		ret = intel_ring_idle(ring);
3273 3274 3275
		if (ret)
			return ret;
	}
3276

3277
	WARN_ON(i915_verify_lists(dev));
3278
	return 0;
3279 3280
}

3281 3282
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3283
{
3284
	struct drm_i915_private *dev_priv = dev->dev_private;
3285 3286
	int fence_reg;
	int fence_pitch_shift;
3287

3288 3289 3290 3291 3292 3293 3294 3295
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3310
	if (obj) {
3311
		u32 size = i915_gem_obj_ggtt_size(obj);
3312
		uint64_t val;
3313

3314 3315 3316 3317 3318 3319 3320
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3321
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3322
				 0xfffff000) << 32;
3323
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3324
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3325 3326 3327
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3328

3329 3330 3331 3332 3333 3334 3335 3336 3337
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3338 3339
}

3340 3341
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3342
{
3343
	struct drm_i915_private *dev_priv = dev->dev_private;
3344
	u32 val;
3345

3346
	if (obj) {
3347
		u32 size = i915_gem_obj_ggtt_size(obj);
3348 3349
		int pitch_val;
		int tile_width;
3350

3351
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3352
		     (size & -size) != size ||
3353 3354 3355
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3356

3357 3358 3359 3360 3361 3362 3363 3364 3365
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3366
		val = i915_gem_obj_ggtt_offset(obj);
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3382 3383
}

3384 3385
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3386
{
3387
	struct drm_i915_private *dev_priv = dev->dev_private;
3388 3389
	uint32_t val;

3390
	if (obj) {
3391
		u32 size = i915_gem_obj_ggtt_size(obj);
3392
		uint32_t pitch_val;
3393

3394
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3395
		     (size & -size) != size ||
3396 3397 3398
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3399

3400 3401
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3402

3403
		val = i915_gem_obj_ggtt_offset(obj);
3404 3405 3406 3407 3408 3409 3410
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3411

3412 3413 3414 3415
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3416 3417 3418 3419 3420
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3421 3422 3423
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3424 3425 3426 3427 3428 3429 3430 3431
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3432 3433 3434 3435
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3436 3437 3438 3439 3440 3441
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3442 3443 3444 3445 3446 3447

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3448 3449
}

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3460
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3461 3462 3463
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3464 3465

	if (enable) {
3466
		obj->fence_reg = reg;
3467 3468 3469 3470 3471 3472 3473
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3474
	obj->fence_dirty = false;
3475 3476
}

3477
static int
3478
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3479
{
3480
	if (obj->last_fenced_req) {
3481
		int ret = i915_wait_request(obj->last_fenced_req);
3482 3483
		if (ret)
			return ret;
3484

3485
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3486 3487 3488 3489 3490 3491 3492 3493
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3494
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3495
	struct drm_i915_fence_reg *fence;
3496 3497
	int ret;

3498
	ret = i915_gem_object_wait_fence(obj);
3499 3500 3501
	if (ret)
		return ret;

3502 3503
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3504

3505 3506
	fence = &dev_priv->fence_regs[obj->fence_reg];

3507 3508 3509
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3510
	i915_gem_object_fence_lost(obj);
3511
	i915_gem_object_update_fence(obj, fence, false);
3512 3513 3514 3515 3516

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3517
i915_find_fence_reg(struct drm_device *dev)
3518 3519
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3520
	struct drm_i915_fence_reg *reg, *avail;
3521
	int i;
3522 3523

	/* First try to find a free reg */
3524
	avail = NULL;
3525 3526 3527
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3528
			return reg;
3529

3530
		if (!reg->pin_count)
3531
			avail = reg;
3532 3533
	}

3534
	if (avail == NULL)
3535
		goto deadlock;
3536 3537

	/* None available, try to steal one or wait for a user to finish */
3538
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3539
		if (reg->pin_count)
3540 3541
			continue;

C
Chris Wilson 已提交
3542
		return reg;
3543 3544
	}

3545 3546 3547 3548 3549 3550
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3551 3552
}

3553
/**
3554
 * i915_gem_object_get_fence - set up fencing for an object
3555 3556 3557 3558 3559 3560 3561 3562 3563
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3564 3565
 *
 * For an untiled surface, this removes any existing fence.
3566
 */
3567
int
3568
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3569
{
3570
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3571
	struct drm_i915_private *dev_priv = dev->dev_private;
3572
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3573
	struct drm_i915_fence_reg *reg;
3574
	int ret;
3575

3576 3577 3578
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3579
	if (obj->fence_dirty) {
3580
		ret = i915_gem_object_wait_fence(obj);
3581 3582 3583
		if (ret)
			return ret;
	}
3584

3585
	/* Just update our place in the LRU if our fence is getting reused. */
3586 3587
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3588
		if (!obj->fence_dirty) {
3589 3590 3591 3592 3593
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3594 3595 3596
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3597
		reg = i915_find_fence_reg(dev);
3598 3599
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3600

3601 3602 3603
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3604
			ret = i915_gem_object_wait_fence(old);
3605 3606 3607
			if (ret)
				return ret;

3608
			i915_gem_object_fence_lost(old);
3609
		}
3610
	} else
3611 3612
		return 0;

3613 3614
	i915_gem_object_update_fence(obj, reg, enable);

3615
	return 0;
3616 3617
}

3618
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3619 3620
				     unsigned long cache_level)
{
3621
	struct drm_mm_node *gtt_space = &vma->node;
3622 3623
	struct drm_mm_node *other;

3624 3625 3626 3627 3628 3629
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3630
	 */
3631
	if (vma->vm->mm.color_adjust == NULL)
3632 3633
		return true;

3634
	if (!drm_mm_node_allocated(gtt_space))
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3651
/**
3652 3653
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3654
 */
3655
static struct i915_vma *
3656 3657
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3658
			   const struct i915_ggtt_view *ggtt_view,
3659
			   unsigned alignment,
3660
			   uint64_t flags)
3661
{
3662
	struct drm_device *dev = obj->base.dev;
3663
	struct drm_i915_private *dev_priv = dev->dev_private;
3664
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3665 3666 3667
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3668
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3669
	struct i915_vma *vma;
3670
	int ret;
3671

3672 3673 3674 3675 3676
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3677

3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3707

3708
	if (alignment == 0)
3709
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3710
						unfenced_alignment;
3711
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3712 3713 3714
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3715
		return ERR_PTR(-EINVAL);
3716 3717
	}

3718 3719 3720
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3721
	 */
3722 3723 3724 3725
	if (size > end) {
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3726
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3727
			  end);
3728
		return ERR_PTR(-E2BIG);
3729 3730
	}

3731
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3732
	if (ret)
3733
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3734

3735 3736
	i915_gem_object_pin_pages(obj);

3737 3738 3739
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3740
	if (IS_ERR(vma))
3741
		goto err_unpin;
B
Ben Widawsky 已提交
3742

3743
search_free:
3744
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3745
						  size, alignment,
3746 3747
						  obj->cache_level,
						  start, end,
3748 3749
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3750
	if (ret) {
3751
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3752 3753 3754
					       obj->cache_level,
					       start, end,
					       flags);
3755 3756
		if (ret == 0)
			goto search_free;
3757

3758
		goto err_free_vma;
3759
	}
3760
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3761
		ret = -EINVAL;
3762
		goto err_remove_node;
3763 3764
	}

3765
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3766
	if (ret)
3767
		goto err_remove_node;
3768

3769
	trace_i915_vma_bind(vma, flags);
3770
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3771 3772 3773
	if (ret)
		goto err_finish_gtt;

3774
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3775
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3776

3777
	return vma;
B
Ben Widawsky 已提交
3778

3779 3780
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3781
err_remove_node:
3782
	drm_mm_remove_node(&vma->node);
3783
err_free_vma:
B
Ben Widawsky 已提交
3784
	i915_gem_vma_destroy(vma);
3785
	vma = ERR_PTR(ret);
3786
err_unpin:
B
Ben Widawsky 已提交
3787
	i915_gem_object_unpin_pages(obj);
3788
	return vma;
3789 3790
}

3791
bool
3792 3793
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3794 3795 3796 3797 3798
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3799
	if (obj->pages == NULL)
3800
		return false;
3801

3802 3803 3804 3805
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3806
	if (obj->stolen || obj->phys_handle)
3807
		return false;
3808

3809 3810 3811 3812 3813 3814 3815 3816
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3817 3818
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3819
		return false;
3820
	}
3821

C
Chris Wilson 已提交
3822
	trace_i915_gem_object_clflush(obj);
3823
	drm_clflush_sg(obj->pages);
3824
	obj->cache_dirty = false;
3825 3826

	return true;
3827 3828 3829 3830
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3831
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3832
{
C
Chris Wilson 已提交
3833 3834
	uint32_t old_write_domain;

3835
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3836 3837
		return;

3838
	/* No actual flushing is required for the GTT write domain.  Writes
3839 3840
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3841 3842 3843 3844
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3845
	 */
3846 3847
	wmb();

3848 3849
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3850

3851 3852
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3853
	trace_i915_gem_object_change_domain(obj,
3854
					    obj->base.read_domains,
C
Chris Wilson 已提交
3855
					    old_write_domain);
3856 3857 3858 3859
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3860
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3861
{
C
Chris Wilson 已提交
3862
	uint32_t old_write_domain;
3863

3864
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3865 3866
		return;

3867
	if (i915_gem_clflush_object(obj, obj->pin_display))
3868 3869
		i915_gem_chipset_flush(obj->base.dev);

3870 3871
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3872

3873 3874
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3875
	trace_i915_gem_object_change_domain(obj,
3876
					    obj->base.read_domains,
C
Chris Wilson 已提交
3877
					    old_write_domain);
3878 3879
}

3880 3881 3882 3883 3884 3885
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3886
int
3887
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3888
{
C
Chris Wilson 已提交
3889
	uint32_t old_write_domain, old_read_domains;
3890
	struct i915_vma *vma;
3891
	int ret;
3892

3893 3894 3895
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3896
	ret = i915_gem_object_wait_rendering(obj, !write);
3897 3898 3899
	if (ret)
		return ret;

3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3912
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3913

3914 3915 3916 3917 3918 3919 3920
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3921 3922
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3923

3924 3925 3926
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3927 3928
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3929
	if (write) {
3930 3931 3932
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3933 3934
	}

3935
	if (write)
3936
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3937

C
Chris Wilson 已提交
3938 3939 3940 3941
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3942
	/* And bump the LRU for this access */
3943 3944
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3945
		list_move_tail(&vma->mm_list,
3946
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3947

3948 3949 3950
	return 0;
}

3951 3952 3953
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3954
	struct drm_device *dev = obj->base.dev;
3955
	struct i915_vma *vma, *next;
3956 3957 3958 3959 3960
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3961
	if (i915_gem_obj_is_pinned(obj)) {
3962 3963 3964 3965
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3966
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3967
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3968
			ret = i915_vma_unbind(vma);
3969 3970 3971
			if (ret)
				return ret;
		}
3972 3973
	}

3974
	if (i915_gem_obj_bound_any(obj)) {
3975
		ret = i915_gem_object_wait_rendering(obj, false);
3976 3977 3978 3979 3980 3981 3982 3983 3984
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3985
		if (INTEL_INFO(dev)->gen < 6) {
3986 3987 3988 3989 3990
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3991
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3992 3993
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
3994
						    PIN_UPDATE);
3995 3996 3997
				if (ret)
					return ret;
			}
3998 3999
	}

4000 4001 4002 4003
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

4004 4005 4006 4007 4008
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
4009 4010 4011 4012 4013
	}

	return 0;
}

B
Ben Widawsky 已提交
4014 4015
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4016
{
B
Ben Widawsky 已提交
4017
	struct drm_i915_gem_caching *args = data;
4018 4019 4020
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4021 4022
	if (&obj->base == NULL)
		return -ENOENT;
4023

4024 4025 4026 4027 4028 4029
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4030 4031 4032 4033
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4034 4035 4036 4037
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4038

4039 4040
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4041 4042
}

B
Ben Widawsky 已提交
4043 4044
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4045
{
B
Ben Widawsky 已提交
4046
	struct drm_i915_gem_caching *args = data;
4047 4048 4049 4050
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4051 4052
	switch (args->caching) {
	case I915_CACHING_NONE:
4053 4054
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4055
	case I915_CACHING_CACHED:
4056 4057
		level = I915_CACHE_LLC;
		break;
4058 4059 4060
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4061 4062 4063 4064
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
4065 4066 4067 4068
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

4083
/*
4084 4085 4086
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4087 4088
 */
int
4089 4090
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4091 4092
				     struct intel_engine_cs *pipelined,
				     const struct i915_ggtt_view *view)
4093
{
4094
	u32 old_read_domains, old_write_domain;
4095 4096
	int ret;

4097 4098 4099
	ret = i915_gem_object_sync(obj, pipelined);
	if (ret)
		return ret;
4100

4101 4102 4103
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4104
	obj->pin_display++;
4105

4106 4107 4108 4109 4110 4111 4112 4113 4114
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4115 4116
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4117
	if (ret)
4118
		goto err_unpin_display;
4119

4120 4121 4122 4123
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4124 4125 4126
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4127
	if (ret)
4128
		goto err_unpin_display;
4129

4130
	i915_gem_object_flush_cpu_write_domain(obj);
4131

4132
	old_write_domain = obj->base.write_domain;
4133
	old_read_domains = obj->base.read_domains;
4134 4135 4136 4137

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4138
	obj->base.write_domain = 0;
4139
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4140 4141 4142

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4143
					    old_write_domain);
4144 4145

	return 0;
4146 4147

err_unpin_display:
4148
	obj->pin_display--;
4149 4150 4151 4152
	return ret;
}

void
4153 4154
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4155
{
4156 4157 4158
	if (WARN_ON(obj->pin_display == 0))
		return;

4159 4160
	i915_gem_object_ggtt_unpin_view(obj, view);

4161
	obj->pin_display--;
4162 4163
}

4164 4165 4166 4167 4168 4169
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4170
int
4171
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4172
{
C
Chris Wilson 已提交
4173
	uint32_t old_write_domain, old_read_domains;
4174 4175
	int ret;

4176 4177 4178
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4179
	ret = i915_gem_object_wait_rendering(obj, !write);
4180 4181 4182
	if (ret)
		return ret;

4183
	i915_gem_object_flush_gtt_write_domain(obj);
4184

4185 4186
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4187

4188
	/* Flush the CPU cache if it's still invalid. */
4189
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4190
		i915_gem_clflush_object(obj, false);
4191

4192
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4193 4194 4195 4196 4197
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4198
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4199 4200 4201 4202 4203

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4204 4205
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4206
	}
4207

4208
	if (write)
4209
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4210

C
Chris Wilson 已提交
4211 4212 4213 4214
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4215 4216 4217
	return 0;
}

4218 4219 4220
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4221 4222 4223 4224
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4225 4226 4227
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4228
static int
4229
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4230
{
4231 4232
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4233
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4234
	struct drm_i915_gem_request *request, *target = NULL;
4235
	unsigned reset_counter;
4236
	int ret;
4237

4238 4239 4240 4241 4242 4243 4244
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4245

4246
	spin_lock(&file_priv->mm.lock);
4247
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4248 4249
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4250

4251
		target = request;
4252
	}
4253
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4254 4255
	if (target)
		i915_gem_request_reference(target);
4256
	spin_unlock(&file_priv->mm.lock);
4257

4258
	if (target == NULL)
4259
		return 0;
4260

4261
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4262 4263
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4264

4265
	i915_gem_request_unreference__unlocked(target);
4266

4267 4268 4269
	return ret;
}

4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4289 4290 4291 4292 4293 4294
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4295
{
4296
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4297
	struct i915_vma *vma;
4298
	unsigned bound;
4299 4300
	int ret;

4301 4302 4303
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4304
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4305
		return -EINVAL;
4306

4307 4308 4309
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4310 4311 4312 4313 4314 4315 4316 4317 4318
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4319
	if (vma) {
B
Ben Widawsky 已提交
4320 4321 4322
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4323
		if (i915_vma_misplaced(vma, alignment, flags)) {
4324
			unsigned long offset;
4325
			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4326
					     i915_gem_obj_offset(obj, vm);
B
Ben Widawsky 已提交
4327
			WARN(vma->pin_count,
4328
			     "bo is already pinned in %s with incorrect alignment:"
4329
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4330
			     " obj->map_and_fenceable=%d\n",
4331 4332
			     ggtt_view ? "ggtt" : "ppgtt",
			     offset,
4333
			     alignment,
4334
			     !!(flags & PIN_MAPPABLE),
4335
			     obj->map_and_fenceable);
4336
			ret = i915_vma_unbind(vma);
4337 4338
			if (ret)
				return ret;
4339 4340

			vma = NULL;
4341 4342 4343
		}
	}

4344
	bound = vma ? vma->bound : 0;
4345
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4346 4347
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4348 4349
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4350 4351
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4352 4353 4354
		if (ret)
			return ret;
	}
4355

4356 4357
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4372
		mappable = (vma->node.start + fence_size <=
4373 4374 4375 4376
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;

4377 4378
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4379

4380
	vma->pin_count++;
4381 4382 4383
	return 0;
}

4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4405
				      alignment, flags | PIN_GLOBAL);
4406 4407
}

4408
void
4409 4410
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4411
{
4412
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4413

B
Ben Widawsky 已提交
4414
	BUG_ON(!vma);
4415
	WARN_ON(vma->pin_count == 0);
4416
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4417

4418
	--vma->pin_count;
4419 4420
}

4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4447 4448
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4449
		    struct drm_file *file)
4450 4451
{
	struct drm_i915_gem_busy *args = data;
4452
	struct drm_i915_gem_object *obj;
4453 4454
	int ret;

4455
	ret = i915_mutex_lock_interruptible(dev);
4456
	if (ret)
4457
		return ret;
4458

4459
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4460
	if (&obj->base == NULL) {
4461 4462
		ret = -ENOENT;
		goto unlock;
4463
	}
4464

4465 4466 4467 4468
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4469
	 */
4470
	ret = i915_gem_object_flush_active(obj);
4471 4472
	if (ret)
		goto unref;
4473

4474 4475 4476 4477
	BUILD_BUG_ON(I915_NUM_RINGS > 16);
	args->busy = obj->active << 16;
	if (obj->last_write_req)
		args->busy |= obj->last_write_req->ring->id;
4478

4479
unref:
4480
	drm_gem_object_unreference(&obj->base);
4481
unlock:
4482
	mutex_unlock(&dev->struct_mutex);
4483
	return ret;
4484 4485 4486 4487 4488 4489
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4490
	return i915_gem_ring_throttle(dev, file_priv);
4491 4492
}

4493 4494 4495 4496
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4497
	struct drm_i915_private *dev_priv = dev->dev_private;
4498
	struct drm_i915_gem_madvise *args = data;
4499
	struct drm_i915_gem_object *obj;
4500
	int ret;
4501 4502 4503 4504 4505 4506 4507 4508 4509

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4510 4511 4512 4513
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4514
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4515
	if (&obj->base == NULL) {
4516 4517
		ret = -ENOENT;
		goto unlock;
4518 4519
	}

B
Ben Widawsky 已提交
4520
	if (i915_gem_obj_is_pinned(obj)) {
4521 4522
		ret = -EINVAL;
		goto out;
4523 4524
	}

4525 4526 4527 4528 4529 4530 4531 4532 4533
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4534 4535
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4536

C
Chris Wilson 已提交
4537
	/* if the object is no longer attached, discard its backing storage */
4538
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4539 4540
		i915_gem_object_truncate(obj);

4541
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4542

4543
out:
4544
	drm_gem_object_unreference(&obj->base);
4545
unlock:
4546
	mutex_unlock(&dev->struct_mutex);
4547
	return ret;
4548 4549
}

4550 4551
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4552
{
4553 4554
	int i;

4555
	INIT_LIST_HEAD(&obj->global_list);
4556 4557
	for (i = 0; i < I915_NUM_RINGS; i++)
		INIT_LIST_HEAD(&obj->ring_list[i]);
4558
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4559
	INIT_LIST_HEAD(&obj->vma_list);
4560
	INIT_LIST_HEAD(&obj->batch_pool_link);
4561

4562 4563
	obj->ops = ops;

4564 4565 4566 4567 4568 4569
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4570 4571 4572 4573 4574
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4575 4576
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4577
{
4578
	struct drm_i915_gem_object *obj;
4579
	struct address_space *mapping;
D
Daniel Vetter 已提交
4580
	gfp_t mask;
4581

4582
	obj = i915_gem_object_alloc(dev);
4583 4584
	if (obj == NULL)
		return NULL;
4585

4586
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4587
		i915_gem_object_free(obj);
4588 4589
		return NULL;
	}
4590

4591 4592 4593 4594 4595 4596 4597
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4598
	mapping = file_inode(obj->base.filp)->i_mapping;
4599
	mapping_set_gfp_mask(mapping, mask);
4600

4601
	i915_gem_object_init(obj, &i915_gem_object_ops);
4602

4603 4604
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4605

4606 4607
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4623 4624
	trace_i915_gem_object_create(obj);

4625
	return obj;
4626 4627
}

4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4652
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4653
{
4654
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4655
	struct drm_device *dev = obj->base.dev;
4656
	struct drm_i915_private *dev_priv = dev->dev_private;
4657
	struct i915_vma *vma, *next;
4658

4659 4660
	intel_runtime_pm_get(dev_priv);

4661 4662
	trace_i915_gem_object_destroy(obj);

4663
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4664 4665 4666 4667
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4668 4669
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4670

4671 4672
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4673

4674
			WARN_ON(i915_vma_unbind(vma));
4675

4676 4677
			dev_priv->mm.interruptible = was_interruptible;
		}
4678 4679
	}

B
Ben Widawsky 已提交
4680 4681 4682 4683 4684
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4685 4686
	WARN_ON(obj->frontbuffer_bits);

4687 4688 4689 4690 4691
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4692 4693
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4694
	if (discard_backing_storage(obj))
4695
		obj->madv = I915_MADV_DONTNEED;
4696
	i915_gem_object_put_pages(obj);
4697
	i915_gem_object_free_mmap_offset(obj);
4698

4699 4700
	BUG_ON(obj->pages);

4701 4702
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4703

4704 4705 4706
	if (obj->ops->release)
		obj->ops->release(obj);

4707 4708
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4709

4710
	kfree(obj->bit_17);
4711
	i915_gem_object_free(obj);
4712 4713

	intel_runtime_pm_put(dev_priv);
4714 4715
}

4716 4717
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4718 4719
{
	struct i915_vma *vma;
4720 4721 4722 4723 4724
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4725
			return vma;
4726 4727 4728 4729 4730 4731 4732 4733 4734
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4735

4736 4737 4738 4739
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4740 4741
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4742
			return vma;
4743 4744 4745
	return NULL;
}

B
Ben Widawsky 已提交
4746 4747
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4748
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4749
	WARN_ON(vma->node.allocated);
4750 4751 4752 4753 4754

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4755 4756
	vm = vma->vm;

4757 4758
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4759

4760
	list_del(&vma->vma_link);
4761

4762
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4763 4764
}

4765 4766 4767 4768
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4769
	struct intel_engine_cs *ring;
4770 4771 4772
	int i;

	for_each_ring(ring, dev_priv, i)
4773
		dev_priv->gt.stop_ring(ring);
4774 4775
}

4776
int
4777
i915_gem_suspend(struct drm_device *dev)
4778
{
4779
	struct drm_i915_private *dev_priv = dev->dev_private;
4780
	int ret = 0;
4781

4782
	mutex_lock(&dev->struct_mutex);
4783
	ret = i915_gpu_idle(dev);
4784
	if (ret)
4785
		goto err;
4786

4787
	i915_gem_retire_requests(dev);
4788

4789
	i915_gem_stop_ringbuffers(dev);
4790 4791
	mutex_unlock(&dev->struct_mutex);

4792
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4793
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4794
	flush_delayed_work(&dev_priv->mm.idle_work);
4795

4796 4797 4798 4799 4800
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4801
	return 0;
4802 4803 4804 4805

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4806 4807
}

4808
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4809
{
4810
	struct drm_device *dev = ring->dev;
4811
	struct drm_i915_private *dev_priv = dev->dev_private;
4812 4813
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4814
	int i, ret;
B
Ben Widawsky 已提交
4815

4816
	if (!HAS_L3_DPF(dev) || !remap_info)
4817
		return 0;
B
Ben Widawsky 已提交
4818

4819 4820 4821
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4822

4823 4824 4825 4826 4827
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4828
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4829 4830 4831
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4832 4833
	}

4834
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4835

4836
	return ret;
B
Ben Widawsky 已提交
4837 4838
}

4839 4840
void i915_gem_init_swizzling(struct drm_device *dev)
{
4841
	struct drm_i915_private *dev_priv = dev->dev_private;
4842

4843
	if (INTEL_INFO(dev)->gen < 5 ||
4844 4845 4846 4847 4848 4849
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4850 4851 4852
	if (IS_GEN5(dev))
		return;

4853 4854
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4855
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4856
	else if (IS_GEN7(dev))
4857
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4858 4859
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4860 4861
	else
		BUG();
4862
}
D
Daniel Vetter 已提交
4863

4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4907
int i915_gem_init_rings(struct drm_device *dev)
4908
{
4909
	struct drm_i915_private *dev_priv = dev->dev_private;
4910
	int ret;
4911

4912
	ret = intel_init_render_ring_buffer(dev);
4913
	if (ret)
4914
		return ret;
4915 4916

	if (HAS_BSD(dev)) {
4917
		ret = intel_init_bsd_ring_buffer(dev);
4918 4919
		if (ret)
			goto cleanup_render_ring;
4920
	}
4921

4922
	if (intel_enable_blt(dev)) {
4923 4924 4925 4926 4927
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4928 4929 4930 4931 4932 4933
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4934 4935 4936 4937 4938
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4939

4940
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4941
	if (ret)
4942
		goto cleanup_bsd2_ring;
4943 4944 4945

	return 0;

4946 4947
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4948 4949
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4963
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4964
	struct intel_engine_cs *ring;
4965
	int ret, i;
4966 4967 4968 4969

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4970 4971 4972
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4973
	if (dev_priv->ellc_size)
4974
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4975

4976 4977 4978
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4979

4980
	if (HAS_PCH_NOP(dev)) {
4981 4982 4983 4984 4985 4986 4987 4988 4989
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4990 4991
	}

4992 4993
	i915_gem_init_swizzling(dev);

4994 4995 4996 4997 4998 4999 5000 5001
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
5002 5003 5004
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
5005
			goto out;
D
Daniel Vetter 已提交
5006
	}
5007

5008 5009 5010
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

5011
	ret = i915_ppgtt_init_hw(dev);
5012
	if (ret && ret != -EIO) {
5013
		DRM_ERROR("PPGTT enable failed %d\n", ret);
5014
		i915_gem_cleanup_ringbuffer(dev);
5015 5016
	}

5017
	ret = i915_gem_context_enable(dev_priv);
5018
	if (ret && ret != -EIO) {
5019
		DRM_ERROR("Context enable failed %d\n", ret);
5020
		i915_gem_cleanup_ringbuffer(dev);
5021

5022
		goto out;
5023
	}
D
Daniel Vetter 已提交
5024

5025 5026
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5027
	return ret;
5028 5029
}

5030 5031 5032 5033 5034
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

5035 5036 5037
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

5038
	mutex_lock(&dev->struct_mutex);
5039 5040 5041

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
5042 5043 5044
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
5045 5046 5047
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

5048
	if (!i915.enable_execlists) {
5049
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5050 5051 5052
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5053
	} else {
5054
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5055 5056 5057
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
5058 5059
	}

5060 5061 5062 5063 5064 5065 5066 5067
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5068
	ret = i915_gem_init_userptr(dev);
5069 5070
	if (ret)
		goto out_unlock;
5071

5072
	i915_gem_init_global_gtt(dev);
5073

5074
	ret = i915_gem_context_init(dev);
5075 5076
	if (ret)
		goto out_unlock;
5077

D
Daniel Vetter 已提交
5078 5079
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
5080
		goto out_unlock;
5081

5082
	ret = i915_gem_init_hw(dev);
5083 5084 5085 5086 5087 5088 5089 5090
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
5091
	}
5092 5093

out_unlock:
5094
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5095
	mutex_unlock(&dev->struct_mutex);
5096

5097
	return ret;
5098 5099
}

5100 5101 5102
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
5103
	struct drm_i915_private *dev_priv = dev->dev_private;
5104
	struct intel_engine_cs *ring;
5105
	int i;
5106

5107
	for_each_ring(ring, dev_priv, i)
5108
		dev_priv->gt.cleanup_ring(ring);
5109 5110
}

5111
static void
5112
init_ring_lists(struct intel_engine_cs *ring)
5113 5114 5115 5116 5117
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

5118 5119
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
5120
{
5121 5122
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
5123 5124 5125 5126
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
5127
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
5128 5129
}

5130 5131 5132
void
i915_gem_load(struct drm_device *dev)
{
5133
	struct drm_i915_private *dev_priv = dev->dev_private;
5134 5135
	int i;

5136
	dev_priv->objects =
5137 5138 5139 5140
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5141 5142 5143 5144 5145
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5146 5147 5148 5149 5150
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5151

B
Ben Widawsky 已提交
5152 5153 5154
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

5155
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5156 5157
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5158
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5159 5160
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5161
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5162
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5163 5164
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5165 5166
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5167
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5168

5169 5170
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5171 5172 5173
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5174 5175 5176 5177
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5178 5179 5180 5181
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5182
	/* Initialize fence registers to zero */
5183 5184
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5185

5186
	i915_gem_detect_bit_6_swizzle(dev);
5187
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5188

5189 5190
	dev_priv->mm.interruptible = true;

5191
	i915_gem_shrinker_init(dev_priv);
5192 5193

	mutex_init(&dev_priv->fb_tracking.lock);
5194
}
5195

5196
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5197
{
5198
	struct drm_i915_file_private *file_priv = file->driver_priv;
5199 5200 5201 5202 5203

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5204
	spin_lock(&file_priv->mm.lock);
5205 5206 5207 5208 5209 5210 5211 5212 5213
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5214
	spin_unlock(&file_priv->mm.lock);
5215

5216 5217 5218 5219 5220
	if (!list_empty(&file_priv->rps_boost)) {
		mutex_lock(&to_i915(dev)->rps.hw_lock);
		list_del(&file_priv->rps_boost);
		mutex_unlock(&to_i915(dev)->rps.hw_lock);
	}
5221 5222 5223 5224 5225
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5226
	int ret;
5227 5228 5229 5230 5231 5232 5233 5234 5235

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5236
	file_priv->file = file;
5237
	INIT_LIST_HEAD(&file_priv->rps_boost);
5238 5239 5240 5241

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5242 5243 5244
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5245

5246
	return ret;
5247 5248
}

5249 5250 5251 5252 5253 5254 5255 5256 5257
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5275
/* All the new VM stuff */
5276 5277 5278
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
		    struct i915_address_space *vm)
5279 5280 5281 5282
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5283
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5284 5285

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5286 5287 5288 5289
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5290 5291
			return vma->node.start;
	}
5292

5293 5294
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5295 5296 5297
	return -1;
}

5298 5299
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5300
			      const struct i915_ggtt_view *view)
5301
{
5302
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5303 5304 5305
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5306 5307
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5308 5309
			return vma->node.start;

5310
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5331
				  const struct i915_ggtt_view *view)
5332 5333 5334 5335 5336 5337
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5338
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5339
		    drm_mm_node_allocated(&vma->node))
5340 5341 5342 5343 5344 5345 5346
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5347
	struct i915_vma *vma;
5348

5349 5350
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5362
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5363 5364 5365

	BUG_ON(list_empty(&o->vma_list));

5366 5367 5368 5369
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5370 5371
		if (vma->vm == vm)
			return vma->node.size;
5372
	}
5373 5374 5375
	return 0;
}

5376
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5377 5378
{
	struct i915_vma *vma;
5379
	list_for_each_entry(vma, &obj->vma_list, vma_link)
5380 5381
		if (vma->pin_count > 0)
			return true;
5382

5383
	return false;
5384
}
5385