i915_gem.c 133.0 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 44 45
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

46 47 48 49 50 51
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

52 53 54 55 56 57
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

58 59 60 61 62 63 64 65
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

66 67 68 69 70 71 72 73
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
74
	obj->fence_dirty = false;
75 76 77
	obj->fence_reg = I915_FENCE_REG_NONE;
}

78 79 80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
82
	spin_lock(&dev_priv->mm.object_stat_lock);
83 84
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
85
	spin_unlock(&dev_priv->mm.object_stat_lock);
86 87 88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
91
	spin_lock(&dev_priv->mm.object_stat_lock);
92 93
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
94
	spin_unlock(&dev_priv->mm.object_stat_lock);
95 96
}

97
static int
98
i915_gem_wait_for_error(struct i915_gpu_error *error)
99 100 101
{
	int ret;

102 103
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
104
	if (EXIT_COND)
105 106
		return 0;

107 108 109 110 111
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
112 113 114
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
115 116 117 118
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
119
		return ret;
120
	}
121
#undef EXIT_COND
122

123
	return 0;
124 125
}

126
int i915_mutex_lock_interruptible(struct drm_device *dev)
127
{
128
	struct drm_i915_private *dev_priv = dev->dev_private;
129 130
	int ret;

131
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

139
	WARN_ON(i915_verify_lists(dev));
140 141
	return 0;
}
142

143 144
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
145
			    struct drm_file *file)
146
{
147
	struct drm_i915_private *dev_priv = dev->dev_private;
148
	struct drm_i915_gem_get_aperture *args = data;
149 150
	struct drm_i915_gem_object *obj;
	size_t pinned;
151

152
	pinned = 0;
153
	mutex_lock(&dev->struct_mutex);
154
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
155
		if (i915_gem_obj_is_pinned(obj))
156
			pinned += i915_gem_obj_ggtt_size(obj);
157
	mutex_unlock(&dev->struct_mutex);
158

159
	args->aper_size = dev_priv->gtt.base.total;
160
	args->aper_available_size = args->aper_size - pinned;
161

162 163 164
	return 0;
}

165 166
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
167
{
168 169 170 171 172
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
173

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
208

209 210 211 212 213 214 215 216 217 218 219 220 221 222
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
223

224 225 226 227 228 229 230 231 232 233 234 235 236
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
237
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
238
		char *vaddr = obj->phys_handle->vaddr;
239 240 241
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
242 243 244 245 246 247 248 249 250 251 252 253 254 255
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
256
				mark_page_accessed(page);
257
			page_cache_release(page);
258 259
			vaddr += PAGE_SIZE;
		}
260
		obj->dirty = 0;
261 262
	}

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
296 297 298 299 300 301 302
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
303
	int ret;
304 305 306 307 308 309 310 311 312 313 314 315 316 317

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

318 319 320 321
	ret = drop_pages(obj);
	if (ret)
		return ret;

322 323 324 325 326 327
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
328 329 330
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
331 332 333 334 335 336 337 338 339 340
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
341
	int ret = 0;
342 343 344 345 346 347 348

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
349

350
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
351 352 353 354 355 356 357 358 359 360
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
361 362 363 364
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
365 366
	}

367
	drm_clflush_virt_range(vaddr, args->size);
368
	i915_gem_chipset_flush(dev);
369 370 371 372

out:
	intel_fb_obj_flush(obj, false);
	return ret;
373 374
}

375 376 377
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
378
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
379 380 381 382 383
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
384
	kmem_cache_free(dev_priv->objects, obj);
385 386
}

387 388 389 390 391
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
392
{
393
	struct drm_i915_gem_object *obj;
394 395
	int ret;
	u32 handle;
396

397
	size = roundup(size, PAGE_SIZE);
398 399
	if (size == 0)
		return -EINVAL;
400 401

	/* Allocate the new object */
402
	obj = i915_gem_alloc_object(dev, size);
403 404 405
	if (obj == NULL)
		return -ENOMEM;

406
	ret = drm_gem_handle_create(file, &obj->base, &handle);
407
	/* drop reference from allocate - handle holds it now */
408 409 410
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
411

412
	*handle_p = handle;
413 414 415
	return 0;
}

416 417 418 419 420 421
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
422
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
423 424
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
425
			       args->size, &args->handle);
426 427 428 429 430 431 432 433 434 435
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
436

437
	return i915_gem_create(file, dev,
438
			       args->size, &args->handle);
439 440
}

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

467
static inline int
468 469
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
518 519

		i915_gem_object_retire(obj);
520 521 522 523 524 525 526 527 528 529 530
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

531 532 533
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
534
static int
535 536 537 538 539 540 541
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

542
	if (unlikely(page_do_bit17_swizzling))
543 544 545 546 547 548 549 550 551 552 553
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

554
	return ret ? -EFAULT : 0;
555 556
}

557 558 559 560
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
561
	if (unlikely(swizzled)) {
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

579 580 581 582 583 584 585 586 587 588 589 590
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
591 592 593
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
594 595 596 597 598 599 600 601 602 603 604

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

605
	return ret ? - EFAULT : 0;
606 607
}

608
static int
609 610 611 612
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
613
{
614
	char __user *user_data;
615
	ssize_t remain;
616
	loff_t offset;
617
	int shmem_page_offset, page_length, ret = 0;
618
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
619
	int prefaulted = 0;
620
	int needs_clflush = 0;
621
	struct sg_page_iter sg_iter;
622

V
Ville Syrjälä 已提交
623
	user_data = to_user_ptr(args->data_ptr);
624 625
	remain = args->size;

626
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
627

628
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
629 630 631
	if (ret)
		return ret;

632
	offset = args->offset;
633

634 635
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
636
		struct page *page = sg_page_iter_page(&sg_iter);
637 638 639 640

		if (remain <= 0)
			break;

641 642 643 644 645
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
646
		shmem_page_offset = offset_in_page(offset);
647 648 649 650
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

651 652 653
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

654 655 656 657 658
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
659 660 661

		mutex_unlock(&dev->struct_mutex);

662
		if (likely(!i915.prefault_disable) && !prefaulted) {
663
			ret = fault_in_multipages_writeable(user_data, remain);
664 665 666 667 668 669 670
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
671

672 673 674
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
675

676
		mutex_lock(&dev->struct_mutex);
677 678

		if (ret)
679 680
			goto out;

681
next_page:
682
		remain -= page_length;
683
		user_data += page_length;
684 685 686
		offset += page_length;
	}

687
out:
688 689
	i915_gem_object_unpin_pages(obj);

690 691 692
	return ret;
}

693 694 695 696 697 698 699
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
700
		     struct drm_file *file)
701 702
{
	struct drm_i915_gem_pread *args = data;
703
	struct drm_i915_gem_object *obj;
704
	int ret = 0;
705

706 707 708 709
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
710
		       to_user_ptr(args->data_ptr),
711 712 713
		       args->size))
		return -EFAULT;

714
	ret = i915_mutex_lock_interruptible(dev);
715
	if (ret)
716
		return ret;
717

718
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
719
	if (&obj->base == NULL) {
720 721
		ret = -ENOENT;
		goto unlock;
722
	}
723

724
	/* Bounds check source.  */
725 726
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
727
		ret = -EINVAL;
728
		goto out;
C
Chris Wilson 已提交
729 730
	}

731 732 733 734 735 736 737 738
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
739 740
	trace_i915_gem_object_pread(obj, args->offset, args->size);

741
	ret = i915_gem_shmem_pread(dev, obj, args, file);
742

743
out:
744
	drm_gem_object_unreference(&obj->base);
745
unlock:
746
	mutex_unlock(&dev->struct_mutex);
747
	return ret;
748 749
}

750 751
/* This is the fast write path which cannot handle
 * page faults in the source data
752
 */
753 754 755 756 757 758

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
759
{
760 761
	void __iomem *vaddr_atomic;
	void *vaddr;
762
	unsigned long unwritten;
763

P
Peter Zijlstra 已提交
764
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
765 766 767
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
768
						      user_data, length);
P
Peter Zijlstra 已提交
769
	io_mapping_unmap_atomic(vaddr_atomic);
770
	return unwritten;
771 772
}

773 774 775 776
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
777
static int
778 779
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
780
			 struct drm_i915_gem_pwrite *args,
781
			 struct drm_file *file)
782
{
783
	struct drm_i915_private *dev_priv = dev->dev_private;
784
	ssize_t remain;
785
	loff_t offset, page_base;
786
	char __user *user_data;
D
Daniel Vetter 已提交
787 788
	int page_offset, page_length, ret;

789
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
790 791 792 793 794 795 796 797 798 799
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
800

V
Ville Syrjälä 已提交
801
	user_data = to_user_ptr(args->data_ptr);
802 803
	remain = args->size;

804
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
805

806 807
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);

808 809 810
	while (remain > 0) {
		/* Operation in this page
		 *
811 812 813
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
814
		 */
815 816
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
817 818 819 820 821
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
822 823
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
824
		 */
B
Ben Widawsky 已提交
825
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
826 827
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
828
			goto out_flush;
D
Daniel Vetter 已提交
829
		}
830

831 832 833
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
834 835
	}

836 837
out_flush:
	intel_fb_obj_flush(obj, false);
D
Daniel Vetter 已提交
838
out_unpin:
B
Ben Widawsky 已提交
839
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
840
out:
841
	return ret;
842 843
}

844 845 846 847
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
848
static int
849 850 851 852 853
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
854
{
855
	char *vaddr;
856
	int ret;
857

858
	if (unlikely(page_do_bit17_swizzling))
859
		return -EINVAL;
860

861 862 863 864
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
865 866
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
867 868 869 870
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
871

872
	return ret ? -EFAULT : 0;
873 874
}

875 876
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
877
static int
878 879 880 881 882
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
883
{
884 885
	char *vaddr;
	int ret;
886

887
	vaddr = kmap(page);
888
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
889 890 891
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
892 893
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
894 895
						user_data,
						page_length);
896 897 898 899 900
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
901 902 903
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
904
	kunmap(page);
905

906
	return ret ? -EFAULT : 0;
907 908 909
}

static int
910 911 912 913
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
914 915
{
	ssize_t remain;
916 917
	loff_t offset;
	char __user *user_data;
918
	int shmem_page_offset, page_length, ret = 0;
919
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
920
	int hit_slowpath = 0;
921 922
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
923
	struct sg_page_iter sg_iter;
924

V
Ville Syrjälä 已提交
925
	user_data = to_user_ptr(args->data_ptr);
926 927
	remain = args->size;

928
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
929

930 931 932 933 934
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
935
		needs_clflush_after = cpu_write_needs_clflush(obj);
936 937 938
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
939 940

		i915_gem_object_retire(obj);
941
	}
942 943 944 945 946
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
947

948 949 950 951
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

952 953
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);

954 955
	i915_gem_object_pin_pages(obj);

956
	offset = args->offset;
957
	obj->dirty = 1;
958

959 960
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
961
		struct page *page = sg_page_iter_page(&sg_iter);
962
		int partial_cacheline_write;
963

964 965 966
		if (remain <= 0)
			break;

967 968 969 970 971
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
972
		shmem_page_offset = offset_in_page(offset);
973 974 975 976 977

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

978 979 980 981 982 983 984
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

985 986 987
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

988 989 990 991 992 993
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
994 995 996

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
997 998 999 1000
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1001

1002
		mutex_lock(&dev->struct_mutex);
1003 1004

		if (ret)
1005 1006
			goto out;

1007
next_page:
1008
		remain -= page_length;
1009
		user_data += page_length;
1010
		offset += page_length;
1011 1012
	}

1013
out:
1014 1015
	i915_gem_object_unpin_pages(obj);

1016
	if (hit_slowpath) {
1017 1018 1019 1020 1021 1022 1023
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1024 1025
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1026
		}
1027
	}
1028

1029
	if (needs_clflush_after)
1030
		i915_gem_chipset_flush(dev);
1031

1032
	intel_fb_obj_flush(obj, false);
1033
	return ret;
1034 1035 1036 1037 1038 1039 1040 1041 1042
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1043
		      struct drm_file *file)
1044
{
1045
	struct drm_i915_private *dev_priv = dev->dev_private;
1046
	struct drm_i915_gem_pwrite *args = data;
1047
	struct drm_i915_gem_object *obj;
1048 1049 1050 1051 1052 1053
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1054
		       to_user_ptr(args->data_ptr),
1055 1056 1057
		       args->size))
		return -EFAULT;

1058
	if (likely(!i915.prefault_disable)) {
1059 1060 1061 1062 1063
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1064

1065 1066
	intel_runtime_pm_get(dev_priv);

1067
	ret = i915_mutex_lock_interruptible(dev);
1068
	if (ret)
1069
		goto put_rpm;
1070

1071
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1072
	if (&obj->base == NULL) {
1073 1074
		ret = -ENOENT;
		goto unlock;
1075
	}
1076

1077
	/* Bounds check destination. */
1078 1079
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1080
		ret = -EINVAL;
1081
		goto out;
C
Chris Wilson 已提交
1082 1083
	}

1084 1085 1086 1087 1088 1089 1090 1091
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1092 1093
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1094
	ret = -EFAULT;
1095 1096 1097 1098 1099 1100
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1101 1102 1103
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1104
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1105 1106 1107
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1108
	}
1109

1110 1111 1112 1113 1114 1115
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1116

1117
out:
1118
	drm_gem_object_unreference(&obj->base);
1119
unlock:
1120
	mutex_unlock(&dev->struct_mutex);
1121 1122 1123
put_rpm:
	intel_runtime_pm_put(dev_priv);

1124 1125 1126
	return ret;
}

1127
int
1128
i915_gem_check_wedge(struct i915_gpu_error *error,
1129 1130
		     bool interruptible)
{
1131
	if (i915_reset_in_progress(error)) {
1132 1133 1134 1135 1136
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1137 1138
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1139 1140
			return -EIO;

1141 1142 1143 1144 1145 1146 1147
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1148 1149 1150 1151 1152 1153
	}

	return 0;
}

/*
1154
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1155
 */
1156
int
1157
i915_gem_check_olr(struct drm_i915_gem_request *req)
1158 1159 1160
{
	int ret;

1161
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1162 1163

	ret = 0;
1164
	if (req == req->ring->outstanding_lazy_request)
1165
		ret = i915_add_request(req->ring);
1166 1167 1168 1169

	return ret;
}

1170 1171 1172 1173 1174 1175
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1176
		       struct intel_engine_cs *ring)
1177 1178 1179 1180
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1181
static int __i915_spin_request(struct drm_i915_gem_request *rq)
1182
{
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	unsigned long timeout;

	if (i915_gem_request_get_ring(rq)->irq_refcount)
		return -EBUSY;

	timeout = jiffies + 1;
	while (!need_resched()) {
		if (i915_gem_request_completed(rq, true))
			return 0;

		if (time_after_eq(jiffies, timeout))
			break;
1195

1196 1197 1198 1199 1200 1201
		cpu_relax_lowlatency();
	}
	if (i915_gem_request_completed(rq, false))
		return 0;

	return -EAGAIN;
1202 1203
}

1204
/**
1205 1206 1207
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1208 1209 1210
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1211 1212 1213 1214 1215 1216 1217
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1218
 * Returns 0 if the request was found within the alloted time. Else returns the
1219 1220
 * errno with remaining time filled in timeout argument.
 */
1221
int __i915_wait_request(struct drm_i915_gem_request *req,
1222
			unsigned reset_counter,
1223
			bool interruptible,
1224
			s64 *timeout,
1225
			struct drm_i915_file_private *file_priv)
1226
{
1227
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1228
	struct drm_device *dev = ring->dev;
1229
	struct drm_i915_private *dev_priv = dev->dev_private;
1230 1231
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1232
	DEFINE_WAIT(wait);
1233
	unsigned long timeout_expire;
1234
	s64 before, now;
1235 1236
	int ret;

1237
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1238

1239
	if (i915_gem_request_completed(req, true))
1240 1241
		return 0;

1242 1243
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1244

1245
	if (INTEL_INFO(dev)->gen >= 6)
1246
		gen6_rps_boost(dev_priv, file_priv);
1247

1248
	/* Record current time in case interrupted by signal, or wedged */
1249
	trace_i915_gem_request_wait_begin(req);
1250
	before = ktime_get_raw_ns();
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

	/* Optimistic spin for the next jiffie before touching IRQs */
	ret = __i915_spin_request(req);
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1262 1263
	for (;;) {
		struct timer_list timer;
1264

1265 1266
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1267

1268 1269
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1270 1271 1272 1273 1274 1275 1276 1277
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1278

1279
		if (i915_gem_request_completed(req, false)) {
1280 1281 1282
			ret = 0;
			break;
		}
1283

1284 1285 1286 1287 1288
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1289
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1290 1291 1292 1293 1294 1295
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1296 1297
			unsigned long expire;

1298
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1299
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1300 1301 1302
			mod_timer(&timer, expire);
		}

1303
		io_schedule();
1304 1305 1306 1307 1308 1309

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1310 1311
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1312 1313

	finish_wait(&ring->irq_queue, &wait);
1314

1315 1316 1317 1318
out:
	now = ktime_get_raw_ns();
	trace_i915_gem_request_wait_end(req);

1319
	if (timeout) {
1320 1321 1322
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1333 1334
	}

1335
	return ret;
1336 1337 1338
}

/**
1339
 * Waits for a request to be signaled, and cleans up the
1340 1341 1342
 * request and object lists appropriately for that event.
 */
int
1343
i915_wait_request(struct drm_i915_gem_request *req)
1344
{
1345 1346 1347
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1348
	unsigned reset_counter;
1349 1350
	int ret;

1351 1352 1353 1354 1355 1356
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1357 1358
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1359
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1360 1361 1362
	if (ret)
		return ret;

1363
	ret = i915_gem_check_olr(req);
1364 1365 1366
	if (ret)
		return ret;

1367
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1368
	i915_gem_request_reference(req);
1369 1370
	ret = __i915_wait_request(req, reset_counter,
				  interruptible, NULL, NULL);
1371 1372
	i915_gem_request_unreference(req);
	return ret;
1373 1374
}

1375
static int
1376
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1377
{
1378 1379
	if (!obj->active)
		return 0;
1380 1381 1382 1383

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
1384 1385
	 * Note that the last_write_req is always the earlier of
	 * the two (read/write) requests, so if we haved successfully waited,
1386 1387
	 * we know we have passed the last write.
	 */
1388
	i915_gem_request_assign(&obj->last_write_req, NULL);
1389 1390 1391 1392

	return 0;
}

1393 1394 1395 1396
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1397
int
1398 1399 1400
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1401
	struct drm_i915_gem_request *req;
1402 1403
	int ret;

1404 1405
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1406 1407
		return 0;

1408
	ret = i915_wait_request(req);
1409 1410 1411
	if (ret)
		return ret;

1412
	return i915_gem_object_wait_rendering__tail(obj);
1413 1414
}

1415 1416 1417 1418 1419
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1420
					    struct drm_i915_file_private *file_priv,
1421 1422
					    bool readonly)
{
1423
	struct drm_i915_gem_request *req;
1424 1425
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1426
	unsigned reset_counter;
1427 1428 1429 1430 1431
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1432 1433
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1434 1435
		return 0;

1436
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1437 1438 1439
	if (ret)
		return ret;

1440
	ret = i915_gem_check_olr(req);
1441 1442 1443
	if (ret)
		return ret;

1444
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1445
	i915_gem_request_reference(req);
1446
	mutex_unlock(&dev->struct_mutex);
1447
	ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1448
	mutex_lock(&dev->struct_mutex);
1449
	i915_gem_request_unreference(req);
1450 1451
	if (ret)
		return ret;
1452

1453
	return i915_gem_object_wait_rendering__tail(obj);
1454 1455
}

1456
/**
1457 1458
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1459 1460 1461
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1462
			  struct drm_file *file)
1463 1464
{
	struct drm_i915_gem_set_domain *args = data;
1465
	struct drm_i915_gem_object *obj;
1466 1467
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1468 1469
	int ret;

1470
	/* Only handle setting domains to types used by the CPU. */
1471
	if (write_domain & I915_GEM_GPU_DOMAINS)
1472 1473
		return -EINVAL;

1474
	if (read_domains & I915_GEM_GPU_DOMAINS)
1475 1476 1477 1478 1479 1480 1481 1482
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1483
	ret = i915_mutex_lock_interruptible(dev);
1484
	if (ret)
1485
		return ret;
1486

1487
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1488
	if (&obj->base == NULL) {
1489 1490
		ret = -ENOENT;
		goto unlock;
1491
	}
1492

1493 1494 1495 1496
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1497 1498 1499
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1500 1501 1502
	if (ret)
		goto unref;

1503
	if (read_domains & I915_GEM_DOMAIN_GTT)
1504
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1505
	else
1506
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1507

1508
unref:
1509
	drm_gem_object_unreference(&obj->base);
1510
unlock:
1511 1512 1513 1514 1515 1516 1517 1518 1519
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1520
			 struct drm_file *file)
1521 1522
{
	struct drm_i915_gem_sw_finish *args = data;
1523
	struct drm_i915_gem_object *obj;
1524 1525
	int ret = 0;

1526
	ret = i915_mutex_lock_interruptible(dev);
1527
	if (ret)
1528
		return ret;
1529

1530
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1531
	if (&obj->base == NULL) {
1532 1533
		ret = -ENOENT;
		goto unlock;
1534 1535 1536
	}

	/* Pinned buffers may be scanout, so flush the cache */
1537
	if (obj->pin_display)
1538
		i915_gem_object_flush_cpu_write_domain(obj);
1539

1540
	drm_gem_object_unreference(&obj->base);
1541
unlock:
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1562 1563 1564
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1565
		    struct drm_file *file)
1566 1567 1568 1569 1570
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1571 1572 1573 1574 1575 1576
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1577
	obj = drm_gem_object_lookup(dev, file, args->handle);
1578
	if (obj == NULL)
1579
		return -ENOENT;
1580

1581 1582 1583 1584 1585 1586 1587 1588
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1589
	addr = vm_mmap(obj->filp, 0, args->size,
1590 1591
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1605
	drm_gem_object_unreference_unlocked(obj);
1606 1607 1608 1609 1610 1611 1612 1613
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1632 1633
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1634
	struct drm_i915_private *dev_priv = dev->dev_private;
1635
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1636 1637 1638
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1639
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1640

1641 1642
	intel_runtime_pm_get(dev_priv);

1643 1644 1645 1646
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1647 1648 1649
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1650

C
Chris Wilson 已提交
1651 1652
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1653 1654 1655 1656 1657 1658 1659 1660 1661
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1662 1663
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1664
		ret = -EFAULT;
1665 1666 1667
		goto unlock;
	}

1668
	/* Use a partial view if the object is bigger than the aperture. */
1669 1670
	if (obj->base.size >= dev_priv->gtt.mappable_end &&
	    obj->tiling_mode == I915_TILING_NONE) {
1671
		static const unsigned int chunk_size = 256; // 1 MiB
1672

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1685 1686
	if (ret)
		goto unlock;
1687

1688 1689 1690
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1691

1692
	ret = i915_gem_object_get_fence(obj);
1693
	if (ret)
1694
		goto unpin;
1695

1696
	/* Finally, remap it using the new GTT offset */
1697 1698
	pfn = dev_priv->gtt.mappable_base +
		i915_gem_obj_ggtt_offset_view(obj, &view);
1699
	pfn >>= PAGE_SHIFT;
1700

1701 1702 1703 1704 1705 1706 1707 1708 1709
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1710

1711 1712
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1713 1714 1715 1716 1717
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1739
unpin:
1740
	i915_gem_object_ggtt_unpin_view(obj, &view);
1741
unlock:
1742
	mutex_unlock(&dev->struct_mutex);
1743
out:
1744
	switch (ret) {
1745
	case -EIO:
1746 1747 1748 1749 1750 1751 1752
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1753 1754 1755
			ret = VM_FAULT_SIGBUS;
			break;
		}
1756
	case -EAGAIN:
D
Daniel Vetter 已提交
1757 1758 1759 1760
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1761
		 */
1762 1763
	case 0:
	case -ERESTARTSYS:
1764
	case -EINTR:
1765 1766 1767 1768 1769
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1770 1771
		ret = VM_FAULT_NOPAGE;
		break;
1772
	case -ENOMEM:
1773 1774
		ret = VM_FAULT_OOM;
		break;
1775
	case -ENOSPC:
1776
	case -EFAULT:
1777 1778
		ret = VM_FAULT_SIGBUS;
		break;
1779
	default:
1780
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1781 1782
		ret = VM_FAULT_SIGBUS;
		break;
1783
	}
1784 1785 1786

	intel_runtime_pm_put(dev_priv);
	return ret;
1787 1788
}

1789 1790 1791 1792
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1793
 * Preserve the reservation of the mmapping with the DRM core code, but
1794 1795 1796 1797 1798 1799 1800 1801 1802
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1803
void
1804
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1805
{
1806 1807
	if (!obj->fault_mappable)
		return;
1808

1809 1810
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1811
	obj->fault_mappable = false;
1812 1813
}

1814 1815 1816 1817 1818 1819 1820 1821 1822
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1823
uint32_t
1824
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1825
{
1826
	uint32_t gtt_size;
1827 1828

	if (INTEL_INFO(dev)->gen >= 4 ||
1829 1830
	    tiling_mode == I915_TILING_NONE)
		return size;
1831 1832 1833

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1834
		gtt_size = 1024*1024;
1835
	else
1836
		gtt_size = 512*1024;
1837

1838 1839
	while (gtt_size < size)
		gtt_size <<= 1;
1840

1841
	return gtt_size;
1842 1843
}

1844 1845 1846 1847 1848
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1849
 * potential fence register mapping.
1850
 */
1851 1852 1853
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1854 1855 1856 1857 1858
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1859
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1860
	    tiling_mode == I915_TILING_NONE)
1861 1862
		return 4096;

1863 1864 1865 1866
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1867
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1868 1869
}

1870 1871 1872 1873 1874
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1875
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1876 1877
		return 0;

1878 1879
	dev_priv->mm.shrinker_no_lock_stealing = true;

1880 1881
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1882
		goto out;
1883 1884 1885 1886 1887 1888 1889 1890

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1891 1892 1893 1894 1895
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1896 1897
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1898
		goto out;
1899 1900

	i915_gem_shrink_all(dev_priv);
1901 1902 1903 1904 1905
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1906 1907 1908 1909 1910 1911 1912
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1913
int
1914 1915
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1916
		  uint32_t handle,
1917
		  uint64_t *offset)
1918
{
1919
	struct drm_i915_gem_object *obj;
1920 1921
	int ret;

1922
	ret = i915_mutex_lock_interruptible(dev);
1923
	if (ret)
1924
		return ret;
1925

1926
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1927
	if (&obj->base == NULL) {
1928 1929 1930
		ret = -ENOENT;
		goto unlock;
	}
1931

1932
	if (obj->madv != I915_MADV_WILLNEED) {
1933
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1934
		ret = -EFAULT;
1935
		goto out;
1936 1937
	}

1938 1939 1940
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1941

1942
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1943

1944
out:
1945
	drm_gem_object_unreference(&obj->base);
1946
unlock:
1947
	mutex_unlock(&dev->struct_mutex);
1948
	return ret;
1949 1950
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1972
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1973 1974
}

D
Daniel Vetter 已提交
1975 1976 1977
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1978
{
1979
	i915_gem_object_free_mmap_offset(obj);
1980

1981 1982
	if (obj->base.filp == NULL)
		return;
1983

D
Daniel Vetter 已提交
1984 1985 1986 1987 1988
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1989
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1990 1991
	obj->madv = __I915_MADV_PURGED;
}
1992

1993 1994 1995
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1996
{
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2011 2012
}

2013
static void
2014
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2015
{
2016 2017
	struct sg_page_iter sg_iter;
	int ret;
2018

2019
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2020

C
Chris Wilson 已提交
2021 2022 2023 2024 2025 2026
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2027
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2028 2029 2030
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

2031
	if (i915_gem_object_needs_bit17_swizzle(obj))
2032 2033
		i915_gem_object_save_bit_17_swizzle(obj);

2034 2035
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2036

2037
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2038
		struct page *page = sg_page_iter_page(&sg_iter);
2039

2040
		if (obj->dirty)
2041
			set_page_dirty(page);
2042

2043
		if (obj->madv == I915_MADV_WILLNEED)
2044
			mark_page_accessed(page);
2045

2046
		page_cache_release(page);
2047
	}
2048
	obj->dirty = 0;
2049

2050 2051
	sg_free_table(obj->pages);
	kfree(obj->pages);
2052
}
C
Chris Wilson 已提交
2053

2054
int
2055 2056 2057 2058
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2059
	if (obj->pages == NULL)
2060 2061
		return 0;

2062 2063 2064
	if (obj->pages_pin_count)
		return -EBUSY;

2065
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2066

2067 2068 2069
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2070
	list_del(&obj->global_list);
2071

2072
	ops->put_pages(obj);
2073
	obj->pages = NULL;
2074

2075
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2076 2077 2078 2079

	return 0;
}

2080
static int
C
Chris Wilson 已提交
2081
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2082
{
C
Chris Wilson 已提交
2083
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2084 2085
	int page_count, i;
	struct address_space *mapping;
2086 2087
	struct sg_table *st;
	struct scatterlist *sg;
2088
	struct sg_page_iter sg_iter;
2089
	struct page *page;
2090
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2091
	gfp_t gfp;
2092

C
Chris Wilson 已提交
2093 2094 2095 2096 2097 2098 2099
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2100 2101 2102 2103
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2104
	page_count = obj->base.size / PAGE_SIZE;
2105 2106
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2107
		return -ENOMEM;
2108
	}
2109

2110 2111 2112 2113 2114
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2115
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2116
	gfp = mapping_gfp_mask(mapping);
2117
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2118
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2119 2120 2121
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2122 2123
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2124 2125 2126 2127 2128
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2129 2130 2131 2132 2133 2134 2135 2136
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2137
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2138 2139 2140
			if (IS_ERR(page))
				goto err_pages;
		}
2141 2142 2143 2144 2145 2146 2147 2148
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2149 2150 2151 2152 2153 2154 2155 2156 2157
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2158 2159 2160

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2161
	}
2162 2163 2164 2165
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2166 2167
	obj->pages = st;

2168
	if (i915_gem_object_needs_bit17_swizzle(obj))
2169 2170
		i915_gem_object_do_bit_17_swizzle(obj);

2171 2172 2173 2174
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2175 2176 2177
	return 0;

err_pages:
2178 2179
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2180
		page_cache_release(sg_page_iter_page(&sg_iter));
2181 2182
	sg_free_table(st);
	kfree(st);
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2196 2197
}

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2212
	if (obj->pages)
2213 2214
		return 0;

2215
	if (obj->madv != I915_MADV_WILLNEED) {
2216
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2217
		return -EFAULT;
2218 2219
	}

2220 2221
	BUG_ON(obj->pages_pin_count);

2222 2223 2224 2225
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2226
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2227 2228 2229 2230

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2231
	return 0;
2232 2233
}

B
Ben Widawsky 已提交
2234
static void
2235
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2236
			       struct intel_engine_cs *ring)
2237
{
2238 2239
	struct drm_i915_gem_request *req;
	struct intel_engine_cs *old_ring;
2240

2241
	BUG_ON(ring == NULL);
2242 2243 2244 2245 2246

	req = intel_ring_get_request(ring);
	old_ring = i915_gem_request_get_ring(obj->last_read_req);

	if (old_ring != ring && obj->last_write_req) {
2247 2248
		/* Keep the request relative to the current ring */
		i915_gem_request_assign(&obj->last_write_req, req);
2249
	}
2250 2251

	/* Add a reference if we're newly entering the active list. */
2252 2253 2254
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2255
	}
2256

2257
	list_move_tail(&obj->ring_list, &ring->active_list);
2258

2259
	i915_gem_request_assign(&obj->last_read_req, req);
2260 2261
}

B
Ben Widawsky 已提交
2262
void i915_vma_move_to_active(struct i915_vma *vma,
2263
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2264 2265 2266 2267 2268
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2269 2270
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2271
{
2272
	struct i915_vma *vma;
2273

2274
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2275
	BUG_ON(!obj->active);
2276

2277 2278 2279
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2280
	}
2281

2282 2283
	intel_fb_obj_flush(obj, true);

2284
	list_del_init(&obj->ring_list);
2285

2286 2287
	i915_gem_request_assign(&obj->last_read_req, NULL);
	i915_gem_request_assign(&obj->last_write_req, NULL);
2288 2289
	obj->base.write_domain = 0;

2290
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2291 2292 2293 2294 2295

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2296
}
2297

2298 2299 2300
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2301
	if (obj->last_read_req == NULL)
2302 2303
		return;

2304
	if (i915_gem_request_completed(obj->last_read_req, true))
2305 2306 2307
		i915_gem_object_move_to_inactive(obj);
}

2308
static int
2309
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2310
{
2311
	struct drm_i915_private *dev_priv = dev->dev_private;
2312
	struct intel_engine_cs *ring;
2313
	int ret, i, j;
2314

2315
	/* Carefully retire all requests without writing to the rings */
2316
	for_each_ring(ring, dev_priv, i) {
2317 2318 2319
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2320 2321
	}
	i915_gem_retire_requests(dev);
2322 2323

	/* Finally reset hw state */
2324
	for_each_ring(ring, dev_priv, i) {
2325
		intel_ring_init_seqno(ring, seqno);
2326

2327 2328
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2329
	}
2330

2331
	return 0;
2332 2333
}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2360 2361
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2362
{
2363 2364 2365 2366
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2367
		int ret = i915_gem_init_seqno(dev, 0);
2368 2369
		if (ret)
			return ret;
2370

2371 2372
		dev_priv->next_seqno = 1;
	}
2373

2374
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2375
	return 0;
2376 2377
}

2378
int __i915_add_request(struct intel_engine_cs *ring,
2379
		       struct drm_file *file,
2380
		       struct drm_i915_gem_object *obj)
2381
{
2382
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2383
	struct drm_i915_gem_request *request;
2384
	struct intel_ringbuffer *ringbuf;
2385
	u32 request_start;
2386 2387
	int ret;

2388
	request = ring->outstanding_lazy_request;
2389 2390 2391 2392
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
2393
		ringbuf = request->ctx->engine[ring->id].ringbuf;
2394 2395 2396 2397
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2398 2399 2400 2401 2402 2403 2404
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2405
	if (i915.enable_execlists) {
2406
		ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2407 2408 2409 2410 2411 2412 2413
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2414

2415 2416 2417 2418 2419
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2420
	request->postfix = intel_ring_get_tail(ringbuf);
2421

2422
	if (i915.enable_execlists) {
2423
		ret = ring->emit_request(ringbuf, request);
2424 2425 2426 2427 2428 2429
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
2430 2431

		request->tail = intel_ring_get_tail(ringbuf);
2432
	}
2433

2434 2435 2436 2437 2438 2439 2440 2441
	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2442
	request->batch_obj = obj;
2443

2444 2445 2446 2447 2448 2449 2450 2451
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2452

2453
	request->emitted_jiffies = jiffies;
2454
	list_add_tail(&request->list, &ring->request_list);
2455
	request->file_priv = NULL;
2456

C
Chris Wilson 已提交
2457 2458 2459
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2460
		spin_lock(&file_priv->mm.lock);
2461
		request->file_priv = file_priv;
2462
		list_add_tail(&request->client_list,
2463
			      &file_priv->mm.request_list);
2464
		spin_unlock(&file_priv->mm.lock);
2465 2466

		request->pid = get_pid(task_pid(current));
2467
	}
2468

2469
	trace_i915_gem_request_add(request);
2470
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2471

2472
	i915_queue_hangcheck(ring->dev);
2473

2474 2475 2476 2477
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2478

2479
	return 0;
2480 2481
}

2482 2483
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2484
{
2485
	struct drm_i915_file_private *file_priv = request->file_priv;
2486

2487 2488
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2489

2490
	spin_lock(&file_priv->mm.lock);
2491 2492
	list_del(&request->client_list);
	request->file_priv = NULL;
2493
	spin_unlock(&file_priv->mm.lock);
2494 2495
}

2496
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2497
				   const struct intel_context *ctx)
2498
{
2499
	unsigned long elapsed;
2500

2501 2502 2503
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2504 2505
		return true;

2506 2507
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2508
		if (!i915_gem_context_is_default(ctx)) {
2509
			DRM_DEBUG("context hanging too fast, banning!\n");
2510
			return true;
2511 2512 2513
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2514
			return true;
2515
		}
2516 2517 2518 2519 2520
	}

	return false;
}

2521
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2522
				  struct intel_context *ctx,
2523
				  const bool guilty)
2524
{
2525 2526 2527 2528
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2529

2530 2531 2532
	hs = &ctx->hang_stats;

	if (guilty) {
2533
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2534 2535 2536 2537
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2538 2539 2540
	}
}

2541 2542 2543 2544 2545
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2546 2547
	put_pid(request->pid);

2548 2549 2550 2551 2552 2553 2554 2555 2556
	i915_gem_request_unreference(request);
}

void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2557 2558
	if (ctx) {
		if (i915.enable_execlists) {
2559
			struct intel_engine_cs *ring = req->ring;
2560

2561 2562 2563
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2564

2565 2566
		i915_gem_context_unreference(ctx);
	}
2567

2568
	kmem_cache_free(req->i915->requests, req);
2569 2570
}

2571 2572 2573
int i915_gem_request_alloc(struct intel_engine_cs *ring,
			   struct intel_context *ctx)
{
2574 2575
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
	struct drm_i915_gem_request *rq;
2576 2577 2578 2579 2580
	int ret;

	if (ring->outstanding_lazy_request)
		return 0;

2581 2582
	rq = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (rq == NULL)
2583 2584
		return -ENOMEM;

2585 2586 2587 2588
	kref_init(&rq->ref);
	rq->i915 = dev_priv;

	ret = i915_gem_get_seqno(ring->dev, &rq->seqno);
2589
	if (ret) {
2590
		kfree(rq);
2591 2592 2593
		return ret;
	}

2594
	rq->ring = ring;
2595 2596

	if (i915.enable_execlists)
2597
		ret = intel_logical_ring_alloc_request_extras(rq, ctx);
2598
	else
2599
		ret = intel_ring_alloc_request_extras(rq);
2600
	if (ret) {
2601
		kfree(rq);
2602 2603 2604
		return ret;
	}

2605
	ring->outstanding_lazy_request = rq;
2606
	return 0;
2607 2608
}

2609
struct drm_i915_gem_request *
2610
i915_gem_find_active_request(struct intel_engine_cs *ring)
2611
{
2612 2613 2614
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2615
		if (i915_gem_request_completed(request, false))
2616
			continue;
2617

2618
		return request;
2619
	}
2620 2621 2622 2623 2624

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2625
				       struct intel_engine_cs *ring)
2626 2627 2628 2629
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2630
	request = i915_gem_find_active_request(ring);
2631 2632 2633 2634 2635 2636

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2637
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2638 2639

	list_for_each_entry_continue(request, &ring->request_list, list)
2640
		i915_set_reset_status(dev_priv, request->ctx, false);
2641
}
2642

2643
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2644
					struct intel_engine_cs *ring)
2645
{
2646
	while (!list_empty(&ring->active_list)) {
2647
		struct drm_i915_gem_object *obj;
2648

2649 2650 2651
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2652

2653
		i915_gem_object_move_to_inactive(obj);
2654
	}
2655

2656 2657 2658 2659 2660 2661
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2662
		struct drm_i915_gem_request *submit_req;
2663 2664

		submit_req = list_first_entry(&ring->execlist_queue,
2665
				struct drm_i915_gem_request,
2666 2667
				execlist_link);
		list_del(&submit_req->execlist_link);
2668 2669 2670 2671

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2672
		i915_gem_request_unreference(submit_req);
2673 2674
	}

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2691

2692 2693
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2694 2695
}

2696
void i915_gem_restore_fences(struct drm_device *dev)
2697 2698 2699 2700
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2701
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2702
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2703

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2714 2715 2716
	}
}

2717
void i915_gem_reset(struct drm_device *dev)
2718
{
2719
	struct drm_i915_private *dev_priv = dev->dev_private;
2720
	struct intel_engine_cs *ring;
2721
	int i;
2722

2723 2724 2725 2726 2727 2728 2729 2730
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2731
	for_each_ring(ring, dev_priv, i)
2732
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2733

2734 2735
	i915_gem_context_reset(dev);

2736
	i915_gem_restore_fences(dev);
2737 2738 2739 2740 2741
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2742
void
2743
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2744
{
C
Chris Wilson 已提交
2745
	if (list_empty(&ring->request_list))
2746 2747
		return;

C
Chris Wilson 已提交
2748
	WARN_ON(i915_verify_lists(ring->dev));
2749

2750 2751 2752 2753
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2754
	 */
2755
	while (!list_empty(&ring->request_list)) {
2756 2757
		struct drm_i915_gem_request *request;

2758
		request = list_first_entry(&ring->request_list,
2759 2760 2761
					   struct drm_i915_gem_request,
					   list);

2762
		if (!i915_gem_request_completed(request, true))
2763 2764
			break;

2765
		trace_i915_gem_request_retire(request);
2766

2767 2768 2769 2770 2771
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2772
		request->ringbuf->last_retired_head = request->postfix;
2773

2774
		i915_gem_free_request(request);
2775
	}
2776

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

		if (!i915_gem_request_completed(obj->last_read_req, true))
			break;

		i915_gem_object_move_to_inactive(obj);
	}

2794 2795
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2796
		ring->irq_put(ring);
2797
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2798
	}
2799

C
Chris Wilson 已提交
2800
	WARN_ON(i915_verify_lists(ring->dev));
2801 2802
}

2803
bool
2804 2805
i915_gem_retire_requests(struct drm_device *dev)
{
2806
	struct drm_i915_private *dev_priv = dev->dev_private;
2807
	struct intel_engine_cs *ring;
2808
	bool idle = true;
2809
	int i;
2810

2811
	for_each_ring(ring, dev_priv, i) {
2812
		i915_gem_retire_requests_ring(ring);
2813
		idle &= list_empty(&ring->request_list);
2814 2815 2816 2817 2818 2819 2820 2821 2822
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2823 2824 2825 2826 2827 2828 2829 2830
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2831 2832
}

2833
static void
2834 2835
i915_gem_retire_work_handler(struct work_struct *work)
{
2836 2837 2838
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2839
	bool idle;
2840

2841
	/* Come back later if the device is busy... */
2842 2843 2844 2845
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2846
	}
2847
	if (!idle)
2848 2849
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2850
}
2851

2852 2853 2854 2855 2856
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2857
	struct drm_device *dev = dev_priv->dev;
2858 2859
	struct intel_engine_cs *ring;
	int i;
2860

2861 2862 2863
	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2864 2865 2866 2867 2868 2869 2870 2871 2872

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
2873

2874 2875
		mutex_unlock(&dev->struct_mutex);
	}
2876 2877
}

2878 2879 2880 2881 2882 2883 2884 2885
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2886
	struct intel_engine_cs *ring;
2887 2888 2889
	int ret;

	if (obj->active) {
2890 2891
		ring = i915_gem_request_get_ring(obj->last_read_req);

2892
		ret = i915_gem_check_olr(obj->last_read_req);
2893 2894 2895
		if (ret)
			return ret;

2896
		i915_gem_retire_requests_ring(ring);
2897 2898 2899 2900 2901
	}

	return 0;
}

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2927
	struct drm_i915_private *dev_priv = dev->dev_private;
2928 2929
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2930
	struct drm_i915_gem_request *req;
2931
	unsigned reset_counter;
2932 2933
	int ret = 0;

2934 2935 2936
	if (args->flags != 0)
		return -EINVAL;

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2947 2948
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2949 2950 2951
	if (ret)
		goto out;

2952 2953
	if (!obj->active || !obj->last_read_req)
		goto out;
2954

2955
	req = obj->last_read_req;
2956 2957

	/* Do this after OLR check to make sure we make forward progress polling
2958
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
2959
	 */
2960
	if (args->timeout_ns == 0) {
2961 2962 2963 2964 2965
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2966
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2967
	i915_gem_request_reference(req);
2968 2969
	mutex_unlock(&dev->struct_mutex);

2970 2971
	ret = __i915_wait_request(req, reset_counter, true,
				  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2972
				  file->driver_priv);
2973
	i915_gem_request_unreference__unlocked(req);
2974
	return ret;
2975 2976 2977 2978 2979 2980 2981

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2994 2995
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2996
		     struct intel_engine_cs *to)
2997
{
2998
	struct intel_engine_cs *from;
2999 3000 3001
	u32 seqno;
	int ret, idx;

3002 3003
	from = i915_gem_request_get_ring(obj->last_read_req);

3004 3005 3006
	if (from == NULL || to == from)
		return 0;

3007
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
3008
		return i915_gem_object_wait_rendering(obj, false);
3009 3010 3011

	idx = intel_ring_sync_index(from, to);

3012
	seqno = i915_gem_request_get_seqno(obj->last_read_req);
R
Rodrigo Vivi 已提交
3013 3014
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
3015
	if (seqno <= from->semaphore.sync_seqno[idx])
3016 3017
		return 0;

3018
	ret = i915_gem_check_olr(obj->last_read_req);
3019 3020
	if (ret)
		return ret;
3021

3022
	trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
3023
	ret = to->semaphore.sync_to(to, from, seqno);
3024
	if (!ret)
3025
		/* We use last_read_req because sync_to()
3026 3027 3028
		 * might have just caused seqno wrap under
		 * the radar.
		 */
3029 3030
		from->semaphore.sync_seqno[idx] =
				i915_gem_request_get_seqno(obj->last_read_req);
3031

3032
	return ret;
3033 3034
}

3035 3036 3037 3038 3039 3040 3041
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3042 3043 3044
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3045 3046 3047
	/* Wait for any direct GTT access to complete */
	mb();

3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3059
int i915_vma_unbind(struct i915_vma *vma)
3060
{
3061
	struct drm_i915_gem_object *obj = vma->obj;
3062
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3063
	int ret;
3064

3065
	if (list_empty(&vma->vma_link))
3066 3067
		return 0;

3068 3069 3070 3071
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3072

B
Ben Widawsky 已提交
3073
	if (vma->pin_count)
3074
		return -EBUSY;
3075

3076 3077
	BUG_ON(obj->pages == NULL);

3078
	ret = i915_gem_object_wait_rendering(obj, false);
3079
	if (ret)
3080 3081 3082 3083 3084 3085
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3086 3087
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3088
		i915_gem_object_finish_gtt(obj);
3089

3090 3091 3092 3093 3094
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3095

3096
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3097

3098
	vma->vm->unbind_vma(vma);
3099
	vma->bound = 0;
3100

3101
	list_del_init(&vma->mm_list);
3102 3103 3104 3105 3106 3107 3108 3109 3110
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3111

B
Ben Widawsky 已提交
3112 3113 3114 3115
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3116
	 * no more VMAs exist. */
3117
	if (list_empty(&obj->vma_list)) {
3118 3119 3120 3121
		/* Throw away the active reference before
		 * moving to the unbound list. */
		i915_gem_object_retire(obj);

3122
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3123
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3124
	}
3125

3126 3127 3128 3129 3130 3131
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3132
	return 0;
3133 3134
}

3135
int i915_gpu_idle(struct drm_device *dev)
3136
{
3137
	struct drm_i915_private *dev_priv = dev->dev_private;
3138
	struct intel_engine_cs *ring;
3139
	int ret, i;
3140 3141

	/* Flush everything onto the inactive list. */
3142
	for_each_ring(ring, dev_priv, i) {
3143 3144 3145 3146 3147
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3148

3149
		ret = intel_ring_idle(ring);
3150 3151 3152
		if (ret)
			return ret;
	}
3153

3154
	return 0;
3155 3156
}

3157 3158
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3159
{
3160
	struct drm_i915_private *dev_priv = dev->dev_private;
3161 3162
	int fence_reg;
	int fence_pitch_shift;
3163

3164 3165 3166 3167 3168 3169 3170 3171
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3186
	if (obj) {
3187
		u32 size = i915_gem_obj_ggtt_size(obj);
3188
		uint64_t val;
3189

3190 3191 3192 3193 3194 3195 3196
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3197
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3198
				 0xfffff000) << 32;
3199
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3200
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3201 3202 3203
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3204

3205 3206 3207 3208 3209 3210 3211 3212 3213
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3214 3215
}

3216 3217
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3218
{
3219
	struct drm_i915_private *dev_priv = dev->dev_private;
3220
	u32 val;
3221

3222
	if (obj) {
3223
		u32 size = i915_gem_obj_ggtt_size(obj);
3224 3225
		int pitch_val;
		int tile_width;
3226

3227
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3228
		     (size & -size) != size ||
3229 3230 3231
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3232

3233 3234 3235 3236 3237 3238 3239 3240 3241
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3242
		val = i915_gem_obj_ggtt_offset(obj);
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3258 3259
}

3260 3261
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3262
{
3263
	struct drm_i915_private *dev_priv = dev->dev_private;
3264 3265
	uint32_t val;

3266
	if (obj) {
3267
		u32 size = i915_gem_obj_ggtt_size(obj);
3268
		uint32_t pitch_val;
3269

3270
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3271
		     (size & -size) != size ||
3272 3273 3274
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3275

3276 3277
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3278

3279
		val = i915_gem_obj_ggtt_offset(obj);
3280 3281 3282 3283 3284 3285 3286
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3287

3288 3289 3290 3291
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3292 3293 3294 3295 3296
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3297 3298 3299
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3300 3301 3302 3303 3304 3305 3306 3307
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3308 3309 3310 3311
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3312 3313 3314 3315 3316 3317
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3318 3319 3320 3321 3322 3323

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3324 3325
}

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3336
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3337 3338 3339
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3340 3341

	if (enable) {
3342
		obj->fence_reg = reg;
3343 3344 3345 3346 3347 3348 3349
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3350
	obj->fence_dirty = false;
3351 3352
}

3353
static int
3354
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3355
{
3356
	if (obj->last_fenced_req) {
3357
		int ret = i915_wait_request(obj->last_fenced_req);
3358 3359
		if (ret)
			return ret;
3360

3361
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3362 3363 3364 3365 3366 3367 3368 3369
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3370
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3371
	struct drm_i915_fence_reg *fence;
3372 3373
	int ret;

3374
	ret = i915_gem_object_wait_fence(obj);
3375 3376 3377
	if (ret)
		return ret;

3378 3379
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3380

3381 3382
	fence = &dev_priv->fence_regs[obj->fence_reg];

3383 3384 3385
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3386
	i915_gem_object_fence_lost(obj);
3387
	i915_gem_object_update_fence(obj, fence, false);
3388 3389 3390 3391 3392

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3393
i915_find_fence_reg(struct drm_device *dev)
3394 3395
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3396
	struct drm_i915_fence_reg *reg, *avail;
3397
	int i;
3398 3399

	/* First try to find a free reg */
3400
	avail = NULL;
3401 3402 3403
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3404
			return reg;
3405

3406
		if (!reg->pin_count)
3407
			avail = reg;
3408 3409
	}

3410
	if (avail == NULL)
3411
		goto deadlock;
3412 3413

	/* None available, try to steal one or wait for a user to finish */
3414
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3415
		if (reg->pin_count)
3416 3417
			continue;

C
Chris Wilson 已提交
3418
		return reg;
3419 3420
	}

3421 3422 3423 3424 3425 3426
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3427 3428
}

3429
/**
3430
 * i915_gem_object_get_fence - set up fencing for an object
3431 3432 3433 3434 3435 3436 3437 3438 3439
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3440 3441
 *
 * For an untiled surface, this removes any existing fence.
3442
 */
3443
int
3444
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3445
{
3446
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3447
	struct drm_i915_private *dev_priv = dev->dev_private;
3448
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3449
	struct drm_i915_fence_reg *reg;
3450
	int ret;
3451

3452 3453 3454
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3455
	if (obj->fence_dirty) {
3456
		ret = i915_gem_object_wait_fence(obj);
3457 3458 3459
		if (ret)
			return ret;
	}
3460

3461
	/* Just update our place in the LRU if our fence is getting reused. */
3462 3463
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3464
		if (!obj->fence_dirty) {
3465 3466 3467 3468 3469
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3470 3471 3472
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3473
		reg = i915_find_fence_reg(dev);
3474 3475
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3476

3477 3478 3479
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3480
			ret = i915_gem_object_wait_fence(old);
3481 3482 3483
			if (ret)
				return ret;

3484
			i915_gem_object_fence_lost(old);
3485
		}
3486
	} else
3487 3488
		return 0;

3489 3490
	i915_gem_object_update_fence(obj, reg, enable);

3491
	return 0;
3492 3493
}

3494
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3495 3496
				     unsigned long cache_level)
{
3497
	struct drm_mm_node *gtt_space = &vma->node;
3498 3499
	struct drm_mm_node *other;

3500 3501 3502 3503 3504 3505
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3506
	 */
3507
	if (vma->vm->mm.color_adjust == NULL)
3508 3509
		return true;

3510
	if (!drm_mm_node_allocated(gtt_space))
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3527
/**
3528 3529
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3530
 */
3531
static struct i915_vma *
3532 3533
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3534
			   const struct i915_ggtt_view *ggtt_view,
3535
			   unsigned alignment,
3536
			   uint64_t flags)
3537
{
3538
	struct drm_device *dev = obj->base.dev;
3539
	struct drm_i915_private *dev_priv = dev->dev_private;
3540
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3541 3542 3543
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3544
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3545
	struct i915_vma *vma;
3546
	int ret;
3547

3548 3549 3550 3551 3552
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3553

3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3583

3584
	if (alignment == 0)
3585
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3586
						unfenced_alignment;
3587
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3588 3589 3590
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3591
		return ERR_PTR(-EINVAL);
3592 3593
	}

3594 3595 3596
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3597
	 */
3598 3599 3600 3601
	if (size > end) {
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3602
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3603
			  end);
3604
		return ERR_PTR(-E2BIG);
3605 3606
	}

3607
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3608
	if (ret)
3609
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3610

3611 3612
	i915_gem_object_pin_pages(obj);

3613 3614 3615
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3616
	if (IS_ERR(vma))
3617
		goto err_unpin;
B
Ben Widawsky 已提交
3618

3619
search_free:
3620
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3621
						  size, alignment,
3622 3623
						  obj->cache_level,
						  start, end,
3624 3625
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3626
	if (ret) {
3627
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3628 3629 3630
					       obj->cache_level,
					       start, end,
					       flags);
3631 3632
		if (ret == 0)
			goto search_free;
3633

3634
		goto err_free_vma;
3635
	}
3636
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3637
		ret = -EINVAL;
3638
		goto err_remove_node;
3639 3640
	}

3641
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3642
	if (ret)
3643
		goto err_remove_node;
3644

3645
	trace_i915_vma_bind(vma, flags);
3646
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3647 3648 3649
	if (ret)
		goto err_finish_gtt;

3650
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3651
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3652

3653
	return vma;
B
Ben Widawsky 已提交
3654

3655 3656
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3657
err_remove_node:
3658
	drm_mm_remove_node(&vma->node);
3659
err_free_vma:
B
Ben Widawsky 已提交
3660
	i915_gem_vma_destroy(vma);
3661
	vma = ERR_PTR(ret);
3662
err_unpin:
B
Ben Widawsky 已提交
3663
	i915_gem_object_unpin_pages(obj);
3664
	return vma;
3665 3666
}

3667
bool
3668 3669
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3670 3671 3672 3673 3674
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3675
	if (obj->pages == NULL)
3676
		return false;
3677

3678 3679 3680 3681
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3682
	if (obj->stolen || obj->phys_handle)
3683
		return false;
3684

3685 3686 3687 3688 3689 3690 3691 3692
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3693 3694
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3695
		return false;
3696
	}
3697

C
Chris Wilson 已提交
3698
	trace_i915_gem_object_clflush(obj);
3699
	drm_clflush_sg(obj->pages);
3700
	obj->cache_dirty = false;
3701 3702

	return true;
3703 3704 3705 3706
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3707
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3708
{
C
Chris Wilson 已提交
3709 3710
	uint32_t old_write_domain;

3711
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3712 3713
		return;

3714
	/* No actual flushing is required for the GTT write domain.  Writes
3715 3716
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3717 3718 3719 3720
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3721
	 */
3722 3723
	wmb();

3724 3725
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3726

3727 3728
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3729
	trace_i915_gem_object_change_domain(obj,
3730
					    obj->base.read_domains,
C
Chris Wilson 已提交
3731
					    old_write_domain);
3732 3733 3734 3735
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3736
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3737
{
C
Chris Wilson 已提交
3738
	uint32_t old_write_domain;
3739

3740
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3741 3742
		return;

3743
	if (i915_gem_clflush_object(obj, obj->pin_display))
3744 3745
		i915_gem_chipset_flush(obj->base.dev);

3746 3747
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3748

3749 3750
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3751
	trace_i915_gem_object_change_domain(obj,
3752
					    obj->base.read_domains,
C
Chris Wilson 已提交
3753
					    old_write_domain);
3754 3755
}

3756 3757 3758 3759 3760 3761
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3762
int
3763
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3764
{
C
Chris Wilson 已提交
3765
	uint32_t old_write_domain, old_read_domains;
3766
	struct i915_vma *vma;
3767
	int ret;
3768

3769 3770 3771
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3772
	ret = i915_gem_object_wait_rendering(obj, !write);
3773 3774 3775
	if (ret)
		return ret;

3776
	i915_gem_object_retire(obj);
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3790
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3791

3792 3793 3794 3795 3796 3797 3798
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3799 3800
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3801

3802 3803 3804
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3805 3806
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3807
	if (write) {
3808 3809 3810
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3811 3812
	}

3813
	if (write)
3814
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3815

C
Chris Wilson 已提交
3816 3817 3818 3819
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3820
	/* And bump the LRU for this access */
3821 3822
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3823
		list_move_tail(&vma->mm_list,
3824
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3825

3826 3827 3828
	return 0;
}

3829 3830 3831
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3832
	struct drm_device *dev = obj->base.dev;
3833
	struct i915_vma *vma, *next;
3834 3835 3836 3837 3838
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3839
	if (i915_gem_obj_is_pinned(obj)) {
3840 3841 3842 3843
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3844
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3845
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3846
			ret = i915_vma_unbind(vma);
3847 3848 3849
			if (ret)
				return ret;
		}
3850 3851
	}

3852
	if (i915_gem_obj_bound_any(obj)) {
3853
		ret = i915_gem_object_wait_rendering(obj, false);
3854 3855 3856 3857 3858 3859 3860 3861 3862
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3863
		if (INTEL_INFO(dev)->gen < 6) {
3864 3865 3866 3867 3868
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3869
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3870 3871
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
3872
						    PIN_UPDATE);
3873 3874 3875
				if (ret)
					return ret;
			}
3876 3877
	}

3878 3879 3880 3881
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3882 3883 3884 3885 3886
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3887 3888 3889 3890 3891
	}

	return 0;
}

B
Ben Widawsky 已提交
3892 3893
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3894
{
B
Ben Widawsky 已提交
3895
	struct drm_i915_gem_caching *args = data;
3896 3897 3898
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3899 3900
	if (&obj->base == NULL)
		return -ENOENT;
3901

3902 3903 3904 3905 3906 3907
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3908 3909 3910 3911
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3912 3913 3914 3915
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3916

3917 3918
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3919 3920
}

B
Ben Widawsky 已提交
3921 3922
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3923
{
B
Ben Widawsky 已提交
3924
	struct drm_i915_gem_caching *args = data;
3925 3926 3927 3928
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3929 3930
	switch (args->caching) {
	case I915_CACHING_NONE:
3931 3932
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3933
	case I915_CACHING_CACHED:
3934 3935
		level = I915_CACHE_LLC;
		break;
3936 3937 3938
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3939 3940 3941 3942
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3943 3944 3945 3946
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3961
/*
3962 3963 3964
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3965 3966
 */
int
3967 3968
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3969 3970
				     struct intel_engine_cs *pipelined,
				     const struct i915_ggtt_view *view)
3971
{
3972
	u32 old_read_domains, old_write_domain;
3973 3974
	int ret;

3975
	if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3976 3977
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3978 3979 3980
			return ret;
	}

3981 3982 3983
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3984
	obj->pin_display++;
3985

3986 3987 3988 3989 3990 3991 3992 3993 3994
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3995 3996
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3997
	if (ret)
3998
		goto err_unpin_display;
3999

4000 4001 4002 4003
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4004 4005 4006
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4007
	if (ret)
4008
		goto err_unpin_display;
4009

4010
	i915_gem_object_flush_cpu_write_domain(obj);
4011

4012
	old_write_domain = obj->base.write_domain;
4013
	old_read_domains = obj->base.read_domains;
4014 4015 4016 4017

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4018
	obj->base.write_domain = 0;
4019
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4020 4021 4022

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4023
					    old_write_domain);
4024 4025

	return 0;
4026 4027

err_unpin_display:
4028
	obj->pin_display--;
4029 4030 4031 4032
	return ret;
}

void
4033 4034
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4035
{
4036 4037 4038
	if (WARN_ON(obj->pin_display == 0))
		return;

4039 4040
	i915_gem_object_ggtt_unpin_view(obj, view);

4041
	obj->pin_display--;
4042 4043
}

4044 4045 4046 4047 4048 4049
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4050
int
4051
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4052
{
C
Chris Wilson 已提交
4053
	uint32_t old_write_domain, old_read_domains;
4054 4055
	int ret;

4056 4057 4058
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4059
	ret = i915_gem_object_wait_rendering(obj, !write);
4060 4061 4062
	if (ret)
		return ret;

4063
	i915_gem_object_retire(obj);
4064
	i915_gem_object_flush_gtt_write_domain(obj);
4065

4066 4067
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4068

4069
	/* Flush the CPU cache if it's still invalid. */
4070
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4071
		i915_gem_clflush_object(obj, false);
4072

4073
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4074 4075 4076 4077 4078
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4079
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4080 4081 4082 4083 4084

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4085 4086
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4087
	}
4088

4089
	if (write)
4090
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4091

C
Chris Wilson 已提交
4092 4093 4094 4095
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4096 4097 4098
	return 0;
}

4099 4100 4101
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4102 4103 4104 4105
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4106 4107 4108
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4109
static int
4110
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4111
{
4112 4113
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4114
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4115
	struct drm_i915_gem_request *request, *target = NULL;
4116
	unsigned reset_counter;
4117
	int ret;
4118

4119 4120 4121 4122 4123 4124 4125
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4126

4127
	spin_lock(&file_priv->mm.lock);
4128
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4129 4130
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4131

4132
		target = request;
4133
	}
4134
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4135 4136
	if (target)
		i915_gem_request_reference(target);
4137
	spin_unlock(&file_priv->mm.lock);
4138

4139
	if (target == NULL)
4140
		return 0;
4141

4142
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4143 4144
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4145

4146
	i915_gem_request_unreference__unlocked(target);
4147

4148 4149 4150
	return ret;
}

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4170 4171 4172 4173 4174 4175
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4176
{
4177
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4178
	struct i915_vma *vma;
4179
	unsigned bound;
4180 4181
	int ret;

4182 4183 4184
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4185
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4186
		return -EINVAL;
4187

4188 4189 4190
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4191 4192 4193 4194 4195 4196 4197 4198 4199
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4200
	if (vma) {
B
Ben Widawsky 已提交
4201 4202 4203
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4204
		if (i915_vma_misplaced(vma, alignment, flags)) {
4205
			unsigned long offset;
4206
			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4207
					     i915_gem_obj_offset(obj, vm);
B
Ben Widawsky 已提交
4208
			WARN(vma->pin_count,
4209
			     "bo is already pinned in %s with incorrect alignment:"
4210
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4211
			     " obj->map_and_fenceable=%d\n",
4212 4213
			     ggtt_view ? "ggtt" : "ppgtt",
			     offset,
4214
			     alignment,
4215
			     !!(flags & PIN_MAPPABLE),
4216
			     obj->map_and_fenceable);
4217
			ret = i915_vma_unbind(vma);
4218 4219
			if (ret)
				return ret;
4220 4221

			vma = NULL;
4222 4223 4224
		}
	}

4225
	bound = vma ? vma->bound : 0;
4226
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4227 4228
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4229 4230
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4231 4232
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4233 4234 4235
		if (ret)
			return ret;
	}
4236

4237 4238
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4253
		mappable = (vma->node.start + fence_size <=
4254 4255 4256 4257
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;

4258 4259
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4260

4261
	vma->pin_count++;
4262 4263 4264
	return 0;
}

4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4286
				      alignment, flags | PIN_GLOBAL);
4287 4288
}

4289
void
4290 4291
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4292
{
4293
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4294

B
Ben Widawsky 已提交
4295
	BUG_ON(!vma);
4296
	WARN_ON(vma->pin_count == 0);
4297
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4298

4299
	--vma->pin_count;
4300 4301
}

4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4328 4329
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4330
		    struct drm_file *file)
4331 4332
{
	struct drm_i915_gem_busy *args = data;
4333
	struct drm_i915_gem_object *obj;
4334 4335
	int ret;

4336
	ret = i915_mutex_lock_interruptible(dev);
4337
	if (ret)
4338
		return ret;
4339

4340
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4341
	if (&obj->base == NULL) {
4342 4343
		ret = -ENOENT;
		goto unlock;
4344
	}
4345

4346 4347 4348 4349
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4350
	 */
4351
	ret = i915_gem_object_flush_active(obj);
4352

4353
	args->busy = obj->active;
4354 4355
	if (obj->last_read_req) {
		struct intel_engine_cs *ring;
4356
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4357 4358
		ring = i915_gem_request_get_ring(obj->last_read_req);
		args->busy |= intel_ring_flag(ring) << 16;
4359
	}
4360

4361
	drm_gem_object_unreference(&obj->base);
4362
unlock:
4363
	mutex_unlock(&dev->struct_mutex);
4364
	return ret;
4365 4366 4367 4368 4369 4370
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4371
	return i915_gem_ring_throttle(dev, file_priv);
4372 4373
}

4374 4375 4376 4377
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4378
	struct drm_i915_private *dev_priv = dev->dev_private;
4379
	struct drm_i915_gem_madvise *args = data;
4380
	struct drm_i915_gem_object *obj;
4381
	int ret;
4382 4383 4384 4385 4386 4387 4388 4389 4390

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4391 4392 4393 4394
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4395
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4396
	if (&obj->base == NULL) {
4397 4398
		ret = -ENOENT;
		goto unlock;
4399 4400
	}

B
Ben Widawsky 已提交
4401
	if (i915_gem_obj_is_pinned(obj)) {
4402 4403
		ret = -EINVAL;
		goto out;
4404 4405
	}

4406 4407 4408 4409 4410 4411 4412 4413 4414
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4415 4416
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4417

C
Chris Wilson 已提交
4418
	/* if the object is no longer attached, discard its backing storage */
4419
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4420 4421
		i915_gem_object_truncate(obj);

4422
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4423

4424
out:
4425
	drm_gem_object_unreference(&obj->base);
4426
unlock:
4427
	mutex_unlock(&dev->struct_mutex);
4428
	return ret;
4429 4430
}

4431 4432
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4433
{
4434
	INIT_LIST_HEAD(&obj->global_list);
4435
	INIT_LIST_HEAD(&obj->ring_list);
4436
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4437
	INIT_LIST_HEAD(&obj->vma_list);
4438
	INIT_LIST_HEAD(&obj->batch_pool_link);
4439

4440 4441
	obj->ops = ops;

4442 4443 4444 4445 4446 4447
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4448 4449 4450 4451 4452
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4453 4454
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4455
{
4456
	struct drm_i915_gem_object *obj;
4457
	struct address_space *mapping;
D
Daniel Vetter 已提交
4458
	gfp_t mask;
4459

4460
	obj = i915_gem_object_alloc(dev);
4461 4462
	if (obj == NULL)
		return NULL;
4463

4464
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4465
		i915_gem_object_free(obj);
4466 4467
		return NULL;
	}
4468

4469 4470 4471 4472 4473 4474 4475
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4476
	mapping = file_inode(obj->base.filp)->i_mapping;
4477
	mapping_set_gfp_mask(mapping, mask);
4478

4479
	i915_gem_object_init(obj, &i915_gem_object_ops);
4480

4481 4482
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4483

4484 4485
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4501 4502
	trace_i915_gem_object_create(obj);

4503
	return obj;
4504 4505
}

4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4530
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4531
{
4532
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4533
	struct drm_device *dev = obj->base.dev;
4534
	struct drm_i915_private *dev_priv = dev->dev_private;
4535
	struct i915_vma *vma, *next;
4536

4537 4538
	intel_runtime_pm_get(dev_priv);

4539 4540
	trace_i915_gem_object_destroy(obj);

4541
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4542 4543 4544 4545
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4546 4547
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4548

4549 4550
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4551

4552
			WARN_ON(i915_vma_unbind(vma));
4553

4554 4555
			dev_priv->mm.interruptible = was_interruptible;
		}
4556 4557
	}

B
Ben Widawsky 已提交
4558 4559 4560 4561 4562
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4563 4564
	WARN_ON(obj->frontbuffer_bits);

4565 4566 4567 4568 4569
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4570 4571
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4572
	if (discard_backing_storage(obj))
4573
		obj->madv = I915_MADV_DONTNEED;
4574
	i915_gem_object_put_pages(obj);
4575
	i915_gem_object_free_mmap_offset(obj);
4576

4577 4578
	BUG_ON(obj->pages);

4579 4580
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4581

4582 4583 4584
	if (obj->ops->release)
		obj->ops->release(obj);

4585 4586
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4587

4588
	kfree(obj->bit_17);
4589
	i915_gem_object_free(obj);
4590 4591

	intel_runtime_pm_put(dev_priv);
4592 4593
}

4594 4595
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4596 4597
{
	struct i915_vma *vma;
4598 4599 4600 4601 4602
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4603
			return vma;
4604 4605 4606 4607 4608 4609 4610 4611 4612
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4613

4614 4615 4616 4617
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4618 4619
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4620
			return vma;
4621 4622 4623
	return NULL;
}

B
Ben Widawsky 已提交
4624 4625
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4626
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4627
	WARN_ON(vma->node.allocated);
4628 4629 4630 4631 4632

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4633 4634
	vm = vma->vm;

4635 4636
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4637

4638
	list_del(&vma->vma_link);
4639

4640
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4641 4642
}

4643 4644 4645 4646
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4647
	struct intel_engine_cs *ring;
4648 4649 4650
	int i;

	for_each_ring(ring, dev_priv, i)
4651
		dev_priv->gt.stop_ring(ring);
4652 4653
}

4654
int
4655
i915_gem_suspend(struct drm_device *dev)
4656
{
4657
	struct drm_i915_private *dev_priv = dev->dev_private;
4658
	int ret = 0;
4659

4660
	mutex_lock(&dev->struct_mutex);
4661
	ret = i915_gpu_idle(dev);
4662
	if (ret)
4663
		goto err;
4664

4665
	i915_gem_retire_requests(dev);
4666

4667
	i915_gem_stop_ringbuffers(dev);
4668 4669
	mutex_unlock(&dev->struct_mutex);

4670
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4671
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4672
	flush_delayed_work(&dev_priv->mm.idle_work);
4673

4674 4675 4676 4677 4678
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4679
	return 0;
4680 4681 4682 4683

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4684 4685
}

4686
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4687
{
4688
	struct drm_device *dev = ring->dev;
4689
	struct drm_i915_private *dev_priv = dev->dev_private;
4690 4691
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4692
	int i, ret;
B
Ben Widawsky 已提交
4693

4694
	if (!HAS_L3_DPF(dev) || !remap_info)
4695
		return 0;
B
Ben Widawsky 已提交
4696

4697 4698 4699
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4700

4701 4702 4703 4704 4705
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4706
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4707 4708 4709
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4710 4711
	}

4712
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4713

4714
	return ret;
B
Ben Widawsky 已提交
4715 4716
}

4717 4718
void i915_gem_init_swizzling(struct drm_device *dev)
{
4719
	struct drm_i915_private *dev_priv = dev->dev_private;
4720

4721
	if (INTEL_INFO(dev)->gen < 5 ||
4722 4723 4724 4725 4726 4727
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4728 4729 4730
	if (IS_GEN5(dev))
		return;

4731 4732
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4733
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4734
	else if (IS_GEN7(dev))
4735
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4736 4737
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4738 4739
	else
		BUG();
4740
}
D
Daniel Vetter 已提交
4741

4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4785
int i915_gem_init_rings(struct drm_device *dev)
4786
{
4787
	struct drm_i915_private *dev_priv = dev->dev_private;
4788
	int ret;
4789

4790
	ret = intel_init_render_ring_buffer(dev);
4791
	if (ret)
4792
		return ret;
4793 4794

	if (HAS_BSD(dev)) {
4795
		ret = intel_init_bsd_ring_buffer(dev);
4796 4797
		if (ret)
			goto cleanup_render_ring;
4798
	}
4799

4800
	if (intel_enable_blt(dev)) {
4801 4802 4803 4804 4805
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4806 4807 4808 4809 4810 4811
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4812 4813 4814 4815 4816
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4817

4818
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4819
	if (ret)
4820
		goto cleanup_bsd2_ring;
4821 4822 4823

	return 0;

4824 4825
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4826 4827
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4841
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4842
	struct intel_engine_cs *ring;
4843
	int ret, i;
4844 4845 4846 4847

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4848 4849 4850
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4851
	if (dev_priv->ellc_size)
4852
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4853

4854 4855 4856
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4857

4858
	if (HAS_PCH_NOP(dev)) {
4859 4860 4861 4862 4863 4864 4865 4866 4867
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4868 4869
	}

4870 4871
	i915_gem_init_swizzling(dev);

4872 4873 4874 4875 4876 4877 4878 4879
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
4880 4881 4882
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
4883
			goto out;
D
Daniel Vetter 已提交
4884
	}
4885

4886 4887 4888
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4889
	ret = i915_ppgtt_init_hw(dev);
4890
	if (ret && ret != -EIO) {
4891
		DRM_ERROR("PPGTT enable failed %d\n", ret);
4892
		i915_gem_cleanup_ringbuffer(dev);
4893 4894
	}

4895
	ret = i915_gem_context_enable(dev_priv);
4896
	if (ret && ret != -EIO) {
4897
		DRM_ERROR("Context enable failed %d\n", ret);
4898
		i915_gem_cleanup_ringbuffer(dev);
4899

4900
		goto out;
4901
	}
D
Daniel Vetter 已提交
4902

4903 4904
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4905
	return ret;
4906 4907
}

4908 4909 4910 4911 4912
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4913 4914 4915
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4916
	mutex_lock(&dev->struct_mutex);
4917 4918 4919

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4920 4921 4922
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4923 4924 4925
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4926
	if (!i915.enable_execlists) {
4927
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4928 4929 4930
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4931
	} else {
4932
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4933 4934 4935
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4936 4937
	}

4938 4939 4940 4941 4942 4943 4944 4945
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4946
	ret = i915_gem_init_userptr(dev);
4947 4948
	if (ret)
		goto out_unlock;
4949

4950
	i915_gem_init_global_gtt(dev);
4951

4952
	ret = i915_gem_context_init(dev);
4953 4954
	if (ret)
		goto out_unlock;
4955

D
Daniel Vetter 已提交
4956 4957
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4958
		goto out_unlock;
4959

4960
	ret = i915_gem_init_hw(dev);
4961 4962 4963 4964 4965 4966 4967 4968
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4969
	}
4970 4971

out_unlock:
4972
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4973
	mutex_unlock(&dev->struct_mutex);
4974

4975
	return ret;
4976 4977
}

4978 4979 4980
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4981
	struct drm_i915_private *dev_priv = dev->dev_private;
4982
	struct intel_engine_cs *ring;
4983
	int i;
4984

4985
	for_each_ring(ring, dev_priv, i)
4986
		dev_priv->gt.cleanup_ring(ring);
4987 4988
}

4989
static void
4990
init_ring_lists(struct intel_engine_cs *ring)
4991 4992 4993 4994 4995
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4996 4997
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4998
{
4999 5000
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
5001 5002 5003 5004
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
5005
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
5006 5007
}

5008 5009 5010
void
i915_gem_load(struct drm_device *dev)
{
5011
	struct drm_i915_private *dev_priv = dev->dev_private;
5012 5013
	int i;

5014
	dev_priv->objects =
5015 5016 5017 5018
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5019 5020 5021 5022 5023
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5024 5025 5026 5027 5028
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5029

B
Ben Widawsky 已提交
5030 5031 5032
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

5033
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5034 5035
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5036
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5037 5038
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5039
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5040
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5041 5042
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5043 5044
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5045
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5046

5047 5048
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5049 5050 5051
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5052 5053 5054 5055
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5056 5057 5058 5059
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5060
	/* Initialize fence registers to zero */
5061 5062
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5063

5064
	i915_gem_detect_bit_6_swizzle(dev);
5065
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5066

5067 5068
	dev_priv->mm.interruptible = true;

5069
	i915_gem_shrinker_init(dev_priv);
5070 5071

	mutex_init(&dev_priv->fb_tracking.lock);
5072
}
5073

5074
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5075
{
5076
	struct drm_i915_file_private *file_priv = file->driver_priv;
5077 5078 5079 5080 5081

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5082
	spin_lock(&file_priv->mm.lock);
5083 5084 5085 5086 5087 5088 5089 5090 5091
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5092
	spin_unlock(&file_priv->mm.lock);
5093

5094 5095 5096 5097 5098
	if (!list_empty(&file_priv->rps_boost)) {
		mutex_lock(&to_i915(dev)->rps.hw_lock);
		list_del(&file_priv->rps_boost);
		mutex_unlock(&to_i915(dev)->rps.hw_lock);
	}
5099 5100 5101 5102 5103
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5104
	int ret;
5105 5106 5107 5108 5109 5110 5111 5112 5113

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5114
	file_priv->file = file;
5115
	INIT_LIST_HEAD(&file_priv->rps_boost);
5116 5117 5118 5119

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5120 5121 5122
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5123

5124
	return ret;
5125 5126
}

5127 5128 5129 5130 5131 5132 5133 5134 5135
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5153
/* All the new VM stuff */
5154 5155 5156
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
		    struct i915_address_space *vm)
5157 5158 5159 5160
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5161
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5162 5163

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5164 5165 5166 5167
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5168 5169
			return vma->node.start;
	}
5170

5171 5172
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5173 5174 5175
	return -1;
}

5176 5177
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5178
			      const struct i915_ggtt_view *view)
5179
{
5180
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5181 5182 5183
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5184 5185
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5186 5187
			return vma->node.start;

5188
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5209
				  const struct i915_ggtt_view *view)
5210 5211 5212 5213 5214 5215
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5216
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5217
		    drm_mm_node_allocated(&vma->node))
5218 5219 5220 5221 5222 5223 5224
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5225
	struct i915_vma *vma;
5226

5227 5228
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5240
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5241 5242 5243

	BUG_ON(list_empty(&o->vma_list));

5244 5245 5246 5247
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5248 5249
		if (vma->vm == vm)
			return vma->node.size;
5250
	}
5251 5252 5253
	return 0;
}

5254
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5255 5256
{
	struct i915_vma *vma;
5257
	list_for_each_entry(vma, &obj->vma_list, vma_link)
5258 5259
		if (vma->pin_count > 0)
			return true;
5260

5261
	return false;
5262
}
5263