i915_gem.c 137.1 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41 42
#define RQ_BUG_ON(expr)

43
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45
static void
46 47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 50 51 52 53 54
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

55 56 57 58 59 60
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

61 62 63 64 65 66 67 68
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

69 70 71 72 73 74 75 76
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
77
	obj->fence_dirty = false;
78 79 80
	obj->fence_reg = I915_FENCE_REG_NONE;
}

81 82 83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
85
	spin_lock(&dev_priv->mm.object_stat_lock);
86 87
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
88
	spin_unlock(&dev_priv->mm.object_stat_lock);
89 90 91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99
}

100
static int
101
i915_gem_wait_for_error(struct i915_gpu_error *error)
102 103 104
{
	int ret;

105 106
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
107
	if (EXIT_COND)
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115 116 117
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123
	}
124
#undef EXIT_COND
125

126
	return 0;
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_i915_gem_get_aperture *args = data;
152 153
	struct drm_i915_gem_object *obj;
	size_t pinned;
154

155
	pinned = 0;
156
	mutex_lock(&dev->struct_mutex);
157
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
158
		if (i915_gem_obj_is_pinned(obj))
159
			pinned += i915_gem_obj_ggtt_size(obj);
160
	mutex_unlock(&dev->struct_mutex);
161

162
	args->aper_size = dev_priv->gtt.base.total;
163
	args->aper_available_size = args->aper_size - pinned;
164

165 166 167
	return 0;
}

168 169
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170
{
171 172 173 174 175
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227 228 229 230 231 232 233 234 235 236 237 238 239
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			page_cache_release(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342 343
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(dev);
372 373 374 375

out:
	intel_fb_obj_flush(obj, false);
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385 386
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_alloc_object(dev, size);
406 407 408
	if (obj == NULL)
		return -ENOMEM;

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432 433 434 435 436 437 438
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
439

440
	return i915_gem_create(file, dev,
441
			       args->size, &args->handle);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

470
static inline int
471 472
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

532 533 534
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
535
static int
536 537 538 539 540 541 542
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

543
	if (unlikely(page_do_bit17_swizzling))
544 545 546 547 548 549 550 551 552 553 554
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

555
	return ret ? -EFAULT : 0;
556 557
}

558 559 560 561
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
562
	if (unlikely(swizzled)) {
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

580 581 582 583 584 585 586 587 588 589 590 591
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
592 593 594
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
595 596 597 598 599 600 601 602 603 604 605

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

606
	return ret ? - EFAULT : 0;
607 608
}

609
static int
610 611 612 613
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
614
{
615
	char __user *user_data;
616
	ssize_t remain;
617
	loff_t offset;
618
	int shmem_page_offset, page_length, ret = 0;
619
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620
	int prefaulted = 0;
621
	int needs_clflush = 0;
622
	struct sg_page_iter sg_iter;
623

V
Ville Syrjälä 已提交
624
	user_data = to_user_ptr(args->data_ptr);
625 626
	remain = args->size;

627
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628

629
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630 631 632
	if (ret)
		return ret;

633
	offset = args->offset;
634

635 636
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
637
		struct page *page = sg_page_iter_page(&sg_iter);
638 639 640 641

		if (remain <= 0)
			break;

642 643 644 645 646
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
647
		shmem_page_offset = offset_in_page(offset);
648 649 650 651
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

652 653 654
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

655 656 657 658 659
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
660 661 662

		mutex_unlock(&dev->struct_mutex);

663
		if (likely(!i915.prefault_disable) && !prefaulted) {
664
			ret = fault_in_multipages_writeable(user_data, remain);
665 666 667 668 669 670 671
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
672

673 674 675
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
676

677
		mutex_lock(&dev->struct_mutex);
678 679

		if (ret)
680 681
			goto out;

682
next_page:
683
		remain -= page_length;
684
		user_data += page_length;
685 686 687
		offset += page_length;
	}

688
out:
689 690
	i915_gem_object_unpin_pages(obj);

691 692 693
	return ret;
}

694 695 696 697 698 699 700
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
701
		     struct drm_file *file)
702 703
{
	struct drm_i915_gem_pread *args = data;
704
	struct drm_i915_gem_object *obj;
705
	int ret = 0;
706

707 708 709 710
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
711
		       to_user_ptr(args->data_ptr),
712 713 714
		       args->size))
		return -EFAULT;

715
	ret = i915_mutex_lock_interruptible(dev);
716
	if (ret)
717
		return ret;
718

719
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
720
	if (&obj->base == NULL) {
721 722
		ret = -ENOENT;
		goto unlock;
723
	}
724

725
	/* Bounds check source.  */
726 727
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
728
		ret = -EINVAL;
729
		goto out;
C
Chris Wilson 已提交
730 731
	}

732 733 734 735 736 737 738 739
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
740 741
	trace_i915_gem_object_pread(obj, args->offset, args->size);

742
	ret = i915_gem_shmem_pread(dev, obj, args, file);
743

744
out:
745
	drm_gem_object_unreference(&obj->base);
746
unlock:
747
	mutex_unlock(&dev->struct_mutex);
748
	return ret;
749 750
}

751 752
/* This is the fast write path which cannot handle
 * page faults in the source data
753
 */
754 755 756 757 758 759

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
760
{
761 762
	void __iomem *vaddr_atomic;
	void *vaddr;
763
	unsigned long unwritten;
764

P
Peter Zijlstra 已提交
765
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
766 767 768
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
769
						      user_data, length);
P
Peter Zijlstra 已提交
770
	io_mapping_unmap_atomic(vaddr_atomic);
771
	return unwritten;
772 773
}

774 775 776 777
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
778
static int
779 780
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
781
			 struct drm_i915_gem_pwrite *args,
782
			 struct drm_file *file)
783
{
784
	struct drm_i915_private *dev_priv = dev->dev_private;
785
	ssize_t remain;
786
	loff_t offset, page_base;
787
	char __user *user_data;
D
Daniel Vetter 已提交
788 789
	int page_offset, page_length, ret;

790
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
791 792 793 794 795 796 797 798 799 800
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
801

V
Ville Syrjälä 已提交
802
	user_data = to_user_ptr(args->data_ptr);
803 804
	remain = args->size;

805
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
806

807
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
808

809 810 811
	while (remain > 0) {
		/* Operation in this page
		 *
812 813 814
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
815
		 */
816 817
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
818 819 820 821 822
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
823 824
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
825
		 */
B
Ben Widawsky 已提交
826
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
827 828
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
829
			goto out_flush;
D
Daniel Vetter 已提交
830
		}
831

832 833 834
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
835 836
	}

837 838
out_flush:
	intel_fb_obj_flush(obj, false);
D
Daniel Vetter 已提交
839
out_unpin:
B
Ben Widawsky 已提交
840
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
841
out:
842
	return ret;
843 844
}

845 846 847 848
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
849
static int
850 851 852 853 854
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
855
{
856
	char *vaddr;
857
	int ret;
858

859
	if (unlikely(page_do_bit17_swizzling))
860
		return -EINVAL;
861

862 863 864 865
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
866 867
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
868 869 870 871
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
872

873
	return ret ? -EFAULT : 0;
874 875
}

876 877
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
878
static int
879 880 881 882 883
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
884
{
885 886
	char *vaddr;
	int ret;
887

888
	vaddr = kmap(page);
889
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
890 891 892
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
893 894
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
895 896
						user_data,
						page_length);
897 898 899 900 901
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
902 903 904
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
905
	kunmap(page);
906

907
	return ret ? -EFAULT : 0;
908 909 910
}

static int
911 912 913 914
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
915 916
{
	ssize_t remain;
917 918
	loff_t offset;
	char __user *user_data;
919
	int shmem_page_offset, page_length, ret = 0;
920
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
921
	int hit_slowpath = 0;
922 923
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
924
	struct sg_page_iter sg_iter;
925

V
Ville Syrjälä 已提交
926
	user_data = to_user_ptr(args->data_ptr);
927 928
	remain = args->size;

929
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
930

931 932 933 934 935
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
936
		needs_clflush_after = cpu_write_needs_clflush(obj);
937 938 939
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
940
	}
941 942 943 944 945
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
946

947 948 949 950
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

951
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
952

953 954
	i915_gem_object_pin_pages(obj);

955
	offset = args->offset;
956
	obj->dirty = 1;
957

958 959
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
960
		struct page *page = sg_page_iter_page(&sg_iter);
961
		int partial_cacheline_write;
962

963 964 965
		if (remain <= 0)
			break;

966 967 968 969 970
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
971
		shmem_page_offset = offset_in_page(offset);
972 973 974 975 976

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

977 978 979 980 981 982 983
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

984 985 986
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

987 988 989 990 991 992
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
993 994 995

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
996 997 998 999
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1000

1001
		mutex_lock(&dev->struct_mutex);
1002 1003

		if (ret)
1004 1005
			goto out;

1006
next_page:
1007
		remain -= page_length;
1008
		user_data += page_length;
1009
		offset += page_length;
1010 1011
	}

1012
out:
1013 1014
	i915_gem_object_unpin_pages(obj);

1015
	if (hit_slowpath) {
1016 1017 1018 1019 1020 1021 1022
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1023 1024
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1025
		}
1026
	}
1027

1028
	if (needs_clflush_after)
1029
		i915_gem_chipset_flush(dev);
1030

1031
	intel_fb_obj_flush(obj, false);
1032
	return ret;
1033 1034 1035 1036 1037 1038 1039 1040 1041
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042
		      struct drm_file *file)
1043
{
1044
	struct drm_i915_private *dev_priv = dev->dev_private;
1045
	struct drm_i915_gem_pwrite *args = data;
1046
	struct drm_i915_gem_object *obj;
1047 1048 1049 1050 1051 1052
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1053
		       to_user_ptr(args->data_ptr),
1054 1055 1056
		       args->size))
		return -EFAULT;

1057
	if (likely(!i915.prefault_disable)) {
1058 1059 1060 1061 1062
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1063

1064 1065
	intel_runtime_pm_get(dev_priv);

1066
	ret = i915_mutex_lock_interruptible(dev);
1067
	if (ret)
1068
		goto put_rpm;
1069

1070
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071
	if (&obj->base == NULL) {
1072 1073
		ret = -ENOENT;
		goto unlock;
1074
	}
1075

1076
	/* Bounds check destination. */
1077 1078
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1079
		ret = -EINVAL;
1080
		goto out;
C
Chris Wilson 已提交
1081 1082
	}

1083 1084 1085 1086 1087 1088 1089 1090
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1091 1092
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1093
	ret = -EFAULT;
1094 1095 1096 1097 1098 1099
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1100 1101 1102
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1103
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1104 1105 1106
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1107
	}
1108

1109 1110 1111 1112 1113 1114
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1115

1116
out:
1117
	drm_gem_object_unreference(&obj->base);
1118
unlock:
1119
	mutex_unlock(&dev->struct_mutex);
1120 1121 1122
put_rpm:
	intel_runtime_pm_put(dev_priv);

1123 1124 1125
	return ret;
}

1126
int
1127
i915_gem_check_wedge(struct i915_gpu_error *error,
1128 1129
		     bool interruptible)
{
1130
	if (i915_reset_in_progress(error)) {
1131 1132 1133 1134 1135
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1136 1137
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1138 1139
			return -EIO;

1140 1141 1142 1143 1144 1145 1146
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1147 1148 1149 1150 1151 1152
	}

	return 0;
}

/*
1153
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1154
 */
1155
int
1156
i915_gem_check_olr(struct drm_i915_gem_request *req)
1157 1158 1159
{
	int ret;

1160
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1161 1162

	ret = 0;
1163
	if (req == req->ring->outstanding_lazy_request)
1164
		ret = i915_add_request(req->ring);
1165 1166 1167 1168

	return ret;
}

1169 1170 1171 1172 1173 1174
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1175
		       struct intel_engine_cs *ring)
1176 1177 1178 1179
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

D
Daniel Vetter 已提交
1180
static int __i915_spin_request(struct drm_i915_gem_request *req)
1181
{
1182 1183
	unsigned long timeout;

D
Daniel Vetter 已提交
1184
	if (i915_gem_request_get_ring(req)->irq_refcount)
1185 1186 1187 1188
		return -EBUSY;

	timeout = jiffies + 1;
	while (!need_resched()) {
D
Daniel Vetter 已提交
1189
		if (i915_gem_request_completed(req, true))
1190 1191 1192 1193
			return 0;

		if (time_after_eq(jiffies, timeout))
			break;
1194

1195 1196
		cpu_relax_lowlatency();
	}
D
Daniel Vetter 已提交
1197
	if (i915_gem_request_completed(req, false))
1198 1199 1200
		return 0;

	return -EAGAIN;
1201 1202
}

1203
/**
1204 1205 1206
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1207 1208 1209
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1210 1211 1212 1213 1214 1215 1216
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1217
 * Returns 0 if the request was found within the alloted time. Else returns the
1218 1219
 * errno with remaining time filled in timeout argument.
 */
1220
int __i915_wait_request(struct drm_i915_gem_request *req,
1221
			unsigned reset_counter,
1222
			bool interruptible,
1223
			s64 *timeout,
1224
			struct intel_rps_client *rps)
1225
{
1226
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1227
	struct drm_device *dev = ring->dev;
1228
	struct drm_i915_private *dev_priv = dev->dev_private;
1229 1230
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1231
	DEFINE_WAIT(wait);
1232
	unsigned long timeout_expire;
1233
	s64 before, now;
1234 1235
	int ret;

1236
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1237

1238 1239 1240
	if (list_empty(&req->list))
		return 0;

1241
	if (i915_gem_request_completed(req, true))
1242 1243
		return 0;

1244 1245
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1246

1247
	if (INTEL_INFO(dev_priv)->gen >= 6)
1248
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1249

1250
	/* Record current time in case interrupted by signal, or wedged */
1251
	trace_i915_gem_request_wait_begin(req);
1252
	before = ktime_get_raw_ns();
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

	/* Optimistic spin for the next jiffie before touching IRQs */
	ret = __i915_spin_request(req);
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1264 1265
	for (;;) {
		struct timer_list timer;
1266

1267 1268
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1269

1270 1271
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1272 1273 1274 1275 1276 1277 1278 1279
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1280

1281
		if (i915_gem_request_completed(req, false)) {
1282 1283 1284
			ret = 0;
			break;
		}
1285

1286 1287 1288 1289 1290
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1291
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1292 1293 1294 1295 1296 1297
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1298 1299
			unsigned long expire;

1300
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1301
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1302 1303 1304
			mod_timer(&timer, expire);
		}

1305
		io_schedule();
1306 1307 1308 1309 1310 1311

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1312 1313
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1314 1315

	finish_wait(&ring->irq_queue, &wait);
1316

1317 1318 1319 1320
out:
	now = ktime_get_raw_ns();
	trace_i915_gem_request_wait_end(req);

1321
	if (timeout) {
1322 1323 1324
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1335 1336
	}

1337
	return ret;
1338 1339
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	put_pid(request->pid);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->ring;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1397
/**
1398
 * Waits for a request to be signaled, and cleans up the
1399 1400 1401
 * request and object lists appropriately for that event.
 */
int
1402
i915_wait_request(struct drm_i915_gem_request *req)
1403
{
1404 1405 1406
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1407 1408
	int ret;

1409 1410 1411 1412 1413 1414
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1415 1416
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1417
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1418 1419 1420
	if (ret)
		return ret;

1421
	ret = i915_gem_check_olr(req);
1422 1423 1424
	if (ret)
		return ret;

1425 1426
	ret = __i915_wait_request(req,
				  atomic_read(&dev_priv->gpu_error.reset_counter),
1427
				  interruptible, NULL, NULL);
1428 1429
	if (ret)
		return ret;
1430

1431
	__i915_gem_request_retire__upto(req);
1432 1433 1434
	return 0;
}

1435 1436 1437 1438
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1439
int
1440 1441 1442
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1443
	int ret, i;
1444

1445
	if (!obj->active)
1446 1447
		return 0;

1448 1449 1450 1451 1452
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
			i = obj->last_write_req->ring->id;
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
		RQ_BUG_ON(obj->active);
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
	int ring = req->ring->id;

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1489 1490
}

1491 1492 1493 1494 1495
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1496
					    struct intel_rps_client *rps,
1497 1498 1499 1500
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1501
	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1502
	unsigned reset_counter;
1503
	int ret, i, n = 0;
1504 1505 1506 1507

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1508
	if (!obj->active)
1509 1510
		return 0;

1511
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1512 1513 1514
	if (ret)
		return ret;

1515
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		ret = i915_gem_check_olr(req);
		if (ret)
			goto err;

		requests[n++] = i915_gem_request_reference(req);
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			ret = i915_gem_check_olr(req);
			if (ret)
				goto err;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1545
	mutex_unlock(&dev->struct_mutex);
1546 1547
	for (i = 0; ret == 0 && i < n; i++)
		ret = __i915_wait_request(requests[i], reset_counter, true,
1548
					  NULL, rps);
1549 1550
	mutex_lock(&dev->struct_mutex);

1551 1552 1553 1554 1555 1556 1557 1558
err:
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1559 1560
}

1561 1562 1563 1564 1565 1566
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1567
/**
1568 1569
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1570 1571 1572
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1573
			  struct drm_file *file)
1574 1575
{
	struct drm_i915_gem_set_domain *args = data;
1576
	struct drm_i915_gem_object *obj;
1577 1578
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1579 1580
	int ret;

1581
	/* Only handle setting domains to types used by the CPU. */
1582
	if (write_domain & I915_GEM_GPU_DOMAINS)
1583 1584
		return -EINVAL;

1585
	if (read_domains & I915_GEM_GPU_DOMAINS)
1586 1587 1588 1589 1590 1591 1592 1593
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1594
	ret = i915_mutex_lock_interruptible(dev);
1595
	if (ret)
1596
		return ret;
1597

1598
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1599
	if (&obj->base == NULL) {
1600 1601
		ret = -ENOENT;
		goto unlock;
1602
	}
1603

1604 1605 1606 1607
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1608
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1609
							  to_rps_client(file),
1610
							  !write_domain);
1611 1612 1613
	if (ret)
		goto unref;

1614
	if (read_domains & I915_GEM_DOMAIN_GTT)
1615
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1616
	else
1617
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1618

1619
unref:
1620
	drm_gem_object_unreference(&obj->base);
1621
unlock:
1622 1623 1624 1625 1626 1627 1628 1629 1630
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1631
			 struct drm_file *file)
1632 1633
{
	struct drm_i915_gem_sw_finish *args = data;
1634
	struct drm_i915_gem_object *obj;
1635 1636
	int ret = 0;

1637
	ret = i915_mutex_lock_interruptible(dev);
1638
	if (ret)
1639
		return ret;
1640

1641
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642
	if (&obj->base == NULL) {
1643 1644
		ret = -ENOENT;
		goto unlock;
1645 1646 1647
	}

	/* Pinned buffers may be scanout, so flush the cache */
1648
	if (obj->pin_display)
1649
		i915_gem_object_flush_cpu_write_domain(obj);
1650

1651
	drm_gem_object_unreference(&obj->base);
1652
unlock:
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1673 1674 1675
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1676
		    struct drm_file *file)
1677 1678 1679 1680 1681
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1682 1683 1684 1685 1686 1687
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1688
	obj = drm_gem_object_lookup(dev, file, args->handle);
1689
	if (obj == NULL)
1690
		return -ENOENT;
1691

1692 1693 1694 1695 1696 1697 1698 1699
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1700
	addr = vm_mmap(obj->filp, 0, args->size,
1701 1702
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1716
	drm_gem_object_unreference_unlocked(obj);
1717 1718 1719 1720 1721 1722 1723 1724
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1743 1744
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1745
	struct drm_i915_private *dev_priv = dev->dev_private;
1746
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1747 1748 1749
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1750
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1751

1752 1753
	intel_runtime_pm_get(dev_priv);

1754 1755 1756 1757
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1758 1759 1760
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1761

C
Chris Wilson 已提交
1762 1763
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1764 1765 1766 1767 1768 1769 1770 1771 1772
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1773 1774
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1775
		ret = -EFAULT;
1776 1777 1778
		goto unlock;
	}

1779
	/* Use a partial view if the object is bigger than the aperture. */
1780 1781
	if (obj->base.size >= dev_priv->gtt.mappable_end &&
	    obj->tiling_mode == I915_TILING_NONE) {
1782
		static const unsigned int chunk_size = 256; // 1 MiB
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1796 1797
	if (ret)
		goto unlock;
1798

1799 1800 1801
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1802

1803
	ret = i915_gem_object_get_fence(obj);
1804
	if (ret)
1805
		goto unpin;
1806

1807
	/* Finally, remap it using the new GTT offset */
1808 1809
	pfn = dev_priv->gtt.mappable_base +
		i915_gem_obj_ggtt_offset_view(obj, &view);
1810
	pfn >>= PAGE_SHIFT;
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1821

1822 1823
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1824 1825 1826 1827 1828
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1850
unpin:
1851
	i915_gem_object_ggtt_unpin_view(obj, &view);
1852
unlock:
1853
	mutex_unlock(&dev->struct_mutex);
1854
out:
1855
	switch (ret) {
1856
	case -EIO:
1857 1858 1859 1860 1861 1862 1863
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1864 1865 1866
			ret = VM_FAULT_SIGBUS;
			break;
		}
1867
	case -EAGAIN:
D
Daniel Vetter 已提交
1868 1869 1870 1871
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1872
		 */
1873 1874
	case 0:
	case -ERESTARTSYS:
1875
	case -EINTR:
1876 1877 1878 1879 1880
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1881 1882
		ret = VM_FAULT_NOPAGE;
		break;
1883
	case -ENOMEM:
1884 1885
		ret = VM_FAULT_OOM;
		break;
1886
	case -ENOSPC:
1887
	case -EFAULT:
1888 1889
		ret = VM_FAULT_SIGBUS;
		break;
1890
	default:
1891
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1892 1893
		ret = VM_FAULT_SIGBUS;
		break;
1894
	}
1895 1896 1897

	intel_runtime_pm_put(dev_priv);
	return ret;
1898 1899
}

1900 1901 1902 1903
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1904
 * Preserve the reservation of the mmapping with the DRM core code, but
1905 1906 1907 1908 1909 1910 1911 1912 1913
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1914
void
1915
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1916
{
1917 1918
	if (!obj->fault_mappable)
		return;
1919

1920 1921
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1922
	obj->fault_mappable = false;
1923 1924
}

1925 1926 1927 1928 1929 1930 1931 1932 1933
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1934
uint32_t
1935
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1936
{
1937
	uint32_t gtt_size;
1938 1939

	if (INTEL_INFO(dev)->gen >= 4 ||
1940 1941
	    tiling_mode == I915_TILING_NONE)
		return size;
1942 1943 1944

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1945
		gtt_size = 1024*1024;
1946
	else
1947
		gtt_size = 512*1024;
1948

1949 1950
	while (gtt_size < size)
		gtt_size <<= 1;
1951

1952
	return gtt_size;
1953 1954
}

1955 1956 1957 1958 1959
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1960
 * potential fence register mapping.
1961
 */
1962 1963 1964
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1965 1966 1967 1968 1969
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1970
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1971
	    tiling_mode == I915_TILING_NONE)
1972 1973
		return 4096;

1974 1975 1976 1977
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1978
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1979 1980
}

1981 1982 1983 1984 1985
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1986
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1987 1988
		return 0;

1989 1990
	dev_priv->mm.shrinker_no_lock_stealing = true;

1991 1992
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1993
		goto out;
1994 1995 1996 1997 1998 1999 2000 2001

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2002 2003 2004 2005 2006
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2007 2008
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2009
		goto out;
2010 2011

	i915_gem_shrink_all(dev_priv);
2012 2013 2014 2015 2016
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2017 2018 2019 2020 2021 2022 2023
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2024
int
2025 2026
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2027
		  uint32_t handle,
2028
		  uint64_t *offset)
2029
{
2030
	struct drm_i915_gem_object *obj;
2031 2032
	int ret;

2033
	ret = i915_mutex_lock_interruptible(dev);
2034
	if (ret)
2035
		return ret;
2036

2037
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2038
	if (&obj->base == NULL) {
2039 2040 2041
		ret = -ENOENT;
		goto unlock;
	}
2042

2043
	if (obj->madv != I915_MADV_WILLNEED) {
2044
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2045
		ret = -EFAULT;
2046
		goto out;
2047 2048
	}

2049 2050 2051
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2052

2053
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2054

2055
out:
2056
	drm_gem_object_unreference(&obj->base);
2057
unlock:
2058
	mutex_unlock(&dev->struct_mutex);
2059
	return ret;
2060 2061
}

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2083
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2084 2085
}

D
Daniel Vetter 已提交
2086 2087 2088
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2089
{
2090
	i915_gem_object_free_mmap_offset(obj);
2091

2092 2093
	if (obj->base.filp == NULL)
		return;
2094

D
Daniel Vetter 已提交
2095 2096 2097 2098 2099
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2100
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2101 2102
	obj->madv = __I915_MADV_PURGED;
}
2103

2104 2105 2106
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2107
{
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2122 2123
}

2124
static void
2125
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2126
{
2127 2128
	struct sg_page_iter sg_iter;
	int ret;
2129

2130
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2131

C
Chris Wilson 已提交
2132 2133 2134 2135 2136 2137
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2138
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2139 2140 2141
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

2142
	if (i915_gem_object_needs_bit17_swizzle(obj))
2143 2144
		i915_gem_object_save_bit_17_swizzle(obj);

2145 2146
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2147

2148
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2149
		struct page *page = sg_page_iter_page(&sg_iter);
2150

2151
		if (obj->dirty)
2152
			set_page_dirty(page);
2153

2154
		if (obj->madv == I915_MADV_WILLNEED)
2155
			mark_page_accessed(page);
2156

2157
		page_cache_release(page);
2158
	}
2159
	obj->dirty = 0;
2160

2161 2162
	sg_free_table(obj->pages);
	kfree(obj->pages);
2163
}
C
Chris Wilson 已提交
2164

2165
int
2166 2167 2168 2169
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2170
	if (obj->pages == NULL)
2171 2172
		return 0;

2173 2174 2175
	if (obj->pages_pin_count)
		return -EBUSY;

2176
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2177

2178 2179 2180
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2181
	list_del(&obj->global_list);
2182

2183
	ops->put_pages(obj);
2184
	obj->pages = NULL;
2185

2186
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2187 2188 2189 2190

	return 0;
}

2191
static int
C
Chris Wilson 已提交
2192
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2193
{
C
Chris Wilson 已提交
2194
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2195 2196
	int page_count, i;
	struct address_space *mapping;
2197 2198
	struct sg_table *st;
	struct scatterlist *sg;
2199
	struct sg_page_iter sg_iter;
2200
	struct page *page;
2201
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2202
	gfp_t gfp;
2203

C
Chris Wilson 已提交
2204 2205 2206 2207 2208 2209 2210
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2211 2212 2213 2214
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2215
	page_count = obj->base.size / PAGE_SIZE;
2216 2217
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2218
		return -ENOMEM;
2219
	}
2220

2221 2222 2223 2224 2225
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2226
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2227
	gfp = mapping_gfp_mask(mapping);
2228
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2229
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2230 2231 2232
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2233 2234
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2235 2236 2237 2238 2239
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2240 2241 2242 2243 2244 2245 2246 2247
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2248
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2249 2250 2251
			if (IS_ERR(page))
				goto err_pages;
		}
2252 2253 2254 2255 2256 2257 2258 2259
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2260 2261 2262 2263 2264 2265 2266 2267 2268
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2269 2270 2271

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2272
	}
2273 2274 2275 2276
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2277 2278
	obj->pages = st;

2279
	if (i915_gem_object_needs_bit17_swizzle(obj))
2280 2281
		i915_gem_object_do_bit_17_swizzle(obj);

2282 2283 2284 2285
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2286 2287 2288
	return 0;

err_pages:
2289 2290
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2291
		page_cache_release(sg_page_iter_page(&sg_iter));
2292 2293
	sg_free_table(st);
	kfree(st);
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2307 2308
}

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2323
	if (obj->pages)
2324 2325
		return 0;

2326
	if (obj->madv != I915_MADV_WILLNEED) {
2327
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2328
		return -EFAULT;
2329 2330
	}

2331 2332
	BUG_ON(obj->pages_pin_count);

2333 2334 2335 2336
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2337
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2338 2339 2340 2341

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2342
	return 0;
2343 2344
}

2345 2346
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct intel_engine_cs *ring)
2347
{
2348
	struct drm_i915_gem_object *obj = vma->obj;
2349 2350

	/* Add a reference if we're newly entering the active list. */
2351
	if (obj->active == 0)
2352
		drm_gem_object_reference(&obj->base);
2353
	obj->active |= intel_ring_flag(ring);
2354

2355 2356 2357
	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
	i915_gem_request_assign(&obj->last_read_req[ring->id],
				intel_ring_get_request(ring));
2358

2359
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2360 2361
}

2362 2363
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2364
{
2365 2366 2367 2368 2369
	RQ_BUG_ON(obj->last_write_req == NULL);
	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));

	i915_gem_request_assign(&obj->last_write_req, NULL);
	intel_fb_obj_flush(obj, true);
B
Ben Widawsky 已提交
2370 2371
}

2372
static void
2373
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2374
{
2375
	struct i915_vma *vma;
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
	RQ_BUG_ON(!(obj->active & (1 << ring)));

	list_del_init(&obj->ring_list[ring]);
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2389

2390 2391 2392
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2393
	}
2394

2395
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2396
	drm_gem_object_unreference(&obj->base);
2397 2398
}

2399
static int
2400
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2401
{
2402
	struct drm_i915_private *dev_priv = dev->dev_private;
2403
	struct intel_engine_cs *ring;
2404
	int ret, i, j;
2405

2406
	/* Carefully retire all requests without writing to the rings */
2407
	for_each_ring(ring, dev_priv, i) {
2408 2409 2410
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2411 2412
	}
	i915_gem_retire_requests(dev);
2413 2414

	/* Finally reset hw state */
2415
	for_each_ring(ring, dev_priv, i) {
2416
		intel_ring_init_seqno(ring, seqno);
2417

2418 2419
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2420
	}
2421

2422
	return 0;
2423 2424
}

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2451 2452
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2453
{
2454 2455 2456 2457
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2458
		int ret = i915_gem_init_seqno(dev, 0);
2459 2460
		if (ret)
			return ret;
2461

2462 2463
		dev_priv->next_seqno = 1;
	}
2464

2465
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2466
	return 0;
2467 2468
}

2469
int __i915_add_request(struct intel_engine_cs *ring,
2470
		       struct drm_file *file,
2471
		       struct drm_i915_gem_object *obj)
2472
{
2473
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2474
	struct drm_i915_gem_request *request;
2475
	struct intel_ringbuffer *ringbuf;
2476
	u32 request_start;
2477 2478
	int ret;

2479
	request = ring->outstanding_lazy_request;
2480 2481 2482 2483
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
2484
		ringbuf = request->ctx->engine[ring->id].ringbuf;
2485 2486 2487
	} else
		ringbuf = ring->buffer;

2488 2489 2490 2491 2492 2493 2494
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	intel_ring_reserved_space_use(ringbuf);

2495
	request_start = intel_ring_get_tail(ringbuf);
2496 2497 2498 2499 2500 2501 2502
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2503
	if (i915.enable_execlists) {
2504
		ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2505 2506 2507 2508 2509 2510 2511
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2512

2513 2514 2515 2516 2517
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2518
	request->postfix = intel_ring_get_tail(ringbuf);
2519

2520
	if (i915.enable_execlists) {
2521
		ret = ring->emit_request(ringbuf, request);
2522 2523 2524 2525 2526 2527
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
2528 2529

		request->tail = intel_ring_get_tail(ringbuf);
2530
	}
2531

2532 2533 2534 2535 2536 2537 2538 2539
	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2540
	request->batch_obj = obj;
2541

2542 2543 2544 2545 2546 2547 2548 2549
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2550

2551
	request->emitted_jiffies = jiffies;
2552
	list_add_tail(&request->list, &ring->request_list);
2553
	request->file_priv = NULL;
2554

C
Chris Wilson 已提交
2555 2556 2557
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2558
		spin_lock(&file_priv->mm.lock);
2559
		request->file_priv = file_priv;
2560
		list_add_tail(&request->client_list,
2561
			      &file_priv->mm.request_list);
2562
		spin_unlock(&file_priv->mm.lock);
2563 2564

		request->pid = get_pid(task_pid(current));
2565
	}
2566

2567
	trace_i915_gem_request_add(request);
2568
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2569

2570
	i915_queue_hangcheck(ring->dev);
2571

2572 2573 2574 2575
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2576

2577 2578 2579
	/* Sanity check that the reserved size was large enough. */
	intel_ring_reserved_space_end(ringbuf);

2580
	return 0;
2581 2582
}

2583
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2584
				   const struct intel_context *ctx)
2585
{
2586
	unsigned long elapsed;
2587

2588 2589 2590
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2591 2592
		return true;

2593 2594
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2595
		if (!i915_gem_context_is_default(ctx)) {
2596
			DRM_DEBUG("context hanging too fast, banning!\n");
2597
			return true;
2598 2599 2600
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2601
			return true;
2602
		}
2603 2604 2605 2606 2607
	}

	return false;
}

2608
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2609
				  struct intel_context *ctx,
2610
				  const bool guilty)
2611
{
2612 2613 2614 2615
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2616

2617 2618 2619
	hs = &ctx->hang_stats;

	if (guilty) {
2620
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2621 2622 2623 2624
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2625 2626 2627
	}
}

2628 2629 2630 2631 2632 2633
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2634 2635
	if (ctx) {
		if (i915.enable_execlists) {
2636
			struct intel_engine_cs *ring = req->ring;
2637

2638 2639 2640
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2641

2642 2643
		i915_gem_context_unreference(ctx);
	}
2644

2645
	kmem_cache_free(req->i915->requests, req);
2646 2647
}

2648 2649 2650
int i915_gem_request_alloc(struct intel_engine_cs *ring,
			   struct intel_context *ctx)
{
2651
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
D
Daniel Vetter 已提交
2652
	struct drm_i915_gem_request *req;
2653 2654 2655 2656 2657
	int ret;

	if (ring->outstanding_lazy_request)
		return 0;

D
Daniel Vetter 已提交
2658 2659
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2660 2661
		return -ENOMEM;

D
Daniel Vetter 已提交
2662 2663
	kref_init(&req->ref);
	req->i915 = dev_priv;
2664

D
Daniel Vetter 已提交
2665
	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2666 2667
	if (ret)
		goto err;
2668

D
Daniel Vetter 已提交
2669
	req->ring = ring;
2670 2671

	if (i915.enable_execlists)
D
Daniel Vetter 已提交
2672
		ret = intel_logical_ring_alloc_request_extras(req, ctx);
2673
	else
D
Daniel Vetter 已提交
2674
		ret = intel_ring_alloc_request_extras(req);
2675 2676
	if (ret)
		goto err;
2677

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 *
	 * Note further that this call merely notes the reserve request. A
	 * subsequent call to *_ring_begin() is required to actually ensure
	 * that the reservation is available. Without the begin, if the
	 * request creator immediately submitted the request without adding
	 * any commands to it then there might not actually be sufficient
	 * room for the submission commands. Unfortunately, the current
	 * *_ring_begin() implementations potentially call back here to
	 * i915_gem_request_alloc(). Thus calling _begin() here would lead to
	 * infinite recursion! Until that back call path is removed, it is
	 * necessary to do a manual _begin() outside.
	 */
	intel_ring_reserved_space_reserve(req->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

D
Daniel Vetter 已提交
2698
	ring->outstanding_lazy_request = req;
2699
	return 0;
2700 2701 2702 2703

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2704 2705
}

2706 2707 2708 2709 2710 2711 2712
void i915_gem_request_cancel(struct drm_i915_gem_request *req)
{
	intel_ring_reserved_space_cancel(req->ringbuf);

	i915_gem_request_unreference(req);
}

2713
struct drm_i915_gem_request *
2714
i915_gem_find_active_request(struct intel_engine_cs *ring)
2715
{
2716 2717 2718
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2719
		if (i915_gem_request_completed(request, false))
2720
			continue;
2721

2722
		return request;
2723
	}
2724 2725 2726 2727 2728

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2729
				       struct intel_engine_cs *ring)
2730 2731 2732 2733
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2734
	request = i915_gem_find_active_request(ring);
2735 2736 2737 2738 2739 2740

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2741
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2742 2743

	list_for_each_entry_continue(request, &ring->request_list, list)
2744
		i915_set_reset_status(dev_priv, request->ctx, false);
2745
}
2746

2747
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2748
					struct intel_engine_cs *ring)
2749
{
2750
	while (!list_empty(&ring->active_list)) {
2751
		struct drm_i915_gem_object *obj;
2752

2753 2754
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
2755
				       ring_list[ring->id]);
2756

2757
		i915_gem_object_retire__read(obj, ring->id);
2758
	}
2759

2760 2761 2762 2763 2764 2765
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2766
		struct drm_i915_gem_request *submit_req;
2767 2768

		submit_req = list_first_entry(&ring->execlist_queue,
2769
				struct drm_i915_gem_request,
2770 2771
				execlist_link);
		list_del(&submit_req->execlist_link);
2772 2773 2774 2775

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2776
		i915_gem_request_unreference(submit_req);
2777 2778
	}

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

2793
		i915_gem_request_retire(request);
2794
	}
2795

2796 2797
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2798 2799
}

2800
void i915_gem_restore_fences(struct drm_device *dev)
2801 2802 2803 2804
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2805
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2806
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2807

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2818 2819 2820
	}
}

2821
void i915_gem_reset(struct drm_device *dev)
2822
{
2823
	struct drm_i915_private *dev_priv = dev->dev_private;
2824
	struct intel_engine_cs *ring;
2825
	int i;
2826

2827 2828 2829 2830 2831 2832 2833 2834
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2835
	for_each_ring(ring, dev_priv, i)
2836
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2837

2838 2839
	i915_gem_context_reset(dev);

2840
	i915_gem_restore_fences(dev);
2841 2842

	WARN_ON(i915_verify_lists(dev));
2843 2844 2845 2846 2847
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2848
void
2849
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2850
{
C
Chris Wilson 已提交
2851
	WARN_ON(i915_verify_lists(ring->dev));
2852

2853 2854 2855 2856
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2857
	 */
2858
	while (!list_empty(&ring->request_list)) {
2859 2860
		struct drm_i915_gem_request *request;

2861
		request = list_first_entry(&ring->request_list,
2862 2863 2864
					   struct drm_i915_gem_request,
					   list);

2865
		if (!i915_gem_request_completed(request, true))
2866 2867
			break;

2868
		i915_gem_request_retire(request);
2869
	}
2870

2871 2872 2873 2874 2875 2876 2877 2878 2879
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
2880
				      ring_list[ring->id]);
2881

2882
		if (!list_empty(&obj->last_read_req[ring->id]->list))
2883 2884
			break;

2885
		i915_gem_object_retire__read(obj, ring->id);
2886 2887
	}

2888 2889
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2890
		ring->irq_put(ring);
2891
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2892
	}
2893

C
Chris Wilson 已提交
2894
	WARN_ON(i915_verify_lists(ring->dev));
2895 2896
}

2897
bool
2898 2899
i915_gem_retire_requests(struct drm_device *dev)
{
2900
	struct drm_i915_private *dev_priv = dev->dev_private;
2901
	struct intel_engine_cs *ring;
2902
	bool idle = true;
2903
	int i;
2904

2905
	for_each_ring(ring, dev_priv, i) {
2906
		i915_gem_retire_requests_ring(ring);
2907
		idle &= list_empty(&ring->request_list);
2908 2909 2910 2911 2912 2913 2914 2915 2916
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2917 2918 2919 2920 2921 2922 2923 2924
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2925 2926
}

2927
static void
2928 2929
i915_gem_retire_work_handler(struct work_struct *work)
{
2930 2931 2932
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2933
	bool idle;
2934

2935
	/* Come back later if the device is busy... */
2936 2937 2938 2939
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2940
	}
2941
	if (!idle)
2942 2943
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2944
}
2945

2946 2947 2948 2949 2950
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2951
	struct drm_device *dev = dev_priv->dev;
2952 2953
	struct intel_engine_cs *ring;
	int i;
2954

2955 2956 2957
	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2958 2959 2960 2961 2962 2963 2964 2965 2966

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
2967

2968 2969
		mutex_unlock(&dev->struct_mutex);
	}
2970 2971
}

2972 2973 2974 2975 2976 2977 2978 2979
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2980 2981 2982 2983
	int ret, i;

	if (!obj->active)
		return 0;
2984

2985 2986
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_request *req;
2987

2988 2989 2990 2991 2992 2993 2994 2995
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		ret = i915_gem_check_olr(req);
2996 2997 2998
		if (ret)
			return ret;

2999 3000 3001 3002 3003
		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
3004 3005 3006 3007 3008
	}

	return 0;
}

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
3034
	struct drm_i915_private *dev_priv = dev->dev_private;
3035 3036
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3037
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3038
	unsigned reset_counter;
3039 3040
	int i, n = 0;
	int ret;
3041

3042 3043 3044
	if (args->flags != 0)
		return -EINVAL;

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3055 3056
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3057 3058 3059
	if (ret)
		goto out;

3060
	if (!obj->active)
3061
		goto out;
3062 3063

	/* Do this after OLR check to make sure we make forward progress polling
3064
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3065
	 */
3066
	if (args->timeout_ns == 0) {
3067 3068 3069 3070 3071
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3072
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3073 3074 3075 3076 3077 3078 3079 3080

	for (i = 0; i < I915_NUM_RINGS; i++) {
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3081 3082
	mutex_unlock(&dev->struct_mutex);

3083 3084 3085 3086 3087 3088 3089
	for (i = 0; i < n; i++) {
		if (ret == 0)
			ret = __i915_wait_request(req[i], reset_counter, true,
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
						  file->driver_priv);
		i915_gem_request_unreference__unlocked(req[i]);
	}
3090
	return ret;
3091 3092 3093 3094 3095 3096 3097

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
		       struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *from;
	int ret;

	from = i915_gem_request_get_ring(req);
	if (to == from)
		return 0;

	if (i915_gem_request_completed(req, true))
		return 0;

	ret = i915_gem_check_olr(req);
	if (ret)
		return ret;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3118
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3119
		ret = __i915_wait_request(req,
3120 3121 3122 3123
					  atomic_read(&i915->gpu_error.reset_counter),
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
		if (ret)
			return ret;

		i915_gem_object_retire_request(obj, req);
	} else {
		int idx = intel_ring_sync_index(from, to);
		u32 seqno = i915_gem_request_get_seqno(req);

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

		trace_i915_gem_ring_sync_to(from, to, req);
		ret = to->semaphore.sync_to(to, from, seqno);
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3151 3152 3153 3154 3155 3156 3157 3158
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
 * rather than a particular GPU ring. Conceptually we serialise writes
 * between engines inside the GPU. We only allow on engine to write
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3170 3171 3172
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3173 3174
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3175
		     struct intel_engine_cs *to)
3176
{
3177 3178 3179
	const bool readonly = obj->base.pending_write_domain == 0;
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
	int ret, i, n;
3180

3181
	if (!obj->active)
3182 3183
		return 0;

3184 3185
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3186

3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++)
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
		ret = __i915_gem_object_sync(obj, to, req[i]);
		if (ret)
			return ret;
	}
3201

3202
	return 0;
3203 3204
}

3205 3206 3207 3208 3209 3210 3211
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3212 3213 3214
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3215 3216 3217
	/* Wait for any direct GTT access to complete */
	mb();

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3229
int i915_vma_unbind(struct i915_vma *vma)
3230
{
3231
	struct drm_i915_gem_object *obj = vma->obj;
3232
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3233
	int ret;
3234

3235
	if (list_empty(&vma->vma_link))
3236 3237
		return 0;

3238 3239 3240 3241
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3242

B
Ben Widawsky 已提交
3243
	if (vma->pin_count)
3244
		return -EBUSY;
3245

3246 3247
	BUG_ON(obj->pages == NULL);

3248
	ret = i915_gem_object_wait_rendering(obj, false);
3249
	if (ret)
3250 3251 3252 3253 3254 3255
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3256 3257
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3258
		i915_gem_object_finish_gtt(obj);
3259

3260 3261 3262 3263 3264
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3265

3266
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3267

3268
	vma->vm->unbind_vma(vma);
3269
	vma->bound = 0;
3270

3271
	list_del_init(&vma->mm_list);
3272 3273 3274 3275 3276 3277 3278 3279 3280
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3281

B
Ben Widawsky 已提交
3282 3283 3284 3285
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3286
	 * no more VMAs exist. */
3287 3288
	if (list_empty(&obj->vma_list)) {
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3289
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3290
	}
3291

3292 3293 3294 3295 3296 3297
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3298
	return 0;
3299 3300
}

3301
int i915_gpu_idle(struct drm_device *dev)
3302
{
3303
	struct drm_i915_private *dev_priv = dev->dev_private;
3304
	struct intel_engine_cs *ring;
3305
	int ret, i;
3306 3307

	/* Flush everything onto the inactive list. */
3308
	for_each_ring(ring, dev_priv, i) {
3309 3310 3311 3312 3313
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3314

3315
		ret = intel_ring_idle(ring);
3316 3317 3318
		if (ret)
			return ret;
	}
3319

3320
	WARN_ON(i915_verify_lists(dev));
3321
	return 0;
3322 3323
}

3324 3325
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3326
{
3327
	struct drm_i915_private *dev_priv = dev->dev_private;
3328 3329
	int fence_reg;
	int fence_pitch_shift;
3330

3331 3332 3333 3334 3335 3336 3337 3338
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3353
	if (obj) {
3354
		u32 size = i915_gem_obj_ggtt_size(obj);
3355
		uint64_t val;
3356

3357 3358 3359 3360 3361 3362 3363
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3364
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3365
				 0xfffff000) << 32;
3366
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3367
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3368 3369 3370
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3371

3372 3373 3374 3375 3376 3377 3378 3379 3380
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3381 3382
}

3383 3384
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3385
{
3386
	struct drm_i915_private *dev_priv = dev->dev_private;
3387
	u32 val;
3388

3389
	if (obj) {
3390
		u32 size = i915_gem_obj_ggtt_size(obj);
3391 3392
		int pitch_val;
		int tile_width;
3393

3394
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3395
		     (size & -size) != size ||
3396 3397 3398
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3399

3400 3401 3402 3403 3404 3405 3406 3407 3408
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3409
		val = i915_gem_obj_ggtt_offset(obj);
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3425 3426
}

3427 3428
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3429
{
3430
	struct drm_i915_private *dev_priv = dev->dev_private;
3431 3432
	uint32_t val;

3433
	if (obj) {
3434
		u32 size = i915_gem_obj_ggtt_size(obj);
3435
		uint32_t pitch_val;
3436

3437
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3438
		     (size & -size) != size ||
3439 3440 3441
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3442

3443 3444
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3445

3446
		val = i915_gem_obj_ggtt_offset(obj);
3447 3448 3449 3450 3451 3452 3453
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3454

3455 3456 3457 3458
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3459 3460 3461 3462 3463
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3464 3465 3466
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3467 3468 3469 3470 3471 3472 3473 3474
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3475 3476 3477 3478
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3479 3480 3481 3482 3483 3484
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3485 3486 3487 3488 3489 3490

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3491 3492
}

3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3503
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3504 3505 3506
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3507 3508

	if (enable) {
3509
		obj->fence_reg = reg;
3510 3511 3512 3513 3514 3515 3516
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3517
	obj->fence_dirty = false;
3518 3519
}

3520
static int
3521
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3522
{
3523
	if (obj->last_fenced_req) {
3524
		int ret = i915_wait_request(obj->last_fenced_req);
3525 3526
		if (ret)
			return ret;
3527

3528
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3529 3530 3531 3532 3533 3534 3535 3536
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3537
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3538
	struct drm_i915_fence_reg *fence;
3539 3540
	int ret;

3541
	ret = i915_gem_object_wait_fence(obj);
3542 3543 3544
	if (ret)
		return ret;

3545 3546
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3547

3548 3549
	fence = &dev_priv->fence_regs[obj->fence_reg];

3550 3551 3552
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3553
	i915_gem_object_fence_lost(obj);
3554
	i915_gem_object_update_fence(obj, fence, false);
3555 3556 3557 3558 3559

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3560
i915_find_fence_reg(struct drm_device *dev)
3561 3562
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3563
	struct drm_i915_fence_reg *reg, *avail;
3564
	int i;
3565 3566

	/* First try to find a free reg */
3567
	avail = NULL;
3568 3569 3570
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3571
			return reg;
3572

3573
		if (!reg->pin_count)
3574
			avail = reg;
3575 3576
	}

3577
	if (avail == NULL)
3578
		goto deadlock;
3579 3580

	/* None available, try to steal one or wait for a user to finish */
3581
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3582
		if (reg->pin_count)
3583 3584
			continue;

C
Chris Wilson 已提交
3585
		return reg;
3586 3587
	}

3588 3589 3590 3591 3592 3593
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3594 3595
}

3596
/**
3597
 * i915_gem_object_get_fence - set up fencing for an object
3598 3599 3600 3601 3602 3603 3604 3605 3606
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3607 3608
 *
 * For an untiled surface, this removes any existing fence.
3609
 */
3610
int
3611
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3612
{
3613
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3614
	struct drm_i915_private *dev_priv = dev->dev_private;
3615
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3616
	struct drm_i915_fence_reg *reg;
3617
	int ret;
3618

3619 3620 3621
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3622
	if (obj->fence_dirty) {
3623
		ret = i915_gem_object_wait_fence(obj);
3624 3625 3626
		if (ret)
			return ret;
	}
3627

3628
	/* Just update our place in the LRU if our fence is getting reused. */
3629 3630
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3631
		if (!obj->fence_dirty) {
3632 3633 3634 3635 3636
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3637 3638 3639
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3640
		reg = i915_find_fence_reg(dev);
3641 3642
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3643

3644 3645 3646
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3647
			ret = i915_gem_object_wait_fence(old);
3648 3649 3650
			if (ret)
				return ret;

3651
			i915_gem_object_fence_lost(old);
3652
		}
3653
	} else
3654 3655
		return 0;

3656 3657
	i915_gem_object_update_fence(obj, reg, enable);

3658
	return 0;
3659 3660
}

3661
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3662 3663
				     unsigned long cache_level)
{
3664
	struct drm_mm_node *gtt_space = &vma->node;
3665 3666
	struct drm_mm_node *other;

3667 3668 3669 3670 3671 3672
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3673
	 */
3674
	if (vma->vm->mm.color_adjust == NULL)
3675 3676
		return true;

3677
	if (!drm_mm_node_allocated(gtt_space))
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3694
/**
3695 3696
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3697
 */
3698
static struct i915_vma *
3699 3700
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3701
			   const struct i915_ggtt_view *ggtt_view,
3702
			   unsigned alignment,
3703
			   uint64_t flags)
3704
{
3705
	struct drm_device *dev = obj->base.dev;
3706
	struct drm_i915_private *dev_priv = dev->dev_private;
3707
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3708 3709 3710
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3711
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3712
	struct i915_vma *vma;
3713
	int ret;
3714

3715 3716 3717 3718 3719
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3720

3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3750

3751
	if (alignment == 0)
3752
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3753
						unfenced_alignment;
3754
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3755 3756 3757
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3758
		return ERR_PTR(-EINVAL);
3759 3760
	}

3761 3762 3763
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3764
	 */
3765 3766 3767 3768
	if (size > end) {
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3769
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3770
			  end);
3771
		return ERR_PTR(-E2BIG);
3772 3773
	}

3774
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3775
	if (ret)
3776
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3777

3778 3779
	i915_gem_object_pin_pages(obj);

3780 3781 3782
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3783
	if (IS_ERR(vma))
3784
		goto err_unpin;
B
Ben Widawsky 已提交
3785

3786
search_free:
3787
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3788
						  size, alignment,
3789 3790
						  obj->cache_level,
						  start, end,
3791 3792
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3793
	if (ret) {
3794
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3795 3796 3797
					       obj->cache_level,
					       start, end,
					       flags);
3798 3799
		if (ret == 0)
			goto search_free;
3800

3801
		goto err_free_vma;
3802
	}
3803
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3804
		ret = -EINVAL;
3805
		goto err_remove_node;
3806 3807
	}

3808
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3809
	if (ret)
3810
		goto err_remove_node;
3811

3812
	trace_i915_vma_bind(vma, flags);
3813
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3814 3815 3816
	if (ret)
		goto err_finish_gtt;

3817
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3818
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3819

3820
	return vma;
B
Ben Widawsky 已提交
3821

3822 3823
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3824
err_remove_node:
3825
	drm_mm_remove_node(&vma->node);
3826
err_free_vma:
B
Ben Widawsky 已提交
3827
	i915_gem_vma_destroy(vma);
3828
	vma = ERR_PTR(ret);
3829
err_unpin:
B
Ben Widawsky 已提交
3830
	i915_gem_object_unpin_pages(obj);
3831
	return vma;
3832 3833
}

3834
bool
3835 3836
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3837 3838 3839 3840 3841
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3842
	if (obj->pages == NULL)
3843
		return false;
3844

3845 3846 3847 3848
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3849
	if (obj->stolen || obj->phys_handle)
3850
		return false;
3851

3852 3853 3854 3855 3856 3857 3858 3859
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3860 3861
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3862
		return false;
3863
	}
3864

C
Chris Wilson 已提交
3865
	trace_i915_gem_object_clflush(obj);
3866
	drm_clflush_sg(obj->pages);
3867
	obj->cache_dirty = false;
3868 3869

	return true;
3870 3871 3872 3873
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3874
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3875
{
C
Chris Wilson 已提交
3876 3877
	uint32_t old_write_domain;

3878
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3879 3880
		return;

3881
	/* No actual flushing is required for the GTT write domain.  Writes
3882 3883
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3884 3885 3886 3887
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3888
	 */
3889 3890
	wmb();

3891 3892
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3893

3894 3895
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3896
	trace_i915_gem_object_change_domain(obj,
3897
					    obj->base.read_domains,
C
Chris Wilson 已提交
3898
					    old_write_domain);
3899 3900 3901 3902
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3903
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3904
{
C
Chris Wilson 已提交
3905
	uint32_t old_write_domain;
3906

3907
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3908 3909
		return;

3910
	if (i915_gem_clflush_object(obj, obj->pin_display))
3911 3912
		i915_gem_chipset_flush(obj->base.dev);

3913 3914
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3915

3916 3917
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3918
	trace_i915_gem_object_change_domain(obj,
3919
					    obj->base.read_domains,
C
Chris Wilson 已提交
3920
					    old_write_domain);
3921 3922
}

3923 3924 3925 3926 3927 3928
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3929
int
3930
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3931
{
C
Chris Wilson 已提交
3932
	uint32_t old_write_domain, old_read_domains;
3933
	struct i915_vma *vma;
3934
	int ret;
3935

3936 3937 3938
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3939
	ret = i915_gem_object_wait_rendering(obj, !write);
3940 3941 3942
	if (ret)
		return ret;

3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3955
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3956

3957 3958 3959 3960 3961 3962 3963
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3964 3965
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3966

3967 3968 3969
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3970 3971
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3972
	if (write) {
3973 3974 3975
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3976 3977
	}

3978
	if (write)
3979
		intel_fb_obj_invalidate(obj, ORIGIN_GTT);
3980

C
Chris Wilson 已提交
3981 3982 3983 3984
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3985
	/* And bump the LRU for this access */
3986 3987
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3988
		list_move_tail(&vma->mm_list,
3989
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3990

3991 3992 3993
	return 0;
}

3994 3995 3996
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3997
	struct drm_device *dev = obj->base.dev;
3998
	struct i915_vma *vma, *next;
3999 4000 4001 4002 4003
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
4004
	if (i915_gem_obj_is_pinned(obj)) {
4005 4006 4007 4008
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

4009
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4010
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4011
			ret = i915_vma_unbind(vma);
4012 4013 4014
			if (ret)
				return ret;
		}
4015 4016
	}

4017
	if (i915_gem_obj_bound_any(obj)) {
4018
		ret = i915_gem_object_wait_rendering(obj, false);
4019 4020 4021 4022 4023 4024 4025 4026 4027
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
4028
		if (INTEL_INFO(dev)->gen < 6) {
4029 4030 4031 4032 4033
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

4034
		list_for_each_entry(vma, &obj->vma_list, vma_link)
4035 4036
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
4037
						    PIN_UPDATE);
4038 4039 4040
				if (ret)
					return ret;
			}
4041 4042
	}

4043 4044 4045 4046
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

4047 4048 4049 4050 4051
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
4052 4053 4054 4055 4056
	}

	return 0;
}

B
Ben Widawsky 已提交
4057 4058
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4059
{
B
Ben Widawsky 已提交
4060
	struct drm_i915_gem_caching *args = data;
4061 4062 4063
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4064 4065
	if (&obj->base == NULL)
		return -ENOENT;
4066

4067 4068 4069 4070 4071 4072
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4073 4074 4075 4076
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4077 4078 4079 4080
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4081

4082 4083
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4084 4085
}

B
Ben Widawsky 已提交
4086 4087
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4088
{
B
Ben Widawsky 已提交
4089
	struct drm_i915_gem_caching *args = data;
4090 4091 4092 4093
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4094 4095
	switch (args->caching) {
	case I915_CACHING_NONE:
4096 4097
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4098
	case I915_CACHING_CACHED:
4099 4100
		level = I915_CACHE_LLC;
		break;
4101 4102 4103
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4104 4105 4106 4107
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
4108 4109 4110 4111
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

4126
/*
4127 4128 4129
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4130 4131
 */
int
4132 4133
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4134 4135
				     struct intel_engine_cs *pipelined,
				     const struct i915_ggtt_view *view)
4136
{
4137
	u32 old_read_domains, old_write_domain;
4138 4139
	int ret;

4140 4141 4142
	ret = i915_gem_object_sync(obj, pipelined);
	if (ret)
		return ret;
4143

4144 4145 4146
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4147
	obj->pin_display++;
4148

4149 4150 4151 4152 4153 4154 4155 4156 4157
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4158 4159
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4160
	if (ret)
4161
		goto err_unpin_display;
4162

4163 4164 4165 4166
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4167 4168 4169
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4170
	if (ret)
4171
		goto err_unpin_display;
4172

4173
	i915_gem_object_flush_cpu_write_domain(obj);
4174

4175
	old_write_domain = obj->base.write_domain;
4176
	old_read_domains = obj->base.read_domains;
4177 4178 4179 4180

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4181
	obj->base.write_domain = 0;
4182
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4183 4184 4185

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4186
					    old_write_domain);
4187 4188

	return 0;
4189 4190

err_unpin_display:
4191
	obj->pin_display--;
4192 4193 4194 4195
	return ret;
}

void
4196 4197
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4198
{
4199 4200 4201
	if (WARN_ON(obj->pin_display == 0))
		return;

4202 4203
	i915_gem_object_ggtt_unpin_view(obj, view);

4204
	obj->pin_display--;
4205 4206
}

4207 4208 4209 4210 4211 4212
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4213
int
4214
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4215
{
C
Chris Wilson 已提交
4216
	uint32_t old_write_domain, old_read_domains;
4217 4218
	int ret;

4219 4220 4221
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4222
	ret = i915_gem_object_wait_rendering(obj, !write);
4223 4224 4225
	if (ret)
		return ret;

4226
	i915_gem_object_flush_gtt_write_domain(obj);
4227

4228 4229
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4230

4231
	/* Flush the CPU cache if it's still invalid. */
4232
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4233
		i915_gem_clflush_object(obj, false);
4234

4235
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4236 4237 4238 4239 4240
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4241
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4242 4243 4244 4245 4246

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4247 4248
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4249
	}
4250

4251
	if (write)
4252
		intel_fb_obj_invalidate(obj, ORIGIN_CPU);
4253

C
Chris Wilson 已提交
4254 4255 4256 4257
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4258 4259 4260
	return 0;
}

4261 4262 4263
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4264 4265 4266 4267
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4268 4269 4270
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4271
static int
4272
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4273
{
4274 4275
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4276
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4277
	struct drm_i915_gem_request *request, *target = NULL;
4278
	unsigned reset_counter;
4279
	int ret;
4280

4281 4282 4283 4284 4285 4286 4287
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4288

4289
	spin_lock(&file_priv->mm.lock);
4290
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4291 4292
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4293

4294
		target = request;
4295
	}
4296
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4297 4298
	if (target)
		i915_gem_request_reference(target);
4299
	spin_unlock(&file_priv->mm.lock);
4300

4301
	if (target == NULL)
4302
		return 0;
4303

4304
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4305 4306
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4307

4308
	i915_gem_request_unreference__unlocked(target);
4309

4310 4311 4312
	return ret;
}

4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4332 4333 4334 4335 4336 4337
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4338
{
4339
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4340
	struct i915_vma *vma;
4341
	unsigned bound;
4342 4343
	int ret;

4344 4345 4346
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4347
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4348
		return -EINVAL;
4349

4350 4351 4352
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4353 4354 4355 4356 4357 4358 4359 4360 4361
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4362
	if (vma) {
B
Ben Widawsky 已提交
4363 4364 4365
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4366
		if (i915_vma_misplaced(vma, alignment, flags)) {
4367
			unsigned long offset;
4368
			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4369
					     i915_gem_obj_offset(obj, vm);
B
Ben Widawsky 已提交
4370
			WARN(vma->pin_count,
4371
			     "bo is already pinned in %s with incorrect alignment:"
4372
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4373
			     " obj->map_and_fenceable=%d\n",
4374 4375
			     ggtt_view ? "ggtt" : "ppgtt",
			     offset,
4376
			     alignment,
4377
			     !!(flags & PIN_MAPPABLE),
4378
			     obj->map_and_fenceable);
4379
			ret = i915_vma_unbind(vma);
4380 4381
			if (ret)
				return ret;
4382 4383

			vma = NULL;
4384 4385 4386
		}
	}

4387
	bound = vma ? vma->bound : 0;
4388
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4389 4390
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4391 4392
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4393 4394
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4395 4396 4397
		if (ret)
			return ret;
	}
4398

4399 4400
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4415
		mappable = (vma->node.start + fence_size <=
4416 4417 4418 4419
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;

4420 4421
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4422

4423
	vma->pin_count++;
4424 4425 4426
	return 0;
}

4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4448
				      alignment, flags | PIN_GLOBAL);
4449 4450
}

4451
void
4452 4453
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4454
{
4455
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4456

B
Ben Widawsky 已提交
4457
	BUG_ON(!vma);
4458
	WARN_ON(vma->pin_count == 0);
4459
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4460

4461
	--vma->pin_count;
4462 4463
}

4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4490 4491
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4492
		    struct drm_file *file)
4493 4494
{
	struct drm_i915_gem_busy *args = data;
4495
	struct drm_i915_gem_object *obj;
4496 4497
	int ret;

4498
	ret = i915_mutex_lock_interruptible(dev);
4499
	if (ret)
4500
		return ret;
4501

4502
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4503
	if (&obj->base == NULL) {
4504 4505
		ret = -ENOENT;
		goto unlock;
4506
	}
4507

4508 4509 4510 4511
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4512
	 */
4513
	ret = i915_gem_object_flush_active(obj);
4514 4515
	if (ret)
		goto unref;
4516

4517 4518 4519 4520
	BUILD_BUG_ON(I915_NUM_RINGS > 16);
	args->busy = obj->active << 16;
	if (obj->last_write_req)
		args->busy |= obj->last_write_req->ring->id;
4521

4522
unref:
4523
	drm_gem_object_unreference(&obj->base);
4524
unlock:
4525
	mutex_unlock(&dev->struct_mutex);
4526
	return ret;
4527 4528 4529 4530 4531 4532
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4533
	return i915_gem_ring_throttle(dev, file_priv);
4534 4535
}

4536 4537 4538 4539
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4540
	struct drm_i915_private *dev_priv = dev->dev_private;
4541
	struct drm_i915_gem_madvise *args = data;
4542
	struct drm_i915_gem_object *obj;
4543
	int ret;
4544 4545 4546 4547 4548 4549 4550 4551 4552

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4553 4554 4555 4556
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4557
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4558
	if (&obj->base == NULL) {
4559 4560
		ret = -ENOENT;
		goto unlock;
4561 4562
	}

B
Ben Widawsky 已提交
4563
	if (i915_gem_obj_is_pinned(obj)) {
4564 4565
		ret = -EINVAL;
		goto out;
4566 4567
	}

4568 4569 4570 4571 4572 4573 4574 4575 4576
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4577 4578
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4579

C
Chris Wilson 已提交
4580
	/* if the object is no longer attached, discard its backing storage */
4581
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4582 4583
		i915_gem_object_truncate(obj);

4584
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4585

4586
out:
4587
	drm_gem_object_unreference(&obj->base);
4588
unlock:
4589
	mutex_unlock(&dev->struct_mutex);
4590
	return ret;
4591 4592
}

4593 4594
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4595
{
4596 4597
	int i;

4598
	INIT_LIST_HEAD(&obj->global_list);
4599 4600
	for (i = 0; i < I915_NUM_RINGS; i++)
		INIT_LIST_HEAD(&obj->ring_list[i]);
4601
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4602
	INIT_LIST_HEAD(&obj->vma_list);
4603
	INIT_LIST_HEAD(&obj->batch_pool_link);
4604

4605 4606
	obj->ops = ops;

4607 4608 4609 4610 4611 4612
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4613 4614 4615 4616 4617
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4618 4619
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4620
{
4621
	struct drm_i915_gem_object *obj;
4622
	struct address_space *mapping;
D
Daniel Vetter 已提交
4623
	gfp_t mask;
4624

4625
	obj = i915_gem_object_alloc(dev);
4626 4627
	if (obj == NULL)
		return NULL;
4628

4629
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4630
		i915_gem_object_free(obj);
4631 4632
		return NULL;
	}
4633

4634 4635 4636 4637 4638 4639 4640
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4641
	mapping = file_inode(obj->base.filp)->i_mapping;
4642
	mapping_set_gfp_mask(mapping, mask);
4643

4644
	i915_gem_object_init(obj, &i915_gem_object_ops);
4645

4646 4647
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4648

4649 4650
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4666 4667
	trace_i915_gem_object_create(obj);

4668
	return obj;
4669 4670
}

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4695
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4696
{
4697
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4698
	struct drm_device *dev = obj->base.dev;
4699
	struct drm_i915_private *dev_priv = dev->dev_private;
4700
	struct i915_vma *vma, *next;
4701

4702 4703
	intel_runtime_pm_get(dev_priv);

4704 4705
	trace_i915_gem_object_destroy(obj);

4706
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4707 4708 4709 4710
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4711 4712
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4713

4714 4715
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4716

4717
			WARN_ON(i915_vma_unbind(vma));
4718

4719 4720
			dev_priv->mm.interruptible = was_interruptible;
		}
4721 4722
	}

B
Ben Widawsky 已提交
4723 4724 4725 4726 4727
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4728 4729
	WARN_ON(obj->frontbuffer_bits);

4730 4731 4732 4733 4734
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4735 4736
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4737
	if (discard_backing_storage(obj))
4738
		obj->madv = I915_MADV_DONTNEED;
4739
	i915_gem_object_put_pages(obj);
4740
	i915_gem_object_free_mmap_offset(obj);
4741

4742 4743
	BUG_ON(obj->pages);

4744 4745
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4746

4747 4748 4749
	if (obj->ops->release)
		obj->ops->release(obj);

4750 4751
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4752

4753
	kfree(obj->bit_17);
4754
	i915_gem_object_free(obj);
4755 4756

	intel_runtime_pm_put(dev_priv);
4757 4758
}

4759 4760
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4761 4762
{
	struct i915_vma *vma;
4763 4764 4765 4766 4767
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4768
			return vma;
4769 4770 4771 4772 4773 4774 4775 4776 4777
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4778

4779 4780 4781 4782
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4783 4784
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4785
			return vma;
4786 4787 4788
	return NULL;
}

B
Ben Widawsky 已提交
4789 4790
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4791
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4792
	WARN_ON(vma->node.allocated);
4793 4794 4795 4796 4797

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4798 4799
	vm = vma->vm;

4800 4801
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4802

4803
	list_del(&vma->vma_link);
4804

4805
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4806 4807
}

4808 4809 4810 4811
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4812
	struct intel_engine_cs *ring;
4813 4814 4815
	int i;

	for_each_ring(ring, dev_priv, i)
4816
		dev_priv->gt.stop_ring(ring);
4817 4818
}

4819
int
4820
i915_gem_suspend(struct drm_device *dev)
4821
{
4822
	struct drm_i915_private *dev_priv = dev->dev_private;
4823
	int ret = 0;
4824

4825
	mutex_lock(&dev->struct_mutex);
4826
	ret = i915_gpu_idle(dev);
4827
	if (ret)
4828
		goto err;
4829

4830
	i915_gem_retire_requests(dev);
4831

4832
	i915_gem_stop_ringbuffers(dev);
4833 4834
	mutex_unlock(&dev->struct_mutex);

4835
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4836
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4837
	flush_delayed_work(&dev_priv->mm.idle_work);
4838

4839 4840 4841 4842 4843
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4844
	return 0;
4845 4846 4847 4848

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4849 4850
}

4851
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4852
{
4853
	struct drm_device *dev = ring->dev;
4854
	struct drm_i915_private *dev_priv = dev->dev_private;
4855 4856
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4857
	int i, ret;
B
Ben Widawsky 已提交
4858

4859
	if (!HAS_L3_DPF(dev) || !remap_info)
4860
		return 0;
B
Ben Widawsky 已提交
4861

4862 4863 4864
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4865

4866 4867 4868 4869 4870
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4871
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4872 4873 4874
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4875 4876
	}

4877
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4878

4879
	return ret;
B
Ben Widawsky 已提交
4880 4881
}

4882 4883
void i915_gem_init_swizzling(struct drm_device *dev)
{
4884
	struct drm_i915_private *dev_priv = dev->dev_private;
4885

4886
	if (INTEL_INFO(dev)->gen < 5 ||
4887 4888 4889 4890 4891 4892
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4893 4894 4895
	if (IS_GEN5(dev))
		return;

4896 4897
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4898
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4899
	else if (IS_GEN7(dev))
4900
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4901 4902
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4903 4904
	else
		BUG();
4905
}
D
Daniel Vetter 已提交
4906

4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4950
int i915_gem_init_rings(struct drm_device *dev)
4951
{
4952
	struct drm_i915_private *dev_priv = dev->dev_private;
4953
	int ret;
4954

4955
	ret = intel_init_render_ring_buffer(dev);
4956
	if (ret)
4957
		return ret;
4958 4959

	if (HAS_BSD(dev)) {
4960
		ret = intel_init_bsd_ring_buffer(dev);
4961 4962
		if (ret)
			goto cleanup_render_ring;
4963
	}
4964

4965
	if (intel_enable_blt(dev)) {
4966 4967 4968 4969 4970
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4971 4972 4973 4974 4975 4976
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4977 4978 4979 4980 4981
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4982

4983
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4984
	if (ret)
4985
		goto cleanup_bsd2_ring;
4986 4987 4988

	return 0;

4989 4990
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4991 4992
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
5006
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
5007
	struct intel_engine_cs *ring;
5008
	int ret, i;
5009 5010 5011 5012

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

5013 5014 5015
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
5016
	if (dev_priv->ellc_size)
5017
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5018

5019 5020 5021
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5022

5023
	if (HAS_PCH_NOP(dev)) {
5024 5025 5026 5027 5028 5029 5030 5031 5032
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5033 5034
	}

5035 5036
	i915_gem_init_swizzling(dev);

5037 5038 5039 5040 5041 5042 5043 5044
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
5045 5046 5047
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
5048
			goto out;
D
Daniel Vetter 已提交
5049
	}
5050

5051 5052 5053
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

5054
	ret = i915_ppgtt_init_hw(dev);
5055
	if (ret && ret != -EIO) {
5056
		DRM_ERROR("PPGTT enable failed %d\n", ret);
5057
		i915_gem_cleanup_ringbuffer(dev);
5058 5059
	}

5060
	ret = i915_gem_context_enable(dev_priv);
5061
	if (ret && ret != -EIO) {
5062
		DRM_ERROR("Context enable failed %d\n", ret);
5063
		i915_gem_cleanup_ringbuffer(dev);
5064

5065
		goto out;
5066
	}
D
Daniel Vetter 已提交
5067

5068 5069
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5070
	return ret;
5071 5072
}

5073 5074 5075 5076 5077
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

5078 5079 5080
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

5081
	mutex_lock(&dev->struct_mutex);
5082 5083 5084

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
5085 5086 5087
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
5088 5089 5090
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

5091
	if (!i915.enable_execlists) {
5092
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5093 5094 5095
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5096
	} else {
5097
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5098 5099 5100
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
5101 5102
	}

5103 5104 5105 5106 5107 5108 5109 5110
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5111
	ret = i915_gem_init_userptr(dev);
5112 5113
	if (ret)
		goto out_unlock;
5114

5115
	i915_gem_init_global_gtt(dev);
5116

5117
	ret = i915_gem_context_init(dev);
5118 5119
	if (ret)
		goto out_unlock;
5120

D
Daniel Vetter 已提交
5121 5122
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
5123
		goto out_unlock;
5124

5125
	ret = i915_gem_init_hw(dev);
5126 5127 5128 5129 5130 5131 5132 5133
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
5134
	}
5135 5136

out_unlock:
5137
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5138
	mutex_unlock(&dev->struct_mutex);
5139

5140
	return ret;
5141 5142
}

5143 5144 5145
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
5146
	struct drm_i915_private *dev_priv = dev->dev_private;
5147
	struct intel_engine_cs *ring;
5148
	int i;
5149

5150
	for_each_ring(ring, dev_priv, i)
5151
		dev_priv->gt.cleanup_ring(ring);
5152 5153
}

5154
static void
5155
init_ring_lists(struct intel_engine_cs *ring)
5156 5157 5158 5159 5160
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

5161 5162
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
5163
{
5164 5165
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
5166 5167 5168 5169
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
5170
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
5171 5172
}

5173 5174 5175
void
i915_gem_load(struct drm_device *dev)
{
5176
	struct drm_i915_private *dev_priv = dev->dev_private;
5177 5178
	int i;

5179
	dev_priv->objects =
5180 5181 5182 5183
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5184 5185 5186 5187 5188
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5189 5190 5191 5192 5193
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5194

B
Ben Widawsky 已提交
5195 5196 5197
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

5198
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5199 5200
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5201
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5202 5203
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5204
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5205
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5206 5207
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5208 5209
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5210
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5211

5212 5213
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5214 5215 5216
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5217 5218 5219 5220
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5221 5222 5223 5224
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5225
	/* Initialize fence registers to zero */
5226 5227
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5228

5229
	i915_gem_detect_bit_6_swizzle(dev);
5230
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5231

5232 5233
	dev_priv->mm.interruptible = true;

5234
	i915_gem_shrinker_init(dev_priv);
5235 5236

	mutex_init(&dev_priv->fb_tracking.lock);
5237
}
5238

5239
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5240
{
5241
	struct drm_i915_file_private *file_priv = file->driver_priv;
5242 5243 5244 5245 5246

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5247
	spin_lock(&file_priv->mm.lock);
5248 5249 5250 5251 5252 5253 5254 5255 5256
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5257
	spin_unlock(&file_priv->mm.lock);
5258

5259
	if (!list_empty(&file_priv->rps.link)) {
5260
		spin_lock(&to_i915(dev)->rps.client_lock);
5261
		list_del(&file_priv->rps.link);
5262
		spin_unlock(&to_i915(dev)->rps.client_lock);
5263
	}
5264 5265 5266 5267 5268
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5269
	int ret;
5270 5271 5272 5273 5274 5275 5276 5277 5278

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5279
	file_priv->file = file;
5280
	INIT_LIST_HEAD(&file_priv->rps.link);
5281 5282 5283 5284

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5285 5286 5287
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5288

5289
	return ret;
5290 5291
}

5292 5293 5294 5295 5296 5297 5298 5299 5300
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5318
/* All the new VM stuff */
5319 5320 5321
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
		    struct i915_address_space *vm)
5322 5323 5324 5325
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5326
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5327 5328

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5329 5330 5331 5332
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5333 5334
			return vma->node.start;
	}
5335

5336 5337
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5338 5339 5340
	return -1;
}

5341 5342
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5343
			      const struct i915_ggtt_view *view)
5344
{
5345
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5346 5347 5348
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5349 5350
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5351 5352
			return vma->node.start;

5353
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5374
				  const struct i915_ggtt_view *view)
5375 5376 5377 5378 5379 5380
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5381
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5382
		    drm_mm_node_allocated(&vma->node))
5383 5384 5385 5386 5387 5388 5389
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5390
	struct i915_vma *vma;
5391

5392 5393
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5405
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5406 5407 5408

	BUG_ON(list_empty(&o->vma_list));

5409 5410 5411 5412
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5413 5414
		if (vma->vm == vm)
			return vma->node.size;
5415
	}
5416 5417 5418
	return 0;
}

5419
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5420 5421
{
	struct i915_vma *vma;
5422
	list_for_each_entry(vma, &obj->vma_list, vma_link)
5423 5424
		if (vma->pin_count > 0)
			return true;
5425

5426
	return false;
5427
}
5428