i915_gem.c 103.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38

39
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 43 44 45 46
static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
							  bool write);
static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
								  uint64_t offset,
								  uint64_t size);
47
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
48 49 50
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
51 52
static void i915_gem_clear_fence_reg(struct drm_device *dev,
				     struct drm_i915_fence_reg *reg);
53 54
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
55
				struct drm_i915_gem_pwrite *args,
56 57
				struct drm_file *file);
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
58

59
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
60
				    struct shrink_control *sc);
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

77 78
static int
i915_gem_wait_for_error(struct drm_device *dev)
79 80 81 82 83 84 85 86 87 88 89 90 91
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

92 93 94 95 96 97 98 99 100 101 102
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
103 104
}

105
int i915_mutex_lock_interruptible(struct drm_device *dev)
106 107 108
{
	int ret;

109
	ret = i915_gem_wait_for_error(dev);
110 111 112 113 114 115 116
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

117
	WARN_ON(i915_verify_lists(dev));
118 119
	return 0;
}
120

121
static inline bool
122
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
123
{
124
	return obj->gtt_space && !obj->active && obj->pin_count == 0;
125 126
}

127 128 129 130
void i915_gem_do_init(struct drm_device *dev,
		      unsigned long start,
		      unsigned long mappable_end,
		      unsigned long end)
131 132 133
{
	drm_i915_private_t *dev_priv = dev->dev_private;

134
	drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
135

136 137 138
	dev_priv->mm.gtt_start = start;
	dev_priv->mm.gtt_mappable_end = mappable_end;
	dev_priv->mm.gtt_end = end;
139
	dev_priv->mm.gtt_total = end - start;
140
	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
141 142 143

	/* Take over this portion of the GTT */
	intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
J
Jesse Barnes 已提交
144
}
145

J
Jesse Barnes 已提交
146 147
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
148
		    struct drm_file *file)
J
Jesse Barnes 已提交
149 150
{
	struct drm_i915_gem_init *args = data;
151 152 153 154

	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
155 156

	mutex_lock(&dev->struct_mutex);
157
	i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
158 159
	mutex_unlock(&dev->struct_mutex);

160
	return 0;
161 162
}

163 164
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165
			    struct drm_file *file)
166
{
167
	struct drm_i915_private *dev_priv = dev->dev_private;
168
	struct drm_i915_gem_get_aperture *args = data;
169 170
	struct drm_i915_gem_object *obj;
	size_t pinned;
171 172 173 174

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

175
	pinned = 0;
176
	mutex_lock(&dev->struct_mutex);
177 178
	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
		pinned += obj->gtt_space->size;
179
	mutex_unlock(&dev->struct_mutex);
180

181 182 183
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size -pinned;

184 185 186
	return 0;
}

187 188 189 190 191
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
192
{
193
	struct drm_i915_gem_object *obj;
194 195
	int ret;
	u32 handle;
196

197
	size = roundup(size, PAGE_SIZE);
198 199

	/* Allocate the new object */
200
	obj = i915_gem_alloc_object(dev, size);
201 202 203
	if (obj == NULL)
		return -ENOMEM;

204
	ret = drm_gem_handle_create(file, &obj->base, &handle);
205
	if (ret) {
206 207
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
208
		kfree(obj);
209
		return ret;
210
	}
211

212
	/* drop reference from allocate - handle holds it now */
213
	drm_gem_object_unreference(&obj->base);
214 215
	trace_i915_gem_object_create(obj);

216
	*handle_p = handle;
217 218 219
	return 0;
}

220 221 222 223 224 225
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
226
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

251
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
252
{
253
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
254 255

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
256
		obj->tiling_mode != I915_TILING_NONE;
257 258
}

259
static inline void
260 261 262 263 264 265 266 267
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

268 269
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
270 271 272

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

273 274
	kunmap(src_page);
	kunmap(dst_page);
275 276
}

277
static inline void
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

297 298
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

322 323
	kunmap(cpu_page);
	kunmap(gpu_page);
324 325
}

326 327 328 329 330 331
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
332 333
i915_gem_shmem_pread_fast(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
334
			  struct drm_i915_gem_pread *args,
335
			  struct drm_file *file)
336
{
337
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
338
	ssize_t remain;
339
	loff_t offset;
340 341 342 343 344 345 346 347 348
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	offset = args->offset;

	while (remain > 0) {
349 350 351 352
		struct page *page;
		char *vaddr;
		int ret;

353 354 355 356 357
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
358
		page_offset = offset_in_page(offset);
359 360 361 362
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

363
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
364 365 366 367 368 369 370 371 372 373 374 375
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page);
		ret = __copy_to_user_inatomic(user_data,
					      vaddr + page_offset,
					      page_length);
		kunmap_atomic(vaddr);

		mark_page_accessed(page);
		page_cache_release(page);
		if (ret)
376
			return -EFAULT;
377 378 379 380 381 382

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

383
	return 0;
384 385 386 387 388 389 390 391 392
}

/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
393 394
i915_gem_shmem_pread_slow(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
395
			  struct drm_i915_gem_pread *args,
396
			  struct drm_file *file)
397
{
398
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
399 400 401 402 403
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
404 405
	int shmem_page_offset;
	int data_page_index, data_page_offset;
406 407 408
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
409
	int do_bit17_swizzling;
410 411 412 413 414 415 416 417 418 419 420

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

421
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
422 423 424
	if (user_pages == NULL)
		return -ENOMEM;

425
	mutex_unlock(&dev->struct_mutex);
426 427
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
428
				      num_pages, 1, 0, user_pages, NULL);
429
	up_read(&mm->mmap_sem);
430
	mutex_lock(&dev->struct_mutex);
431 432
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
433
		goto out;
434 435
	}

436 437 438
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
439
	if (ret)
440
		goto out;
441

442
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
443 444 445 446

	offset = args->offset;

	while (remain > 0) {
447 448
		struct page *page;

449 450 451 452 453 454 455
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
456
		shmem_page_offset = offset_in_page(offset);
457
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
458
		data_page_offset = offset_in_page(data_ptr);
459 460 461 462 463 464 465

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

466
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
467 468 469 470
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}
471

472
		if (do_bit17_swizzling) {
473
			slow_shmem_bit17_copy(page,
474
					      shmem_page_offset,
475 476 477 478 479 480 481
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
482
					page,
483 484
					shmem_page_offset,
					page_length);
485
		}
486

487 488 489
		mark_page_accessed(page);
		page_cache_release(page);

490 491 492 493 494
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

495
out:
496 497
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
498
		mark_page_accessed(user_pages[i]);
499 500
		page_cache_release(user_pages[i]);
	}
501
	drm_free_large(user_pages);
502 503 504 505

	return ret;
}

506 507 508 509 510 511 512
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
513
		     struct drm_file *file)
514 515
{
	struct drm_i915_gem_pread *args = data;
516
	struct drm_i915_gem_object *obj;
517
	int ret = 0;
518

519 520 521 522 523 524 525 526 527 528 529 530 531
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret)
		return -EFAULT;

532
	ret = i915_mutex_lock_interruptible(dev);
533
	if (ret)
534
		return ret;
535

536
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
537
	if (&obj->base == NULL) {
538 539
		ret = -ENOENT;
		goto unlock;
540
	}
541

542
	/* Bounds check source.  */
543 544
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
545
		ret = -EINVAL;
546
		goto out;
C
Chris Wilson 已提交
547 548
	}

C
Chris Wilson 已提交
549 550
	trace_i915_gem_object_pread(obj, args->offset, args->size);

551 552 553 554
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
555
		goto out;
556 557 558

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
559
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
560
	if (ret == -EFAULT)
561
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
562

563
out:
564
	drm_gem_object_unreference(&obj->base);
565
unlock:
566
	mutex_unlock(&dev->struct_mutex);
567
	return ret;
568 569
}

570 571
/* This is the fast write path which cannot handle
 * page faults in the source data
572
 */
573 574 575 576 577 578

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
579 580
{
	char *vaddr_atomic;
581
	unsigned long unwritten;
582

P
Peter Zijlstra 已提交
583
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 585
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
586
	io_mapping_unmap_atomic(vaddr_atomic);
587
	return unwritten;
588 589 590 591 592 593
}

/* Here's the write path which can sleep for
 * page faults
 */

594
static inline void
595 596 597 598
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
599
{
600 601
	char __iomem *dst_vaddr;
	char *src_vaddr;
602

603 604 605 606 607 608 609 610 611
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
612 613
}

614 615 616 617
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
618
static int
619 620
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
621
			 struct drm_i915_gem_pwrite *args,
622
			 struct drm_file *file)
623
{
624
	drm_i915_private_t *dev_priv = dev->dev_private;
625
	ssize_t remain;
626
	loff_t offset, page_base;
627
	char __user *user_data;
628
	int page_offset, page_length;
629 630 631 632

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

633
	offset = obj->gtt_offset + args->offset;
634 635 636 637

	while (remain > 0) {
		/* Operation in this page
		 *
638 639 640
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
641
		 */
642 643
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
644 645 646 647 648
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
649 650
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
651
		 */
652 653 654
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))
			return -EFAULT;
655

656 657 658
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
659 660
	}

661
	return 0;
662 663
}

664 665 666 667 668 669 670
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
671
static int
672 673
i915_gem_gtt_pwrite_slow(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
674
			 struct drm_i915_gem_pwrite *args,
675
			 struct drm_file *file)
676
{
677 678 679 680 681 682 683 684
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
685
	int ret;
686 687 688 689 690 691 692 693 694 695 696 697
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

698
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
699 700 701
	if (user_pages == NULL)
		return -ENOMEM;

702
	mutex_unlock(&dev->struct_mutex);
703 704 705 706
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
707
	mutex_lock(&dev->struct_mutex);
708 709 710 711
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
712

713 714 715 716 717
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin_pages;

	ret = i915_gem_object_put_fence(obj);
718
	if (ret)
719
		goto out_unpin_pages;
720

721
	offset = obj->gtt_offset + args->offset;
722 723 724 725 726 727 728 729 730 731 732

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
733
		gtt_page_offset = offset_in_page(offset);
734
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
735
		data_page_offset = offset_in_page(data_ptr);
736 737 738 739 740 741 742

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

743 744 745 746 747
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
748 749 750 751 752 753 754 755 756

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
757
	drm_free_large(user_pages);
758 759 760 761

	return ret;
}

762 763 764 765
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
766
static int
767 768
i915_gem_shmem_pwrite_fast(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
769
			   struct drm_i915_gem_pwrite *args,
770
			   struct drm_file *file)
771
{
772
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
773
	ssize_t remain;
774
	loff_t offset;
775 776 777 778 779
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
780

781
	offset = args->offset;
782
	obj->dirty = 1;
783 784

	while (remain > 0) {
785 786 787 788
		struct page *page;
		char *vaddr;
		int ret;

789 790 791 792 793
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
794
		page_offset = offset_in_page(offset);
795 796 797 798
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

799
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page, KM_USER0);
		ret = __copy_from_user_inatomic(vaddr + page_offset,
						user_data,
						page_length);
		kunmap_atomic(vaddr, KM_USER0);

		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
818
			return -EFAULT;
819 820 821 822 823 824

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

825
	return 0;
826 827 828 829 830 831 832 833 834 835
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
836 837
i915_gem_shmem_pwrite_slow(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
838
			   struct drm_i915_gem_pwrite *args,
839
			   struct drm_file *file)
840
{
841
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
842 843 844 845 846
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
847
	int shmem_page_offset;
848 849 850 851
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
852
	int do_bit17_swizzling;
853 854 855 856 857 858 859 860 861 862 863

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

864
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
865 866 867
	if (user_pages == NULL)
		return -ENOMEM;

868
	mutex_unlock(&dev->struct_mutex);
869 870 871 872
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
873
	mutex_lock(&dev->struct_mutex);
874 875
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
876
		goto out;
877 878
	}

879
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
880
	if (ret)
881
		goto out;
882

883
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
884

885
	offset = args->offset;
886
	obj->dirty = 1;
887

888
	while (remain > 0) {
889 890
		struct page *page;

891 892 893 894 895 896 897
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
898
		shmem_page_offset = offset_in_page(offset);
899
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
900
		data_page_offset = offset_in_page(data_ptr);
901 902 903 904 905 906 907

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

908
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
909 910 911 912 913
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

914
		if (do_bit17_swizzling) {
915
			slow_shmem_bit17_copy(page,
916 917 918
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
919 920 921
					      page_length,
					      0);
		} else {
922
			slow_shmem_copy(page,
923 924 925 926
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
927
		}
928

929 930 931 932
		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

933 934 935
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
936 937
	}

938
out:
939 940
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
941
	drm_free_large(user_pages);
942

943
	return ret;
944 945 946 947 948 949 950 951 952
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
953
		      struct drm_file *file)
954 955
{
	struct drm_i915_gem_pwrite *args = data;
956
	struct drm_i915_gem_object *obj;
957 958 959 960 961 962 963 964 965 966 967 968 969 970
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret)
		return -EFAULT;
971

972
	ret = i915_mutex_lock_interruptible(dev);
973
	if (ret)
974
		return ret;
975

976
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
977
	if (&obj->base == NULL) {
978 979
		ret = -ENOENT;
		goto unlock;
980
	}
981

982
	/* Bounds check destination. */
983 984
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
985
		ret = -EINVAL;
986
		goto out;
C
Chris Wilson 已提交
987 988
	}

C
Chris Wilson 已提交
989 990
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

991 992 993 994 995 996
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
997
	if (obj->phys_obj)
998
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
999
	else if (obj->gtt_space &&
1000
		 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1001
		ret = i915_gem_object_pin(obj, 0, true);
1002 1003 1004
		if (ret)
			goto out;

1005 1006 1007 1008 1009
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			goto out_unpin;

		ret = i915_gem_object_put_fence(obj);
1010 1011 1012 1013 1014 1015 1016 1017 1018
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
1019
	} else {
1020 1021
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
1022
			goto out;
1023

1024 1025 1026 1027 1028 1029
		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
	}
1030

1031
out:
1032
	drm_gem_object_unreference(&obj->base);
1033
unlock:
1034
	mutex_unlock(&dev->struct_mutex);
1035 1036 1037 1038
	return ret;
}

/**
1039 1040
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1041 1042 1043
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1044
			  struct drm_file *file)
1045 1046
{
	struct drm_i915_gem_set_domain *args = data;
1047
	struct drm_i915_gem_object *obj;
1048 1049
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1050 1051 1052 1053 1054
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1055
	/* Only handle setting domains to types used by the CPU. */
1056
	if (write_domain & I915_GEM_GPU_DOMAINS)
1057 1058
		return -EINVAL;

1059
	if (read_domains & I915_GEM_GPU_DOMAINS)
1060 1061 1062 1063 1064 1065 1066 1067
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1068
	ret = i915_mutex_lock_interruptible(dev);
1069
	if (ret)
1070
		return ret;
1071

1072
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1073
	if (&obj->base == NULL) {
1074 1075
		ret = -ENOENT;
		goto unlock;
1076
	}
1077

1078 1079
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1080 1081 1082 1083 1084 1085 1086

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1087
	} else {
1088
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1089 1090
	}

1091
	drm_gem_object_unreference(&obj->base);
1092
unlock:
1093 1094 1095 1096 1097 1098 1099 1100 1101
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1102
			 struct drm_file *file)
1103 1104
{
	struct drm_i915_gem_sw_finish *args = data;
1105
	struct drm_i915_gem_object *obj;
1106 1107 1108 1109 1110
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1111
	ret = i915_mutex_lock_interruptible(dev);
1112
	if (ret)
1113
		return ret;
1114

1115
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1116
	if (&obj->base == NULL) {
1117 1118
		ret = -ENOENT;
		goto unlock;
1119 1120 1121
	}

	/* Pinned buffers may be scanout, so flush the cache */
1122
	if (obj->pin_count)
1123 1124
		i915_gem_object_flush_cpu_write_domain(obj);

1125
	drm_gem_object_unreference(&obj->base);
1126
unlock:
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1140
		    struct drm_file *file)
1141
{
1142
	struct drm_i915_private *dev_priv = dev->dev_private;
1143 1144 1145 1146 1147 1148 1149
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1150
	obj = drm_gem_object_lookup(dev, file, args->handle);
1151
	if (obj == NULL)
1152
		return -ENOENT;
1153

1154 1155 1156 1157 1158
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		drm_gem_object_unreference_unlocked(obj);
		return -E2BIG;
	}

1159 1160 1161 1162 1163
	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1164
	drm_gem_object_unreference_unlocked(obj);
1165 1166 1167 1168 1169 1170 1171 1172
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1191 1192
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1193
	drm_i915_private_t *dev_priv = dev->dev_private;
1194 1195 1196
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1197
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1198 1199 1200 1201 1202

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1203 1204 1205
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1206

C
Chris Wilson 已提交
1207 1208
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1209
	/* Now bind it into the GTT if needed */
1210 1211 1212 1213
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1214
	}
1215
	if (!obj->gtt_space) {
1216
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1217 1218
		if (ret)
			goto unlock;
1219

1220 1221 1222 1223
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1224

1225 1226 1227
	if (obj->tiling_mode == I915_TILING_NONE)
		ret = i915_gem_object_put_fence(obj);
	else
1228
		ret = i915_gem_object_get_fence(obj, NULL);
1229 1230
	if (ret)
		goto unlock;
1231

1232 1233
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1234

1235 1236
	obj->fault_mappable = true;

1237
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1238 1239 1240 1241
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1242
unlock:
1243
	mutex_unlock(&dev->struct_mutex);
1244
out:
1245
	switch (ret) {
1246
	case -EIO:
1247
	case -EAGAIN:
1248 1249 1250 1251 1252 1253 1254
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1255
		set_need_resched();
1256 1257
	case 0:
	case -ERESTARTSYS:
1258
	case -EINTR:
1259
		return VM_FAULT_NOPAGE;
1260 1261 1262
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1263
		return VM_FAULT_SIGBUS;
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
1279
i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1280
{
1281
	struct drm_device *dev = obj->base.dev;
1282 1283
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;
1284
	struct drm_local_map *map;
1285 1286 1287
	int ret = 0;

	/* Set the object up for mmap'ing */
1288
	list = &obj->base.map_list;
1289
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1290 1291 1292 1293 1294
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
1295
	map->size = obj->base.size;
1296 1297 1298 1299
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1300 1301
						    obj->base.size / PAGE_SIZE,
						    0, 0);
1302
	if (!list->file_offset_node) {
1303 1304
		DRM_ERROR("failed to allocate offset for bo %d\n",
			  obj->base.name);
1305
		ret = -ENOSPC;
1306 1307 1308 1309
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1310 1311
						  obj->base.size / PAGE_SIZE,
						  0);
1312 1313 1314 1315 1316 1317
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1318 1319
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1320 1321 1322 1323 1324 1325 1326 1327 1328
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1329
	kfree(list->map);
C
Chris Wilson 已提交
1330
	list->map = NULL;
1331 1332 1333 1334

	return ret;
}

1335 1336 1337 1338
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1339
 * Preserve the reservation of the mmapping with the DRM core code, but
1340 1341 1342 1343 1344 1345 1346 1347 1348
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1349
void
1350
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1351
{
1352 1353
	if (!obj->fault_mappable)
		return;
1354

1355 1356 1357 1358
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1359

1360
	obj->fault_mappable = false;
1361 1362
}

1363
static void
1364
i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1365
{
1366
	struct drm_device *dev = obj->base.dev;
1367
	struct drm_gem_mm *mm = dev->mm_private;
1368
	struct drm_map_list *list = &obj->base.map_list;
1369 1370

	drm_ht_remove_item(&mm->offset_hash, &list->hash);
C
Chris Wilson 已提交
1371 1372 1373
	drm_mm_put_block(list->file_offset_node);
	kfree(list->map);
	list->map = NULL;
1374 1375
}

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static uint32_t
i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	uint32_t size;

	if (INTEL_INFO(dev)->gen >= 4 ||
	    obj->tiling_mode == I915_TILING_NONE)
		return obj->base.size;

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
		size = 1024*1024;
	else
		size = 512*1024;

	while (size < obj->base.size)
		size <<= 1;

	return size;
}

1398 1399 1400 1401 1402
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1403
 * potential fence register mapping.
1404 1405
 */
static uint32_t
1406
i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1407
{
1408
	struct drm_device *dev = obj->base.dev;
1409 1410 1411 1412 1413

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1414
	if (INTEL_INFO(dev)->gen >= 4 ||
1415
	    obj->tiling_mode == I915_TILING_NONE)
1416 1417
		return 4096;

1418 1419 1420 1421
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1422
	return i915_gem_get_gtt_size(obj);
1423 1424
}

1425 1426 1427 1428 1429 1430 1431 1432
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1433
uint32_t
1434
i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1435
{
1436
	struct drm_device *dev = obj->base.dev;
1437 1438 1439 1440 1441 1442
	int tile_height;

	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1443
	    obj->tiling_mode == I915_TILING_NONE)
1444 1445 1446 1447 1448 1449 1450
		return 4096;

	/*
	 * Older chips need unfenced tiled buffers to be aligned to the left
	 * edge of an even tile row (where tile rows are counted as if the bo is
	 * placed in a fenced gtt region).
	 */
1451 1452 1453
	if (IS_GEN2(dev))
		tile_height = 16;
	else if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
1454 1455 1456 1457
		tile_height = 32;
	else
		tile_height = 8;

1458
	return tile_height * obj->stride * 2;
1459 1460
}

1461
int
1462 1463 1464 1465
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1466
{
1467
	struct drm_i915_private *dev_priv = dev->dev_private;
1468
	struct drm_i915_gem_object *obj;
1469 1470 1471 1472 1473
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1474
	ret = i915_mutex_lock_interruptible(dev);
1475
	if (ret)
1476
		return ret;
1477

1478
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1479
	if (&obj->base == NULL) {
1480 1481 1482
		ret = -ENOENT;
		goto unlock;
	}
1483

1484
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1485 1486 1487 1488
		ret = -E2BIG;
		goto unlock;
	}

1489
	if (obj->madv != I915_MADV_WILLNEED) {
1490
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1491 1492
		ret = -EINVAL;
		goto out;
1493 1494
	}

1495
	if (!obj->base.map_list.map) {
1496
		ret = i915_gem_create_mmap_offset(obj);
1497 1498
		if (ret)
			goto out;
1499 1500
	}

1501
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1502

1503
out:
1504
	drm_gem_object_unreference(&obj->base);
1505
unlock:
1506
	mutex_unlock(&dev->struct_mutex);
1507
	return ret;
1508 1509
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}


1538
static int
1539
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1550 1551 1552 1553
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1554 1555
		return -ENOMEM;

1556
	inode = obj->base.filp->f_path.dentry->d_inode;
1557
	mapping = inode->i_mapping;
1558 1559
	gfpmask |= mapping_gfp_mask(mapping);

1560
	for (i = 0; i < page_count; i++) {
1561
		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1562 1563 1564
		if (IS_ERR(page))
			goto err_pages;

1565
		obj->pages[i] = page;
1566 1567
	}

1568
	if (obj->tiling_mode != I915_TILING_NONE)
1569 1570 1571 1572 1573 1574
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1575
		page_cache_release(obj->pages[i]);
1576

1577 1578
	drm_free_large(obj->pages);
	obj->pages = NULL;
1579 1580 1581
	return PTR_ERR(page);
}

1582
static void
1583
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1584
{
1585
	int page_count = obj->base.size / PAGE_SIZE;
1586 1587
	int i;

1588
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1589

1590
	if (obj->tiling_mode != I915_TILING_NONE)
1591 1592
		i915_gem_object_save_bit_17_swizzle(obj);

1593 1594
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1595 1596

	for (i = 0; i < page_count; i++) {
1597 1598
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1599

1600 1601
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1602

1603
		page_cache_release(obj->pages[i]);
1604
	}
1605
	obj->dirty = 0;
1606

1607 1608
	drm_free_large(obj->pages);
	obj->pages = NULL;
1609 1610
}

1611
void
1612
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1613 1614
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1615
{
1616
	struct drm_device *dev = obj->base.dev;
1617
	struct drm_i915_private *dev_priv = dev->dev_private;
1618

1619
	BUG_ON(ring == NULL);
1620
	obj->ring = ring;
1621 1622

	/* Add a reference if we're newly entering the active list. */
1623 1624 1625
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1626
	}
1627

1628
	/* Move from whatever list we were on to the tail of execution. */
1629 1630
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1631

1632
	obj->last_rendering_seqno = seqno;
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	if (obj->fenced_gpu_access) {
		struct drm_i915_fence_reg *reg;

		BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);

		obj->last_fenced_seqno = seqno;
		obj->last_fenced_ring = ring;

		reg = &dev_priv->fence_regs[obj->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1651 1652
}

1653
static void
1654
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1655
{
1656
	struct drm_device *dev = obj->base.dev;
1657 1658
	drm_i915_private_t *dev_priv = dev->dev_private;

1659 1660
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (obj->pin_count != 0)
		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
	else
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1684
	obj->pending_gpu_write = false;
1685 1686 1687
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1688
}
1689

1690 1691
/* Immediately discard the backing storage */
static void
1692
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1693
{
C
Chris Wilson 已提交
1694
	struct inode *inode;
1695

1696 1697 1698
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
1699
	 * backing pages, *now*.
1700
	 */
1701
	inode = obj->base.filp->f_path.dentry->d_inode;
1702
	shmem_truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1703

1704
	obj->madv = __I915_MADV_PURGED;
1705 1706 1707
}

static inline int
1708
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1709
{
1710
	return obj->madv == I915_MADV_DONTNEED;
1711 1712
}

1713
static void
C
Chris Wilson 已提交
1714 1715
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1716
{
1717
	struct drm_i915_gem_object *obj, *next;
1718

1719
	list_for_each_entry_safe(obj, next,
1720
				 &ring->gpu_write_list,
1721
				 gpu_write_list) {
1722 1723
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1724

1725 1726
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1727
			i915_gem_object_move_to_active(obj, ring,
C
Chris Wilson 已提交
1728
						       i915_gem_next_request_seqno(ring));
1729 1730

			trace_i915_gem_object_change_domain(obj,
1731
							    obj->base.read_domains,
1732 1733 1734 1735
							    old_write_domain);
		}
	}
}
1736

1737
int
C
Chris Wilson 已提交
1738
i915_add_request(struct intel_ring_buffer *ring,
1739
		 struct drm_file *file,
C
Chris Wilson 已提交
1740
		 struct drm_i915_gem_request *request)
1741
{
C
Chris Wilson 已提交
1742
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1743 1744
	uint32_t seqno;
	int was_empty;
1745 1746 1747
	int ret;

	BUG_ON(request == NULL);
1748

1749 1750 1751
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1752

C
Chris Wilson 已提交
1753
	trace_i915_gem_request_add(ring, seqno);
1754 1755

	request->seqno = seqno;
1756
	request->ring = ring;
1757
	request->emitted_jiffies = jiffies;
1758 1759 1760
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

C
Chris Wilson 已提交
1761 1762 1763
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1764
		spin_lock(&file_priv->mm.lock);
1765
		request->file_priv = file_priv;
1766
		list_add_tail(&request->client_list,
1767
			      &file_priv->mm.request_list);
1768
		spin_unlock(&file_priv->mm.lock);
1769
	}
1770

C
Chris Wilson 已提交
1771 1772
	ring->outstanding_lazy_request = false;

B
Ben Gamari 已提交
1773
	if (!dev_priv->mm.suspended) {
1774 1775
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1776
		if (was_empty)
1777 1778
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1779
	}
1780
	return 0;
1781 1782
}

1783 1784
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1785
{
1786
	struct drm_i915_file_private *file_priv = request->file_priv;
1787

1788 1789
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1790

1791
	spin_lock(&file_priv->mm.lock);
1792 1793 1794 1795
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1796
	spin_unlock(&file_priv->mm.lock);
1797 1798
}

1799 1800
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1801
{
1802 1803
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1804

1805 1806 1807
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1808

1809
		list_del(&request->list);
1810
		i915_gem_request_remove_from_client(request);
1811 1812
		kfree(request);
	}
1813

1814
	while (!list_empty(&ring->active_list)) {
1815
		struct drm_i915_gem_object *obj;
1816

1817 1818 1819
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1820

1821 1822 1823
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1824 1825 1826
	}
}

1827 1828 1829 1830 1831 1832 1833
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1834 1835 1836 1837 1838 1839 1840 1841
		struct drm_i915_gem_object *obj = reg->obj;

		if (!obj)
			continue;

		if (obj->tiling_mode)
			i915_gem_release_mmap(obj);

1842 1843 1844 1845 1846
		reg->obj->fence_reg = I915_FENCE_REG_NONE;
		reg->obj->fenced_gpu_access = false;
		reg->obj->last_fenced_seqno = 0;
		reg->obj->last_fenced_ring = NULL;
		i915_gem_clear_fence_reg(dev, reg);
1847 1848 1849
	}
}

1850
void i915_gem_reset(struct drm_device *dev)
1851
{
1852
	struct drm_i915_private *dev_priv = dev->dev_private;
1853
	struct drm_i915_gem_object *obj;
1854
	int i;
1855

1856 1857
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1858 1859 1860 1861 1862 1863

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1864 1865 1866
		obj= list_first_entry(&dev_priv->mm.flushing_list,
				      struct drm_i915_gem_object,
				      mm_list);
1867

1868 1869 1870
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1871 1872 1873 1874 1875
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1876
	list_for_each_entry(obj,
1877
			    &dev_priv->mm.inactive_list,
1878
			    mm_list)
1879
	{
1880
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1881
	}
1882 1883

	/* The fence registers are invalidated so clear them out */
1884
	i915_gem_reset_fences(dev);
1885 1886 1887 1888 1889
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1890
static void
C
Chris Wilson 已提交
1891
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1892 1893
{
	uint32_t seqno;
1894
	int i;
1895

C
Chris Wilson 已提交
1896
	if (list_empty(&ring->request_list))
1897 1898
		return;

C
Chris Wilson 已提交
1899
	WARN_ON(i915_verify_lists(ring->dev));
1900

1901
	seqno = ring->get_seqno(ring);
1902

1903
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1904 1905 1906
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1907
	while (!list_empty(&ring->request_list)) {
1908 1909
		struct drm_i915_gem_request *request;

1910
		request = list_first_entry(&ring->request_list,
1911 1912 1913
					   struct drm_i915_gem_request,
					   list);

1914
		if (!i915_seqno_passed(seqno, request->seqno))
1915 1916
			break;

C
Chris Wilson 已提交
1917
		trace_i915_gem_request_retire(ring, request->seqno);
1918 1919

		list_del(&request->list);
1920
		i915_gem_request_remove_from_client(request);
1921 1922
		kfree(request);
	}
1923

1924 1925 1926 1927
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1928
		struct drm_i915_gem_object *obj;
1929

1930 1931 1932
		obj= list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);
1933

1934
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1935
			break;
1936

1937
		if (obj->base.write_domain != 0)
1938 1939 1940
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1941
	}
1942

C
Chris Wilson 已提交
1943 1944
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1945
		ring->irq_put(ring);
C
Chris Wilson 已提交
1946
		ring->trace_irq_seqno = 0;
1947
	}
1948

C
Chris Wilson 已提交
1949
	WARN_ON(i915_verify_lists(ring->dev));
1950 1951
}

1952 1953 1954 1955
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1956
	int i;
1957

1958
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1959
	    struct drm_i915_gem_object *obj, *next;
1960 1961 1962 1963 1964 1965

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
1966
	    list_for_each_entry_safe(obj, next,
1967
				     &dev_priv->mm.deferred_free_list,
1968
				     mm_list)
1969
		    i915_gem_free_object_tail(obj);
1970 1971
	}

1972
	for (i = 0; i < I915_NUM_RINGS; i++)
C
Chris Wilson 已提交
1973
		i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1974 1975
}

1976
static void
1977 1978 1979 1980
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1981 1982
	bool idle;
	int i;
1983 1984 1985 1986 1987

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1988 1989 1990 1991 1992 1993
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1994
	i915_gem_retire_requests(dev);
1995

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct intel_ring_buffer *ring = &dev_priv->ring[i];

		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

C
Chris Wilson 已提交
2007 2008
			ret = i915_gem_flush_ring(ring,
						  0, I915_GEM_GPU_DOMAINS);
2009 2010
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
C
Chris Wilson 已提交
2011
			    i915_add_request(ring, NULL, request))
2012 2013 2014 2015 2016 2017 2018
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
2019
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2020

2021 2022 2023
	mutex_unlock(&dev->struct_mutex);
}

C
Chris Wilson 已提交
2024 2025 2026 2027
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
2028
int
C
Chris Wilson 已提交
2029
i915_wait_request(struct intel_ring_buffer *ring,
2030
		  uint32_t seqno)
2031
{
C
Chris Wilson 已提交
2032
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2033
	u32 ier;
2034 2035 2036 2037
	int ret = 0;

	BUG_ON(seqno == 0);

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		return recovery_complete ? -EIO : -EAGAIN;
	}
2050

2051
	if (seqno == ring->outstanding_lazy_request) {
2052 2053 2054 2055
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
2056
			return -ENOMEM;
2057

C
Chris Wilson 已提交
2058
		ret = i915_add_request(ring, NULL, request);
2059 2060 2061 2062 2063 2064
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
2065
	}
2066

2067
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
C
Chris Wilson 已提交
2068
		if (HAS_PCH_SPLIT(ring->dev))
2069 2070 2071
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
2072 2073 2074
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
2075 2076
			ring->dev->driver->irq_preinstall(ring->dev);
			ring->dev->driver->irq_postinstall(ring->dev);
2077 2078
		}

C
Chris Wilson 已提交
2079
		trace_i915_gem_request_wait_begin(ring, seqno);
C
Chris Wilson 已提交
2080

2081
		ring->waiting_seqno = seqno;
2082
		if (ring->irq_get(ring)) {
2083
			if (dev_priv->mm.interruptible)
2084 2085 2086 2087 2088 2089 2090 2091 2092
				ret = wait_event_interruptible(ring->irq_queue,
							       i915_seqno_passed(ring->get_seqno(ring), seqno)
							       || atomic_read(&dev_priv->mm.wedged));
			else
				wait_event(ring->irq_queue,
					   i915_seqno_passed(ring->get_seqno(ring), seqno)
					   || atomic_read(&dev_priv->mm.wedged));

			ring->irq_put(ring);
2093 2094 2095 2096
		} else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
						      seqno) ||
				    atomic_read(&dev_priv->mm.wedged), 3000))
			ret = -EBUSY;
2097
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
2098

C
Chris Wilson 已提交
2099
		trace_i915_gem_request_wait_end(ring, seqno);
2100
	}
2101
	if (atomic_read(&dev_priv->mm.wedged))
2102
		ret = -EAGAIN;
2103 2104

	if (ret && ret != -ERESTARTSYS)
2105
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2106
			  __func__, ret, seqno, ring->get_seqno(ring),
2107
			  dev_priv->next_seqno);
2108 2109 2110 2111 2112 2113 2114

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
C
Chris Wilson 已提交
2115
		i915_gem_retire_requests_ring(ring);
2116 2117 2118 2119 2120 2121 2122 2123

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
2124
int
2125
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2126 2127 2128
{
	int ret;

2129 2130
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2131
	 */
2132
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2133 2134 2135 2136

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
2137
	if (obj->active) {
2138
		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2139
		if (ret)
2140 2141 2142 2143 2144 2145 2146 2147 2148
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2149
int
2150
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2151 2152 2153
{
	int ret = 0;

2154
	if (obj->gtt_space == NULL)
2155 2156
		return 0;

2157
	if (obj->pin_count != 0) {
2158 2159 2160 2161
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2162 2163 2164
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2165 2166 2167 2168 2169 2170
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2171
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2172
	if (ret == -ERESTARTSYS)
2173
		return ret;
2174 2175 2176 2177
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2178 2179
	if (ret) {
		i915_gem_clflush_object(obj);
2180
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2181
	}
2182

2183
	/* release the fence reg _after_ flushing */
2184 2185 2186
	ret = i915_gem_object_put_fence(obj);
	if (ret == -ERESTARTSYS)
		return ret;
2187

C
Chris Wilson 已提交
2188 2189
	trace_i915_gem_object_unbind(obj);

2190
	i915_gem_gtt_unbind_object(obj);
2191
	i915_gem_object_put_pages_gtt(obj);
2192

2193
	list_del_init(&obj->gtt_list);
2194
	list_del_init(&obj->mm_list);
2195
	/* Avoid an unnecessary call to unbind on rebind. */
2196
	obj->map_and_fenceable = true;
2197

2198 2199 2200
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2201

2202
	if (i915_gem_object_is_purgeable(obj))
2203 2204
		i915_gem_object_truncate(obj);

2205
	return ret;
2206 2207
}

2208
int
C
Chris Wilson 已提交
2209
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2210 2211 2212
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2213 2214
	int ret;

2215 2216 2217
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

C
Chris Wilson 已提交
2218 2219
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2220 2221 2222 2223
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

2224 2225 2226
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		i915_gem_process_flushing_list(ring, flush_domains);

2227
	return 0;
2228 2229
}

C
Chris Wilson 已提交
2230
static int i915_ring_idle(struct intel_ring_buffer *ring)
2231
{
2232 2233
	int ret;

2234
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2235 2236
		return 0;

2237
	if (!list_empty(&ring->gpu_write_list)) {
C
Chris Wilson 已提交
2238
		ret = i915_gem_flush_ring(ring,
2239
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2240 2241 2242 2243
		if (ret)
			return ret;
	}

2244
	return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2245 2246
}

2247
int
2248 2249 2250 2251
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2252
	int ret, i;
2253

2254
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2255
		       list_empty(&dev_priv->mm.active_list));
2256 2257 2258 2259
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2260
	for (i = 0; i < I915_NUM_RINGS; i++) {
C
Chris Wilson 已提交
2261
		ret = i915_ring_idle(&dev_priv->ring[i]);
2262 2263 2264
		if (ret)
			return ret;
	}
2265

2266
	return 0;
2267 2268
}

2269 2270
static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
				       struct intel_ring_buffer *pipelined)
2271
{
2272
	struct drm_device *dev = obj->base.dev;
2273
	drm_i915_private_t *dev_priv = dev->dev_private;
2274 2275
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2276 2277
	uint64_t val;

2278
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2279
			 0xfffff000) << 32;
2280 2281
	val |= obj->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj->stride / 128) - 1) <<
2282 2283
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

2284
	if (obj->tiling_mode == I915_TILING_Y)
2285 2286 2287
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);

	return 0;
2304 2305
}

2306 2307
static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2308
{
2309
	struct drm_device *dev = obj->base.dev;
2310
	drm_i915_private_t *dev_priv = dev->dev_private;
2311 2312
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2313 2314
	uint64_t val;

2315
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2316
		    0xfffff000) << 32;
2317 2318 2319
	val |= obj->gtt_offset & 0xfffff000;
	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj->tiling_mode == I915_TILING_Y)
2320 2321 2322
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);

	return 0;
2339 2340
}

2341 2342
static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2343
{
2344
	struct drm_device *dev = obj->base.dev;
2345
	drm_i915_private_t *dev_priv = dev->dev_private;
2346
	u32 size = obj->gtt_space->size;
2347
	u32 fence_reg, val, pitch_val;
2348
	int tile_width;
2349

2350 2351 2352 2353 2354 2355
	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		 obj->gtt_offset, obj->map_and_fenceable, size))
		return -EINVAL;
2356

2357
	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2358
		tile_width = 128;
2359
	else
2360 2361 2362
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
2363
	pitch_val = obj->stride / tile_width;
2364
	pitch_val = ffs(pitch_val) - 1;
2365

2366 2367
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2368
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2369
	val |= I915_FENCE_SIZE_BITS(size);
2370 2371 2372
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2373
	fence_reg = obj->fence_reg;
2374 2375
	if (fence_reg < 8)
		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2376
	else
2377
		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392

	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, fence_reg);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(fence_reg, val);

	return 0;
2393 2394
}

2395 2396
static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2397
{
2398
	struct drm_device *dev = obj->base.dev;
2399
	drm_i915_private_t *dev_priv = dev->dev_private;
2400 2401
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2402 2403 2404
	uint32_t val;
	uint32_t pitch_val;

2405 2406 2407 2408 2409 2410
	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		 obj->gtt_offset, size))
		return -EINVAL;
2411

2412
	pitch_val = obj->stride / 128;
2413 2414
	pitch_val = ffs(pitch_val) - 1;

2415 2416
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2417
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2418
	val |= I830_FENCE_SIZE_BITS(size);
2419 2420 2421
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);

	return 0;
2436 2437
}

2438 2439 2440 2441 2442 2443 2444
static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
{
	return i915_seqno_passed(ring->get_seqno(ring), seqno);
}

static int
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2445
			    struct intel_ring_buffer *pipelined)
2446 2447 2448 2449
{
	int ret;

	if (obj->fenced_gpu_access) {
2450
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
2451
			ret = i915_gem_flush_ring(obj->last_fenced_ring,
2452 2453 2454 2455
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2456 2457 2458 2459 2460 2461 2462

		obj->fenced_gpu_access = false;
	}

	if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
		if (!ring_passed_seqno(obj->last_fenced_ring,
				       obj->last_fenced_seqno)) {
C
Chris Wilson 已提交
2463
			ret = i915_wait_request(obj->last_fenced_ring,
2464
						obj->last_fenced_seqno);
2465 2466 2467 2468 2469 2470 2471 2472
			if (ret)
				return ret;
		}

		obj->last_fenced_seqno = 0;
		obj->last_fenced_ring = NULL;
	}

2473 2474 2475 2476 2477 2478
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

2490
	ret = i915_gem_object_flush_fence(obj, NULL);
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
	if (ret)
		return ret;

	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		i915_gem_clear_fence_reg(obj->base.dev,
					 &dev_priv->fence_regs[obj->fence_reg]);

		obj->fence_reg = I915_FENCE_REG_NONE;
	}

	return 0;
}

static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev,
		    struct intel_ring_buffer *pipelined)
2508 2509
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2510 2511
	struct drm_i915_fence_reg *reg, *first, *avail;
	int i;
2512 2513

	/* First try to find a free reg */
2514
	avail = NULL;
2515 2516 2517
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2518
			return reg;
2519

2520
		if (!reg->obj->pin_count)
2521
			avail = reg;
2522 2523
	}

2524 2525
	if (avail == NULL)
		return NULL;
2526 2527

	/* None available, try to steal one or wait for a user to finish */
2528 2529 2530
	avail = first = NULL;
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
		if (reg->obj->pin_count)
2531 2532
			continue;

2533 2534 2535 2536 2537 2538 2539 2540 2541
		if (first == NULL)
			first = reg;

		if (!pipelined ||
		    !reg->obj->last_fenced_ring ||
		    reg->obj->last_fenced_ring == pipelined) {
			avail = reg;
			break;
		}
2542 2543
	}

2544 2545
	if (avail == NULL)
		avail = first;
2546

2547
	return avail;
2548 2549
}

2550
/**
2551
 * i915_gem_object_get_fence - set up a fence reg for an object
2552
 * @obj: object to map through a fence reg
2553 2554
 * @pipelined: ring on which to queue the change, or NULL for CPU access
 * @interruptible: must we wait uninterruptibly for the register to retire?
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2565
int
2566
i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2567
			  struct intel_ring_buffer *pipelined)
2568
{
2569
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2570
	struct drm_i915_private *dev_priv = dev->dev_private;
2571
	struct drm_i915_fence_reg *reg;
2572
	int ret;
2573

2574 2575 2576
	/* XXX disable pipelining. There are bugs. Shocking. */
	pipelined = NULL;

2577
	/* Just update our place in the LRU if our fence is getting reused. */
2578 2579
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2580
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2581

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
		if (obj->tiling_changed) {
			ret = i915_gem_object_flush_fence(obj, pipelined);
			if (ret)
				return ret;

			if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
				pipelined = NULL;

			if (pipelined) {
				reg->setup_seqno =
					i915_gem_next_request_seqno(pipelined);
				obj->last_fenced_seqno = reg->setup_seqno;
				obj->last_fenced_ring = pipelined;
			}

			goto update;
		}
2599 2600 2601 2602 2603

		if (!pipelined) {
			if (reg->setup_seqno) {
				if (!ring_passed_seqno(obj->last_fenced_ring,
						       reg->setup_seqno)) {
C
Chris Wilson 已提交
2604
					ret = i915_wait_request(obj->last_fenced_ring,
2605
								reg->setup_seqno);
2606 2607 2608 2609 2610 2611 2612 2613
					if (ret)
						return ret;
				}

				reg->setup_seqno = 0;
			}
		} else if (obj->last_fenced_ring &&
			   obj->last_fenced_ring != pipelined) {
2614
			ret = i915_gem_object_flush_fence(obj, pipelined);
2615 2616 2617 2618
			if (ret)
				return ret;
		}

2619 2620 2621
		return 0;
	}

2622 2623 2624
	reg = i915_find_fence_reg(dev, pipelined);
	if (reg == NULL)
		return -ENOSPC;
2625

2626
	ret = i915_gem_object_flush_fence(obj, pipelined);
2627
	if (ret)
2628
		return ret;
2629

2630 2631 2632 2633 2634 2635 2636 2637
	if (reg->obj) {
		struct drm_i915_gem_object *old = reg->obj;

		drm_gem_object_reference(&old->base);

		if (old->tiling_mode)
			i915_gem_release_mmap(old);

2638
		ret = i915_gem_object_flush_fence(old, pipelined);
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
		if (ret) {
			drm_gem_object_unreference(&old->base);
			return ret;
		}

		if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
			pipelined = NULL;

		old->fence_reg = I915_FENCE_REG_NONE;
		old->last_fenced_ring = pipelined;
		old->last_fenced_seqno =
C
Chris Wilson 已提交
2650
			pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2651 2652 2653 2654

		drm_gem_object_unreference(&old->base);
	} else if (obj->last_fenced_seqno == 0)
		pipelined = NULL;
2655

2656
	reg->obj = obj;
2657 2658 2659
	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	obj->fence_reg = reg - dev_priv->fence_regs;
	obj->last_fenced_ring = pipelined;
2660

2661
	reg->setup_seqno =
C
Chris Wilson 已提交
2662
		pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2663 2664 2665 2666
	obj->last_fenced_seqno = reg->setup_seqno;

update:
	obj->tiling_changed = false;
2667
	switch (INTEL_INFO(dev)->gen) {
2668
	case 7:
2669
	case 6:
2670
		ret = sandybridge_write_fence_reg(obj, pipelined);
2671 2672 2673
		break;
	case 5:
	case 4:
2674
		ret = i965_write_fence_reg(obj, pipelined);
2675 2676
		break;
	case 3:
2677
		ret = i915_write_fence_reg(obj, pipelined);
2678 2679
		break;
	case 2:
2680
		ret = i830_write_fence_reg(obj, pipelined);
2681 2682
		break;
	}
2683

2684
	return ret;
2685 2686 2687 2688 2689 2690 2691
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
2692
 * data structures in dev_priv and obj.
2693 2694
 */
static void
2695 2696
i915_gem_clear_fence_reg(struct drm_device *dev,
			 struct drm_i915_fence_reg *reg)
2697
{
J
Jesse Barnes 已提交
2698
	drm_i915_private_t *dev_priv = dev->dev_private;
2699
	uint32_t fence_reg = reg - dev_priv->fence_regs;
2700

2701
	switch (INTEL_INFO(dev)->gen) {
2702
	case 7:
2703
	case 6:
2704
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2705 2706 2707
		break;
	case 5:
	case 4:
2708
		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2709 2710
		break;
	case 3:
2711 2712
		if (fence_reg >= 8)
			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2713
		else
2714
	case 2:
2715
			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2716 2717

		I915_WRITE(fence_reg, 0);
2718
		break;
2719
	}
2720

2721
	list_del_init(&reg->lru_list);
2722 2723
	reg->obj = NULL;
	reg->setup_seqno = 0;
2724 2725
}

2726 2727 2728 2729
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2730
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2731
			    unsigned alignment,
2732
			    bool map_and_fenceable)
2733
{
2734
	struct drm_device *dev = obj->base.dev;
2735 2736
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2737
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2738
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2739
	bool mappable, fenceable;
2740
	int ret;
2741

2742
	if (obj->madv != I915_MADV_WILLNEED) {
2743 2744 2745 2746
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2747 2748 2749
	fence_size = i915_gem_get_gtt_size(obj);
	fence_alignment = i915_gem_get_gtt_alignment(obj);
	unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2750

2751
	if (alignment == 0)
2752 2753
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2754
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2755 2756 2757 2758
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2759
	size = map_and_fenceable ? fence_size : obj->base.size;
2760

2761 2762 2763
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2764
	if (obj->base.size >
2765
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2766 2767 2768 2769
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2770
 search_free:
2771
	if (map_and_fenceable)
2772 2773
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2774
						    size, alignment, 0,
2775 2776 2777 2778
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2779
						size, alignment, 0);
2780 2781

	if (free_space != NULL) {
2782
		if (map_and_fenceable)
2783
			obj->gtt_space =
2784
				drm_mm_get_block_range_generic(free_space,
2785
							       size, alignment, 0,
2786 2787 2788
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2789
			obj->gtt_space =
2790
				drm_mm_get_block(free_space, size, alignment);
2791
	}
2792
	if (obj->gtt_space == NULL) {
2793 2794 2795
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2796 2797
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2798
		if (ret)
2799
			return ret;
2800

2801 2802 2803
		goto search_free;
	}

2804
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2805
	if (ret) {
2806 2807
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2808 2809

		if (ret == -ENOMEM) {
2810 2811
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2812 2813
			if (ret) {
				/* now try to shrink everyone else */
2814 2815 2816
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2817 2818
				}

2819
				return -ENOMEM;
2820 2821 2822 2823 2824
			}

			goto search_free;
		}

2825 2826 2827
		return ret;
	}

2828 2829
	ret = i915_gem_gtt_bind_object(obj);
	if (ret) {
2830
		i915_gem_object_put_pages_gtt(obj);
2831 2832
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2833

2834
		if (i915_gem_evict_everything(dev, false))
2835 2836 2837
			return ret;

		goto search_free;
2838 2839
	}

2840
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2841
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2842

2843 2844 2845 2846
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2847 2848
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2849

2850
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2851

2852
	fenceable =
2853 2854
		obj->gtt_space->size == fence_size &&
		(obj->gtt_space->start & (fence_alignment -1)) == 0;
2855

2856
	mappable =
2857
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2858

2859
	obj->map_and_fenceable = mappable && fenceable;
2860

C
Chris Wilson 已提交
2861
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2862 2863 2864 2865
	return 0;
}

void
2866
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2867 2868 2869 2870 2871
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2872
	if (obj->pages == NULL)
2873 2874
		return;

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2886
	trace_i915_gem_object_clflush(obj);
2887

2888
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2889 2890
}

2891
/** Flushes any GPU write domain for the object if it's dirty. */
2892
static int
2893
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2894
{
2895
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2896
		return 0;
2897 2898

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2899
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2900 2901 2902 2903
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2904
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2905
{
C
Chris Wilson 已提交
2906 2907
	uint32_t old_write_domain;

2908
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2909 2910
		return;

2911
	/* No actual flushing is required for the GTT write domain.  Writes
2912 2913
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2914 2915 2916 2917
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2918
	 */
2919 2920
	wmb();

2921 2922
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2923 2924

	trace_i915_gem_object_change_domain(obj,
2925
					    obj->base.read_domains,
C
Chris Wilson 已提交
2926
					    old_write_domain);
2927 2928 2929 2930
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2931
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2932
{
C
Chris Wilson 已提交
2933
	uint32_t old_write_domain;
2934

2935
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2936 2937 2938
		return;

	i915_gem_clflush_object(obj);
2939
	intel_gtt_chipset_flush();
2940 2941
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2942 2943

	trace_i915_gem_object_change_domain(obj,
2944
					    obj->base.read_domains,
C
Chris Wilson 已提交
2945
					    old_write_domain);
2946 2947
}

2948 2949 2950 2951 2952 2953
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2954
int
2955
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2956
{
C
Chris Wilson 已提交
2957
	uint32_t old_write_domain, old_read_domains;
2958
	int ret;
2959

2960
	/* Not valid to be called on unbound objects. */
2961
	if (obj->gtt_space == NULL)
2962 2963
		return -EINVAL;

2964 2965 2966
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2967 2968 2969 2970
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2971
	if (obj->pending_gpu_write || write) {
2972
		ret = i915_gem_object_wait_rendering(obj);
2973 2974 2975
		if (ret)
			return ret;
	}
2976

2977
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2978

2979 2980
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2981

2982 2983 2984
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2985 2986
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2987
	if (write) {
2988 2989 2990
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2991 2992
	}

C
Chris Wilson 已提交
2993 2994 2995 2996
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2997 2998 2999
	return 0;
}

3000 3001 3002 3003 3004
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
3005
i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
3006
				     struct intel_ring_buffer *pipelined)
3007
{
3008
	uint32_t old_read_domains;
3009 3010 3011
	int ret;

	/* Not valid to be called on unbound objects. */
3012
	if (obj->gtt_space == NULL)
3013 3014
		return -EINVAL;

3015 3016 3017 3018
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3019

3020
	/* Currently, we are always called from an non-interruptible context. */
3021
	if (pipelined != obj->ring) {
3022
		ret = i915_gem_object_wait_rendering(obj);
3023
		if (ret)
3024 3025 3026
			return ret;
	}

3027 3028
	i915_gem_object_flush_cpu_write_domain(obj);

3029 3030
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3031 3032 3033

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3034
					    obj->base.write_domain);
3035 3036 3037 3038

	return 0;
}

3039
int
3040
i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
3041
{
3042 3043
	int ret;

3044 3045 3046
	if (!obj->active)
		return 0;

3047
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3048
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3049 3050 3051
		if (ret)
			return ret;
	}
3052

3053
	return i915_gem_object_wait_rendering(obj);
3054 3055
}

3056 3057 3058 3059 3060 3061 3062
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3063
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3064
{
C
Chris Wilson 已提交
3065
	uint32_t old_write_domain, old_read_domains;
3066 3067
	int ret;

3068 3069 3070
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3071 3072 3073 3074
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3075
	ret = i915_gem_object_wait_rendering(obj);
3076
	if (ret)
3077
		return ret;
3078

3079
	i915_gem_object_flush_gtt_write_domain(obj);
3080

3081 3082
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
3083
	 */
3084
	i915_gem_object_set_to_full_cpu_read_domain(obj);
3085

3086 3087
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3088

3089
	/* Flush the CPU cache if it's still invalid. */
3090
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3091 3092
		i915_gem_clflush_object(obj);

3093
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3094 3095 3096 3097 3098
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3099
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3100 3101 3102 3103 3104

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3105 3106
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3107
	}
3108

C
Chris Wilson 已提交
3109 3110 3111 3112
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3113 3114 3115
	return 0;
}

3116
/**
3117
 * Moves the object from a partially CPU read to a full one.
3118
 *
3119 3120
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3121
 */
3122
static void
3123
i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3124
{
3125
	if (!obj->page_cpu_valid)
3126 3127 3128 3129
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
3130
	if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3131 3132
		int i;

3133 3134
		for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
			if (obj->page_cpu_valid[i])
3135
				continue;
3136
			drm_clflush_pages(obj->pages + i, 1);
3137 3138 3139 3140 3141 3142
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3143 3144
	kfree(obj->page_cpu_valid);
	obj->page_cpu_valid = NULL;
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3160
i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3161 3162
					  uint64_t offset, uint64_t size)
{
C
Chris Wilson 已提交
3163
	uint32_t old_read_domains;
3164
	int i, ret;
3165

3166
	if (offset == 0 && size == obj->base.size)
3167
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3168

3169 3170 3171 3172
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3173
	ret = i915_gem_object_wait_rendering(obj);
3174
	if (ret)
3175
		return ret;
3176

3177 3178 3179
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
3180 3181
	if (obj->page_cpu_valid == NULL &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3182
		return 0;
3183

3184 3185 3186
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3187 3188 3189 3190
	if (obj->page_cpu_valid == NULL) {
		obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
					      GFP_KERNEL);
		if (obj->page_cpu_valid == NULL)
3191
			return -ENOMEM;
3192 3193
	} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3194 3195 3196 3197

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3198 3199
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3200
		if (obj->page_cpu_valid[i])
3201 3202
			continue;

3203
		drm_clflush_pages(obj->pages + i, 1);
3204

3205
		obj->page_cpu_valid[i] = 1;
3206 3207
	}

3208 3209 3210
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3211
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3212

3213 3214
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3215

C
Chris Wilson 已提交
3216 3217
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3218
					    obj->base.write_domain);
C
Chris Wilson 已提交
3219

3220 3221 3222 3223 3224 3225
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3226 3227 3228 3229
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3230 3231 3232
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3233
static int
3234
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3235
{
3236 3237
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3238
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3239 3240 3241 3242
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3243

3244 3245 3246
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3247
	spin_lock(&file_priv->mm.lock);
3248
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3249 3250
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3251

3252 3253
		ring = request->ring;
		seqno = request->seqno;
3254
	}
3255
	spin_unlock(&file_priv->mm.lock);
3256

3257 3258
	if (seqno == 0)
		return 0;
3259

3260
	ret = 0;
3261
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3262 3263 3264 3265 3266
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3267 3268 3269 3270 3271
		if (ring->irq_get(ring)) {
			ret = wait_event_interruptible(ring->irq_queue,
						       i915_seqno_passed(ring->get_seqno(ring), seqno)
						       || atomic_read(&dev_priv->mm.wedged));
			ring->irq_put(ring);
3272

3273 3274 3275
			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
				ret = -EIO;
		}
3276 3277
	}

3278 3279
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3280 3281 3282 3283

	return ret;
}

3284
int
3285 3286
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3287
		    bool map_and_fenceable)
3288
{
3289
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
3290
	struct drm_i915_private *dev_priv = dev->dev_private;
3291 3292
	int ret;

3293
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3294
	WARN_ON(i915_verify_lists(dev));
3295

3296 3297 3298 3299
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3300
			     "bo is already pinned with incorrect alignment:"
3301 3302
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3303
			     obj->gtt_offset, alignment,
3304
			     map_and_fenceable,
3305
			     obj->map_and_fenceable);
3306 3307 3308 3309 3310 3311
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3312
	if (obj->gtt_space == NULL) {
3313
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3314
						  map_and_fenceable);
3315
		if (ret)
3316
			return ret;
3317
	}
J
Jesse Barnes 已提交
3318

3319 3320 3321
	if (obj->pin_count++ == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
C
Chris Wilson 已提交
3322
				       &dev_priv->mm.pinned_list);
3323
	}
3324
	obj->pin_mappable |= map_and_fenceable;
3325

3326
	WARN_ON(i915_verify_lists(dev));
3327 3328 3329 3330
	return 0;
}

void
3331
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3332
{
3333
	struct drm_device *dev = obj->base.dev;
3334 3335
	drm_i915_private_t *dev_priv = dev->dev_private;

3336
	WARN_ON(i915_verify_lists(dev));
3337 3338
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3339

3340 3341 3342
	if (--obj->pin_count == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
3343
				       &dev_priv->mm.inactive_list);
3344
		obj->pin_mappable = false;
3345
	}
3346
	WARN_ON(i915_verify_lists(dev));
3347 3348 3349 3350
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3351
		   struct drm_file *file)
3352 3353
{
	struct drm_i915_gem_pin *args = data;
3354
	struct drm_i915_gem_object *obj;
3355 3356
	int ret;

3357 3358 3359
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3360

3361
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3362
	if (&obj->base == NULL) {
3363 3364
		ret = -ENOENT;
		goto unlock;
3365 3366
	}

3367
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3368
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3369 3370
		ret = -EINVAL;
		goto out;
3371 3372
	}

3373
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3374 3375
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3376 3377
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3378 3379
	}

3380 3381 3382
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3383
		ret = i915_gem_object_pin(obj, args->alignment, true);
3384 3385
		if (ret)
			goto out;
3386 3387 3388 3389 3390
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3391
	i915_gem_object_flush_cpu_write_domain(obj);
3392
	args->offset = obj->gtt_offset;
3393
out:
3394
	drm_gem_object_unreference(&obj->base);
3395
unlock:
3396
	mutex_unlock(&dev->struct_mutex);
3397
	return ret;
3398 3399 3400 3401
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3402
		     struct drm_file *file)
3403 3404
{
	struct drm_i915_gem_pin *args = data;
3405
	struct drm_i915_gem_object *obj;
3406
	int ret;
3407

3408 3409 3410
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3411

3412
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3413
	if (&obj->base == NULL) {
3414 3415
		ret = -ENOENT;
		goto unlock;
3416
	}
3417

3418
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3419 3420
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3421 3422
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3423
	}
3424 3425 3426
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3427 3428
		i915_gem_object_unpin(obj);
	}
3429

3430
out:
3431
	drm_gem_object_unreference(&obj->base);
3432
unlock:
3433
	mutex_unlock(&dev->struct_mutex);
3434
	return ret;
3435 3436 3437 3438
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3439
		    struct drm_file *file)
3440 3441
{
	struct drm_i915_gem_busy *args = data;
3442
	struct drm_i915_gem_object *obj;
3443 3444
	int ret;

3445
	ret = i915_mutex_lock_interruptible(dev);
3446
	if (ret)
3447
		return ret;
3448

3449
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3450
	if (&obj->base == NULL) {
3451 3452
		ret = -ENOENT;
		goto unlock;
3453
	}
3454

3455 3456 3457 3458
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3459
	 */
3460
	args->busy = obj->active;
3461 3462 3463 3464 3465 3466
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3467
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3468
			ret = i915_gem_flush_ring(obj->ring,
3469
						  0, obj->base.write_domain);
3470 3471 3472 3473
		} else if (obj->ring->outstanding_lazy_request ==
			   obj->last_rendering_seqno) {
			struct drm_i915_gem_request *request;

3474 3475 3476
			/* This ring is not being cleared by active usage,
			 * so emit a request to do so.
			 */
3477 3478
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (request)
C
Chris Wilson 已提交
3479
				ret = i915_add_request(obj->ring, NULL,request);
3480
			else
3481 3482
				ret = -ENOMEM;
		}
3483 3484 3485 3486 3487 3488

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
C
Chris Wilson 已提交
3489
		i915_gem_retire_requests_ring(obj->ring);
3490

3491
		args->busy = obj->active;
3492
	}
3493

3494
	drm_gem_object_unreference(&obj->base);
3495
unlock:
3496
	mutex_unlock(&dev->struct_mutex);
3497
	return ret;
3498 3499 3500 3501 3502 3503 3504 3505 3506
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

3507 3508 3509 3510 3511
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3512
	struct drm_i915_gem_object *obj;
3513
	int ret;
3514 3515 3516 3517 3518 3519 3520 3521 3522

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3523 3524 3525 3526
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3527
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3528
	if (&obj->base == NULL) {
3529 3530
		ret = -ENOENT;
		goto unlock;
3531 3532
	}

3533
	if (obj->pin_count) {
3534 3535
		ret = -EINVAL;
		goto out;
3536 3537
	}

3538 3539
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3540

3541
	/* if the object is no longer bound, discard its backing storage */
3542 3543
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3544 3545
		i915_gem_object_truncate(obj);

3546
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3547

3548
out:
3549
	drm_gem_object_unreference(&obj->base);
3550
unlock:
3551
	mutex_unlock(&dev->struct_mutex);
3552
	return ret;
3553 3554
}

3555 3556
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3557
{
3558
	struct drm_i915_private *dev_priv = dev->dev_private;
3559
	struct drm_i915_gem_object *obj;
3560
	struct address_space *mapping;
3561

3562 3563 3564
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3565

3566 3567 3568 3569
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3570

3571 3572 3573
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
	mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);

3574 3575
	i915_gem_info_add_obj(dev_priv, size);

3576 3577
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3578

3579
	obj->cache_level = I915_CACHE_NONE;
3580
	obj->base.driver_private = NULL;
3581
	obj->fence_reg = I915_FENCE_REG_NONE;
3582
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3583
	INIT_LIST_HEAD(&obj->gtt_list);
3584
	INIT_LIST_HEAD(&obj->ring_list);
3585
	INIT_LIST_HEAD(&obj->exec_list);
3586 3587
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3588 3589
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3590

3591
	return obj;
3592 3593 3594 3595 3596
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3597

3598 3599 3600
	return 0;
}

3601
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3602
{
3603
	struct drm_device *dev = obj->base.dev;
3604 3605
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3606

3607 3608
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
3609
		list_move(&obj->mm_list,
3610 3611 3612
			  &dev_priv->mm.deferred_free_list);
		return;
	}
3613

3614 3615
	trace_i915_gem_object_destroy(obj);

3616
	if (obj->base.map_list.map)
3617
		i915_gem_free_mmap_offset(obj);
3618

3619 3620
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3621

3622 3623 3624
	kfree(obj->page_cpu_valid);
	kfree(obj->bit_17);
	kfree(obj);
3625 3626
}

3627
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3628
{
3629 3630
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
	struct drm_device *dev = obj->base.dev;
3631

3632
	while (obj->pin_count > 0)
3633 3634
		i915_gem_object_unpin(obj);

3635
	if (obj->phys_obj)
3636 3637 3638 3639 3640
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

3641 3642 3643 3644 3645
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3646

3647
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3648

3649
	if (dev_priv->mm.suspended) {
3650 3651
		mutex_unlock(&dev->struct_mutex);
		return 0;
3652 3653
	}

3654
	ret = i915_gpu_idle(dev);
3655 3656
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3657
		return ret;
3658
	}
3659

3660 3661
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3662
		ret = i915_gem_evict_inactive(dev, false);
3663 3664 3665 3666 3667 3668
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

3669 3670
	i915_gem_reset_fences(dev);

3671 3672 3673 3674 3675
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3676
	del_timer_sync(&dev_priv->hangcheck_timer);
3677 3678

	i915_kernel_lost_context(dev);
3679
	i915_gem_cleanup_ringbuffer(dev);
3680

3681 3682
	mutex_unlock(&dev->struct_mutex);

3683 3684 3685
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3686 3687 3688
	return 0;
}

3689 3690 3691 3692 3693
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3694

3695
	ret = intel_init_render_ring_buffer(dev);
3696
	if (ret)
3697
		return ret;
3698 3699

	if (HAS_BSD(dev)) {
3700
		ret = intel_init_bsd_ring_buffer(dev);
3701 3702
		if (ret)
			goto cleanup_render_ring;
3703
	}
3704

3705 3706 3707 3708 3709 3710
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3711 3712
	dev_priv->next_seqno = 1;

3713 3714
	return 0;

3715
cleanup_bsd_ring:
3716
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3717
cleanup_render_ring:
3718
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3719 3720 3721 3722 3723 3724 3725
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3726
	int i;
3727

3728 3729
	for (i = 0; i < I915_NUM_RINGS; i++)
		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3730 3731
}

3732 3733 3734 3735 3736
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3737
	int ret, i;
3738

J
Jesse Barnes 已提交
3739 3740 3741
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3742
	if (atomic_read(&dev_priv->mm.wedged)) {
3743
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3744
		atomic_set(&dev_priv->mm.wedged, 0);
3745 3746 3747
	}

	mutex_lock(&dev->struct_mutex);
3748 3749 3750
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
3751 3752
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3753
		return ret;
3754
	}
3755

3756
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3757 3758
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3759 3760 3761 3762
	for (i = 0; i < I915_NUM_RINGS; i++) {
		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
	}
3763
	mutex_unlock(&dev->struct_mutex);
3764

3765 3766 3767
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3768

3769
	return 0;
3770 3771 3772 3773 3774 3775 3776 3777

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3778 3779 3780 3781 3782 3783
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3784 3785 3786
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3787
	drm_irq_uninstall(dev);
3788
	return i915_gem_idle(dev);
3789 3790 3791 3792 3793 3794 3795
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3796 3797 3798
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3799 3800 3801
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3802 3803
}

3804 3805 3806 3807 3808 3809 3810 3811
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3812 3813 3814
void
i915_gem_load(struct drm_device *dev)
{
3815
	int i;
3816 3817
	drm_i915_private_t *dev_priv = dev->dev_private;

3818
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3819 3820
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
3821
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3822
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3823
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
D
Daniel Vetter 已提交
3824
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3825 3826
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3827 3828
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3829 3830
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3831
	init_completion(&dev_priv->error_completion);
3832

3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

3843 3844
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3845
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3846 3847
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3848

3849
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3850 3851 3852 3853
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3854
	/* Initialize fence registers to zero */
3855 3856
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3857
	}
3858

3859
	i915_gem_detect_bit_6_swizzle(dev);
3860
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3861

3862 3863
	dev_priv->mm.interruptible = true;

3864 3865 3866
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3867
}
3868 3869 3870 3871 3872

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3873 3874
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3875 3876 3877 3878 3879 3880 3881 3882
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3883
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3884 3885 3886 3887 3888
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3889
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3902
	kfree(phys_obj);
3903 3904 3905
	return ret;
}

3906
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3931
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3932 3933 3934 3935
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3936
				 struct drm_i915_gem_object *obj)
3937
{
3938
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3939
	char *vaddr;
3940 3941 3942
	int i;
	int page_count;

3943
	if (!obj->phys_obj)
3944
		return;
3945
	vaddr = obj->phys_obj->handle->vaddr;
3946

3947
	page_count = obj->base.size / PAGE_SIZE;
3948
	for (i = 0; i < page_count; i++) {
3949
		struct page *page = shmem_read_mapping_page(mapping, i);
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
3961
	}
3962
	intel_gtt_chipset_flush();
3963

3964 3965
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
3966 3967 3968 3969
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
3970
			    struct drm_i915_gem_object *obj,
3971 3972
			    int id,
			    int align)
3973
{
3974
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3975 3976 3977 3978 3979 3980 3981 3982
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

3983 3984
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
3985 3986 3987 3988 3989 3990 3991
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
3992
						obj->base.size, align);
3993
		if (ret) {
3994 3995
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
3996
			return ret;
3997 3998 3999 4000
		}
	}

	/* bind to the object */
4001 4002
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4003

4004
	page_count = obj->base.size / PAGE_SIZE;
4005 4006

	for (i = 0; i < page_count; i++) {
4007 4008 4009
		struct page *page;
		char *dst, *src;

4010
		page = shmem_read_mapping_page(mapping, i);
4011 4012
		if (IS_ERR(page))
			return PTR_ERR(page);
4013

4014
		src = kmap_atomic(page);
4015
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4016
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4017
		kunmap_atomic(src);
4018

4019 4020 4021
		mark_page_accessed(page);
		page_cache_release(page);
	}
4022

4023 4024 4025 4026
	return 0;
}

static int
4027 4028
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4029 4030 4031
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4032
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4033
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4034

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4048

4049
	intel_gtt_chipset_flush();
4050 4051
	return 0;
}
4052

4053
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4054
{
4055
	struct drm_i915_file_private *file_priv = file->driver_priv;
4056 4057 4058 4059 4060

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4061
	spin_lock(&file_priv->mm.lock);
4062 4063 4064 4065 4066 4067 4068 4069 4070
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4071
	spin_unlock(&file_priv->mm.lock);
4072
}
4073

4074 4075 4076 4077 4078 4079 4080
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4081
		      list_empty(&dev_priv->mm.active_list);
4082 4083 4084 4085

	return !lists_empty;
}

4086
static int
4087
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4088
{
4089 4090 4091 4092 4093 4094
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
4095
	int nr_to_scan = sc->nr_to_scan;
4096 4097 4098
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4099
		return 0;
4100 4101 4102

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4103 4104 4105 4106 4107 4108 4109
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4110 4111
	}

4112
rescan:
4113
	/* first scan for clean buffers */
4114
	i915_gem_retire_requests(dev);
4115

4116 4117 4118 4119
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4120 4121
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4122
				break;
4123 4124 4125 4126
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4127 4128 4129 4130
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4131 4132
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4133
			nr_to_scan--;
4134
		else
4135 4136 4137 4138
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4139 4140 4141 4142 4143 4144
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4145
		if (i915_gpu_idle(dev) == 0)
4146 4147
			goto rescan;
	}
4148 4149
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4150
}