i915_gem.c 132.2 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43
static __must_check int
44 45
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
46 47 48
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

49 50 51 52 53 54
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

55 56 57 58 59 60
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

61 62 63 64 65 66 67 68
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

69 70 71 72 73 74 75 76
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
77
	obj->fence_dirty = false;
78 79 80
	obj->fence_reg = I915_FENCE_REG_NONE;
}

81 82 83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
85
	spin_lock(&dev_priv->mm.object_stat_lock);
86 87
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
88
	spin_unlock(&dev_priv->mm.object_stat_lock);
89 90 91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99
}

100
static int
101
i915_gem_wait_for_error(struct i915_gpu_error *error)
102 103 104
{
	int ret;

105 106
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
107
	if (EXIT_COND)
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115 116 117
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123
	}
124
#undef EXIT_COND
125

126
	return 0;
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_i915_gem_get_aperture *args = data;
152 153
	struct drm_i915_gem_object *obj;
	size_t pinned;
154

155
	pinned = 0;
156
	mutex_lock(&dev->struct_mutex);
157
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
158
		if (i915_gem_obj_is_pinned(obj))
159
			pinned += i915_gem_obj_ggtt_size(obj);
160
	mutex_unlock(&dev->struct_mutex);
161

162
	args->aper_size = dev_priv->gtt.base.total;
163
	args->aper_available_size = args->aper_size - pinned;
164

165 166 167
	return 0;
}

168 169
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170
{
171 172 173 174 175
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227 228 229 230 231 232 233 234 235 236 237 238 239
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			page_cache_release(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342 343
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(dev);
372 373 374 375

out:
	intel_fb_obj_flush(obj, false);
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385 386
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_alloc_object(dev, size);
406 407 408
	if (obj == NULL)
		return -ENOMEM;

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432 433 434 435 436 437 438
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
439

440
	return i915_gem_create(file, dev,
441
			       args->size, &args->handle);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

470
static inline int
471 472
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
521 522

		i915_gem_object_retire(obj);
523 524 525 526 527 528 529 530 531 532 533
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

534 535 536
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
537
static int
538 539 540 541 542 543 544
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

545
	if (unlikely(page_do_bit17_swizzling))
546 547 548 549 550 551 552 553 554 555 556
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

557
	return ret ? -EFAULT : 0;
558 559
}

560 561 562 563
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
564
	if (unlikely(swizzled)) {
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

582 583 584 585 586 587 588 589 590 591 592 593
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
594 595 596
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
597 598 599 600 601 602 603 604 605 606 607

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

608
	return ret ? - EFAULT : 0;
609 610
}

611
static int
612 613 614 615
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
616
{
617
	char __user *user_data;
618
	ssize_t remain;
619
	loff_t offset;
620
	int shmem_page_offset, page_length, ret = 0;
621
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622
	int prefaulted = 0;
623
	int needs_clflush = 0;
624
	struct sg_page_iter sg_iter;
625

V
Ville Syrjälä 已提交
626
	user_data = to_user_ptr(args->data_ptr);
627 628
	remain = args->size;

629
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630

631
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632 633 634
	if (ret)
		return ret;

635
	offset = args->offset;
636

637 638
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
639
		struct page *page = sg_page_iter_page(&sg_iter);
640 641 642 643

		if (remain <= 0)
			break;

644 645 646 647 648
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
649
		shmem_page_offset = offset_in_page(offset);
650 651 652 653
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

654 655 656
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

657 658 659 660 661
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
662 663 664

		mutex_unlock(&dev->struct_mutex);

665
		if (likely(!i915.prefault_disable) && !prefaulted) {
666
			ret = fault_in_multipages_writeable(user_data, remain);
667 668 669 670 671 672 673
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
674

675 676 677
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
678

679
		mutex_lock(&dev->struct_mutex);
680 681

		if (ret)
682 683
			goto out;

684
next_page:
685
		remain -= page_length;
686
		user_data += page_length;
687 688 689
		offset += page_length;
	}

690
out:
691 692
	i915_gem_object_unpin_pages(obj);

693 694 695
	return ret;
}

696 697 698 699 700 701 702
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703
		     struct drm_file *file)
704 705
{
	struct drm_i915_gem_pread *args = data;
706
	struct drm_i915_gem_object *obj;
707
	int ret = 0;
708

709 710 711 712
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
713
		       to_user_ptr(args->data_ptr),
714 715 716
		       args->size))
		return -EFAULT;

717
	ret = i915_mutex_lock_interruptible(dev);
718
	if (ret)
719
		return ret;
720

721
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722
	if (&obj->base == NULL) {
723 724
		ret = -ENOENT;
		goto unlock;
725
	}
726

727
	/* Bounds check source.  */
728 729
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
730
		ret = -EINVAL;
731
		goto out;
C
Chris Wilson 已提交
732 733
	}

734 735 736 737 738 739 740 741
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
742 743
	trace_i915_gem_object_pread(obj, args->offset, args->size);

744
	ret = i915_gem_shmem_pread(dev, obj, args, file);
745

746
out:
747
	drm_gem_object_unreference(&obj->base);
748
unlock:
749
	mutex_unlock(&dev->struct_mutex);
750
	return ret;
751 752
}

753 754
/* This is the fast write path which cannot handle
 * page faults in the source data
755
 */
756 757 758 759 760 761

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
762
{
763 764
	void __iomem *vaddr_atomic;
	void *vaddr;
765
	unsigned long unwritten;
766

P
Peter Zijlstra 已提交
767
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768 769 770
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
771
						      user_data, length);
P
Peter Zijlstra 已提交
772
	io_mapping_unmap_atomic(vaddr_atomic);
773
	return unwritten;
774 775
}

776 777 778 779
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
780
static int
781 782
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
783
			 struct drm_i915_gem_pwrite *args,
784
			 struct drm_file *file)
785
{
786
	struct drm_i915_private *dev_priv = dev->dev_private;
787
	ssize_t remain;
788
	loff_t offset, page_base;
789
	char __user *user_data;
D
Daniel Vetter 已提交
790 791
	int page_offset, page_length, ret;

792
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
793 794 795 796 797 798 799 800 801 802
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
803

V
Ville Syrjälä 已提交
804
	user_data = to_user_ptr(args->data_ptr);
805 806
	remain = args->size;

807
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808

809 810
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);

811 812 813
	while (remain > 0) {
		/* Operation in this page
		 *
814 815 816
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
817
		 */
818 819
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
820 821 822 823 824
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
825 826
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
827
		 */
B
Ben Widawsky 已提交
828
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
829 830
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
831
			goto out_flush;
D
Daniel Vetter 已提交
832
		}
833

834 835 836
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
837 838
	}

839 840
out_flush:
	intel_fb_obj_flush(obj, false);
D
Daniel Vetter 已提交
841
out_unpin:
B
Ben Widawsky 已提交
842
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
843
out:
844
	return ret;
845 846
}

847 848 849 850
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
851
static int
852 853 854 855 856
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
857
{
858
	char *vaddr;
859
	int ret;
860

861
	if (unlikely(page_do_bit17_swizzling))
862
		return -EINVAL;
863

864 865 866 867
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
868 869
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
870 871 872 873
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
874

875
	return ret ? -EFAULT : 0;
876 877
}

878 879
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
880
static int
881 882 883 884 885
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
886
{
887 888
	char *vaddr;
	int ret;
889

890
	vaddr = kmap(page);
891
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 893 894
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
895 896
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 898
						user_data,
						page_length);
899 900 901 902 903
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
904 905 906
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
907
	kunmap(page);
908

909
	return ret ? -EFAULT : 0;
910 911 912
}

static int
913 914 915 916
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
917 918
{
	ssize_t remain;
919 920
	loff_t offset;
	char __user *user_data;
921
	int shmem_page_offset, page_length, ret = 0;
922
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923
	int hit_slowpath = 0;
924 925
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
926
	struct sg_page_iter sg_iter;
927

V
Ville Syrjälä 已提交
928
	user_data = to_user_ptr(args->data_ptr);
929 930
	remain = args->size;

931
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932

933 934 935 936 937
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
938
		needs_clflush_after = cpu_write_needs_clflush(obj);
939 940 941
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
942 943

		i915_gem_object_retire(obj);
944
	}
945 946 947 948 949
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
950

951 952 953 954
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

955 956
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);

957 958
	i915_gem_object_pin_pages(obj);

959
	offset = args->offset;
960
	obj->dirty = 1;
961

962 963
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
964
		struct page *page = sg_page_iter_page(&sg_iter);
965
		int partial_cacheline_write;
966

967 968 969
		if (remain <= 0)
			break;

970 971 972 973 974
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
975
		shmem_page_offset = offset_in_page(offset);
976 977 978 979 980

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

981 982 983 984 985 986 987
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

988 989 990
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

991 992 993 994 995 996
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
997 998 999

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1000 1001 1002 1003
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1004

1005
		mutex_lock(&dev->struct_mutex);
1006 1007

		if (ret)
1008 1009
			goto out;

1010
next_page:
1011
		remain -= page_length;
1012
		user_data += page_length;
1013
		offset += page_length;
1014 1015
	}

1016
out:
1017 1018
	i915_gem_object_unpin_pages(obj);

1019
	if (hit_slowpath) {
1020 1021 1022 1023 1024 1025 1026
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 1028
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1029
		}
1030
	}
1031

1032
	if (needs_clflush_after)
1033
		i915_gem_chipset_flush(dev);
1034

1035
	intel_fb_obj_flush(obj, false);
1036
	return ret;
1037 1038 1039 1040 1041 1042 1043 1044 1045
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046
		      struct drm_file *file)
1047
{
1048
	struct drm_i915_private *dev_priv = dev->dev_private;
1049
	struct drm_i915_gem_pwrite *args = data;
1050
	struct drm_i915_gem_object *obj;
1051 1052 1053 1054 1055 1056
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1057
		       to_user_ptr(args->data_ptr),
1058 1059 1060
		       args->size))
		return -EFAULT;

1061
	if (likely(!i915.prefault_disable)) {
1062 1063 1064 1065 1066
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1067

1068 1069
	intel_runtime_pm_get(dev_priv);

1070
	ret = i915_mutex_lock_interruptible(dev);
1071
	if (ret)
1072
		goto put_rpm;
1073

1074
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075
	if (&obj->base == NULL) {
1076 1077
		ret = -ENOENT;
		goto unlock;
1078
	}
1079

1080
	/* Bounds check destination. */
1081 1082
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1083
		ret = -EINVAL;
1084
		goto out;
C
Chris Wilson 已提交
1085 1086
	}

1087 1088 1089 1090 1091 1092 1093 1094
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1095 1096
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1097
	ret = -EFAULT;
1098 1099 1100 1101 1102 1103
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1104 1105 1106
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1107
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1108 1109 1110
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1111
	}
1112

1113 1114 1115 1116 1117 1118
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1119

1120
out:
1121
	drm_gem_object_unreference(&obj->base);
1122
unlock:
1123
	mutex_unlock(&dev->struct_mutex);
1124 1125 1126
put_rpm:
	intel_runtime_pm_put(dev_priv);

1127 1128 1129
	return ret;
}

1130
int
1131
i915_gem_check_wedge(struct i915_gpu_error *error,
1132 1133
		     bool interruptible)
{
1134
	if (i915_reset_in_progress(error)) {
1135 1136 1137 1138 1139
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1140 1141
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1142 1143
			return -EIO;

1144 1145 1146 1147 1148 1149 1150
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1151 1152 1153 1154 1155 1156
	}

	return 0;
}

/*
1157
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1158
 */
1159
int
1160
i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 1162 1163
{
	int ret;

1164
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165 1166

	ret = 0;
1167
	if (req == req->ring->outstanding_lazy_request)
1168
		ret = i915_add_request(req->ring);
1169 1170 1171 1172

	return ret;
}

1173 1174 1175 1176 1177 1178
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1179
		       struct intel_engine_cs *ring)
1180 1181 1182 1183
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1184
/**
1185 1186 1187
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1188 1189 1190
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1191 1192 1193 1194 1195 1196 1197
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1198
 * Returns 0 if the request was found within the alloted time. Else returns the
1199 1200
 * errno with remaining time filled in timeout argument.
 */
1201
int __i915_wait_request(struct drm_i915_gem_request *req,
1202
			unsigned reset_counter,
1203
			bool interruptible,
1204
			s64 *timeout,
1205
			struct drm_i915_file_private *file_priv)
1206
{
1207
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1208
	struct drm_device *dev = ring->dev;
1209
	struct drm_i915_private *dev_priv = dev->dev_private;
1210 1211
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1212
	DEFINE_WAIT(wait);
1213
	unsigned long timeout_expire;
1214
	s64 before, now;
1215 1216
	int ret;

1217
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1218

1219
	if (i915_gem_request_completed(req, true))
1220 1221
		return 0;

1222 1223
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1224

1225
	if (INTEL_INFO(dev)->gen >= 6)
1226
		gen6_rps_boost(dev_priv, file_priv);
1227

1228
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1229 1230
		return -ENODEV;

1231
	/* Record current time in case interrupted by signal, or wedged */
1232
	trace_i915_gem_request_wait_begin(req);
1233
	before = ktime_get_raw_ns();
1234 1235
	for (;;) {
		struct timer_list timer;
1236

1237 1238
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1239

1240 1241
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1242 1243 1244 1245 1246 1247 1248 1249
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1250

1251
		if (i915_gem_request_completed(req, false)) {
1252 1253 1254
			ret = 0;
			break;
		}
1255

1256 1257 1258 1259 1260
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1261
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1262 1263 1264 1265 1266 1267
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1268 1269
			unsigned long expire;

1270
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1271
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1272 1273 1274
			mod_timer(&timer, expire);
		}

1275
		io_schedule();
1276 1277 1278 1279 1280 1281

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1282
	now = ktime_get_raw_ns();
1283
	trace_i915_gem_request_wait_end(req);
1284

1285 1286
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1287 1288

	finish_wait(&ring->irq_queue, &wait);
1289 1290

	if (timeout) {
1291 1292 1293
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1304 1305
	}

1306
	return ret;
1307 1308 1309
}

/**
1310
 * Waits for a request to be signaled, and cleans up the
1311 1312 1313
 * request and object lists appropriately for that event.
 */
int
1314
i915_wait_request(struct drm_i915_gem_request *req)
1315
{
1316 1317 1318
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1319
	unsigned reset_counter;
1320 1321
	int ret;

1322 1323 1324 1325 1326 1327
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1328 1329
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1330
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1331 1332 1333
	if (ret)
		return ret;

1334
	ret = i915_gem_check_olr(req);
1335 1336 1337
	if (ret)
		return ret;

1338
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1339
	i915_gem_request_reference(req);
1340 1341
	ret = __i915_wait_request(req, reset_counter,
				  interruptible, NULL, NULL);
1342 1343
	i915_gem_request_unreference(req);
	return ret;
1344 1345
}

1346
static int
1347
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1348
{
1349 1350
	if (!obj->active)
		return 0;
1351 1352 1353 1354

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
1355 1356
	 * Note that the last_write_req is always the earlier of
	 * the two (read/write) requests, so if we haved successfully waited,
1357 1358
	 * we know we have passed the last write.
	 */
1359
	i915_gem_request_assign(&obj->last_write_req, NULL);
1360 1361 1362 1363

	return 0;
}

1364 1365 1366 1367 1368 1369 1370 1371
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1372
	struct drm_i915_gem_request *req;
1373 1374
	int ret;

1375 1376
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1377 1378
		return 0;

1379
	ret = i915_wait_request(req);
1380 1381 1382
	if (ret)
		return ret;

1383
	return i915_gem_object_wait_rendering__tail(obj);
1384 1385
}

1386 1387 1388 1389 1390
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1391
					    struct drm_i915_file_private *file_priv,
1392 1393
					    bool readonly)
{
1394
	struct drm_i915_gem_request *req;
1395 1396
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1397
	unsigned reset_counter;
1398 1399 1400 1401 1402
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1403 1404
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1405 1406
		return 0;

1407
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1408 1409 1410
	if (ret)
		return ret;

1411
	ret = i915_gem_check_olr(req);
1412 1413 1414
	if (ret)
		return ret;

1415
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1416
	i915_gem_request_reference(req);
1417
	mutex_unlock(&dev->struct_mutex);
1418
	ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1419
	mutex_lock(&dev->struct_mutex);
1420
	i915_gem_request_unreference(req);
1421 1422
	if (ret)
		return ret;
1423

1424
	return i915_gem_object_wait_rendering__tail(obj);
1425 1426
}

1427
/**
1428 1429
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1430 1431 1432
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1433
			  struct drm_file *file)
1434 1435
{
	struct drm_i915_gem_set_domain *args = data;
1436
	struct drm_i915_gem_object *obj;
1437 1438
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1439 1440
	int ret;

1441
	/* Only handle setting domains to types used by the CPU. */
1442
	if (write_domain & I915_GEM_GPU_DOMAINS)
1443 1444
		return -EINVAL;

1445
	if (read_domains & I915_GEM_GPU_DOMAINS)
1446 1447 1448 1449 1450 1451 1452 1453
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1454
	ret = i915_mutex_lock_interruptible(dev);
1455
	if (ret)
1456
		return ret;
1457

1458
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1459
	if (&obj->base == NULL) {
1460 1461
		ret = -ENOENT;
		goto unlock;
1462
	}
1463

1464 1465 1466 1467
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1468 1469 1470
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1471 1472 1473
	if (ret)
		goto unref;

1474
	if (read_domains & I915_GEM_DOMAIN_GTT)
1475
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1476
	else
1477
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1478

1479
unref:
1480
	drm_gem_object_unreference(&obj->base);
1481
unlock:
1482 1483 1484 1485 1486 1487 1488 1489 1490
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1491
			 struct drm_file *file)
1492 1493
{
	struct drm_i915_gem_sw_finish *args = data;
1494
	struct drm_i915_gem_object *obj;
1495 1496
	int ret = 0;

1497
	ret = i915_mutex_lock_interruptible(dev);
1498
	if (ret)
1499
		return ret;
1500

1501
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1502
	if (&obj->base == NULL) {
1503 1504
		ret = -ENOENT;
		goto unlock;
1505 1506 1507
	}

	/* Pinned buffers may be scanout, so flush the cache */
1508
	if (obj->pin_display)
1509
		i915_gem_object_flush_cpu_write_domain(obj);
1510

1511
	drm_gem_object_unreference(&obj->base);
1512
unlock:
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1533 1534 1535
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1536
		    struct drm_file *file)
1537 1538 1539 1540 1541
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1542 1543 1544 1545 1546 1547
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1548
	obj = drm_gem_object_lookup(dev, file, args->handle);
1549
	if (obj == NULL)
1550
		return -ENOENT;
1551

1552 1553 1554 1555 1556 1557 1558 1559
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1560
	addr = vm_mmap(obj->filp, 0, args->size,
1561 1562
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1576
	drm_gem_object_unreference_unlocked(obj);
1577 1578 1579 1580 1581 1582 1583 1584
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1603 1604
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1605
	struct drm_i915_private *dev_priv = dev->dev_private;
1606 1607 1608
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1609
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1610

1611 1612
	intel_runtime_pm_get(dev_priv);

1613 1614 1615 1616
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1617 1618 1619
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1620

C
Chris Wilson 已提交
1621 1622
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1623 1624 1625 1626 1627 1628 1629 1630 1631
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1632 1633
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1634
		ret = -EFAULT;
1635 1636 1637
		goto unlock;
	}

1638
	/* Now bind it into the GTT if needed */
1639
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1640 1641
	if (ret)
		goto unlock;
1642

1643 1644 1645
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1646

1647
	ret = i915_gem_object_get_fence(obj);
1648
	if (ret)
1649
		goto unpin;
1650

1651
	/* Finally, remap it using the new GTT offset */
1652 1653
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1654

1655
	if (!obj->fault_mappable) {
1656 1657 1658
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1659 1660
		int i;

1661
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1674
unpin:
B
Ben Widawsky 已提交
1675
	i915_gem_object_ggtt_unpin(obj);
1676
unlock:
1677
	mutex_unlock(&dev->struct_mutex);
1678
out:
1679
	switch (ret) {
1680
	case -EIO:
1681 1682 1683 1684 1685 1686 1687
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1688 1689 1690
			ret = VM_FAULT_SIGBUS;
			break;
		}
1691
	case -EAGAIN:
D
Daniel Vetter 已提交
1692 1693 1694 1695
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1696
		 */
1697 1698
	case 0:
	case -ERESTARTSYS:
1699
	case -EINTR:
1700 1701 1702 1703 1704
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1705 1706
		ret = VM_FAULT_NOPAGE;
		break;
1707
	case -ENOMEM:
1708 1709
		ret = VM_FAULT_OOM;
		break;
1710
	case -ENOSPC:
1711
	case -EFAULT:
1712 1713
		ret = VM_FAULT_SIGBUS;
		break;
1714
	default:
1715
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1716 1717
		ret = VM_FAULT_SIGBUS;
		break;
1718
	}
1719 1720 1721

	intel_runtime_pm_put(dev_priv);
	return ret;
1722 1723
}

1724 1725 1726 1727
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1728
 * Preserve the reservation of the mmapping with the DRM core code, but
1729 1730 1731 1732 1733 1734 1735 1736 1737
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1738
void
1739
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1740
{
1741 1742
	if (!obj->fault_mappable)
		return;
1743

1744 1745
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1746
	obj->fault_mappable = false;
1747 1748
}

1749 1750 1751 1752 1753 1754 1755 1756 1757
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1758
uint32_t
1759
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1760
{
1761
	uint32_t gtt_size;
1762 1763

	if (INTEL_INFO(dev)->gen >= 4 ||
1764 1765
	    tiling_mode == I915_TILING_NONE)
		return size;
1766 1767 1768

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1769
		gtt_size = 1024*1024;
1770
	else
1771
		gtt_size = 512*1024;
1772

1773 1774
	while (gtt_size < size)
		gtt_size <<= 1;
1775

1776
	return gtt_size;
1777 1778
}

1779 1780 1781 1782 1783
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1784
 * potential fence register mapping.
1785
 */
1786 1787 1788
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1789 1790 1791 1792 1793
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1794
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1795
	    tiling_mode == I915_TILING_NONE)
1796 1797
		return 4096;

1798 1799 1800 1801
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1802
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1803 1804
}

1805 1806 1807 1808 1809
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1810
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1811 1812
		return 0;

1813 1814
	dev_priv->mm.shrinker_no_lock_stealing = true;

1815 1816
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1817
		goto out;
1818 1819 1820 1821 1822 1823 1824 1825

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1826 1827 1828 1829 1830
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1831 1832
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1833
		goto out;
1834 1835

	i915_gem_shrink_all(dev_priv);
1836 1837 1838 1839 1840
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1841 1842 1843 1844 1845 1846 1847
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1848
int
1849 1850
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1851
		  uint32_t handle,
1852
		  uint64_t *offset)
1853
{
1854
	struct drm_i915_private *dev_priv = dev->dev_private;
1855
	struct drm_i915_gem_object *obj;
1856 1857
	int ret;

1858
	ret = i915_mutex_lock_interruptible(dev);
1859
	if (ret)
1860
		return ret;
1861

1862
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1863
	if (&obj->base == NULL) {
1864 1865 1866
		ret = -ENOENT;
		goto unlock;
	}
1867

B
Ben Widawsky 已提交
1868
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1869
		ret = -E2BIG;
1870
		goto out;
1871 1872
	}

1873
	if (obj->madv != I915_MADV_WILLNEED) {
1874
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1875
		ret = -EFAULT;
1876
		goto out;
1877 1878
	}

1879 1880 1881
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1882

1883
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1884

1885
out:
1886
	drm_gem_object_unreference(&obj->base);
1887
unlock:
1888
	mutex_unlock(&dev->struct_mutex);
1889
	return ret;
1890 1891
}

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1913
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1914 1915
}

D
Daniel Vetter 已提交
1916 1917 1918
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1919
{
1920
	i915_gem_object_free_mmap_offset(obj);
1921

1922 1923
	if (obj->base.filp == NULL)
		return;
1924

D
Daniel Vetter 已提交
1925 1926 1927 1928 1929
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1930
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1931 1932
	obj->madv = __I915_MADV_PURGED;
}
1933

1934 1935 1936
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1937
{
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1952 1953
}

1954
static void
1955
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1956
{
1957 1958
	struct sg_page_iter sg_iter;
	int ret;
1959

1960
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1961

C
Chris Wilson 已提交
1962 1963 1964 1965 1966 1967
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1968
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1969 1970 1971
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1972
	if (i915_gem_object_needs_bit17_swizzle(obj))
1973 1974
		i915_gem_object_save_bit_17_swizzle(obj);

1975 1976
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1977

1978
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1979
		struct page *page = sg_page_iter_page(&sg_iter);
1980

1981
		if (obj->dirty)
1982
			set_page_dirty(page);
1983

1984
		if (obj->madv == I915_MADV_WILLNEED)
1985
			mark_page_accessed(page);
1986

1987
		page_cache_release(page);
1988
	}
1989
	obj->dirty = 0;
1990

1991 1992
	sg_free_table(obj->pages);
	kfree(obj->pages);
1993
}
C
Chris Wilson 已提交
1994

1995
int
1996 1997 1998 1999
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2000
	if (obj->pages == NULL)
2001 2002
		return 0;

2003 2004 2005
	if (obj->pages_pin_count)
		return -EBUSY;

2006
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2007

2008 2009 2010
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2011
	list_del(&obj->global_list);
2012

2013
	ops->put_pages(obj);
2014
	obj->pages = NULL;
2015

2016
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2017 2018 2019 2020

	return 0;
}

2021
static int
C
Chris Wilson 已提交
2022
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2023
{
C
Chris Wilson 已提交
2024
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2025 2026
	int page_count, i;
	struct address_space *mapping;
2027 2028
	struct sg_table *st;
	struct scatterlist *sg;
2029
	struct sg_page_iter sg_iter;
2030
	struct page *page;
2031
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2032
	gfp_t gfp;
2033

C
Chris Wilson 已提交
2034 2035 2036 2037 2038 2039 2040
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2041 2042 2043 2044
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2045
	page_count = obj->base.size / PAGE_SIZE;
2046 2047
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2048
		return -ENOMEM;
2049
	}
2050

2051 2052 2053 2054 2055
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2056
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2057
	gfp = mapping_gfp_mask(mapping);
2058
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2059
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2060 2061 2062
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2063 2064
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2065 2066 2067 2068 2069
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2070 2071 2072 2073 2074 2075 2076 2077
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2078
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2079 2080 2081
			if (IS_ERR(page))
				goto err_pages;
		}
2082 2083 2084 2085 2086 2087 2088 2089
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2090 2091 2092 2093 2094 2095 2096 2097 2098
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2099 2100 2101

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2102
	}
2103 2104 2105 2106
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2107 2108
	obj->pages = st;

2109
	if (i915_gem_object_needs_bit17_swizzle(obj))
2110 2111
		i915_gem_object_do_bit_17_swizzle(obj);

2112 2113 2114 2115
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2116 2117 2118
	return 0;

err_pages:
2119 2120
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2121
		page_cache_release(sg_page_iter_page(&sg_iter));
2122 2123
	sg_free_table(st);
	kfree(st);
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2137 2138
}

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2153
	if (obj->pages)
2154 2155
		return 0;

2156
	if (obj->madv != I915_MADV_WILLNEED) {
2157
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2158
		return -EFAULT;
2159 2160
	}

2161 2162
	BUG_ON(obj->pages_pin_count);

2163 2164 2165 2166
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2167
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2168 2169 2170 2171

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2172
	return 0;
2173 2174
}

B
Ben Widawsky 已提交
2175
static void
2176
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2177
			       struct intel_engine_cs *ring)
2178
{
2179 2180
	struct drm_i915_gem_request *req;
	struct intel_engine_cs *old_ring;
2181

2182
	BUG_ON(ring == NULL);
2183 2184 2185 2186 2187

	req = intel_ring_get_request(ring);
	old_ring = i915_gem_request_get_ring(obj->last_read_req);

	if (old_ring != ring && obj->last_write_req) {
2188 2189
		/* Keep the request relative to the current ring */
		i915_gem_request_assign(&obj->last_write_req, req);
2190
	}
2191 2192

	/* Add a reference if we're newly entering the active list. */
2193 2194 2195
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2196
	}
2197

2198
	list_move_tail(&obj->ring_list, &ring->active_list);
2199

2200
	i915_gem_request_assign(&obj->last_read_req, req);
2201 2202
}

B
Ben Widawsky 已提交
2203
void i915_vma_move_to_active(struct i915_vma *vma,
2204
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2205 2206 2207 2208 2209
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2210 2211
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2212
{
2213
	struct i915_vma *vma;
2214

2215
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2216
	BUG_ON(!obj->active);
2217

2218 2219 2220
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2221
	}
2222

2223 2224
	intel_fb_obj_flush(obj, true);

2225
	list_del_init(&obj->ring_list);
2226

2227 2228
	i915_gem_request_assign(&obj->last_read_req, NULL);
	i915_gem_request_assign(&obj->last_write_req, NULL);
2229 2230
	obj->base.write_domain = 0;

2231
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2232 2233 2234 2235 2236

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2237
}
2238

2239 2240 2241
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2242
	if (obj->last_read_req == NULL)
2243 2244
		return;

2245
	if (i915_gem_request_completed(obj->last_read_req, true))
2246 2247 2248
		i915_gem_object_move_to_inactive(obj);
}

2249
static int
2250
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2251
{
2252
	struct drm_i915_private *dev_priv = dev->dev_private;
2253
	struct intel_engine_cs *ring;
2254
	int ret, i, j;
2255

2256
	/* Carefully retire all requests without writing to the rings */
2257
	for_each_ring(ring, dev_priv, i) {
2258 2259 2260
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2261 2262
	}
	i915_gem_retire_requests(dev);
2263 2264

	/* Finally reset hw state */
2265
	for_each_ring(ring, dev_priv, i) {
2266
		intel_ring_init_seqno(ring, seqno);
2267

2268 2269
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2270
	}
2271

2272
	return 0;
2273 2274
}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2301 2302
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2303
{
2304 2305 2306 2307
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2308
		int ret = i915_gem_init_seqno(dev, 0);
2309 2310
		if (ret)
			return ret;
2311

2312 2313
		dev_priv->next_seqno = 1;
	}
2314

2315
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2316
	return 0;
2317 2318
}

2319
int __i915_add_request(struct intel_engine_cs *ring,
2320
		       struct drm_file *file,
2321
		       struct drm_i915_gem_object *obj)
2322
{
2323
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2324
	struct drm_i915_gem_request *request;
2325
	struct intel_ringbuffer *ringbuf;
2326
	u32 request_start;
2327 2328
	int ret;

2329
	request = ring->outstanding_lazy_request;
2330 2331 2332 2333
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
2334
		ringbuf = request->ctx->engine[ring->id].ringbuf;
2335 2336 2337 2338
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2339 2340 2341 2342 2343 2344 2345
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2346
	if (i915.enable_execlists) {
2347
		ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2348 2349 2350 2351 2352 2353 2354
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2355

2356 2357 2358 2359 2360
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2361
	request->postfix = intel_ring_get_tail(ringbuf);
2362

2363
	if (i915.enable_execlists) {
2364
		ret = ring->emit_request(ringbuf, request);
2365 2366 2367 2368 2369 2370 2371
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
	}
2372

2373
	request->head = request_start;
2374
	request->tail = intel_ring_get_tail(ringbuf);
2375 2376 2377 2378 2379 2380 2381

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2382
	request->batch_obj = obj;
2383

2384 2385 2386 2387 2388 2389 2390 2391
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2392

2393
	request->emitted_jiffies = jiffies;
2394
	list_add_tail(&request->list, &ring->request_list);
2395
	request->file_priv = NULL;
2396

C
Chris Wilson 已提交
2397 2398 2399
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2400
		spin_lock(&file_priv->mm.lock);
2401
		request->file_priv = file_priv;
2402
		list_add_tail(&request->client_list,
2403
			      &file_priv->mm.request_list);
2404
		spin_unlock(&file_priv->mm.lock);
2405 2406

		request->pid = get_pid(task_pid(current));
2407
	}
2408

2409
	trace_i915_gem_request_add(request);
2410
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2411

2412
	i915_queue_hangcheck(ring->dev);
2413

2414 2415 2416 2417
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2418

2419
	return 0;
2420 2421
}

2422 2423
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2424
{
2425
	struct drm_i915_file_private *file_priv = request->file_priv;
2426

2427 2428
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2429

2430
	spin_lock(&file_priv->mm.lock);
2431 2432
	list_del(&request->client_list);
	request->file_priv = NULL;
2433
	spin_unlock(&file_priv->mm.lock);
2434 2435
}

2436
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2437
				   const struct intel_context *ctx)
2438
{
2439
	unsigned long elapsed;
2440

2441 2442 2443
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2444 2445
		return true;

2446 2447
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2448
		if (!i915_gem_context_is_default(ctx)) {
2449
			DRM_DEBUG("context hanging too fast, banning!\n");
2450
			return true;
2451 2452 2453
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2454
			return true;
2455
		}
2456 2457 2458 2459 2460
	}

	return false;
}

2461
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2462
				  struct intel_context *ctx,
2463
				  const bool guilty)
2464
{
2465 2466 2467 2468
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2469

2470 2471 2472
	hs = &ctx->hang_stats;

	if (guilty) {
2473
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2474 2475 2476 2477
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2478 2479 2480
	}
}

2481 2482 2483 2484 2485
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2486 2487
	put_pid(request->pid);

2488 2489 2490 2491 2492 2493 2494 2495 2496
	i915_gem_request_unreference(request);
}

void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2497 2498
	if (ctx) {
		if (i915.enable_execlists) {
2499
			struct intel_engine_cs *ring = req->ring;
2500

2501 2502 2503
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2504

2505 2506
		i915_gem_context_unreference(ctx);
	}
2507

2508
	kmem_cache_free(req->i915->requests, req);
2509 2510
}

2511 2512 2513
int i915_gem_request_alloc(struct intel_engine_cs *ring,
			   struct intel_context *ctx)
{
2514 2515
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
	struct drm_i915_gem_request *rq;
2516 2517 2518 2519 2520
	int ret;

	if (ring->outstanding_lazy_request)
		return 0;

2521 2522
	rq = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (rq == NULL)
2523 2524
		return -ENOMEM;

2525 2526 2527 2528
	kref_init(&rq->ref);
	rq->i915 = dev_priv;

	ret = i915_gem_get_seqno(ring->dev, &rq->seqno);
2529
	if (ret) {
2530
		kfree(rq);
2531 2532 2533
		return ret;
	}

2534
	rq->ring = ring;
2535 2536

	if (i915.enable_execlists)
2537
		ret = intel_logical_ring_alloc_request_extras(rq, ctx);
2538
	else
2539
		ret = intel_ring_alloc_request_extras(rq);
2540
	if (ret) {
2541
		kfree(rq);
2542 2543 2544
		return ret;
	}

2545
	ring->outstanding_lazy_request = rq;
2546 2547 2548
	return 0;
}

2549
struct drm_i915_gem_request *
2550
i915_gem_find_active_request(struct intel_engine_cs *ring)
2551
{
2552 2553 2554
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2555
		if (i915_gem_request_completed(request, false))
2556
			continue;
2557

2558
		return request;
2559
	}
2560 2561 2562 2563 2564

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2565
				       struct intel_engine_cs *ring)
2566 2567 2568 2569
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2570
	request = i915_gem_find_active_request(ring);
2571 2572 2573 2574 2575 2576

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2577
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2578 2579

	list_for_each_entry_continue(request, &ring->request_list, list)
2580
		i915_set_reset_status(dev_priv, request->ctx, false);
2581
}
2582

2583
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2584
					struct intel_engine_cs *ring)
2585
{
2586
	while (!list_empty(&ring->active_list)) {
2587
		struct drm_i915_gem_object *obj;
2588

2589 2590 2591
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2592

2593
		i915_gem_object_move_to_inactive(obj);
2594
	}
2595

2596 2597 2598 2599 2600 2601
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2602
		struct drm_i915_gem_request *submit_req;
2603 2604

		submit_req = list_first_entry(&ring->execlist_queue,
2605
				struct drm_i915_gem_request,
2606 2607
				execlist_link);
		list_del(&submit_req->execlist_link);
2608 2609 2610 2611

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2612
		i915_gem_request_unreference(submit_req);
2613 2614
	}

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2631

2632 2633
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2634 2635
}

2636
void i915_gem_restore_fences(struct drm_device *dev)
2637 2638 2639 2640
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2641
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2642
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2643

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2654 2655 2656
	}
}

2657
void i915_gem_reset(struct drm_device *dev)
2658
{
2659
	struct drm_i915_private *dev_priv = dev->dev_private;
2660
	struct intel_engine_cs *ring;
2661
	int i;
2662

2663 2664 2665 2666 2667 2668 2669 2670
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2671
	for_each_ring(ring, dev_priv, i)
2672
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2673

2674 2675
	i915_gem_context_reset(dev);

2676
	i915_gem_restore_fences(dev);
2677 2678 2679 2680 2681
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2682
void
2683
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2684
{
C
Chris Wilson 已提交
2685
	if (list_empty(&ring->request_list))
2686 2687
		return;

C
Chris Wilson 已提交
2688
	WARN_ON(i915_verify_lists(ring->dev));
2689

2690 2691 2692 2693
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2694
	 */
2695
	while (!list_empty(&ring->request_list)) {
2696 2697
		struct drm_i915_gem_request *request;

2698
		request = list_first_entry(&ring->request_list,
2699 2700 2701
					   struct drm_i915_gem_request,
					   list);

2702
		if (!i915_gem_request_completed(request, true))
2703 2704
			break;

2705
		trace_i915_gem_request_retire(request);
2706

2707 2708 2709 2710 2711
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2712
		request->ringbuf->last_retired_head = request->postfix;
2713

2714
		i915_gem_free_request(request);
2715
	}
2716

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

		if (!i915_gem_request_completed(obj->last_read_req, true))
			break;

		i915_gem_object_move_to_inactive(obj);
	}

2734 2735
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2736
		ring->irq_put(ring);
2737
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2738
	}
2739

C
Chris Wilson 已提交
2740
	WARN_ON(i915_verify_lists(ring->dev));
2741 2742
}

2743
bool
2744 2745
i915_gem_retire_requests(struct drm_device *dev)
{
2746
	struct drm_i915_private *dev_priv = dev->dev_private;
2747
	struct intel_engine_cs *ring;
2748
	bool idle = true;
2749
	int i;
2750

2751
	for_each_ring(ring, dev_priv, i) {
2752
		i915_gem_retire_requests_ring(ring);
2753
		idle &= list_empty(&ring->request_list);
2754 2755 2756 2757 2758 2759 2760 2761 2762
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2763 2764 2765 2766 2767 2768 2769 2770
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2771 2772
}

2773
static void
2774 2775
i915_gem_retire_work_handler(struct work_struct *work)
{
2776 2777 2778
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2779
	bool idle;
2780

2781
	/* Come back later if the device is busy... */
2782 2783 2784 2785
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2786
	}
2787
	if (!idle)
2788 2789
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2790
}
2791

2792 2793 2794 2795 2796
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2797
	struct drm_device *dev = dev_priv->dev;
2798 2799 2800 2801 2802 2803
	struct intel_engine_cs *ring;
	int i;

	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2804 2805 2806 2807 2808 2809 2810 2811 2812

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
2813

2814 2815
		mutex_unlock(&dev->struct_mutex);
	}
2816 2817
}

2818 2819 2820 2821 2822 2823 2824 2825
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2826
	struct intel_engine_cs *ring;
2827 2828 2829
	int ret;

	if (obj->active) {
2830 2831
		ring = i915_gem_request_get_ring(obj->last_read_req);

2832
		ret = i915_gem_check_olr(obj->last_read_req);
2833 2834 2835
		if (ret)
			return ret;

2836
		i915_gem_retire_requests_ring(ring);
2837 2838 2839 2840 2841
	}

	return 0;
}

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2867
	struct drm_i915_private *dev_priv = dev->dev_private;
2868 2869
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2870
	struct drm_i915_gem_request *req;
2871
	unsigned reset_counter;
2872 2873
	int ret = 0;

2874 2875 2876
	if (args->flags != 0)
		return -EINVAL;

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2887 2888
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2889 2890 2891
	if (ret)
		goto out;

2892 2893
	if (!obj->active || !obj->last_read_req)
		goto out;
2894

2895
	req = obj->last_read_req;
2896 2897

	/* Do this after OLR check to make sure we make forward progress polling
2898
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
2899
	 */
2900
	if (args->timeout_ns == 0) {
2901 2902 2903 2904 2905
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2906
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2907
	i915_gem_request_reference(req);
2908 2909
	mutex_unlock(&dev->struct_mutex);

2910 2911
	ret = __i915_wait_request(req, reset_counter, true,
				  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2912
				  file->driver_priv);
2913
	i915_gem_request_unreference__unlocked(req);
2914
	return ret;
2915 2916 2917 2918 2919 2920 2921

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2934 2935
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2936
		     struct intel_engine_cs *to)
2937
{
2938
	struct intel_engine_cs *from;
2939 2940 2941
	u32 seqno;
	int ret, idx;

2942 2943
	from = i915_gem_request_get_ring(obj->last_read_req);

2944 2945 2946
	if (from == NULL || to == from)
		return 0;

2947
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2948
		return i915_gem_object_wait_rendering(obj, false);
2949 2950 2951

	idx = intel_ring_sync_index(from, to);

2952
	seqno = i915_gem_request_get_seqno(obj->last_read_req);
R
Rodrigo Vivi 已提交
2953 2954
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
2955
	if (seqno <= from->semaphore.sync_seqno[idx])
2956 2957
		return 0;

2958
	ret = i915_gem_check_olr(obj->last_read_req);
2959 2960
	if (ret)
		return ret;
2961

2962
	trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2963
	ret = to->semaphore.sync_to(to, from, seqno);
2964
	if (!ret)
2965
		/* We use last_read_req because sync_to()
2966 2967 2968
		 * might have just caused seqno wrap under
		 * the radar.
		 */
2969 2970
		from->semaphore.sync_seqno[idx] =
				i915_gem_request_get_seqno(obj->last_read_req);
2971

2972
	return ret;
2973 2974
}

2975 2976 2977 2978 2979 2980 2981
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2982 2983 2984
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2985 2986 2987
	/* Wait for any direct GTT access to complete */
	mb();

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2999
int i915_vma_unbind(struct i915_vma *vma)
3000
{
3001
	struct drm_i915_gem_object *obj = vma->obj;
3002
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3003
	int ret;
3004

3005
	if (list_empty(&vma->vma_link))
3006 3007
		return 0;

3008 3009 3010 3011
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3012

B
Ben Widawsky 已提交
3013
	if (vma->pin_count)
3014
		return -EBUSY;
3015

3016 3017
	BUG_ON(obj->pages == NULL);

3018
	ret = i915_gem_object_finish_gpu(obj);
3019
	if (ret)
3020 3021 3022 3023 3024 3025
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3026 3027
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3028
		i915_gem_object_finish_gtt(obj);
3029

3030 3031 3032 3033 3034
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3035

3036
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3037

3038 3039
	vma->unbind_vma(vma);

3040
	list_del_init(&vma->mm_list);
3041 3042 3043 3044 3045 3046 3047 3048 3049
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3050

B
Ben Widawsky 已提交
3051 3052 3053 3054
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3055
	 * no more VMAs exist. */
3056
	if (list_empty(&obj->vma_list)) {
3057 3058 3059 3060
		/* Throw away the active reference before
		 * moving to the unbound list. */
		i915_gem_object_retire(obj);

3061
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3062
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3063
	}
3064

3065 3066 3067 3068 3069 3070
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3071
	return 0;
3072 3073
}

3074
int i915_gpu_idle(struct drm_device *dev)
3075
{
3076
	struct drm_i915_private *dev_priv = dev->dev_private;
3077
	struct intel_engine_cs *ring;
3078
	int ret, i;
3079 3080

	/* Flush everything onto the inactive list. */
3081
	for_each_ring(ring, dev_priv, i) {
3082 3083 3084 3085 3086
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3087

3088
		ret = intel_ring_idle(ring);
3089 3090 3091
		if (ret)
			return ret;
	}
3092

3093
	return 0;
3094 3095
}

3096 3097
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3098
{
3099
	struct drm_i915_private *dev_priv = dev->dev_private;
3100 3101
	int fence_reg;
	int fence_pitch_shift;
3102

3103 3104 3105 3106 3107 3108 3109 3110
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3125
	if (obj) {
3126
		u32 size = i915_gem_obj_ggtt_size(obj);
3127
		uint64_t val;
3128

3129 3130 3131 3132 3133 3134 3135
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3136
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3137
				 0xfffff000) << 32;
3138
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3139
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3140 3141 3142
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3143

3144 3145 3146 3147 3148 3149 3150 3151 3152
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3153 3154
}

3155 3156
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3157
{
3158
	struct drm_i915_private *dev_priv = dev->dev_private;
3159
	u32 val;
3160

3161
	if (obj) {
3162
		u32 size = i915_gem_obj_ggtt_size(obj);
3163 3164
		int pitch_val;
		int tile_width;
3165

3166
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3167
		     (size & -size) != size ||
3168 3169 3170
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3171

3172 3173 3174 3175 3176 3177 3178 3179 3180
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3181
		val = i915_gem_obj_ggtt_offset(obj);
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3197 3198
}

3199 3200
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3201
{
3202
	struct drm_i915_private *dev_priv = dev->dev_private;
3203 3204
	uint32_t val;

3205
	if (obj) {
3206
		u32 size = i915_gem_obj_ggtt_size(obj);
3207
		uint32_t pitch_val;
3208

3209
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3210
		     (size & -size) != size ||
3211 3212 3213
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3214

3215 3216
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3217

3218
		val = i915_gem_obj_ggtt_offset(obj);
3219 3220 3221 3222 3223 3224 3225
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3226

3227 3228 3229 3230
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3231 3232 3233 3234 3235
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3236 3237 3238
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3239 3240 3241 3242 3243 3244 3245 3246
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3247 3248 3249 3250
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3251 3252 3253 3254 3255 3256
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3257 3258 3259 3260 3261 3262

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3263 3264
}

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3275
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3276 3277 3278
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3279 3280

	if (enable) {
3281
		obj->fence_reg = reg;
3282 3283 3284 3285 3286 3287 3288
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3289
	obj->fence_dirty = false;
3290 3291
}

3292
static int
3293
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3294
{
3295
	if (obj->last_fenced_req) {
3296
		int ret = i915_wait_request(obj->last_fenced_req);
3297 3298
		if (ret)
			return ret;
3299

3300
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3301 3302 3303 3304 3305 3306 3307 3308
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3309
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3310
	struct drm_i915_fence_reg *fence;
3311 3312
	int ret;

3313
	ret = i915_gem_object_wait_fence(obj);
3314 3315 3316
	if (ret)
		return ret;

3317 3318
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3319

3320 3321
	fence = &dev_priv->fence_regs[obj->fence_reg];

3322 3323 3324
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3325
	i915_gem_object_fence_lost(obj);
3326
	i915_gem_object_update_fence(obj, fence, false);
3327 3328 3329 3330 3331

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3332
i915_find_fence_reg(struct drm_device *dev)
3333 3334
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3335
	struct drm_i915_fence_reg *reg, *avail;
3336
	int i;
3337 3338

	/* First try to find a free reg */
3339
	avail = NULL;
3340 3341 3342
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3343
			return reg;
3344

3345
		if (!reg->pin_count)
3346
			avail = reg;
3347 3348
	}

3349
	if (avail == NULL)
3350
		goto deadlock;
3351 3352

	/* None available, try to steal one or wait for a user to finish */
3353
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3354
		if (reg->pin_count)
3355 3356
			continue;

C
Chris Wilson 已提交
3357
		return reg;
3358 3359
	}

3360 3361 3362 3363 3364 3365
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3366 3367
}

3368
/**
3369
 * i915_gem_object_get_fence - set up fencing for an object
3370 3371 3372 3373 3374 3375 3376 3377 3378
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3379 3380
 *
 * For an untiled surface, this removes any existing fence.
3381
 */
3382
int
3383
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3384
{
3385
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3386
	struct drm_i915_private *dev_priv = dev->dev_private;
3387
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3388
	struct drm_i915_fence_reg *reg;
3389
	int ret;
3390

3391 3392 3393
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3394
	if (obj->fence_dirty) {
3395
		ret = i915_gem_object_wait_fence(obj);
3396 3397 3398
		if (ret)
			return ret;
	}
3399

3400
	/* Just update our place in the LRU if our fence is getting reused. */
3401 3402
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3403
		if (!obj->fence_dirty) {
3404 3405 3406 3407 3408
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3409 3410 3411
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3412
		reg = i915_find_fence_reg(dev);
3413 3414
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3415

3416 3417 3418
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3419
			ret = i915_gem_object_wait_fence(old);
3420 3421 3422
			if (ret)
				return ret;

3423
			i915_gem_object_fence_lost(old);
3424
		}
3425
	} else
3426 3427
		return 0;

3428 3429
	i915_gem_object_update_fence(obj, reg, enable);

3430
	return 0;
3431 3432
}

3433
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3434 3435
				     unsigned long cache_level)
{
3436
	struct drm_mm_node *gtt_space = &vma->node;
3437 3438
	struct drm_mm_node *other;

3439 3440 3441 3442 3443 3444
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3445
	 */
3446
	if (vma->vm->mm.color_adjust == NULL)
3447 3448
		return true;

3449
	if (!drm_mm_node_allocated(gtt_space))
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3466 3467 3468
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3469
static struct i915_vma *
3470 3471
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3472
			   const struct i915_ggtt_view *ggtt_view,
3473
			   unsigned alignment,
3474
			   uint64_t flags)
3475
{
3476
	struct drm_device *dev = obj->base.dev;
3477
	struct drm_i915_private *dev_priv = dev->dev_private;
3478
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3479 3480 3481
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3482
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3483
	struct i915_vma *vma;
3484
	int ret;
3485

3486 3487 3488
	if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return ERR_PTR(-EINVAL);

3489 3490 3491 3492 3493
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3494
						     obj->tiling_mode, true);
3495
	unfenced_alignment =
3496
		i915_gem_get_gtt_alignment(dev,
3497 3498
					   obj->base.size,
					   obj->tiling_mode, false);
3499

3500
	if (alignment == 0)
3501
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3502
						unfenced_alignment;
3503
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3504
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3505
		return ERR_PTR(-EINVAL);
3506 3507
	}

3508
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3509

3510 3511 3512
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3513 3514
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3515
			  obj->base.size,
3516
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3517
			  end);
3518
		return ERR_PTR(-E2BIG);
3519 3520
	}

3521
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3522
	if (ret)
3523
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3524

3525 3526
	i915_gem_object_pin_pages(obj);

3527 3528 3529
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3530
	if (IS_ERR(vma))
3531
		goto err_unpin;
B
Ben Widawsky 已提交
3532

3533
search_free:
3534
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3535
						  size, alignment,
3536 3537
						  obj->cache_level,
						  start, end,
3538 3539
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3540
	if (ret) {
3541
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3542 3543 3544
					       obj->cache_level,
					       start, end,
					       flags);
3545 3546
		if (ret == 0)
			goto search_free;
3547

3548
		goto err_free_vma;
3549
	}
3550
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3551
		ret = -EINVAL;
3552
		goto err_remove_node;
3553 3554
	}

3555
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3556
	if (ret)
3557
		goto err_remove_node;
3558

3559 3560 3561 3562 3563 3564
	trace_i915_vma_bind(vma, flags);
	ret = i915_vma_bind(vma, obj->cache_level,
			    flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
	if (ret)
		goto err_finish_gtt;

3565
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3566
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3567

3568
	return vma;
B
Ben Widawsky 已提交
3569

3570 3571
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3572
err_remove_node:
3573
	drm_mm_remove_node(&vma->node);
3574
err_free_vma:
B
Ben Widawsky 已提交
3575
	i915_gem_vma_destroy(vma);
3576
	vma = ERR_PTR(ret);
3577
err_unpin:
B
Ben Widawsky 已提交
3578
	i915_gem_object_unpin_pages(obj);
3579
	return vma;
3580 3581
}

3582
bool
3583 3584
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3585 3586 3587 3588 3589
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3590
	if (obj->pages == NULL)
3591
		return false;
3592

3593 3594 3595 3596
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3597
	if (obj->stolen || obj->phys_handle)
3598
		return false;
3599

3600 3601 3602 3603 3604 3605 3606 3607
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3608 3609
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3610
		return false;
3611
	}
3612

C
Chris Wilson 已提交
3613
	trace_i915_gem_object_clflush(obj);
3614
	drm_clflush_sg(obj->pages);
3615
	obj->cache_dirty = false;
3616 3617

	return true;
3618 3619 3620 3621
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3622
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3623
{
C
Chris Wilson 已提交
3624 3625
	uint32_t old_write_domain;

3626
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3627 3628
		return;

3629
	/* No actual flushing is required for the GTT write domain.  Writes
3630 3631
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3632 3633 3634 3635
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3636
	 */
3637 3638
	wmb();

3639 3640
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3641

3642 3643
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3644
	trace_i915_gem_object_change_domain(obj,
3645
					    obj->base.read_domains,
C
Chris Wilson 已提交
3646
					    old_write_domain);
3647 3648 3649 3650
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3651
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3652
{
C
Chris Wilson 已提交
3653
	uint32_t old_write_domain;
3654

3655
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3656 3657
		return;

3658
	if (i915_gem_clflush_object(obj, obj->pin_display))
3659 3660
		i915_gem_chipset_flush(obj->base.dev);

3661 3662
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3663

3664 3665
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3666
	trace_i915_gem_object_change_domain(obj,
3667
					    obj->base.read_domains,
C
Chris Wilson 已提交
3668
					    old_write_domain);
3669 3670
}

3671 3672 3673 3674 3675 3676
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3677
int
3678
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3679
{
C
Chris Wilson 已提交
3680
	uint32_t old_write_domain, old_read_domains;
3681
	struct i915_vma *vma;
3682
	int ret;
3683

3684 3685 3686
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3687
	ret = i915_gem_object_wait_rendering(obj, !write);
3688 3689 3690
	if (ret)
		return ret;

3691
	i915_gem_object_retire(obj);
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3705
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3706

3707 3708 3709 3710 3711 3712 3713
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3714 3715
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3716

3717 3718 3719
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3720 3721
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3722
	if (write) {
3723 3724 3725
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3726 3727
	}

3728
	if (write)
3729
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3730

C
Chris Wilson 已提交
3731 3732 3733 3734
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3735
	/* And bump the LRU for this access */
3736 3737
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3738
		list_move_tail(&vma->mm_list,
3739
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3740

3741 3742 3743
	return 0;
}

3744 3745 3746
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3747
	struct drm_device *dev = obj->base.dev;
3748
	struct i915_vma *vma, *next;
3749 3750 3751 3752 3753
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3754
	if (i915_gem_obj_is_pinned(obj)) {
3755 3756 3757 3758
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3759
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3760
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3761
			ret = i915_vma_unbind(vma);
3762 3763 3764
			if (ret)
				return ret;
		}
3765 3766
	}

3767
	if (i915_gem_obj_bound_any(obj)) {
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3778
		if (INTEL_INFO(dev)->gen < 6) {
3779 3780 3781 3782 3783
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3784
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3785 3786 3787 3788 3789 3790
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
						    vma->bound & GLOBAL_BIND);
				if (ret)
					return ret;
			}
3791 3792
	}

3793 3794 3795 3796
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3797 3798 3799 3800 3801
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3802 3803 3804 3805 3806
	}

	return 0;
}

B
Ben Widawsky 已提交
3807 3808
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3809
{
B
Ben Widawsky 已提交
3810
	struct drm_i915_gem_caching *args = data;
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3824 3825 3826 3827 3828 3829
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3830 3831 3832 3833
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3834 3835 3836 3837
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3838 3839 3840 3841 3842 3843 3844

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3845 3846
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3847
{
B
Ben Widawsky 已提交
3848
	struct drm_i915_gem_caching *args = data;
3849 3850 3851 3852
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3853 3854
	switch (args->caching) {
	case I915_CACHING_NONE:
3855 3856
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3857
	case I915_CACHING_CACHED:
3858 3859
		level = I915_CACHE_LLC;
		break;
3860 3861 3862
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3863 3864 3865 3866
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3867 3868 3869 3870
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3885 3886
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3887 3888 3889 3890 3891 3892
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

D
Daniel Vetter 已提交
3893
	/* There are 2 sources that pin objects:
3894 3895 3896 3897
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *
	 * We can ignore reservations as we hold the struct_mutex and
D
Daniel Vetter 已提交
3898
	 * are only called outside of the reservation path.
3899
	 */
D
Daniel Vetter 已提交
3900
	return vma->pin_count;
3901 3902
}

3903
/*
3904 3905 3906
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3907 3908
 */
int
3909 3910
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3911 3912
				     struct intel_engine_cs *pipelined,
				     const struct i915_ggtt_view *view)
3913
{
3914
	u32 old_read_domains, old_write_domain;
3915
	bool was_pin_display;
3916 3917
	int ret;

3918
	if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3919 3920
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3921 3922 3923
			return ret;
	}

3924 3925 3926
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3927
	was_pin_display = obj->pin_display;
3928 3929
	obj->pin_display = true;

3930 3931 3932 3933 3934 3935 3936 3937 3938
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3939 3940
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3941
	if (ret)
3942
		goto err_unpin_display;
3943

3944 3945 3946 3947
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3948 3949 3950
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3951
	if (ret)
3952
		goto err_unpin_display;
3953

3954
	i915_gem_object_flush_cpu_write_domain(obj);
3955

3956
	old_write_domain = obj->base.write_domain;
3957
	old_read_domains = obj->base.read_domains;
3958 3959 3960 3961

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3962
	obj->base.write_domain = 0;
3963
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3964 3965 3966

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3967
					    old_write_domain);
3968 3969

	return 0;
3970 3971

err_unpin_display:
3972 3973
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
3974 3975 3976 3977
	return ret;
}

void
3978 3979
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3980
{
3981 3982
	i915_gem_object_ggtt_unpin_view(obj, view);

3983
	obj->pin_display = is_pin_display(obj);
3984 3985
}

3986
int
3987
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3988
{
3989 3990
	int ret;

3991
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3992 3993
		return 0;

3994
	ret = i915_gem_object_wait_rendering(obj, false);
3995 3996 3997
	if (ret)
		return ret;

3998 3999
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4000
	return 0;
4001 4002
}

4003 4004 4005 4006 4007 4008
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4009
int
4010
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4011
{
C
Chris Wilson 已提交
4012
	uint32_t old_write_domain, old_read_domains;
4013 4014
	int ret;

4015 4016 4017
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4018
	ret = i915_gem_object_wait_rendering(obj, !write);
4019 4020 4021
	if (ret)
		return ret;

4022
	i915_gem_object_retire(obj);
4023
	i915_gem_object_flush_gtt_write_domain(obj);
4024

4025 4026
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4027

4028
	/* Flush the CPU cache if it's still invalid. */
4029
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4030
		i915_gem_clflush_object(obj, false);
4031

4032
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4033 4034 4035 4036 4037
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4038
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4039 4040 4041 4042 4043

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4044 4045
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4046
	}
4047

4048
	if (write)
4049
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4050

C
Chris Wilson 已提交
4051 4052 4053 4054
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4055 4056 4057
	return 0;
}

4058 4059 4060
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4061 4062 4063 4064
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4065 4066 4067
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4068
static int
4069
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4070
{
4071 4072
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4073
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4074
	struct drm_i915_gem_request *request, *target = NULL;
4075
	unsigned reset_counter;
4076
	int ret;
4077

4078 4079 4080 4081 4082 4083 4084
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4085

4086
	spin_lock(&file_priv->mm.lock);
4087
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4088 4089
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4090

4091
		target = request;
4092
	}
4093
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4094 4095
	if (target)
		i915_gem_request_reference(target);
4096
	spin_unlock(&file_priv->mm.lock);
4097

4098
	if (target == NULL)
4099
		return 0;
4100

4101
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4102 4103
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4104

4105
	i915_gem_request_unreference__unlocked(target);
4106

4107 4108 4109
	return ret;
}

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4129 4130 4131 4132 4133 4134
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4135
{
4136
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4137
	struct i915_vma *vma;
4138
	unsigned bound;
4139 4140
	int ret;

4141 4142 4143
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4144
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4145
		return -EINVAL;
4146

4147 4148 4149
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4150 4151 4152 4153 4154 4155 4156 4157 4158
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4159
	if (vma) {
B
Ben Widawsky 已提交
4160 4161 4162
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4163
		if (i915_vma_misplaced(vma, alignment, flags)) {
4164
			unsigned long offset;
4165
			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4166
					     i915_gem_obj_offset(obj, vm);
B
Ben Widawsky 已提交
4167
			WARN(vma->pin_count,
4168
			     "bo is already pinned in %s with incorrect alignment:"
4169
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4170
			     " obj->map_and_fenceable=%d\n",
4171 4172
			     ggtt_view ? "ggtt" : "ppgtt",
			     offset,
4173
			     alignment,
4174
			     !!(flags & PIN_MAPPABLE),
4175
			     obj->map_and_fenceable);
4176
			ret = i915_vma_unbind(vma);
4177 4178
			if (ret)
				return ret;
4179 4180

			vma = NULL;
4181 4182 4183
		}
	}

4184
	bound = vma ? vma->bound : 0;
4185
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4186 4187 4188 4189
		/* In true PPGTT, bind has possibly changed PDEs, which
		 * means we must do a context switch before the GPU can
		 * accurately read some of the VMAs.
		 */
4190 4191
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4192 4193
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4194
	}
J
Jesse Barnes 已提交
4195

4196 4197 4198 4199 4200
	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
		ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
		if (ret)
			return ret;
	}
4201

4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4217
		mappable = (vma->node.start + fence_size <=
4218 4219 4220 4221 4222 4223 4224
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;
	}

	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);

4225
	vma->pin_count++;
4226 4227
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4228 4229 4230 4231

	return 0;
}

4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4253
				      alignment, flags | PIN_GLOBAL);
4254 4255
}

4256
void
4257 4258
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4259
{
4260
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4261

B
Ben Widawsky 已提交
4262
	BUG_ON(!vma);
4263
	WARN_ON(vma->pin_count == 0);
4264
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4265

4266
	if (--vma->pin_count == 0 && view->type == I915_GGTT_VIEW_NORMAL)
4267
		obj->pin_mappable = false;
4268 4269
}

4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4296 4297
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4298
		    struct drm_file *file)
4299 4300
{
	struct drm_i915_gem_busy *args = data;
4301
	struct drm_i915_gem_object *obj;
4302 4303
	int ret;

4304
	ret = i915_mutex_lock_interruptible(dev);
4305
	if (ret)
4306
		return ret;
4307

4308
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4309
	if (&obj->base == NULL) {
4310 4311
		ret = -ENOENT;
		goto unlock;
4312
	}
4313

4314 4315 4316 4317
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4318
	 */
4319
	ret = i915_gem_object_flush_active(obj);
4320

4321
	args->busy = obj->active;
4322 4323
	if (obj->last_read_req) {
		struct intel_engine_cs *ring;
4324
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4325 4326
		ring = i915_gem_request_get_ring(obj->last_read_req);
		args->busy |= intel_ring_flag(ring) << 16;
4327
	}
4328

4329
	drm_gem_object_unreference(&obj->base);
4330
unlock:
4331
	mutex_unlock(&dev->struct_mutex);
4332
	return ret;
4333 4334 4335 4336 4337 4338
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4339
	return i915_gem_ring_throttle(dev, file_priv);
4340 4341
}

4342 4343 4344 4345
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4346
	struct drm_i915_private *dev_priv = dev->dev_private;
4347
	struct drm_i915_gem_madvise *args = data;
4348
	struct drm_i915_gem_object *obj;
4349
	int ret;
4350 4351 4352 4353 4354 4355 4356 4357 4358

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4359 4360 4361 4362
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4363
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4364
	if (&obj->base == NULL) {
4365 4366
		ret = -ENOENT;
		goto unlock;
4367 4368
	}

B
Ben Widawsky 已提交
4369
	if (i915_gem_obj_is_pinned(obj)) {
4370 4371
		ret = -EINVAL;
		goto out;
4372 4373
	}

4374 4375 4376 4377 4378 4379 4380 4381 4382
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4383 4384
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4385

C
Chris Wilson 已提交
4386
	/* if the object is no longer attached, discard its backing storage */
4387
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4388 4389
		i915_gem_object_truncate(obj);

4390
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4391

4392
out:
4393
	drm_gem_object_unreference(&obj->base);
4394
unlock:
4395
	mutex_unlock(&dev->struct_mutex);
4396
	return ret;
4397 4398
}

4399 4400
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4401
{
4402
	INIT_LIST_HEAD(&obj->global_list);
4403
	INIT_LIST_HEAD(&obj->ring_list);
4404
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4405
	INIT_LIST_HEAD(&obj->vma_list);
4406
	INIT_LIST_HEAD(&obj->batch_pool_link);
4407

4408 4409
	obj->ops = ops;

4410 4411 4412 4413 4414 4415
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4416 4417 4418 4419 4420
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4421 4422
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4423
{
4424
	struct drm_i915_gem_object *obj;
4425
	struct address_space *mapping;
D
Daniel Vetter 已提交
4426
	gfp_t mask;
4427

4428
	obj = i915_gem_object_alloc(dev);
4429 4430
	if (obj == NULL)
		return NULL;
4431

4432
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4433
		i915_gem_object_free(obj);
4434 4435
		return NULL;
	}
4436

4437 4438 4439 4440 4441 4442 4443
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4444
	mapping = file_inode(obj->base.filp)->i_mapping;
4445
	mapping_set_gfp_mask(mapping, mask);
4446

4447
	i915_gem_object_init(obj, &i915_gem_object_ops);
4448

4449 4450
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4451

4452 4453
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4469 4470
	trace_i915_gem_object_create(obj);

4471
	return obj;
4472 4473
}

4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4498
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4499
{
4500
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4501
	struct drm_device *dev = obj->base.dev;
4502
	struct drm_i915_private *dev_priv = dev->dev_private;
4503
	struct i915_vma *vma, *next;
4504

4505 4506
	intel_runtime_pm_get(dev_priv);

4507 4508
	trace_i915_gem_object_destroy(obj);

4509
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4510 4511 4512 4513
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4514 4515
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4516

4517 4518
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4519

4520
			WARN_ON(i915_vma_unbind(vma));
4521

4522 4523
			dev_priv->mm.interruptible = was_interruptible;
		}
4524 4525
	}

B
Ben Widawsky 已提交
4526 4527 4528 4529 4530
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4531 4532
	WARN_ON(obj->frontbuffer_bits);

4533 4534 4535 4536 4537
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4538 4539
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4540
	if (discard_backing_storage(obj))
4541
		obj->madv = I915_MADV_DONTNEED;
4542
	i915_gem_object_put_pages(obj);
4543
	i915_gem_object_free_mmap_offset(obj);
4544

4545 4546
	BUG_ON(obj->pages);

4547 4548
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4549

4550 4551 4552
	if (obj->ops->release)
		obj->ops->release(obj);

4553 4554
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4555

4556
	kfree(obj->bit_17);
4557
	i915_gem_object_free(obj);
4558 4559

	intel_runtime_pm_put(dev_priv);
4560 4561
}

4562 4563
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4564 4565
{
	struct i915_vma *vma;
4566 4567 4568 4569 4570
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4571
			return vma;
4572 4573 4574 4575 4576 4577 4578 4579 4580
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4581

4582 4583 4584 4585
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4586 4587
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4588
			return vma;
4589 4590 4591
	return NULL;
}

B
Ben Widawsky 已提交
4592 4593
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4594
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4595
	WARN_ON(vma->node.allocated);
4596 4597 4598 4599 4600

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4601 4602
	vm = vma->vm;

4603 4604
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4605

4606
	list_del(&vma->vma_link);
4607

4608
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4609 4610
}

4611 4612 4613 4614
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4615
	struct intel_engine_cs *ring;
4616 4617 4618
	int i;

	for_each_ring(ring, dev_priv, i)
4619
		dev_priv->gt.stop_ring(ring);
4620 4621
}

4622
int
4623
i915_gem_suspend(struct drm_device *dev)
4624
{
4625
	struct drm_i915_private *dev_priv = dev->dev_private;
4626
	int ret = 0;
4627

4628
	mutex_lock(&dev->struct_mutex);
4629
	ret = i915_gpu_idle(dev);
4630
	if (ret)
4631
		goto err;
4632

4633
	i915_gem_retire_requests(dev);
4634

4635
	i915_gem_stop_ringbuffers(dev);
4636 4637
	mutex_unlock(&dev->struct_mutex);

4638
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4639
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4640
	flush_delayed_work(&dev_priv->mm.idle_work);
4641

4642 4643 4644 4645 4646
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4647
	return 0;
4648 4649 4650 4651

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4652 4653
}

4654
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4655
{
4656
	struct drm_device *dev = ring->dev;
4657
	struct drm_i915_private *dev_priv = dev->dev_private;
4658 4659
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4660
	int i, ret;
B
Ben Widawsky 已提交
4661

4662
	if (!HAS_L3_DPF(dev) || !remap_info)
4663
		return 0;
B
Ben Widawsky 已提交
4664

4665 4666 4667
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4668

4669 4670 4671 4672 4673
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4674
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4675 4676 4677
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4678 4679
	}

4680
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4681

4682
	return ret;
B
Ben Widawsky 已提交
4683 4684
}

4685 4686
void i915_gem_init_swizzling(struct drm_device *dev)
{
4687
	struct drm_i915_private *dev_priv = dev->dev_private;
4688

4689
	if (INTEL_INFO(dev)->gen < 5 ||
4690 4691 4692 4693 4694 4695
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4696 4697 4698
	if (IS_GEN5(dev))
		return;

4699 4700
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4701
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4702
	else if (IS_GEN7(dev))
4703
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4704 4705
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4706 4707
	else
		BUG();
4708
}
D
Daniel Vetter 已提交
4709

4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4753
int i915_gem_init_rings(struct drm_device *dev)
4754
{
4755
	struct drm_i915_private *dev_priv = dev->dev_private;
4756
	int ret;
4757

4758
	ret = intel_init_render_ring_buffer(dev);
4759
	if (ret)
4760
		return ret;
4761 4762

	if (HAS_BSD(dev)) {
4763
		ret = intel_init_bsd_ring_buffer(dev);
4764 4765
		if (ret)
			goto cleanup_render_ring;
4766
	}
4767

4768
	if (intel_enable_blt(dev)) {
4769 4770 4771 4772 4773
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4774 4775 4776 4777 4778 4779
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4780 4781 4782 4783 4784
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4785

4786
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4787
	if (ret)
4788
		goto cleanup_bsd2_ring;
4789 4790 4791

	return 0;

4792 4793
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4794 4795
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4809
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4810
	struct intel_engine_cs *ring;
4811
	int ret, i;
4812 4813 4814 4815

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4816 4817 4818
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4819
	if (dev_priv->ellc_size)
4820
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4821

4822 4823 4824
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4825

4826
	if (HAS_PCH_NOP(dev)) {
4827 4828 4829 4830 4831 4832 4833 4834 4835
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4836 4837
	}

4838 4839
	i915_gem_init_swizzling(dev);

4840 4841 4842 4843 4844 4845 4846 4847
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
4848 4849 4850
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
4851
			goto out;
D
Daniel Vetter 已提交
4852
	}
4853

4854 4855 4856
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4857
	ret = i915_ppgtt_init_hw(dev);
4858
	if (ret && ret != -EIO) {
4859
		DRM_ERROR("PPGTT enable failed %d\n", ret);
4860
		i915_gem_cleanup_ringbuffer(dev);
4861 4862
	}

4863
	ret = i915_gem_context_enable(dev_priv);
4864
	if (ret && ret != -EIO) {
4865
		DRM_ERROR("Context enable failed %d\n", ret);
4866
		i915_gem_cleanup_ringbuffer(dev);
4867

4868
		goto out;
4869
	}
D
Daniel Vetter 已提交
4870

4871 4872
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4873
	return ret;
4874 4875
}

4876 4877 4878 4879 4880
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4881 4882 4883
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4884
	mutex_lock(&dev->struct_mutex);
4885 4886 4887

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4888 4889 4890
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4891 4892 4893
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4894
	if (!i915.enable_execlists) {
4895
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4896 4897 4898
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4899
	} else {
4900
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4901 4902 4903
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4904 4905
	}

4906 4907 4908 4909 4910 4911 4912 4913
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4914
	ret = i915_gem_init_userptr(dev);
4915 4916
	if (ret)
		goto out_unlock;
4917

4918
	i915_gem_init_global_gtt(dev);
4919

4920
	ret = i915_gem_context_init(dev);
4921 4922
	if (ret)
		goto out_unlock;
4923

D
Daniel Vetter 已提交
4924 4925
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4926
		goto out_unlock;
4927

4928
	ret = i915_gem_init_hw(dev);
4929 4930 4931 4932 4933 4934 4935 4936
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4937
	}
4938 4939

out_unlock:
4940
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4941
	mutex_unlock(&dev->struct_mutex);
4942

4943
	return ret;
4944 4945
}

4946 4947 4948
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4949
	struct drm_i915_private *dev_priv = dev->dev_private;
4950
	struct intel_engine_cs *ring;
4951
	int i;
4952

4953
	for_each_ring(ring, dev_priv, i)
4954
		dev_priv->gt.cleanup_ring(ring);
4955 4956
}

4957
static void
4958
init_ring_lists(struct intel_engine_cs *ring)
4959 4960 4961 4962 4963
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4964 4965
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4966
{
4967 4968
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4969 4970 4971 4972
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4973
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4974 4975
}

4976 4977 4978
void
i915_gem_load(struct drm_device *dev)
{
4979
	struct drm_i915_private *dev_priv = dev->dev_private;
4980 4981
	int i;

4982
	dev_priv->objects =
4983 4984 4985 4986
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4987 4988 4989 4990 4991
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4992 4993 4994 4995 4996
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4997

B
Ben Widawsky 已提交
4998 4999 5000
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

5001
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5002 5003
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5004
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5005 5006
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5007
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5008
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5009 5010
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5011 5012
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5013
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5014

5015 5016
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5017 5018 5019
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5020 5021 5022 5023
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5024 5025 5026 5027
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5028
	/* Initialize fence registers to zero */
5029 5030
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5031

5032
	i915_gem_detect_bit_6_swizzle(dev);
5033
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5034

5035 5036
	dev_priv->mm.interruptible = true;

5037
	i915_gem_shrinker_init(dev_priv);
5038 5039

	mutex_init(&dev_priv->fb_tracking.lock);
5040
}
5041

5042
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5043
{
5044
	struct drm_i915_file_private *file_priv = file->driver_priv;
5045 5046 5047 5048 5049

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5050
	spin_lock(&file_priv->mm.lock);
5051 5052 5053 5054 5055 5056 5057 5058 5059
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5060
	spin_unlock(&file_priv->mm.lock);
5061

5062 5063 5064 5065 5066
	if (!list_empty(&file_priv->rps_boost)) {
		mutex_lock(&to_i915(dev)->rps.hw_lock);
		list_del(&file_priv->rps_boost);
		mutex_unlock(&to_i915(dev)->rps.hw_lock);
	}
5067 5068 5069 5070 5071
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5072
	int ret;
5073 5074 5075 5076 5077 5078 5079 5080 5081

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5082
	file_priv->file = file;
5083
	INIT_LIST_HEAD(&file_priv->rps_boost);
5084 5085 5086 5087

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5088 5089 5090
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5091

5092
	return ret;
5093 5094
}

5095 5096 5097 5098 5099 5100 5101 5102 5103
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5121
/* All the new VM stuff */
5122 5123 5124
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
		    struct i915_address_space *vm)
5125 5126 5127 5128
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5129
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5130 5131

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5132 5133 5134 5135
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5136 5137
			return vma->node.start;
	}
5138

5139 5140
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5141 5142 5143
	return -1;
}

5144 5145
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5146
			      const struct i915_ggtt_view *view)
5147
{
5148
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5149 5150 5151
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5152 5153
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
			return vma->node.start;

	WARN(1, "global vma for this object not found.\n");
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5177
				  const struct i915_ggtt_view *view)
5178 5179 5180 5181 5182 5183
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5184
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5185
		    drm_mm_node_allocated(&vma->node))
5186 5187 5188 5189 5190 5191 5192
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5193
	struct i915_vma *vma;
5194

5195 5196
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5208
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5209 5210 5211

	BUG_ON(list_empty(&o->vma_list));

5212 5213 5214 5215
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5216 5217
		if (vma->vm == vm)
			return vma->node.size;
5218
	}
5219 5220 5221
	return 0;
}

5222
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5223 5224
{
	struct i915_vma *vma;
5225 5226 5227 5228 5229 5230 5231 5232
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->pin_count > 0)
			return true;
	}
	return false;
5233
}
5234