i915_gem.c 132.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41 42
#define RQ_BUG_ON(expr)

43
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45
static void
46 47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49

50 51 52 53 54 55
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

56 57 58 59 60 61 62 63
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

64 65 66 67
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
68
	spin_lock(&dev_priv->mm.object_stat_lock);
69 70
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
71
	spin_unlock(&dev_priv->mm.object_stat_lock);
72 73 74 75 76
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
77
	spin_lock(&dev_priv->mm.object_stat_lock);
78 79
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
80
	spin_unlock(&dev_priv->mm.object_stat_lock);
81 82
}

83
static int
84
i915_gem_wait_for_error(struct i915_gpu_error *error)
85 86 87
{
	int ret;

88 89
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
90
	if (EXIT_COND)
91 92
		return 0;

93 94 95 96 97
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
98 99 100
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
101 102 103 104
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
105
		return ret;
106
	}
107
#undef EXIT_COND
108

109
	return 0;
110 111
}

112
int i915_mutex_lock_interruptible(struct drm_device *dev)
113
{
114
	struct drm_i915_private *dev_priv = dev->dev_private;
115 116
	int ret;

117
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 119 120 121 122 123 124
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

125
	WARN_ON(i915_verify_lists(dev));
126 127
	return 0;
}
128

129 130
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131
			    struct drm_file *file)
132
{
133
	struct drm_i915_private *dev_priv = dev->dev_private;
134
	struct drm_i915_gem_get_aperture *args = data;
135 136
	struct i915_gtt *ggtt = &dev_priv->gtt;
	struct i915_vma *vma;
137
	size_t pinned;
138

139
	pinned = 0;
140
	mutex_lock(&dev->struct_mutex);
141 142 143 144 145 146
	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
		if (vma->pin_count)
			pinned += vma->node.size;
	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
		if (vma->pin_count)
			pinned += vma->node.size;
147
	mutex_unlock(&dev->struct_mutex);
148

149
	args->aper_size = dev_priv->gtt.base.total;
150
	args->aper_available_size = args->aper_size - pinned;
151

152 153 154
	return 0;
}

155 156
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157
{
158 159 160 161 162
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
198

199 200 201 202 203 204 205 206 207 208 209 210 211
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
212

213 214 215 216 217 218 219 220 221 222 223 224 225
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
226
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227
		char *vaddr = obj->phys_handle->vaddr;
228 229 230
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 232 233 234 235 236 237 238 239 240 241 242 243 244
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
245
				mark_page_accessed(page);
246
			page_cache_release(page);
247 248
			vaddr += PAGE_SIZE;
		}
249
		obj->dirty = 0;
250 251
	}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
283 284 285 286 287 288 289
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
290
	int ret;
291 292 293 294 295 296 297 298 299 300 301 302 303 304

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

305 306 307 308
	ret = drop_pages(obj);
	if (ret)
		return ret;

309 310 311 312 313 314
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
315 316 317
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
318 319 320 321 322 323 324 325 326 327
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
328
	int ret = 0;
329 330 331 332 333 334 335

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
336

337
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 339 340 341 342 343 344 345 346 347
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
348 349 350 351
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
352 353
	}

354
	drm_clflush_virt_range(vaddr, args->size);
355
	i915_gem_chipset_flush(dev);
356 357

out:
358
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359
	return ret;
360 361
}

362 363 364
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
365
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 367 368 369 370
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371
	kmem_cache_free(dev_priv->objects, obj);
372 373
}

374 375 376 377 378
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
379
{
380
	struct drm_i915_gem_object *obj;
381 382
	int ret;
	u32 handle;
383

384
	size = roundup(size, PAGE_SIZE);
385 386
	if (size == 0)
		return -EINVAL;
387 388

	/* Allocate the new object */
389
	obj = i915_gem_alloc_object(dev, size);
390 391 392
	if (obj == NULL)
		return -ENOMEM;

393
	ret = drm_gem_handle_create(file, &obj->base, &handle);
394
	/* drop reference from allocate - handle holds it now */
395 396 397
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
398

399
	*handle_p = handle;
400 401 402
	return 0;
}

403 404 405 406 407 408
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
409
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 411
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
412
			       args->size, &args->handle);
413 414 415 416 417 418 419 420 421 422
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
423

424
	return i915_gem_create(file, dev,
425
			       args->size, &args->handle);
426 427
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

454
static inline int
455 456
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

516 517 518
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
519
static int
520 521 522 523 524 525 526
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

527
	if (unlikely(page_do_bit17_swizzling))
528 529 530 531 532 533 534 535 536 537 538
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

539
	return ret ? -EFAULT : 0;
540 541
}

542 543 544 545
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
546
	if (unlikely(swizzled)) {
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

564 565 566 567 568 569 570 571 572 573 574 575
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
576 577 578
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
579 580 581 582 583 584 585 586 587 588 589

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

590
	return ret ? - EFAULT : 0;
591 592
}

593
static int
594 595 596 597
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
598
{
599
	char __user *user_data;
600
	ssize_t remain;
601
	loff_t offset;
602
	int shmem_page_offset, page_length, ret = 0;
603
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604
	int prefaulted = 0;
605
	int needs_clflush = 0;
606
	struct sg_page_iter sg_iter;
607

V
Ville Syrjälä 已提交
608
	user_data = to_user_ptr(args->data_ptr);
609 610
	remain = args->size;

611
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612

613
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 615 616
	if (ret)
		return ret;

617
	offset = args->offset;
618

619 620
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
621
		struct page *page = sg_page_iter_page(&sg_iter);
622 623 624 625

		if (remain <= 0)
			break;

626 627 628 629 630
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
631
		shmem_page_offset = offset_in_page(offset);
632 633 634 635
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

636 637 638
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

639 640 641 642 643
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
644 645 646

		mutex_unlock(&dev->struct_mutex);

647
		if (likely(!i915.prefault_disable) && !prefaulted) {
648
			ret = fault_in_multipages_writeable(user_data, remain);
649 650 651 652 653 654 655
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
656

657 658 659
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
660

661
		mutex_lock(&dev->struct_mutex);
662 663

		if (ret)
664 665
			goto out;

666
next_page:
667
		remain -= page_length;
668
		user_data += page_length;
669 670 671
		offset += page_length;
	}

672
out:
673 674
	i915_gem_object_unpin_pages(obj);

675 676 677
	return ret;
}

678 679 680 681 682 683 684
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685
		     struct drm_file *file)
686 687
{
	struct drm_i915_gem_pread *args = data;
688
	struct drm_i915_gem_object *obj;
689
	int ret = 0;
690

691 692 693 694
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
695
		       to_user_ptr(args->data_ptr),
696 697 698
		       args->size))
		return -EFAULT;

699
	ret = i915_mutex_lock_interruptible(dev);
700
	if (ret)
701
		return ret;
702

703
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704
	if (&obj->base == NULL) {
705 706
		ret = -ENOENT;
		goto unlock;
707
	}
708

709
	/* Bounds check source.  */
710 711
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
712
		ret = -EINVAL;
713
		goto out;
C
Chris Wilson 已提交
714 715
	}

716 717 718 719 720 721 722 723
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
724 725
	trace_i915_gem_object_pread(obj, args->offset, args->size);

726
	ret = i915_gem_shmem_pread(dev, obj, args, file);
727

728
out:
729
	drm_gem_object_unreference(&obj->base);
730
unlock:
731
	mutex_unlock(&dev->struct_mutex);
732
	return ret;
733 734
}

735 736
/* This is the fast write path which cannot handle
 * page faults in the source data
737
 */
738 739 740 741 742 743

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
744
{
745 746
	void __iomem *vaddr_atomic;
	void *vaddr;
747
	unsigned long unwritten;
748

P
Peter Zijlstra 已提交
749
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 751 752
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
753
						      user_data, length);
P
Peter Zijlstra 已提交
754
	io_mapping_unmap_atomic(vaddr_atomic);
755
	return unwritten;
756 757
}

758 759 760 761
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
762
static int
763 764
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
765
			 struct drm_i915_gem_pwrite *args,
766
			 struct drm_file *file)
767
{
768
	struct drm_i915_private *dev_priv = dev->dev_private;
769
	ssize_t remain;
770
	loff_t offset, page_base;
771
	char __user *user_data;
D
Daniel Vetter 已提交
772 773
	int page_offset, page_length, ret;

774
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
775 776 777 778 779 780 781 782 783 784
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
785

V
Ville Syrjälä 已提交
786
	user_data = to_user_ptr(args->data_ptr);
787 788
	remain = args->size;

789
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790

791
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792

793 794 795
	while (remain > 0) {
		/* Operation in this page
		 *
796 797 798
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
799
		 */
800 801
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
802 803 804 805 806
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
807 808
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
809
		 */
B
Ben Widawsky 已提交
810
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
811 812
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
813
			goto out_flush;
D
Daniel Vetter 已提交
814
		}
815

816 817 818
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
819 820
	}

821
out_flush:
822
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
823
out_unpin:
B
Ben Widawsky 已提交
824
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
825
out:
826
	return ret;
827 828
}

829 830 831 832
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
833
static int
834 835 836 837 838
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
839
{
840
	char *vaddr;
841
	int ret;
842

843
	if (unlikely(page_do_bit17_swizzling))
844
		return -EINVAL;
845

846 847 848 849
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
850 851
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
852 853 854 855
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
856

857
	return ret ? -EFAULT : 0;
858 859
}

860 861
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
862
static int
863 864 865 866 867
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
868
{
869 870
	char *vaddr;
	int ret;
871

872
	vaddr = kmap(page);
873
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 875 876
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
877 878
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 880
						user_data,
						page_length);
881 882 883 884 885
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
886 887 888
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
889
	kunmap(page);
890

891
	return ret ? -EFAULT : 0;
892 893 894
}

static int
895 896 897 898
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
899 900
{
	ssize_t remain;
901 902
	loff_t offset;
	char __user *user_data;
903
	int shmem_page_offset, page_length, ret = 0;
904
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905
	int hit_slowpath = 0;
906 907
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
908
	struct sg_page_iter sg_iter;
909

V
Ville Syrjälä 已提交
910
	user_data = to_user_ptr(args->data_ptr);
911 912
	remain = args->size;

913
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914

915 916 917 918 919
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
920
		needs_clflush_after = cpu_write_needs_clflush(obj);
921 922 923
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
924
	}
925 926 927 928 929
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
930

931 932 933 934
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

935
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936

937 938
	i915_gem_object_pin_pages(obj);

939
	offset = args->offset;
940
	obj->dirty = 1;
941

942 943
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
944
		struct page *page = sg_page_iter_page(&sg_iter);
945
		int partial_cacheline_write;
946

947 948 949
		if (remain <= 0)
			break;

950 951 952 953 954
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
955
		shmem_page_offset = offset_in_page(offset);
956 957 958 959 960

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

961 962 963 964 965 966 967
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

968 969 970
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

971 972 973 974 975 976
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
977 978 979

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
980 981 982 983
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
984

985
		mutex_lock(&dev->struct_mutex);
986 987

		if (ret)
988 989
			goto out;

990
next_page:
991
		remain -= page_length;
992
		user_data += page_length;
993
		offset += page_length;
994 995
	}

996
out:
997 998
	i915_gem_object_unpin_pages(obj);

999
	if (hit_slowpath) {
1000 1001 1002 1003 1004 1005 1006
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007
			if (i915_gem_clflush_object(obj, obj->pin_display))
1008
				needs_clflush_after = true;
1009
		}
1010
	}
1011

1012
	if (needs_clflush_after)
1013
		i915_gem_chipset_flush(dev);
1014 1015
	else
		obj->cache_dirty = true;
1016

1017
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018
	return ret;
1019 1020 1021 1022 1023 1024 1025 1026 1027
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028
		      struct drm_file *file)
1029
{
1030
	struct drm_i915_private *dev_priv = dev->dev_private;
1031
	struct drm_i915_gem_pwrite *args = data;
1032
	struct drm_i915_gem_object *obj;
1033 1034 1035 1036 1037 1038
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1039
		       to_user_ptr(args->data_ptr),
1040 1041 1042
		       args->size))
		return -EFAULT;

1043
	if (likely(!i915.prefault_disable)) {
1044 1045 1046 1047 1048
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1049

1050 1051
	intel_runtime_pm_get(dev_priv);

1052
	ret = i915_mutex_lock_interruptible(dev);
1053
	if (ret)
1054
		goto put_rpm;
1055

1056
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057
	if (&obj->base == NULL) {
1058 1059
		ret = -ENOENT;
		goto unlock;
1060
	}
1061

1062
	/* Bounds check destination. */
1063 1064
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1065
		ret = -EINVAL;
1066
		goto out;
C
Chris Wilson 已提交
1067 1068
	}

1069 1070 1071 1072 1073 1074 1075 1076
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1077 1078
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1079
	ret = -EFAULT;
1080 1081 1082 1083 1084 1085
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1086 1087 1088
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1089
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1090 1091 1092
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1093
	}
1094

1095 1096 1097 1098 1099 1100
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1101

1102
out:
1103
	drm_gem_object_unreference(&obj->base);
1104
unlock:
1105
	mutex_unlock(&dev->struct_mutex);
1106 1107 1108
put_rpm:
	intel_runtime_pm_put(dev_priv);

1109 1110 1111
	return ret;
}

1112
int
1113
i915_gem_check_wedge(struct i915_gpu_error *error,
1114 1115
		     bool interruptible)
{
1116
	if (i915_reset_in_progress(error)) {
1117 1118 1119 1120 1121
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1122 1123
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1124 1125
			return -EIO;

1126 1127 1128 1129 1130 1131 1132
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1133 1134 1135 1136 1137
	}

	return 0;
}

1138 1139 1140 1141 1142 1143
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1144
		       struct intel_engine_cs *ring)
1145 1146 1147 1148
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

D
Daniel Vetter 已提交
1149
static int __i915_spin_request(struct drm_i915_gem_request *req)
1150
{
1151 1152
	unsigned long timeout;

D
Daniel Vetter 已提交
1153
	if (i915_gem_request_get_ring(req)->irq_refcount)
1154 1155 1156 1157
		return -EBUSY;

	timeout = jiffies + 1;
	while (!need_resched()) {
D
Daniel Vetter 已提交
1158
		if (i915_gem_request_completed(req, true))
1159 1160 1161 1162
			return 0;

		if (time_after_eq(jiffies, timeout))
			break;
1163

1164 1165
		cpu_relax_lowlatency();
	}
D
Daniel Vetter 已提交
1166
	if (i915_gem_request_completed(req, false))
1167 1168 1169
		return 0;

	return -EAGAIN;
1170 1171
}

1172
/**
1173 1174 1175
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1176 1177 1178
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1179 1180 1181 1182 1183 1184 1185
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1186
 * Returns 0 if the request was found within the alloted time. Else returns the
1187 1188
 * errno with remaining time filled in timeout argument.
 */
1189
int __i915_wait_request(struct drm_i915_gem_request *req,
1190
			unsigned reset_counter,
1191
			bool interruptible,
1192
			s64 *timeout,
1193
			struct intel_rps_client *rps)
1194
{
1195
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1196
	struct drm_device *dev = ring->dev;
1197
	struct drm_i915_private *dev_priv = dev->dev_private;
1198 1199
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1200
	DEFINE_WAIT(wait);
1201
	unsigned long timeout_expire;
1202
	s64 before, now;
1203 1204
	int ret;

1205
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1206

1207 1208 1209
	if (list_empty(&req->list))
		return 0;

1210
	if (i915_gem_request_completed(req, true))
1211 1212
		return 0;

1213 1214
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1215

1216
	if (INTEL_INFO(dev_priv)->gen >= 6)
1217
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1218

1219
	/* Record current time in case interrupted by signal, or wedged */
1220
	trace_i915_gem_request_wait_begin(req);
1221
	before = ktime_get_raw_ns();
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

	/* Optimistic spin for the next jiffie before touching IRQs */
	ret = __i915_spin_request(req);
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1233 1234
	for (;;) {
		struct timer_list timer;
1235

1236 1237
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1238

1239 1240
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1241 1242 1243 1244 1245 1246 1247 1248
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1249

1250
		if (i915_gem_request_completed(req, false)) {
1251 1252 1253
			ret = 0;
			break;
		}
1254

1255 1256 1257 1258 1259
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1260
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1261 1262 1263 1264 1265 1266
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1267 1268
			unsigned long expire;

1269
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1270
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1271 1272 1273
			mod_timer(&timer, expire);
		}

1274
		io_schedule();
1275 1276 1277 1278 1279 1280

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1281 1282
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1283 1284

	finish_wait(&ring->irq_queue, &wait);
1285

1286 1287 1288 1289
out:
	now = ktime_get_raw_ns();
	trace_i915_gem_request_wait_end(req);

1290
	if (timeout) {
1291 1292 1293
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1304 1305
	}

1306
	return ret;
1307 1308
}

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_private *dev_private;
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	dev_private = req->ring->dev->dev_private;
	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1348 1349 1350

	put_pid(request->pid);
	request->pid = NULL;
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->ring;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1394
/**
1395
 * Waits for a request to be signaled, and cleans up the
1396 1397 1398
 * request and object lists appropriately for that event.
 */
int
1399
i915_wait_request(struct drm_i915_gem_request *req)
1400
{
1401 1402 1403
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1404 1405
	int ret;

1406 1407 1408 1409 1410 1411
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1412 1413
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1414
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1415 1416 1417
	if (ret)
		return ret;

1418 1419
	ret = __i915_wait_request(req,
				  atomic_read(&dev_priv->gpu_error.reset_counter),
1420
				  interruptible, NULL, NULL);
1421 1422
	if (ret)
		return ret;
1423

1424
	__i915_gem_request_retire__upto(req);
1425 1426 1427
	return 0;
}

1428 1429 1430 1431
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1432
int
1433 1434 1435
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1436
	int ret, i;
1437

1438
	if (!obj->active)
1439 1440
		return 0;

1441 1442 1443 1444 1445
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1446

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
			i = obj->last_write_req->ring->id;
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
		RQ_BUG_ON(obj->active);
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
	int ring = req->ring->id;

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1482 1483
}

1484 1485 1486 1487 1488
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1489
					    struct intel_rps_client *rps,
1490 1491 1492 1493
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1494
	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1495
	unsigned reset_counter;
1496
	int ret, i, n = 0;
1497 1498 1499 1500

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1501
	if (!obj->active)
1502 1503
		return 0;

1504
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1505 1506 1507
	if (ret)
		return ret;

1508
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529

	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1530
	mutex_unlock(&dev->struct_mutex);
1531 1532
	for (i = 0; ret == 0 && i < n; i++)
		ret = __i915_wait_request(requests[i], reset_counter, true,
1533
					  NULL, rps);
1534 1535
	mutex_lock(&dev->struct_mutex);

1536 1537 1538 1539 1540 1541 1542
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1543 1544
}

1545 1546 1547 1548 1549 1550
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1551
/**
1552 1553
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1554 1555 1556
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1557
			  struct drm_file *file)
1558 1559
{
	struct drm_i915_gem_set_domain *args = data;
1560
	struct drm_i915_gem_object *obj;
1561 1562
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1563 1564
	int ret;

1565
	/* Only handle setting domains to types used by the CPU. */
1566
	if (write_domain & I915_GEM_GPU_DOMAINS)
1567 1568
		return -EINVAL;

1569
	if (read_domains & I915_GEM_GPU_DOMAINS)
1570 1571 1572 1573 1574 1575 1576 1577
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1578
	ret = i915_mutex_lock_interruptible(dev);
1579
	if (ret)
1580
		return ret;
1581

1582
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1583
	if (&obj->base == NULL) {
1584 1585
		ret = -ENOENT;
		goto unlock;
1586
	}
1587

1588 1589 1590 1591
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1592
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1593
							  to_rps_client(file),
1594
							  !write_domain);
1595 1596 1597
	if (ret)
		goto unref;

1598
	if (read_domains & I915_GEM_DOMAIN_GTT)
1599
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1600
	else
1601
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1602

1603 1604 1605 1606 1607
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1608
unref:
1609
	drm_gem_object_unreference(&obj->base);
1610
unlock:
1611 1612 1613 1614 1615 1616 1617 1618 1619
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1620
			 struct drm_file *file)
1621 1622
{
	struct drm_i915_gem_sw_finish *args = data;
1623
	struct drm_i915_gem_object *obj;
1624 1625
	int ret = 0;

1626
	ret = i915_mutex_lock_interruptible(dev);
1627
	if (ret)
1628
		return ret;
1629

1630
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1631
	if (&obj->base == NULL) {
1632 1633
		ret = -ENOENT;
		goto unlock;
1634 1635 1636
	}

	/* Pinned buffers may be scanout, so flush the cache */
1637
	if (obj->pin_display)
1638
		i915_gem_object_flush_cpu_write_domain(obj);
1639

1640
	drm_gem_object_unreference(&obj->base);
1641
unlock:
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1662 1663 1664
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1665
		    struct drm_file *file)
1666 1667 1668 1669 1670
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1671 1672 1673 1674 1675 1676
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1677
	obj = drm_gem_object_lookup(dev, file, args->handle);
1678
	if (obj == NULL)
1679
		return -ENOENT;
1680

1681 1682 1683 1684 1685 1686 1687 1688
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1689
	addr = vm_mmap(obj->filp, 0, args->size,
1690 1691
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1705
	drm_gem_object_unreference_unlocked(obj);
1706 1707 1708 1709 1710 1711 1712 1713
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1714 1715
/**
 * i915_gem_fault - fault a page into the GTT
1716 1717
 * @vma: VMA in question
 * @vmf: fault info
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1732 1733
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1734
	struct drm_i915_private *dev_priv = dev->dev_private;
1735
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1736 1737 1738
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1739
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1740

1741 1742
	intel_runtime_pm_get(dev_priv);

1743 1744 1745 1746
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1747 1748 1749
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1750

C
Chris Wilson 已提交
1751 1752
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1753 1754 1755 1756 1757 1758 1759 1760 1761
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1762 1763
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1764
		ret = -EFAULT;
1765 1766 1767
		goto unlock;
	}

1768
	/* Use a partial view if the object is bigger than the aperture. */
1769 1770
	if (obj->base.size >= dev_priv->gtt.mappable_end &&
	    obj->tiling_mode == I915_TILING_NONE) {
1771
		static const unsigned int chunk_size = 256; // 1 MiB
1772

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1785 1786
	if (ret)
		goto unlock;
1787

1788 1789 1790
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1791

1792
	ret = i915_gem_object_get_fence(obj);
1793
	if (ret)
1794
		goto unpin;
1795

1796
	/* Finally, remap it using the new GTT offset */
1797 1798
	pfn = dev_priv->gtt.mappable_base +
		i915_gem_obj_ggtt_offset_view(obj, &view);
1799
	pfn >>= PAGE_SHIFT;
1800

1801 1802 1803 1804 1805 1806 1807 1808 1809
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1810

1811 1812
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1813 1814 1815 1816 1817
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1839
unpin:
1840
	i915_gem_object_ggtt_unpin_view(obj, &view);
1841
unlock:
1842
	mutex_unlock(&dev->struct_mutex);
1843
out:
1844
	switch (ret) {
1845
	case -EIO:
1846 1847 1848 1849 1850 1851 1852
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1853 1854 1855
			ret = VM_FAULT_SIGBUS;
			break;
		}
1856
	case -EAGAIN:
D
Daniel Vetter 已提交
1857 1858 1859 1860
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1861
		 */
1862 1863
	case 0:
	case -ERESTARTSYS:
1864
	case -EINTR:
1865 1866 1867 1868 1869
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1870 1871
		ret = VM_FAULT_NOPAGE;
		break;
1872
	case -ENOMEM:
1873 1874
		ret = VM_FAULT_OOM;
		break;
1875
	case -ENOSPC:
1876
	case -EFAULT:
1877 1878
		ret = VM_FAULT_SIGBUS;
		break;
1879
	default:
1880
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1881 1882
		ret = VM_FAULT_SIGBUS;
		break;
1883
	}
1884 1885 1886

	intel_runtime_pm_put(dev_priv);
	return ret;
1887 1888
}

1889 1890 1891 1892
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1893
 * Preserve the reservation of the mmapping with the DRM core code, but
1894 1895 1896 1897 1898 1899 1900 1901 1902
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1903
void
1904
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1905
{
1906 1907
	if (!obj->fault_mappable)
		return;
1908

1909 1910
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1911
	obj->fault_mappable = false;
1912 1913
}

1914 1915 1916 1917 1918 1919 1920 1921 1922
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1923
uint32_t
1924
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1925
{
1926
	uint32_t gtt_size;
1927 1928

	if (INTEL_INFO(dev)->gen >= 4 ||
1929 1930
	    tiling_mode == I915_TILING_NONE)
		return size;
1931 1932 1933

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1934
		gtt_size = 1024*1024;
1935
	else
1936
		gtt_size = 512*1024;
1937

1938 1939
	while (gtt_size < size)
		gtt_size <<= 1;
1940

1941
	return gtt_size;
1942 1943
}

1944 1945 1946 1947 1948
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1949
 * potential fence register mapping.
1950
 */
1951 1952 1953
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1954 1955 1956 1957 1958
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1959
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1960
	    tiling_mode == I915_TILING_NONE)
1961 1962
		return 4096;

1963 1964 1965 1966
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1967
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1968 1969
}

1970 1971 1972 1973 1974
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1975
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1976 1977
		return 0;

1978 1979
	dev_priv->mm.shrinker_no_lock_stealing = true;

1980 1981
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1982
		goto out;
1983 1984 1985 1986 1987 1988 1989 1990

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1991 1992 1993 1994 1995
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1996 1997
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1998
		goto out;
1999 2000

	i915_gem_shrink_all(dev_priv);
2001 2002 2003 2004 2005
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2006 2007 2008 2009 2010 2011 2012
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2013
int
2014 2015
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2016
		  uint32_t handle,
2017
		  uint64_t *offset)
2018
{
2019
	struct drm_i915_gem_object *obj;
2020 2021
	int ret;

2022
	ret = i915_mutex_lock_interruptible(dev);
2023
	if (ret)
2024
		return ret;
2025

2026
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2027
	if (&obj->base == NULL) {
2028 2029 2030
		ret = -ENOENT;
		goto unlock;
	}
2031

2032
	if (obj->madv != I915_MADV_WILLNEED) {
2033
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2034
		ret = -EFAULT;
2035
		goto out;
2036 2037
	}

2038 2039 2040
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2041

2042
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2043

2044
out:
2045
	drm_gem_object_unreference(&obj->base);
2046
unlock:
2047
	mutex_unlock(&dev->struct_mutex);
2048
	return ret;
2049 2050
}

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2072
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2073 2074
}

D
Daniel Vetter 已提交
2075 2076 2077
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2078
{
2079
	i915_gem_object_free_mmap_offset(obj);
2080

2081 2082
	if (obj->base.filp == NULL)
		return;
2083

D
Daniel Vetter 已提交
2084 2085 2086 2087 2088
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2089
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2090 2091
	obj->madv = __I915_MADV_PURGED;
}
2092

2093 2094 2095
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2096
{
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2111 2112
}

2113
static void
2114
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2115
{
2116 2117
	struct sg_page_iter sg_iter;
	int ret;
2118

2119
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2120

C
Chris Wilson 已提交
2121 2122 2123 2124 2125 2126
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2127
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2128 2129 2130
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2131 2132
	i915_gem_gtt_finish_object(obj);

2133
	if (i915_gem_object_needs_bit17_swizzle(obj))
2134 2135
		i915_gem_object_save_bit_17_swizzle(obj);

2136 2137
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2138

2139
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2140
		struct page *page = sg_page_iter_page(&sg_iter);
2141

2142
		if (obj->dirty)
2143
			set_page_dirty(page);
2144

2145
		if (obj->madv == I915_MADV_WILLNEED)
2146
			mark_page_accessed(page);
2147

2148
		page_cache_release(page);
2149
	}
2150
	obj->dirty = 0;
2151

2152 2153
	sg_free_table(obj->pages);
	kfree(obj->pages);
2154
}
C
Chris Wilson 已提交
2155

2156
int
2157 2158 2159 2160
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2161
	if (obj->pages == NULL)
2162 2163
		return 0;

2164 2165 2166
	if (obj->pages_pin_count)
		return -EBUSY;

2167
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2168

2169 2170 2171
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2172
	list_del(&obj->global_list);
2173

2174
	ops->put_pages(obj);
2175
	obj->pages = NULL;
2176

2177
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2178 2179 2180 2181

	return 0;
}

2182
static int
C
Chris Wilson 已提交
2183
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2184
{
C
Chris Wilson 已提交
2185
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2186 2187
	int page_count, i;
	struct address_space *mapping;
2188 2189
	struct sg_table *st;
	struct scatterlist *sg;
2190
	struct sg_page_iter sg_iter;
2191
	struct page *page;
2192
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2193
	int ret;
C
Chris Wilson 已提交
2194
	gfp_t gfp;
2195

C
Chris Wilson 已提交
2196 2197 2198 2199 2200 2201 2202
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2203 2204 2205 2206
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2207
	page_count = obj->base.size / PAGE_SIZE;
2208 2209
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2210
		return -ENOMEM;
2211
	}
2212

2213 2214 2215 2216 2217
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2218
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2219
	gfp = mapping_gfp_mask(mapping);
2220
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2221
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2222 2223 2224
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2225 2226
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2227 2228 2229 2230 2231
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2232 2233 2234 2235 2236 2237 2238 2239
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2240
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2241 2242
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2243
				goto err_pages;
I
Imre Deak 已提交
2244
			}
C
Chris Wilson 已提交
2245
		}
2246 2247 2248 2249 2250 2251 2252 2253
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2254 2255 2256 2257 2258 2259 2260 2261 2262
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2263 2264 2265

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2266
	}
2267 2268 2269 2270
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2271 2272
	obj->pages = st;

I
Imre Deak 已提交
2273 2274 2275 2276
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2277
	if (i915_gem_object_needs_bit17_swizzle(obj))
2278 2279
		i915_gem_object_do_bit_17_swizzle(obj);

2280 2281 2282 2283
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2284 2285 2286
	return 0;

err_pages:
2287 2288
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2289
		page_cache_release(sg_page_iter_page(&sg_iter));
2290 2291
	sg_free_table(st);
	kfree(st);
2292 2293 2294 2295 2296 2297 2298 2299 2300

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2301 2302 2303 2304
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2305 2306
}

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2321
	if (obj->pages)
2322 2323
		return 0;

2324
	if (obj->madv != I915_MADV_WILLNEED) {
2325
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2326
		return -EFAULT;
2327 2328
	}

2329 2330
	BUG_ON(obj->pages_pin_count);

2331 2332 2333 2334
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2335
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2336 2337 2338 2339

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2340
	return 0;
2341 2342
}

2343
void i915_vma_move_to_active(struct i915_vma *vma,
2344
			     struct drm_i915_gem_request *req)
2345
{
2346
	struct drm_i915_gem_object *obj = vma->obj;
2347 2348 2349
	struct intel_engine_cs *ring;

	ring = i915_gem_request_get_ring(req);
2350 2351

	/* Add a reference if we're newly entering the active list. */
2352
	if (obj->active == 0)
2353
		drm_gem_object_reference(&obj->base);
2354
	obj->active |= intel_ring_flag(ring);
2355

2356
	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2357
	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2358

2359
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2360 2361
}

2362 2363
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2364
{
2365 2366 2367 2368
	RQ_BUG_ON(obj->last_write_req == NULL);
	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));

	i915_gem_request_assign(&obj->last_write_req, NULL);
2369
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2370 2371
}

2372
static void
2373
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2374
{
2375
	struct i915_vma *vma;
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
	RQ_BUG_ON(!(obj->active & (1 << ring)));

	list_del_init(&obj->ring_list[ring]);
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2389

2390 2391 2392 2393 2394 2395 2396
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2397 2398 2399
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2400
	}
2401

2402
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2403
	drm_gem_object_unreference(&obj->base);
2404 2405
}

2406
static int
2407
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2408
{
2409
	struct drm_i915_private *dev_priv = dev->dev_private;
2410
	struct intel_engine_cs *ring;
2411
	int ret, i, j;
2412

2413
	/* Carefully retire all requests without writing to the rings */
2414
	for_each_ring(ring, dev_priv, i) {
2415 2416 2417
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2418 2419
	}
	i915_gem_retire_requests(dev);
2420 2421

	/* Finally reset hw state */
2422
	for_each_ring(ring, dev_priv, i) {
2423
		intel_ring_init_seqno(ring, seqno);
2424

2425 2426
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2427
	}
2428

2429
	return 0;
2430 2431
}

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2458 2459
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2460
{
2461 2462 2463 2464
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2465
		int ret = i915_gem_init_seqno(dev, 0);
2466 2467
		if (ret)
			return ret;
2468

2469 2470
		dev_priv->next_seqno = 1;
	}
2471

2472
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2473
	return 0;
2474 2475
}

2476 2477 2478 2479 2480
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2481
void __i915_add_request(struct drm_i915_gem_request *request,
2482 2483
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2484
{
2485 2486
	struct intel_engine_cs *ring;
	struct drm_i915_private *dev_priv;
2487
	struct intel_ringbuffer *ringbuf;
2488
	u32 request_start;
2489 2490
	int ret;

2491
	if (WARN_ON(request == NULL))
2492
		return;
2493

2494 2495 2496 2497
	ring = request->ring;
	dev_priv = ring->dev->dev_private;
	ringbuf = request->ringbuf;

2498 2499 2500 2501 2502 2503 2504
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	intel_ring_reserved_space_use(ringbuf);

2505
	request_start = intel_ring_get_tail(ringbuf);
2506 2507 2508 2509 2510 2511 2512
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2513 2514
	if (flush_caches) {
		if (i915.enable_execlists)
2515
			ret = logical_ring_flush_all_caches(request);
2516
		else
2517
			ret = intel_ring_flush_all_caches(request);
2518 2519 2520
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2521

2522 2523 2524 2525 2526
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2527
	request->postfix = intel_ring_get_tail(ringbuf);
2528

2529
	if (i915.enable_execlists)
2530
		ret = ring->emit_request(request);
2531
	else {
2532
		ret = ring->add_request(request);
2533 2534

		request->tail = intel_ring_get_tail(ringbuf);
2535
	}
2536 2537
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2538

2539 2540 2541 2542 2543 2544 2545 2546
	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2547
	request->batch_obj = obj;
2548

2549
	request->emitted_jiffies = jiffies;
2550
	ring->last_submitted_seqno = request->seqno;
2551
	list_add_tail(&request->list, &ring->request_list);
2552

2553
	trace_i915_gem_request_add(request);
C
Chris Wilson 已提交
2554

2555
	i915_queue_hangcheck(ring->dev);
2556

2557 2558 2559 2560
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2561

2562 2563
	/* Sanity check that the reserved size was large enough. */
	intel_ring_reserved_space_end(ringbuf);
2564 2565
}

2566
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2567
				   const struct intel_context *ctx)
2568
{
2569
	unsigned long elapsed;
2570

2571 2572 2573
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2574 2575
		return true;

2576 2577
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2578
		if (!i915_gem_context_is_default(ctx)) {
2579
			DRM_DEBUG("context hanging too fast, banning!\n");
2580
			return true;
2581 2582 2583
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2584
			return true;
2585
		}
2586 2587 2588 2589 2590
	}

	return false;
}

2591
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2592
				  struct intel_context *ctx,
2593
				  const bool guilty)
2594
{
2595 2596 2597 2598
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2599

2600 2601 2602
	hs = &ctx->hang_stats;

	if (guilty) {
2603
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2604 2605 2606 2607
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2608 2609 2610
	}
}

2611 2612 2613 2614 2615 2616
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2617 2618 2619
	if (req->file_priv)
		i915_gem_request_remove_from_client(req);

2620 2621
	if (ctx) {
		if (i915.enable_execlists) {
2622 2623
			if (ctx != req->ring->default_context)
				intel_lr_context_unpin(req);
2624
		}
2625

2626 2627
		i915_gem_context_unreference(ctx);
	}
2628

2629
	kmem_cache_free(req->i915->requests, req);
2630 2631
}

2632
int i915_gem_request_alloc(struct intel_engine_cs *ring,
2633 2634
			   struct intel_context *ctx,
			   struct drm_i915_gem_request **req_out)
2635
{
2636
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
D
Daniel Vetter 已提交
2637
	struct drm_i915_gem_request *req;
2638 2639
	int ret;

2640 2641 2642
	if (!req_out)
		return -EINVAL;

2643
	*req_out = NULL;
2644

D
Daniel Vetter 已提交
2645 2646
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2647 2648
		return -ENOMEM;

D
Daniel Vetter 已提交
2649
	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2650 2651
	if (ret)
		goto err;
2652

2653 2654
	kref_init(&req->ref);
	req->i915 = dev_priv;
D
Daniel Vetter 已提交
2655
	req->ring = ring;
2656 2657
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2658 2659

	if (i915.enable_execlists)
2660
		ret = intel_logical_ring_alloc_request_extras(req);
2661
	else
D
Daniel Vetter 已提交
2662
		ret = intel_ring_alloc_request_extras(req);
2663 2664
	if (ret) {
		i915_gem_context_unreference(req->ctx);
2665
		goto err;
2666
	}
2667

2668 2669 2670 2671 2672 2673 2674
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
	if (i915.enable_execlists)
		ret = intel_logical_ring_reserve_space(req);
	else
		ret = intel_ring_reserve_space(req);
	if (ret) {
		/*
		 * At this point, the request is fully allocated even if not
		 * fully prepared. Thus it can be cleaned up using the proper
		 * free code.
		 */
		i915_gem_request_cancel(req);
		return ret;
	}
2688

2689
	*req_out = req;
2690
	return 0;
2691 2692 2693 2694

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2695 2696
}

2697 2698 2699 2700 2701 2702 2703
void i915_gem_request_cancel(struct drm_i915_gem_request *req)
{
	intel_ring_reserved_space_cancel(req->ringbuf);

	i915_gem_request_unreference(req);
}

2704
struct drm_i915_gem_request *
2705
i915_gem_find_active_request(struct intel_engine_cs *ring)
2706
{
2707 2708 2709
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2710
		if (i915_gem_request_completed(request, false))
2711
			continue;
2712

2713
		return request;
2714
	}
2715 2716 2717 2718 2719

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2720
				       struct intel_engine_cs *ring)
2721 2722 2723 2724
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2725
	request = i915_gem_find_active_request(ring);
2726 2727 2728 2729 2730 2731

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2732
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2733 2734

	list_for_each_entry_continue(request, &ring->request_list, list)
2735
		i915_set_reset_status(dev_priv, request->ctx, false);
2736
}
2737

2738
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2739
					struct intel_engine_cs *ring)
2740
{
2741 2742
	struct intel_ringbuffer *buffer;

2743
	while (!list_empty(&ring->active_list)) {
2744
		struct drm_i915_gem_object *obj;
2745

2746 2747
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
2748
				       ring_list[ring->id]);
2749

2750
		i915_gem_object_retire__read(obj, ring->id);
2751
	}
2752

2753 2754 2755 2756 2757 2758
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2759 2760 2761 2762
	if (i915.enable_execlists) {
		spin_lock_irq(&ring->execlist_lock);
		while (!list_empty(&ring->execlist_queue)) {
			struct drm_i915_gem_request *submit_req;
2763

2764 2765 2766 2767
			submit_req = list_first_entry(&ring->execlist_queue,
					struct drm_i915_gem_request,
					execlist_link);
			list_del(&submit_req->execlist_link);
2768

2769 2770 2771 2772 2773 2774
			if (submit_req->ctx != ring->default_context)
				intel_lr_context_unpin(submit_req);

			i915_gem_request_unreference(submit_req);
		}
		spin_unlock_irq(&ring->execlist_lock);
2775 2776
	}

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

2791
		i915_gem_request_retire(request);
2792
	}
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
	list_for_each_entry(buffer, &ring->buffers, link) {
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2805 2806
}

2807
void i915_gem_reset(struct drm_device *dev)
2808
{
2809
	struct drm_i915_private *dev_priv = dev->dev_private;
2810
	struct intel_engine_cs *ring;
2811
	int i;
2812

2813 2814 2815 2816 2817 2818 2819 2820
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2821
	for_each_ring(ring, dev_priv, i)
2822
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2823

2824 2825
	i915_gem_context_reset(dev);

2826
	i915_gem_restore_fences(dev);
2827 2828

	WARN_ON(i915_verify_lists(dev));
2829 2830 2831 2832 2833
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2834
void
2835
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2836
{
C
Chris Wilson 已提交
2837
	WARN_ON(i915_verify_lists(ring->dev));
2838

2839 2840 2841 2842
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2843
	 */
2844
	while (!list_empty(&ring->request_list)) {
2845 2846
		struct drm_i915_gem_request *request;

2847
		request = list_first_entry(&ring->request_list,
2848 2849 2850
					   struct drm_i915_gem_request,
					   list);

2851
		if (!i915_gem_request_completed(request, true))
2852 2853
			break;

2854
		i915_gem_request_retire(request);
2855
	}
2856

2857 2858 2859 2860 2861 2862 2863 2864 2865
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
2866
				      ring_list[ring->id]);
2867

2868
		if (!list_empty(&obj->last_read_req[ring->id]->list))
2869 2870
			break;

2871
		i915_gem_object_retire__read(obj, ring->id);
2872 2873
	}

2874 2875
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2876
		ring->irq_put(ring);
2877
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2878
	}
2879

C
Chris Wilson 已提交
2880
	WARN_ON(i915_verify_lists(ring->dev));
2881 2882
}

2883
bool
2884 2885
i915_gem_retire_requests(struct drm_device *dev)
{
2886
	struct drm_i915_private *dev_priv = dev->dev_private;
2887
	struct intel_engine_cs *ring;
2888
	bool idle = true;
2889
	int i;
2890

2891
	for_each_ring(ring, dev_priv, i) {
2892
		i915_gem_retire_requests_ring(ring);
2893
		idle &= list_empty(&ring->request_list);
2894 2895 2896 2897 2898 2899 2900 2901 2902
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2903 2904 2905 2906 2907 2908 2909 2910
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2911 2912
}

2913
static void
2914 2915
i915_gem_retire_work_handler(struct work_struct *work)
{
2916 2917 2918
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2919
	bool idle;
2920

2921
	/* Come back later if the device is busy... */
2922 2923 2924 2925
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2926
	}
2927
	if (!idle)
2928 2929
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2930
}
2931

2932 2933 2934 2935 2936
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2937
	struct drm_device *dev = dev_priv->dev;
2938 2939
	struct intel_engine_cs *ring;
	int i;
2940

2941 2942 2943
	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2944 2945 2946 2947 2948 2949 2950 2951 2952

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
2953

2954 2955
		mutex_unlock(&dev->struct_mutex);
	}
2956 2957
}

2958 2959 2960 2961 2962 2963 2964 2965
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2966
	int i;
2967 2968 2969

	if (!obj->active)
		return 0;
2970

2971 2972
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_request *req;
2973

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
2986 2987 2988 2989 2990
	}

	return 0;
}

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
3016
	struct drm_i915_private *dev_priv = dev->dev_private;
3017 3018
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3019
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3020
	unsigned reset_counter;
3021 3022
	int i, n = 0;
	int ret;
3023

3024 3025 3026
	if (args->flags != 0)
		return -EINVAL;

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3037 3038
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3039 3040 3041
	if (ret)
		goto out;

3042
	if (!obj->active)
3043
		goto out;
3044 3045

	/* Do this after OLR check to make sure we make forward progress polling
3046
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3047
	 */
3048
	if (args->timeout_ns == 0) {
3049 3050 3051 3052 3053
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3054
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3055 3056 3057 3058 3059 3060 3061 3062

	for (i = 0; i < I915_NUM_RINGS; i++) {
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3063 3064
	mutex_unlock(&dev->struct_mutex);

3065 3066 3067 3068 3069 3070 3071
	for (i = 0; i < n; i++) {
		if (ret == 0)
			ret = __i915_wait_request(req[i], reset_counter, true,
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
						  file->driver_priv);
		i915_gem_request_unreference__unlocked(req[i]);
	}
3072
	return ret;
3073 3074 3075 3076 3077 3078 3079

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3080 3081 3082
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3083 3084
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3085 3086 3087 3088
{
	struct intel_engine_cs *from;
	int ret;

3089
	from = i915_gem_request_get_ring(from_req);
3090 3091 3092
	if (to == from)
		return 0;

3093
	if (i915_gem_request_completed(from_req, true))
3094 3095 3096
		return 0;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3097
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3098
		ret = __i915_wait_request(from_req,
3099 3100 3101 3102
					  atomic_read(&i915->gpu_error.reset_counter),
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3103 3104 3105
		if (ret)
			return ret;

3106
		i915_gem_object_retire_request(obj, from_req);
3107 3108
	} else {
		int idx = intel_ring_sync_index(from, to);
3109 3110 3111
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3112 3113 3114 3115

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3116 3117 3118 3119 3120 3121
		if (*to_req == NULL) {
			ret = i915_gem_request_alloc(to, to->default_context, to_req);
			if (ret)
				return ret;
		}

3122 3123
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3138 3139 3140 3141 3142
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3143 3144 3145
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3146 3147 3148
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3149
 * rather than a particular GPU ring. Conceptually we serialise writes
3150
 * between engines inside the GPU. We only allow one engine to write
3151 3152 3153 3154 3155 3156 3157 3158 3159
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3160
 *
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3171 3172
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3173 3174
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3175 3176
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3177
{
3178 3179 3180
	const bool readonly = obj->base.pending_write_domain == 0;
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
	int ret, i, n;
3181

3182
	if (!obj->active)
3183 3184
		return 0;

3185 3186
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3187

3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++)
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3198
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3199 3200 3201
		if (ret)
			return ret;
	}
3202

3203
	return 0;
3204 3205
}

3206 3207 3208 3209 3210 3211 3212
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3213 3214 3215
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3216 3217 3218
	/* Wait for any direct GTT access to complete */
	mb();

3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3230
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3231
{
3232
	struct drm_i915_gem_object *obj = vma->obj;
3233
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3234
	int ret;
3235

3236
	if (list_empty(&vma->vma_link))
3237 3238
		return 0;

3239 3240 3241 3242
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3243

B
Ben Widawsky 已提交
3244
	if (vma->pin_count)
3245
		return -EBUSY;
3246

3247 3248
	BUG_ON(obj->pages == NULL);

3249 3250 3251 3252 3253
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3254

3255 3256
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3257
		i915_gem_object_finish_gtt(obj);
3258

3259 3260 3261 3262 3263
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3264

3265
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3266

3267
	vma->vm->unbind_vma(vma);
3268
	vma->bound = 0;
3269

3270
	list_del_init(&vma->mm_list);
3271 3272 3273 3274 3275 3276 3277
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3278
		vma->ggtt_view.pages = NULL;
3279
	}
3280

B
Ben Widawsky 已提交
3281 3282 3283 3284
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3285
	 * no more VMAs exist. */
I
Imre Deak 已提交
3286
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3287
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3288

3289 3290 3291 3292 3293 3294
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3295
	return 0;
3296 3297
}

3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3308
int i915_gpu_idle(struct drm_device *dev)
3309
{
3310
	struct drm_i915_private *dev_priv = dev->dev_private;
3311
	struct intel_engine_cs *ring;
3312
	int ret, i;
3313 3314

	/* Flush everything onto the inactive list. */
3315
	for_each_ring(ring, dev_priv, i) {
3316
		if (!i915.enable_execlists) {
3317 3318 3319
			struct drm_i915_gem_request *req;

			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3320 3321
			if (ret)
				return ret;
3322

3323
			ret = i915_switch_context(req);
3324 3325 3326 3327 3328
			if (ret) {
				i915_gem_request_cancel(req);
				return ret;
			}

3329
			i915_add_request_no_flush(req);
3330
		}
3331

3332
		ret = intel_ring_idle(ring);
3333 3334 3335
		if (ret)
			return ret;
	}
3336

3337
	WARN_ON(i915_verify_lists(dev));
3338
	return 0;
3339 3340
}

3341
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3342 3343
				     unsigned long cache_level)
{
3344
	struct drm_mm_node *gtt_space = &vma->node;
3345 3346
	struct drm_mm_node *other;

3347 3348 3349 3350 3351 3352
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3353
	 */
3354
	if (vma->vm->mm.color_adjust == NULL)
3355 3356
		return true;

3357
	if (!drm_mm_node_allocated(gtt_space))
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3374
/**
3375 3376
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3377
 */
3378
static struct i915_vma *
3379 3380
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3381
			   const struct i915_ggtt_view *ggtt_view,
3382
			   unsigned alignment,
3383
			   uint64_t flags)
3384
{
3385
	struct drm_device *dev = obj->base.dev;
3386
	struct drm_i915_private *dev_priv = dev->dev_private;
3387
	u32 fence_alignment, unfenced_alignment;
3388 3389
	u32 search_flag, alloc_flag;
	u64 start, end;
3390
	u64 size, fence_size;
B
Ben Widawsky 已提交
3391
	struct i915_vma *vma;
3392
	int ret;
3393

3394 3395 3396 3397 3398
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3399

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3429

3430 3431 3432 3433 3434 3435 3436
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
		end = min_t(u64, end, dev_priv->gtt.mappable_end);
	if (flags & PIN_ZONE_4G)
		end = min_t(u64, end, (1ULL << 32));

3437
	if (alignment == 0)
3438
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3439
						unfenced_alignment;
3440
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3441 3442 3443
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3444
		return ERR_PTR(-EINVAL);
3445 3446
	}

3447 3448 3449
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3450
	 */
3451
	if (size > end) {
3452
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3453 3454
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3455
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3456
			  end);
3457
		return ERR_PTR(-E2BIG);
3458 3459
	}

3460
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3461
	if (ret)
3462
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3463

3464 3465
	i915_gem_object_pin_pages(obj);

3466 3467 3468
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3469
	if (IS_ERR(vma))
3470
		goto err_unpin;
B
Ben Widawsky 已提交
3471

3472 3473 3474 3475 3476 3477 3478 3479
	if (flags & PIN_HIGH) {
		search_flag = DRM_MM_SEARCH_BELOW;
		alloc_flag = DRM_MM_CREATE_TOP;
	} else {
		search_flag = DRM_MM_SEARCH_DEFAULT;
		alloc_flag = DRM_MM_CREATE_DEFAULT;
	}

3480
search_free:
3481
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3482
						  size, alignment,
3483 3484
						  obj->cache_level,
						  start, end,
3485 3486
						  search_flag,
						  alloc_flag);
3487
	if (ret) {
3488
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3489 3490 3491
					       obj->cache_level,
					       start, end,
					       flags);
3492 3493
		if (ret == 0)
			goto search_free;
3494

3495
		goto err_free_vma;
3496
	}
3497
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3498
		ret = -EINVAL;
3499
		goto err_remove_node;
3500 3501
	}

3502
	trace_i915_vma_bind(vma, flags);
3503
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3504
	if (ret)
I
Imre Deak 已提交
3505
		goto err_remove_node;
3506

3507
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3508
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3509

3510
	return vma;
B
Ben Widawsky 已提交
3511

3512
err_remove_node:
3513
	drm_mm_remove_node(&vma->node);
3514
err_free_vma:
B
Ben Widawsky 已提交
3515
	i915_gem_vma_destroy(vma);
3516
	vma = ERR_PTR(ret);
3517
err_unpin:
B
Ben Widawsky 已提交
3518
	i915_gem_object_unpin_pages(obj);
3519
	return vma;
3520 3521
}

3522
bool
3523 3524
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3525 3526 3527 3528 3529
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3530
	if (obj->pages == NULL)
3531
		return false;
3532

3533 3534 3535 3536
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3537
	if (obj->stolen || obj->phys_handle)
3538
		return false;
3539

3540 3541 3542 3543 3544 3545 3546 3547
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3548 3549
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3550
		return false;
3551
	}
3552

C
Chris Wilson 已提交
3553
	trace_i915_gem_object_clflush(obj);
3554
	drm_clflush_sg(obj->pages);
3555
	obj->cache_dirty = false;
3556 3557

	return true;
3558 3559 3560 3561
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3562
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3563
{
C
Chris Wilson 已提交
3564 3565
	uint32_t old_write_domain;

3566
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3567 3568
		return;

3569
	/* No actual flushing is required for the GTT write domain.  Writes
3570 3571
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3572 3573 3574 3575
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3576
	 */
3577 3578
	wmb();

3579 3580
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3581

3582
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3583

C
Chris Wilson 已提交
3584
	trace_i915_gem_object_change_domain(obj,
3585
					    obj->base.read_domains,
C
Chris Wilson 已提交
3586
					    old_write_domain);
3587 3588 3589 3590
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3591
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3592
{
C
Chris Wilson 已提交
3593
	uint32_t old_write_domain;
3594

3595
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3596 3597
		return;

3598
	if (i915_gem_clflush_object(obj, obj->pin_display))
3599 3600
		i915_gem_chipset_flush(obj->base.dev);

3601 3602
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3603

3604
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3605

C
Chris Wilson 已提交
3606
	trace_i915_gem_object_change_domain(obj,
3607
					    obj->base.read_domains,
C
Chris Wilson 已提交
3608
					    old_write_domain);
3609 3610
}

3611 3612 3613 3614 3615 3616
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3617
int
3618
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3619
{
C
Chris Wilson 已提交
3620
	uint32_t old_write_domain, old_read_domains;
3621
	struct i915_vma *vma;
3622
	int ret;
3623

3624 3625 3626
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3627
	ret = i915_gem_object_wait_rendering(obj, !write);
3628 3629 3630
	if (ret)
		return ret;

3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3643
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3644

3645 3646 3647 3648 3649 3650 3651
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3652 3653
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3654

3655 3656 3657
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3658 3659
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3660
	if (write) {
3661 3662 3663
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3664 3665
	}

C
Chris Wilson 已提交
3666 3667 3668 3669
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3670
	/* And bump the LRU for this access */
3671 3672
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3673
		list_move_tail(&vma->mm_list,
3674
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3675

3676 3677 3678
	return 0;
}

3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
/**
 * Changes the cache-level of an object across all VMA.
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3692 3693 3694
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3695
	struct drm_device *dev = obj->base.dev;
3696
	struct i915_vma *vma, *next;
3697
	bool bound = false;
3698
	int ret = 0;
3699 3700

	if (obj->cache_level == cache_level)
3701
		goto out;
3702

3703 3704 3705 3706 3707
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3708
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3709 3710 3711 3712 3713 3714 3715 3716
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3717
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3718
			ret = i915_vma_unbind(vma);
3719 3720
			if (ret)
				return ret;
3721 3722
		} else
			bound = true;
3723 3724
	}

3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3737
		ret = i915_gem_object_wait_rendering(obj, false);
3738 3739 3740
		if (ret)
			return ret;

3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3758 3759 3760
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3761 3762 3763 3764 3765 3766 3767 3768
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3769 3770
		}

3771 3772 3773 3774 3775 3776 3777 3778
		list_for_each_entry(vma, &obj->vma_list, vma_link) {
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3779 3780
	}

3781 3782 3783 3784
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3785
out:
3786 3787 3788 3789
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3790 3791 3792 3793 3794
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3795 3796 3797 3798 3799
	}

	return 0;
}

B
Ben Widawsky 已提交
3800 3801
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3802
{
B
Ben Widawsky 已提交
3803
	struct drm_i915_gem_caching *args = data;
3804 3805 3806
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3807 3808
	if (&obj->base == NULL)
		return -ENOENT;
3809

3810 3811 3812 3813 3814 3815
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3816 3817 3818 3819
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3820 3821 3822 3823
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3824

3825 3826
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3827 3828
}

B
Ben Widawsky 已提交
3829 3830
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3831
{
B
Ben Widawsky 已提交
3832
	struct drm_i915_gem_caching *args = data;
3833 3834 3835 3836
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3837 3838
	switch (args->caching) {
	case I915_CACHING_NONE:
3839 3840
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3841
	case I915_CACHING_CACHED:
3842 3843 3844 3845 3846 3847
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3848
		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3849 3850
			return -ENODEV;

3851 3852
		level = I915_CACHE_LLC;
		break;
3853 3854 3855
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3856 3857 3858 3859
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3860 3861 3862 3863
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3878
/*
3879 3880 3881
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3882 3883
 */
int
3884 3885
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3886
				     const struct i915_ggtt_view *view)
3887
{
3888
	u32 old_read_domains, old_write_domain;
3889 3890
	int ret;

3891 3892 3893
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3894
	obj->pin_display++;
3895

3896 3897 3898 3899 3900 3901 3902 3903 3904
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3905 3906
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3907
	if (ret)
3908
		goto err_unpin_display;
3909

3910 3911 3912 3913
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3914 3915 3916
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3917
	if (ret)
3918
		goto err_unpin_display;
3919

3920
	i915_gem_object_flush_cpu_write_domain(obj);
3921

3922
	old_write_domain = obj->base.write_domain;
3923
	old_read_domains = obj->base.read_domains;
3924 3925 3926 3927

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3928
	obj->base.write_domain = 0;
3929
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3930 3931 3932

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3933
					    old_write_domain);
3934 3935

	return 0;
3936 3937

err_unpin_display:
3938
	obj->pin_display--;
3939 3940 3941 3942
	return ret;
}

void
3943 3944
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3945
{
3946 3947 3948
	if (WARN_ON(obj->pin_display == 0))
		return;

3949 3950
	i915_gem_object_ggtt_unpin_view(obj, view);

3951
	obj->pin_display--;
3952 3953
}

3954 3955 3956 3957 3958 3959
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3960
int
3961
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3962
{
C
Chris Wilson 已提交
3963
	uint32_t old_write_domain, old_read_domains;
3964 3965
	int ret;

3966 3967 3968
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3969
	ret = i915_gem_object_wait_rendering(obj, !write);
3970 3971 3972
	if (ret)
		return ret;

3973
	i915_gem_object_flush_gtt_write_domain(obj);
3974

3975 3976
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3977

3978
	/* Flush the CPU cache if it's still invalid. */
3979
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3980
		i915_gem_clflush_object(obj, false);
3981

3982
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3983 3984 3985 3986 3987
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3988
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3989 3990 3991 3992 3993

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3994 3995
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3996
	}
3997

C
Chris Wilson 已提交
3998 3999 4000 4001
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4002 4003 4004
	return 0;
}

4005 4006 4007
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4008 4009 4010 4011
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4012 4013 4014
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4015
static int
4016
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4017
{
4018 4019
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4020
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4021
	struct drm_i915_gem_request *request, *target = NULL;
4022
	unsigned reset_counter;
4023
	int ret;
4024

4025 4026 4027 4028 4029 4030 4031
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4032

4033
	spin_lock(&file_priv->mm.lock);
4034
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4035 4036
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4037

4038 4039 4040 4041 4042 4043 4044
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4045
		target = request;
4046
	}
4047
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4048 4049
	if (target)
		i915_gem_request_reference(target);
4050
	spin_unlock(&file_priv->mm.lock);
4051

4052
	if (target == NULL)
4053
		return 0;
4054

4055
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4056 4057
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4058

4059
	i915_gem_request_unreference__unlocked(target);
4060

4061 4062 4063
	return ret;
}

4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4083 4084 4085 4086 4087 4088
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4089
{
4090
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4091
	struct i915_vma *vma;
4092
	unsigned bound;
4093 4094
	int ret;

4095 4096 4097
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4098
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4099
		return -EINVAL;
4100

4101 4102 4103
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4104 4105 4106 4107 4108 4109 4110 4111 4112
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4113
	if (vma) {
B
Ben Widawsky 已提交
4114 4115 4116
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4117
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4118
			WARN(vma->pin_count,
4119
			     "bo is already pinned in %s with incorrect alignment:"
4120
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4121
			     " obj->map_and_fenceable=%d\n",
4122
			     ggtt_view ? "ggtt" : "ppgtt",
4123 4124
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4125
			     alignment,
4126
			     !!(flags & PIN_MAPPABLE),
4127
			     obj->map_and_fenceable);
4128
			ret = i915_vma_unbind(vma);
4129 4130
			if (ret)
				return ret;
4131 4132

			vma = NULL;
4133 4134 4135
		}
	}

4136
	bound = vma ? vma->bound : 0;
4137
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4138 4139
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4140 4141
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4142 4143
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4144 4145 4146
		if (ret)
			return ret;
	}
4147

4148 4149
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4164
		mappable = (vma->node.start + fence_size <=
4165 4166 4167 4168
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;

4169 4170
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4171

4172
	vma->pin_count++;
4173 4174 4175
	return 0;
}

4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4197
				      alignment, flags | PIN_GLOBAL);
4198 4199
}

4200
void
4201 4202
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4203
{
4204
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4205

B
Ben Widawsky 已提交
4206
	BUG_ON(!vma);
4207
	WARN_ON(vma->pin_count == 0);
4208
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4209

4210
	--vma->pin_count;
4211 4212 4213 4214
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4215
		    struct drm_file *file)
4216 4217
{
	struct drm_i915_gem_busy *args = data;
4218
	struct drm_i915_gem_object *obj;
4219 4220
	int ret;

4221
	ret = i915_mutex_lock_interruptible(dev);
4222
	if (ret)
4223
		return ret;
4224

4225
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4226
	if (&obj->base == NULL) {
4227 4228
		ret = -ENOENT;
		goto unlock;
4229
	}
4230

4231 4232 4233 4234
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4235
	 */
4236
	ret = i915_gem_object_flush_active(obj);
4237 4238
	if (ret)
		goto unref;
4239

4240 4241 4242 4243
	BUILD_BUG_ON(I915_NUM_RINGS > 16);
	args->busy = obj->active << 16;
	if (obj->last_write_req)
		args->busy |= obj->last_write_req->ring->id;
4244

4245
unref:
4246
	drm_gem_object_unreference(&obj->base);
4247
unlock:
4248
	mutex_unlock(&dev->struct_mutex);
4249
	return ret;
4250 4251 4252 4253 4254 4255
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4256
	return i915_gem_ring_throttle(dev, file_priv);
4257 4258
}

4259 4260 4261 4262
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4263
	struct drm_i915_private *dev_priv = dev->dev_private;
4264
	struct drm_i915_gem_madvise *args = data;
4265
	struct drm_i915_gem_object *obj;
4266
	int ret;
4267 4268 4269 4270 4271 4272 4273 4274 4275

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4276 4277 4278 4279
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4280
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4281
	if (&obj->base == NULL) {
4282 4283
		ret = -ENOENT;
		goto unlock;
4284 4285
	}

B
Ben Widawsky 已提交
4286
	if (i915_gem_obj_is_pinned(obj)) {
4287 4288
		ret = -EINVAL;
		goto out;
4289 4290
	}

4291 4292 4293 4294 4295 4296 4297 4298 4299
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4300 4301
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4302

C
Chris Wilson 已提交
4303
	/* if the object is no longer attached, discard its backing storage */
4304
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4305 4306
		i915_gem_object_truncate(obj);

4307
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4308

4309
out:
4310
	drm_gem_object_unreference(&obj->base);
4311
unlock:
4312
	mutex_unlock(&dev->struct_mutex);
4313
	return ret;
4314 4315
}

4316 4317
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4318
{
4319 4320
	int i;

4321
	INIT_LIST_HEAD(&obj->global_list);
4322 4323
	for (i = 0; i < I915_NUM_RINGS; i++)
		INIT_LIST_HEAD(&obj->ring_list[i]);
4324
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4325
	INIT_LIST_HEAD(&obj->vma_list);
4326
	INIT_LIST_HEAD(&obj->batch_pool_link);
4327

4328 4329
	obj->ops = ops;

4330 4331 4332 4333 4334 4335
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4336 4337 4338 4339 4340
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4341 4342
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4343
{
4344
	struct drm_i915_gem_object *obj;
4345
	struct address_space *mapping;
D
Daniel Vetter 已提交
4346
	gfp_t mask;
4347

4348
	obj = i915_gem_object_alloc(dev);
4349 4350
	if (obj == NULL)
		return NULL;
4351

4352
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4353
		i915_gem_object_free(obj);
4354 4355
		return NULL;
	}
4356

4357 4358 4359 4360 4361 4362 4363
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4364
	mapping = file_inode(obj->base.filp)->i_mapping;
4365
	mapping_set_gfp_mask(mapping, mask);
4366

4367
	i915_gem_object_init(obj, &i915_gem_object_ops);
4368

4369 4370
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4371

4372 4373
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4389 4390
	trace_i915_gem_object_create(obj);

4391
	return obj;
4392 4393
}

4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4418
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4419
{
4420
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4421
	struct drm_device *dev = obj->base.dev;
4422
	struct drm_i915_private *dev_priv = dev->dev_private;
4423
	struct i915_vma *vma, *next;
4424

4425 4426
	intel_runtime_pm_get(dev_priv);

4427 4428
	trace_i915_gem_object_destroy(obj);

4429
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4430 4431 4432 4433
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4434 4435
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4436

4437 4438
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4439

4440
			WARN_ON(i915_vma_unbind(vma));
4441

4442 4443
			dev_priv->mm.interruptible = was_interruptible;
		}
4444 4445
	}

B
Ben Widawsky 已提交
4446 4447 4448 4449 4450
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4451 4452
	WARN_ON(obj->frontbuffer_bits);

4453 4454 4455 4456 4457
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4458 4459
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4460
	if (discard_backing_storage(obj))
4461
		obj->madv = I915_MADV_DONTNEED;
4462
	i915_gem_object_put_pages(obj);
4463
	i915_gem_object_free_mmap_offset(obj);
4464

4465 4466
	BUG_ON(obj->pages);

4467 4468
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4469

4470 4471 4472
	if (obj->ops->release)
		obj->ops->release(obj);

4473 4474
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4475

4476
	kfree(obj->bit_17);
4477
	i915_gem_object_free(obj);
4478 4479

	intel_runtime_pm_put(dev_priv);
4480 4481
}

4482 4483
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4484 4485
{
	struct i915_vma *vma;
4486 4487 4488 4489 4490
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4491
			return vma;
4492 4493 4494 4495 4496 4497 4498 4499 4500
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4501

4502 4503 4504 4505
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4506 4507
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4508
			return vma;
4509 4510 4511
	return NULL;
}

B
Ben Widawsky 已提交
4512 4513
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4514
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4515
	WARN_ON(vma->node.allocated);
4516 4517 4518 4519 4520

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4521 4522
	vm = vma->vm;

4523 4524
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4525

4526
	list_del(&vma->vma_link);
4527

4528
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4529 4530
}

4531 4532 4533 4534
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4535
	struct intel_engine_cs *ring;
4536 4537 4538
	int i;

	for_each_ring(ring, dev_priv, i)
4539
		dev_priv->gt.stop_ring(ring);
4540 4541
}

4542
int
4543
i915_gem_suspend(struct drm_device *dev)
4544
{
4545
	struct drm_i915_private *dev_priv = dev->dev_private;
4546
	int ret = 0;
4547

4548
	mutex_lock(&dev->struct_mutex);
4549
	ret = i915_gpu_idle(dev);
4550
	if (ret)
4551
		goto err;
4552

4553
	i915_gem_retire_requests(dev);
4554

4555
	i915_gem_stop_ringbuffers(dev);
4556 4557
	mutex_unlock(&dev->struct_mutex);

4558
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4559
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4560
	flush_delayed_work(&dev_priv->mm.idle_work);
4561

4562 4563 4564 4565 4566
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4567
	return 0;
4568 4569 4570 4571

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4572 4573
}

4574
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
B
Ben Widawsky 已提交
4575
{
4576
	struct intel_engine_cs *ring = req->ring;
4577
	struct drm_device *dev = ring->dev;
4578
	struct drm_i915_private *dev_priv = dev->dev_private;
4579 4580
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4581
	int i, ret;
B
Ben Widawsky 已提交
4582

4583
	if (!HAS_L3_DPF(dev) || !remap_info)
4584
		return 0;
B
Ben Widawsky 已提交
4585

4586
	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4587 4588
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4589

4590 4591 4592 4593 4594
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4595
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4596 4597 4598
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4599 4600
	}

4601
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4602

4603
	return ret;
B
Ben Widawsky 已提交
4604 4605
}

4606 4607
void i915_gem_init_swizzling(struct drm_device *dev)
{
4608
	struct drm_i915_private *dev_priv = dev->dev_private;
4609

4610
	if (INTEL_INFO(dev)->gen < 5 ||
4611 4612 4613 4614 4615 4616
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4617 4618 4619
	if (IS_GEN5(dev))
		return;

4620 4621
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4622
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4623
	else if (IS_GEN7(dev))
4624
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4625 4626
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4627 4628
	else
		BUG();
4629
}
D
Daniel Vetter 已提交
4630

4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4658
int i915_gem_init_rings(struct drm_device *dev)
4659
{
4660
	struct drm_i915_private *dev_priv = dev->dev_private;
4661
	int ret;
4662

4663
	ret = intel_init_render_ring_buffer(dev);
4664
	if (ret)
4665
		return ret;
4666 4667

	if (HAS_BSD(dev)) {
4668
		ret = intel_init_bsd_ring_buffer(dev);
4669 4670
		if (ret)
			goto cleanup_render_ring;
4671
	}
4672

4673
	if (HAS_BLT(dev)) {
4674 4675 4676 4677 4678
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4679 4680 4681 4682 4683 4684
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4685 4686 4687 4688 4689
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4690

4691 4692
	return 0;

B
Ben Widawsky 已提交
4693 4694
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4708
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4709
	struct intel_engine_cs *ring;
4710
	int ret, i, j;
4711 4712 4713 4714

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4715 4716 4717
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4718
	if (dev_priv->ellc_size)
4719
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4720

4721 4722 4723
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4724

4725
	if (HAS_PCH_NOP(dev)) {
4726 4727 4728 4729 4730 4731 4732 4733 4734
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4735 4736
	}

4737 4738
	i915_gem_init_swizzling(dev);

4739 4740 4741 4742 4743 4744 4745 4746
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4747 4748
	BUG_ON(!dev_priv->ring[RCS].default_context);

4749 4750 4751 4752 4753 4754 4755
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
D
Daniel Vetter 已提交
4756 4757 4758
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
4759
			goto out;
D
Daniel Vetter 已提交
4760
	}
4761

4762
	/* We can't enable contexts until all firmware is loaded */
4763 4764 4765
	if (HAS_GUC_UCODE(dev)) {
		ret = intel_guc_ucode_load(dev);
		if (ret) {
4766 4767 4768
			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
			ret = -EIO;
			goto out;
4769
		}
4770 4771
	}

4772 4773 4774 4775 4776 4777 4778 4779
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
	if (ret)
		goto out;

4780 4781
	/* Now it is safe to go back round and do everything else: */
	for_each_ring(ring, dev_priv, i) {
4782 4783
		struct drm_i915_gem_request *req;

4784 4785
		WARN_ON(!ring->default_context);

4786 4787 4788 4789 4790 4791
		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
		if (ret) {
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}

4792 4793
		if (ring->id == RCS) {
			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4794
				i915_gem_l3_remap(req, j);
4795
		}
4796

4797
		ret = i915_ppgtt_init_ring(req);
4798 4799
		if (ret && ret != -EIO) {
			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4800
			i915_gem_request_cancel(req);
4801 4802 4803
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
4804

4805
		ret = i915_gem_context_enable(req);
4806 4807
		if (ret && ret != -EIO) {
			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4808
			i915_gem_request_cancel(req);
4809 4810 4811
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
4812

4813
		i915_add_request_no_flush(req);
4814
	}
D
Daniel Vetter 已提交
4815

4816 4817
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4818
	return ret;
4819 4820
}

4821 4822 4823 4824 4825
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4826 4827 4828
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4829
	mutex_lock(&dev->struct_mutex);
4830 4831 4832

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4833 4834 4835
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4836 4837 4838
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4839
	if (!i915.enable_execlists) {
4840
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4841 4842 4843
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4844
	} else {
4845
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4846 4847 4848
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4849 4850
	}

4851 4852 4853 4854 4855 4856 4857 4858
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4859
	ret = i915_gem_init_userptr(dev);
4860 4861
	if (ret)
		goto out_unlock;
4862

4863
	i915_gem_init_global_gtt(dev);
4864

4865
	ret = i915_gem_context_init(dev);
4866 4867
	if (ret)
		goto out_unlock;
4868

D
Daniel Vetter 已提交
4869 4870
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4871
		goto out_unlock;
4872

4873
	ret = i915_gem_init_hw(dev);
4874 4875 4876 4877 4878 4879
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4880
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4881
		ret = 0;
4882
	}
4883 4884

out_unlock:
4885
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4886
	mutex_unlock(&dev->struct_mutex);
4887

4888
	return ret;
4889 4890
}

4891 4892 4893
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4894
	struct drm_i915_private *dev_priv = dev->dev_private;
4895
	struct intel_engine_cs *ring;
4896
	int i;
4897

4898
	for_each_ring(ring, dev_priv, i)
4899
		dev_priv->gt.cleanup_ring(ring);
4900 4901 4902 4903 4904 4905 4906 4907

    if (i915.enable_execlists)
            /*
             * Neither the BIOS, ourselves or any other kernel
             * expects the system to be in execlists mode on startup,
             * so we need to reset the GPU back to legacy mode.
             */
            intel_gpu_reset(dev);
4908 4909
}

4910
static void
4911
init_ring_lists(struct intel_engine_cs *ring)
4912 4913 4914 4915 4916
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4917 4918 4919
void
i915_gem_load(struct drm_device *dev)
{
4920
	struct drm_i915_private *dev_priv = dev->dev_private;
4921 4922
	int i;

4923
	dev_priv->objects =
4924 4925 4926 4927
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4928 4929 4930 4931 4932
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4933 4934 4935 4936 4937
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4938

B
Ben Widawsky 已提交
4939
	INIT_LIST_HEAD(&dev_priv->vm_list);
4940
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4941 4942
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4943
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4944 4945
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4946
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4947
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4948 4949
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4950 4951
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
4952
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4953

4954 4955
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4956 4957 4958
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4959 4960 4961 4962
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4963 4964 4965 4966
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

4967 4968 4969 4970 4971 4972 4973 4974
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

4975
	/* Initialize fence registers to zero */
4976 4977
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
4978

4979
	i915_gem_detect_bit_6_swizzle(dev);
4980
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4981

4982 4983
	dev_priv->mm.interruptible = true;

4984
	i915_gem_shrinker_init(dev_priv);
4985 4986

	mutex_init(&dev_priv->fb_tracking.lock);
4987
}
4988

4989
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4990
{
4991
	struct drm_i915_file_private *file_priv = file->driver_priv;
4992 4993 4994 4995 4996

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4997
	spin_lock(&file_priv->mm.lock);
4998 4999 5000 5001 5002 5003 5004 5005 5006
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5007
	spin_unlock(&file_priv->mm.lock);
5008

5009
	if (!list_empty(&file_priv->rps.link)) {
5010
		spin_lock(&to_i915(dev)->rps.client_lock);
5011
		list_del(&file_priv->rps.link);
5012
		spin_unlock(&to_i915(dev)->rps.client_lock);
5013
	}
5014 5015 5016 5017 5018
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5019
	int ret;
5020 5021 5022 5023 5024 5025 5026 5027 5028

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5029
	file_priv->file = file;
5030
	INIT_LIST_HEAD(&file_priv->rps.link);
5031 5032 5033 5034

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5035 5036 5037
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5038

5039
	return ret;
5040 5041
}

5042 5043
/**
 * i915_gem_track_fb - update frontbuffer tracking
5044 5045 5046
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5047 5048 5049 5050
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5068
/* All the new VM stuff */
5069 5070
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5071 5072 5073 5074
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5075
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5076 5077

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5078 5079 5080 5081
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5082 5083
			return vma->node.start;
	}
5084

5085 5086
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5087 5088 5089
	return -1;
}

5090 5091
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5092
{
5093
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5094 5095 5096
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5097 5098
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5099 5100
			return vma->node.start;

5101
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5122
				  const struct i915_ggtt_view *view)
5123 5124 5125 5126 5127 5128
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5129
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5130
		    drm_mm_node_allocated(&vma->node))
5131 5132 5133 5134 5135 5136 5137
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5138
	struct i915_vma *vma;
5139

5140 5141
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5153
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5154 5155 5156

	BUG_ON(list_empty(&o->vma_list));

5157 5158 5159 5160
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5161 5162
		if (vma->vm == vm)
			return vma->node.size;
5163
	}
5164 5165 5166
	return 0;
}

5167
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5168 5169
{
	struct i915_vma *vma;
5170
	list_for_each_entry(vma, &obj->vma_list, vma_link)
5171 5172
		if (vma->pin_count > 0)
			return true;
5173

5174
	return false;
5175
}
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215

/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
	if (IS_ERR_OR_NULL(obj))
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}