i915_gem.c 135.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56 57 58 59 60 61 62
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

63 64 65 66
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
67
	spin_lock(&dev_priv->mm.object_stat_lock);
68 69
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
70
	spin_unlock(&dev_priv->mm.object_stat_lock);
71 72 73 74 75
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
76
	spin_lock(&dev_priv->mm.object_stat_lock);
77 78
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
79
	spin_unlock(&dev_priv->mm.object_stat_lock);
80 81
}

82
static int
83
i915_gem_wait_for_error(struct i915_gpu_error *error)
84 85 86
{
	int ret;

87
	if (!i915_reset_in_progress(error))
88 89
		return 0;

90 91 92 93 94
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
95
	ret = wait_event_interruptible_timeout(error->reset_queue,
96
					       !i915_reset_in_progress(error),
97
					       10*HZ);
98 99 100 101
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
102
		return ret;
103 104
	} else {
		return 0;
105
	}
106 107
}

108
int i915_mutex_lock_interruptible(struct drm_device *dev)
109
{
110
	struct drm_i915_private *dev_priv = dev->dev_private;
111 112
	int ret;

113
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
114 115 116 117 118 119 120
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

121
	WARN_ON(i915_verify_lists(dev));
122 123
	return 0;
}
124

125 126
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
127
			    struct drm_file *file)
128
{
129
	struct drm_i915_private *dev_priv = to_i915(dev);
130
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
131
	struct drm_i915_gem_get_aperture *args = data;
132
	struct i915_vma *vma;
133
	size_t pinned;
134

135
	pinned = 0;
136
	mutex_lock(&dev->struct_mutex);
137
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
138 139
		if (vma->pin_count)
			pinned += vma->node.size;
140
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
141 142
		if (vma->pin_count)
			pinned += vma->node.size;
143
	mutex_unlock(&dev->struct_mutex);
144

145
	args->aper_size = ggtt->base.total;
146
	args->aper_available_size = args->aper_size - pinned;
147

148 149 150
	return 0;
}

151 152
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
153
{
154 155 156 157 158
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

176
		put_page(page);
177 178 179
		vaddr += PAGE_SIZE;
	}

180
	i915_gem_chipset_flush(to_i915(obj->base.dev));
181 182 183 184 185 186 187 188 189 190 191 192 193

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
194

195 196 197 198 199 200 201 202 203 204 205 206 207
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
208

209
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
210
	if (WARN_ON(ret)) {
211 212 213 214 215 216 217 218 219 220
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
221
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
222
		char *vaddr = obj->phys_handle->vaddr;
223 224 225
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
226 227 228 229 230 231 232 233 234 235 236 237 238 239
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
240
				mark_page_accessed(page);
241
			put_page(page);
242 243
			vaddr += PAGE_SIZE;
		}
244
		obj->dirty = 0;
245 246
	}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
270
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
271 272 273 274 275 276 277
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
278 279 280 281 282 283 284
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
285
	int ret;
286 287 288 289 290 291 292 293 294 295 296 297 298 299

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

300 301 302 303
	ret = drop_pages(obj);
	if (ret)
		return ret;

304 305 306 307 308 309
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
310 311 312
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
313 314 315 316 317 318 319 320 321 322
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
323
	int ret = 0;
324 325 326 327 328 329 330

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
331

332
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
333 334 335 336 337 338 339 340 341 342
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
343 344 345 346
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
347 348
	}

349
	drm_clflush_virt_range(vaddr, args->size);
350
	i915_gem_chipset_flush(to_i915(dev));
351 352

out:
353
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
354
	return ret;
355 356
}

357 358 359
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
360
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
361 362 363 364 365
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
366
	kmem_cache_free(dev_priv->objects, obj);
367 368
}

369 370 371 372 373
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
374
{
375
	struct drm_i915_gem_object *obj;
376 377
	int ret;
	u32 handle;
378

379
	size = roundup(size, PAGE_SIZE);
380 381
	if (size == 0)
		return -EINVAL;
382 383

	/* Allocate the new object */
384
	obj = i915_gem_object_create(dev, size);
385 386
	if (IS_ERR(obj))
		return PTR_ERR(obj);
387

388
	ret = drm_gem_handle_create(file, &obj->base, &handle);
389
	/* drop reference from allocate - handle holds it now */
390 391 392
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
393

394
	*handle_p = handle;
395 396 397
	return 0;
}

398 399 400 401 402 403
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
404
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
405 406
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
407
			       args->size, &args->handle);
408 409 410 411 412 413 414 415 416 417
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
418

419
	return i915_gem_create(file, dev,
420
			       args->size, &args->handle);
421 422
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

449
static inline int
450 451
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

475 476 477 478 479 480 481 482 483 484 485 486
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

487
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

511 512 513
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
514
static int
515 516 517 518 519 520 521
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

522
	if (unlikely(page_do_bit17_swizzling))
523 524 525 526 527 528 529 530 531 532 533
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

534
	return ret ? -EFAULT : 0;
535 536
}

537 538 539 540
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
541
	if (unlikely(swizzled)) {
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

559 560 561 562 563 564 565 566 567 568 569 570
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
571 572 573
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
574 575 576 577 578 579 580 581 582 583 584

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

585
	return ret ? - EFAULT : 0;
586 587
}

588
static int
589 590 591 592
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
593
{
594
	char __user *user_data;
595
	ssize_t remain;
596
	loff_t offset;
597
	int shmem_page_offset, page_length, ret = 0;
598
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
599
	int prefaulted = 0;
600
	int needs_clflush = 0;
601
	struct sg_page_iter sg_iter;
602

V
Ville Syrjälä 已提交
603
	user_data = to_user_ptr(args->data_ptr);
604 605
	remain = args->size;

606
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
607

608
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
609 610 611
	if (ret)
		return ret;

612
	offset = args->offset;
613

614 615
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
616
		struct page *page = sg_page_iter_page(&sg_iter);
617 618 619 620

		if (remain <= 0)
			break;

621 622 623 624 625
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
626
		shmem_page_offset = offset_in_page(offset);
627 628 629 630
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

631 632 633
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

634 635 636 637 638
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
639 640 641

		mutex_unlock(&dev->struct_mutex);

642
		if (likely(!i915.prefault_disable) && !prefaulted) {
643
			ret = fault_in_multipages_writeable(user_data, remain);
644 645 646 647 648 649 650
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
651

652 653 654
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
655

656
		mutex_lock(&dev->struct_mutex);
657 658

		if (ret)
659 660
			goto out;

661
next_page:
662
		remain -= page_length;
663
		user_data += page_length;
664 665 666
		offset += page_length;
	}

667
out:
668 669
	i915_gem_object_unpin_pages(obj);

670 671 672
	return ret;
}

673 674 675 676 677 678 679
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
680
		     struct drm_file *file)
681 682
{
	struct drm_i915_gem_pread *args = data;
683
	struct drm_i915_gem_object *obj;
684
	int ret = 0;
685

686 687 688 689
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
690
		       to_user_ptr(args->data_ptr),
691 692 693
		       args->size))
		return -EFAULT;

694
	ret = i915_mutex_lock_interruptible(dev);
695
	if (ret)
696
		return ret;
697

698
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
699
	if (&obj->base == NULL) {
700 701
		ret = -ENOENT;
		goto unlock;
702
	}
703

704
	/* Bounds check source.  */
705 706
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
707
		ret = -EINVAL;
708
		goto out;
C
Chris Wilson 已提交
709 710
	}

711 712 713 714 715 716 717 718
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
719 720
	trace_i915_gem_object_pread(obj, args->offset, args->size);

721
	ret = i915_gem_shmem_pread(dev, obj, args, file);
722

723
out:
724
	drm_gem_object_unreference(&obj->base);
725
unlock:
726
	mutex_unlock(&dev->struct_mutex);
727
	return ret;
728 729
}

730 731
/* This is the fast write path which cannot handle
 * page faults in the source data
732
 */
733 734 735 736 737 738

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
739
{
740 741
	void __iomem *vaddr_atomic;
	void *vaddr;
742
	unsigned long unwritten;
743

P
Peter Zijlstra 已提交
744
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
745 746 747
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
748
						      user_data, length);
P
Peter Zijlstra 已提交
749
	io_mapping_unmap_atomic(vaddr_atomic);
750
	return unwritten;
751 752
}

753 754 755 756
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
757
static int
758 759
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
760
			 struct drm_i915_gem_pwrite *args,
761
			 struct drm_file *file)
762
{
763 764
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
765
	ssize_t remain;
766
	loff_t offset, page_base;
767
	char __user *user_data;
D
Daniel Vetter 已提交
768 769
	int page_offset, page_length, ret;

770
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
771 772 773 774 775 776 777 778 779 780
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
781

V
Ville Syrjälä 已提交
782
	user_data = to_user_ptr(args->data_ptr);
783 784
	remain = args->size;

785
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
786

787
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
788

789 790 791
	while (remain > 0) {
		/* Operation in this page
		 *
792 793 794
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
795
		 */
796 797
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
798 799 800 801 802
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
803 804
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
805
		 */
806
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
807 808
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
809
			goto out_flush;
D
Daniel Vetter 已提交
810
		}
811

812 813 814
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
815 816
	}

817
out_flush:
818
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
819
out_unpin:
B
Ben Widawsky 已提交
820
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
821
out:
822
	return ret;
823 824
}

825 826 827 828
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
829
static int
830 831 832 833 834
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
835
{
836
	char *vaddr;
837
	int ret;
838

839
	if (unlikely(page_do_bit17_swizzling))
840
		return -EINVAL;
841

842 843 844 845
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
846 847
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
848 849 850 851
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
852

853
	return ret ? -EFAULT : 0;
854 855
}

856 857
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
858
static int
859 860 861 862 863
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
864
{
865 866
	char *vaddr;
	int ret;
867

868
	vaddr = kmap(page);
869
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
870 871 872
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
873 874
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
875 876
						user_data,
						page_length);
877 878 879 880 881
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
882 883 884
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
885
	kunmap(page);
886

887
	return ret ? -EFAULT : 0;
888 889 890
}

static int
891 892 893 894
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
895 896
{
	ssize_t remain;
897 898
	loff_t offset;
	char __user *user_data;
899
	int shmem_page_offset, page_length, ret = 0;
900
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
901
	int hit_slowpath = 0;
902 903
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
904
	struct sg_page_iter sg_iter;
905

V
Ville Syrjälä 已提交
906
	user_data = to_user_ptr(args->data_ptr);
907 908
	remain = args->size;

909
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
910

911 912 913 914 915
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
916
		needs_clflush_after = cpu_write_needs_clflush(obj);
917 918 919
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
920
	}
921 922 923 924 925
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
926

927 928 929 930
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

931
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
932

933 934
	i915_gem_object_pin_pages(obj);

935
	offset = args->offset;
936
	obj->dirty = 1;
937

938 939
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
940
		struct page *page = sg_page_iter_page(&sg_iter);
941
		int partial_cacheline_write;
942

943 944 945
		if (remain <= 0)
			break;

946 947 948 949 950
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
951
		shmem_page_offset = offset_in_page(offset);
952 953 954 955 956

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

957 958 959 960 961 962 963
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

964 965 966
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

967 968 969 970 971 972
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
973 974 975

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
976 977 978 979
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
980

981
		mutex_lock(&dev->struct_mutex);
982 983

		if (ret)
984 985
			goto out;

986
next_page:
987
		remain -= page_length;
988
		user_data += page_length;
989
		offset += page_length;
990 991
	}

992
out:
993 994
	i915_gem_object_unpin_pages(obj);

995
	if (hit_slowpath) {
996 997 998 999 1000 1001 1002
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003
			if (i915_gem_clflush_object(obj, obj->pin_display))
1004
				needs_clflush_after = true;
1005
		}
1006
	}
1007

1008
	if (needs_clflush_after)
1009
		i915_gem_chipset_flush(to_i915(dev));
1010 1011
	else
		obj->cache_dirty = true;
1012

1013
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1014
	return ret;
1015 1016 1017 1018 1019 1020 1021 1022 1023
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1024
		      struct drm_file *file)
1025
{
1026
	struct drm_i915_private *dev_priv = dev->dev_private;
1027
	struct drm_i915_gem_pwrite *args = data;
1028
	struct drm_i915_gem_object *obj;
1029 1030 1031 1032 1033 1034
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1035
		       to_user_ptr(args->data_ptr),
1036 1037 1038
		       args->size))
		return -EFAULT;

1039
	if (likely(!i915.prefault_disable)) {
1040 1041 1042 1043 1044
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1045

1046 1047
	intel_runtime_pm_get(dev_priv);

1048
	ret = i915_mutex_lock_interruptible(dev);
1049
	if (ret)
1050
		goto put_rpm;
1051

1052
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1053
	if (&obj->base == NULL) {
1054 1055
		ret = -ENOENT;
		goto unlock;
1056
	}
1057

1058
	/* Bounds check destination. */
1059 1060
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1061
		ret = -EINVAL;
1062
		goto out;
C
Chris Wilson 已提交
1063 1064
	}

1065 1066 1067 1068 1069 1070 1071 1072
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1073 1074
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1075
	ret = -EFAULT;
1076 1077 1078 1079 1080 1081
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1082 1083 1084
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1085
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1086 1087 1088
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1089
	}
1090

1091 1092 1093 1094 1095 1096
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1097

1098
out:
1099
	drm_gem_object_unreference(&obj->base);
1100
unlock:
1101
	mutex_unlock(&dev->struct_mutex);
1102 1103 1104
put_rpm:
	intel_runtime_pm_put(dev_priv);

1105 1106 1107
	return ret;
}

1108 1109
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1110
{
1111 1112
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1113

1114
	if (__i915_reset_in_progress(reset_counter)) {
1115 1116 1117 1118 1119
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1120
		return -EAGAIN;
1121 1122 1123 1124 1125
	}

	return 0;
}

1126 1127 1128 1129 1130 1131
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1132
		       struct intel_engine_cs *engine)
1133
{
1134
	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1169
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1170
{
1171
	unsigned long timeout;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1183

1184
	if (req->engine->irq_refcount)
1185 1186
		return -EBUSY;

1187 1188 1189 1190
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1191
	timeout = local_clock_us(&cpu) + 5;
1192
	while (!need_resched()) {
D
Daniel Vetter 已提交
1193
		if (i915_gem_request_completed(req, true))
1194 1195
			return 0;

1196 1197 1198
		if (signal_pending_state(state, current))
			break;

1199
		if (busywait_stop(timeout, cpu))
1200
			break;
1201

1202 1203
		cpu_relax_lowlatency();
	}
1204

D
Daniel Vetter 已提交
1205
	if (i915_gem_request_completed(req, false))
1206 1207 1208
		return 0;

	return -EAGAIN;
1209 1210
}

1211
/**
1212 1213
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1214 1215 1216
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1217 1218 1219 1220 1221 1222 1223
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1224
 * Returns 0 if the request was found within the alloted time. Else returns the
1225 1226
 * errno with remaining time filled in timeout argument.
 */
1227
int __i915_wait_request(struct drm_i915_gem_request *req,
1228
			bool interruptible,
1229
			s64 *timeout,
1230
			struct intel_rps_client *rps)
1231
{
1232
	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1233
	struct drm_i915_private *dev_priv = req->i915;
1234
	const bool irq_test_in_progress =
1235
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1236
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1237
	DEFINE_WAIT(wait);
1238
	unsigned long timeout_expire;
1239
	s64 before = 0; /* Only to silence a compiler warning. */
1240 1241
	int ret;

1242
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1243

1244 1245 1246
	if (list_empty(&req->list))
		return 0;

1247
	if (i915_gem_request_completed(req, true))
1248 1249
		return 0;

1250 1251 1252 1253 1254 1255 1256 1257 1258
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1259 1260 1261 1262 1263

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1264
	}
1265

1266
	if (INTEL_INFO(dev_priv)->gen >= 6)
1267
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1268

1269
	trace_i915_gem_request_wait_begin(req);
1270 1271

	/* Optimistic spin for the next jiffie before touching IRQs */
1272
	ret = __i915_spin_request(req, state);
1273 1274 1275
	if (ret == 0)
		goto out;

1276
	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1277 1278 1279 1280
		ret = -ENODEV;
		goto out;
	}

1281 1282
	for (;;) {
		struct timer_list timer;
1283

1284
		prepare_to_wait(&engine->irq_queue, &wait, state);
1285

1286
		/* We need to check whether any gpu reset happened in between
1287 1288 1289 1290 1291 1292
		 * the request being submitted and now. If a reset has occurred,
		 * the request is effectively complete (we either are in the
		 * process of or have discarded the rendering and completely
		 * reset the GPU. The results of the request are lost and we
		 * are free to continue on with the original operation.
		 */
1293
		if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1294
			ret = 0;
1295 1296
			break;
		}
1297

1298
		if (i915_gem_request_completed(req, false)) {
1299 1300 1301
			ret = 0;
			break;
		}
1302

1303
		if (signal_pending_state(state, current)) {
1304 1305 1306 1307
			ret = -ERESTARTSYS;
			break;
		}

1308
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1309 1310 1311 1312 1313
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
1314
		if (timeout || missed_irq(dev_priv, engine)) {
1315 1316
			unsigned long expire;

1317
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1318
			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1319 1320 1321
			mod_timer(&timer, expire);
		}

1322
		io_schedule();
1323 1324 1325 1326 1327 1328

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1329
	if (!irq_test_in_progress)
1330
		engine->irq_put(engine);
1331

1332
	finish_wait(&engine->irq_queue, &wait);
1333

1334 1335 1336
out:
	trace_i915_gem_request_wait_end(req);

1337
	if (timeout) {
1338
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1339 1340

		*timeout = tres < 0 ? 0 : tres;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1351 1352
	}

1353
	return ret;
1354 1355
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1393 1394 1395

	put_pid(request->pid);
	request->pid = NULL;
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

1415
	if (request->previous_context) {
1416
		if (i915.enable_execlists)
1417 1418
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
1419 1420
	}

1421
	i915_gem_context_unreference(request->ctx);
1422 1423 1424 1425 1426 1427
	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1428
	struct intel_engine_cs *engine = req->engine;
1429 1430
	struct drm_i915_gem_request *tmp;

1431
	lockdep_assert_held(&engine->i915->dev->struct_mutex);
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1446
/**
1447
 * Waits for a request to be signaled, and cleans up the
1448 1449 1450
 * request and object lists appropriately for that event.
 */
int
1451
i915_wait_request(struct drm_i915_gem_request *req)
1452
{
1453
	struct drm_i915_private *dev_priv = req->i915;
1454
	bool interruptible;
1455 1456
	int ret;

1457 1458
	interruptible = dev_priv->mm.interruptible;

1459
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1460

1461
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1462 1463
	if (ret)
		return ret;
1464

1465
	__i915_gem_request_retire__upto(req);
1466 1467 1468
	return 0;
}

1469 1470 1471 1472
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1473
int
1474 1475 1476
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1477
	int ret, i;
1478

1479
	if (!obj->active)
1480 1481
		return 0;

1482 1483 1484 1485 1486
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1487

1488
			i = obj->last_write_req->engine->id;
1489 1490 1491 1492 1493 1494
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1495
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1496 1497 1498 1499 1500 1501 1502 1503 1504
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1505
		GEM_BUG_ON(obj->active);
1506 1507 1508 1509 1510 1511 1512 1513 1514
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1515
	int ring = req->engine->id;
1516 1517 1518 1519 1520 1521 1522

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1523 1524
}

1525 1526 1527 1528 1529
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1530
					    struct intel_rps_client *rps,
1531 1532 1533 1534
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1535
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1536
	int ret, i, n = 0;
1537 1538 1539 1540

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1541
	if (!obj->active)
1542 1543
		return 0;

1544 1545 1546 1547 1548 1549 1550 1551 1552
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1553
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1564
	mutex_unlock(&dev->struct_mutex);
1565
	ret = 0;
1566
	for (i = 0; ret == 0 && i < n; i++)
1567
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1568 1569
	mutex_lock(&dev->struct_mutex);

1570 1571 1572 1573 1574 1575 1576
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1577 1578
}

1579 1580 1581 1582 1583 1584
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1585
/**
1586 1587
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1588 1589 1590
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1591
			  struct drm_file *file)
1592 1593
{
	struct drm_i915_gem_set_domain *args = data;
1594
	struct drm_i915_gem_object *obj;
1595 1596
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1597 1598
	int ret;

1599
	/* Only handle setting domains to types used by the CPU. */
1600
	if (write_domain & I915_GEM_GPU_DOMAINS)
1601 1602
		return -EINVAL;

1603
	if (read_domains & I915_GEM_GPU_DOMAINS)
1604 1605 1606 1607 1608 1609 1610 1611
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1612
	ret = i915_mutex_lock_interruptible(dev);
1613
	if (ret)
1614
		return ret;
1615

1616
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1617
	if (&obj->base == NULL) {
1618 1619
		ret = -ENOENT;
		goto unlock;
1620
	}
1621

1622 1623 1624 1625
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1626
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1627
							  to_rps_client(file),
1628
							  !write_domain);
1629 1630 1631
	if (ret)
		goto unref;

1632
	if (read_domains & I915_GEM_DOMAIN_GTT)
1633
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1634
	else
1635
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1636

1637 1638 1639 1640 1641
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1642
unref:
1643
	drm_gem_object_unreference(&obj->base);
1644
unlock:
1645 1646 1647 1648 1649 1650 1651 1652 1653
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1654
			 struct drm_file *file)
1655 1656
{
	struct drm_i915_gem_sw_finish *args = data;
1657
	struct drm_i915_gem_object *obj;
1658 1659
	int ret = 0;

1660
	ret = i915_mutex_lock_interruptible(dev);
1661
	if (ret)
1662
		return ret;
1663

1664
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1665
	if (&obj->base == NULL) {
1666 1667
		ret = -ENOENT;
		goto unlock;
1668 1669 1670
	}

	/* Pinned buffers may be scanout, so flush the cache */
1671
	if (obj->pin_display)
1672
		i915_gem_object_flush_cpu_write_domain(obj);
1673

1674
	drm_gem_object_unreference(&obj->base);
1675
unlock:
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1696 1697 1698
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1699
		    struct drm_file *file)
1700 1701 1702 1703 1704
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1705 1706 1707 1708 1709 1710
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1711
	obj = drm_gem_object_lookup(dev, file, args->handle);
1712
	if (obj == NULL)
1713
		return -ENOENT;
1714

1715 1716 1717 1718 1719 1720 1721 1722
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1723
	addr = vm_mmap(obj->filp, 0, args->size,
1724 1725
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1739
	drm_gem_object_unreference_unlocked(obj);
1740 1741 1742 1743 1744 1745 1746 1747
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1748 1749
/**
 * i915_gem_fault - fault a page into the GTT
1750 1751
 * @vma: VMA in question
 * @vmf: fault info
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1766 1767
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1768 1769
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1770
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1771 1772 1773
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1774
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1775

1776 1777
	intel_runtime_pm_get(dev_priv);

1778 1779 1780 1781
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1782 1783 1784
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1785

C
Chris Wilson 已提交
1786 1787
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1788 1789 1790 1791 1792 1793 1794 1795 1796
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1797 1798
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1799
		ret = -EFAULT;
1800 1801 1802
		goto unlock;
	}

1803
	/* Use a partial view if the object is bigger than the aperture. */
1804
	if (obj->base.size >= ggtt->mappable_end &&
1805
	    obj->tiling_mode == I915_TILING_NONE) {
1806
		static const unsigned int chunk_size = 256; // 1 MiB
1807

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1820 1821
	if (ret)
		goto unlock;
1822

1823 1824 1825
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1826

1827
	ret = i915_gem_object_get_fence(obj);
1828
	if (ret)
1829
		goto unpin;
1830

1831
	/* Finally, remap it using the new GTT offset */
1832
	pfn = ggtt->mappable_base +
1833
		i915_gem_obj_ggtt_offset_view(obj, &view);
1834
	pfn >>= PAGE_SHIFT;
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1845

1846 1847
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1848 1849 1850 1851 1852
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1874
unpin:
1875
	i915_gem_object_ggtt_unpin_view(obj, &view);
1876
unlock:
1877
	mutex_unlock(&dev->struct_mutex);
1878
out:
1879
	switch (ret) {
1880
	case -EIO:
1881 1882 1883 1884 1885 1886 1887
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1888 1889 1890
			ret = VM_FAULT_SIGBUS;
			break;
		}
1891
	case -EAGAIN:
D
Daniel Vetter 已提交
1892 1893 1894 1895
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1896
		 */
1897 1898
	case 0:
	case -ERESTARTSYS:
1899
	case -EINTR:
1900 1901 1902 1903 1904
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1905 1906
		ret = VM_FAULT_NOPAGE;
		break;
1907
	case -ENOMEM:
1908 1909
		ret = VM_FAULT_OOM;
		break;
1910
	case -ENOSPC:
1911
	case -EFAULT:
1912 1913
		ret = VM_FAULT_SIGBUS;
		break;
1914
	default:
1915
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1916 1917
		ret = VM_FAULT_SIGBUS;
		break;
1918
	}
1919 1920 1921

	intel_runtime_pm_put(dev_priv);
	return ret;
1922 1923
}

1924 1925 1926 1927
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1928
 * Preserve the reservation of the mmapping with the DRM core code, but
1929 1930 1931 1932 1933 1934 1935 1936 1937
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1938
void
1939
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1940
{
1941 1942 1943 1944 1945 1946
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1947 1948
	if (!obj->fault_mappable)
		return;
1949

1950 1951
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1962
	obj->fault_mappable = false;
1963 1964
}

1965 1966 1967 1968 1969 1970 1971 1972 1973
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1974
uint32_t
1975
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1976
{
1977
	uint32_t gtt_size;
1978 1979

	if (INTEL_INFO(dev)->gen >= 4 ||
1980 1981
	    tiling_mode == I915_TILING_NONE)
		return size;
1982 1983 1984

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1985
		gtt_size = 1024*1024;
1986
	else
1987
		gtt_size = 512*1024;
1988

1989 1990
	while (gtt_size < size)
		gtt_size <<= 1;
1991

1992
	return gtt_size;
1993 1994
}

1995 1996 1997 1998 1999
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
2000
 * potential fence register mapping.
2001
 */
2002 2003 2004
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2005 2006 2007 2008 2009
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2010
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2011
	    tiling_mode == I915_TILING_NONE)
2012 2013
		return 4096;

2014 2015 2016 2017
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2018
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2019 2020
}

2021 2022 2023 2024 2025
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2026
	if (drm_vma_node_has_offset(&obj->base.vma_node))
2027 2028
		return 0;

2029 2030
	dev_priv->mm.shrinker_no_lock_stealing = true;

2031 2032
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2033
		goto out;
2034 2035 2036 2037 2038 2039 2040 2041

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2042 2043 2044 2045 2046
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2047 2048
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2049
		goto out;
2050 2051

	i915_gem_shrink_all(dev_priv);
2052 2053 2054 2055 2056
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2057 2058 2059 2060 2061 2062 2063
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2064
int
2065 2066
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2067
		  uint32_t handle,
2068
		  uint64_t *offset)
2069
{
2070
	struct drm_i915_gem_object *obj;
2071 2072
	int ret;

2073
	ret = i915_mutex_lock_interruptible(dev);
2074
	if (ret)
2075
		return ret;
2076

2077
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2078
	if (&obj->base == NULL) {
2079 2080 2081
		ret = -ENOENT;
		goto unlock;
	}
2082

2083
	if (obj->madv != I915_MADV_WILLNEED) {
2084
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2085
		ret = -EFAULT;
2086
		goto out;
2087 2088
	}

2089 2090 2091
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2092

2093
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2094

2095
out:
2096
	drm_gem_object_unreference(&obj->base);
2097
unlock:
2098
	mutex_unlock(&dev->struct_mutex);
2099
	return ret;
2100 2101
}

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2123
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2124 2125
}

D
Daniel Vetter 已提交
2126 2127 2128
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2129
{
2130
	i915_gem_object_free_mmap_offset(obj);
2131

2132 2133
	if (obj->base.filp == NULL)
		return;
2134

D
Daniel Vetter 已提交
2135 2136 2137 2138 2139
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2140
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2141 2142
	obj->madv = __I915_MADV_PURGED;
}
2143

2144 2145 2146
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2147
{
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2162 2163
}

2164
static void
2165
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2166
{
2167 2168
	struct sg_page_iter sg_iter;
	int ret;
2169

2170
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2171

C
Chris Wilson 已提交
2172
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2173
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2174 2175 2176
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2177
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2178 2179 2180
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2181 2182
	i915_gem_gtt_finish_object(obj);

2183
	if (i915_gem_object_needs_bit17_swizzle(obj))
2184 2185
		i915_gem_object_save_bit_17_swizzle(obj);

2186 2187
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2188

2189
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2190
		struct page *page = sg_page_iter_page(&sg_iter);
2191

2192
		if (obj->dirty)
2193
			set_page_dirty(page);
2194

2195
		if (obj->madv == I915_MADV_WILLNEED)
2196
			mark_page_accessed(page);
2197

2198
		put_page(page);
2199
	}
2200
	obj->dirty = 0;
2201

2202 2203
	sg_free_table(obj->pages);
	kfree(obj->pages);
2204
}
C
Chris Wilson 已提交
2205

2206
int
2207 2208 2209 2210
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2211
	if (obj->pages == NULL)
2212 2213
		return 0;

2214 2215 2216
	if (obj->pages_pin_count)
		return -EBUSY;

2217
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2218

2219 2220 2221
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2222
	list_del(&obj->global_list);
2223

2224
	if (obj->mapping) {
2225 2226 2227 2228
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2229 2230 2231
		obj->mapping = NULL;
	}

2232
	ops->put_pages(obj);
2233
	obj->pages = NULL;
2234

2235
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2236 2237 2238 2239

	return 0;
}

2240
static int
C
Chris Wilson 已提交
2241
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2242
{
C
Chris Wilson 已提交
2243
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2244 2245
	int page_count, i;
	struct address_space *mapping;
2246 2247
	struct sg_table *st;
	struct scatterlist *sg;
2248
	struct sg_page_iter sg_iter;
2249
	struct page *page;
2250
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2251
	int ret;
C
Chris Wilson 已提交
2252
	gfp_t gfp;
2253

C
Chris Wilson 已提交
2254 2255 2256 2257 2258 2259 2260
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2261 2262 2263 2264
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2265
	page_count = obj->base.size / PAGE_SIZE;
2266 2267
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2268
		return -ENOMEM;
2269
	}
2270

2271 2272 2273 2274 2275
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2276
	mapping = file_inode(obj->base.filp)->i_mapping;
2277
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2278
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2279 2280 2281
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2282 2283
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2284 2285 2286 2287 2288
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2289 2290 2291 2292 2293 2294 2295 2296
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2297
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2298 2299
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2300
				goto err_pages;
I
Imre Deak 已提交
2301
			}
C
Chris Wilson 已提交
2302
		}
2303 2304 2305 2306 2307 2308 2309 2310
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2311 2312 2313 2314 2315 2316 2317 2318 2319
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2320 2321 2322

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2323
	}
2324 2325 2326 2327
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2328 2329
	obj->pages = st;

I
Imre Deak 已提交
2330 2331 2332 2333
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2334
	if (i915_gem_object_needs_bit17_swizzle(obj))
2335 2336
		i915_gem_object_do_bit_17_swizzle(obj);

2337 2338 2339 2340
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2341 2342 2343
	return 0;

err_pages:
2344 2345
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2346
		put_page(sg_page_iter_page(&sg_iter));
2347 2348
	sg_free_table(st);
	kfree(st);
2349 2350 2351 2352 2353 2354 2355 2356 2357

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2358 2359 2360 2361
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2362 2363
}

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2378
	if (obj->pages)
2379 2380
		return 0;

2381
	if (obj->madv != I915_MADV_WILLNEED) {
2382
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2383
		return -EFAULT;
2384 2385
	}

2386 2387
	BUG_ON(obj->pages_pin_count);

2388 2389 2390 2391
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2392
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2393 2394 2395 2396

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2397
	return 0;
2398 2399
}

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

	if (obj->mapping == NULL) {
		struct page **pages;

2415 2416 2417 2418 2419 2420 2421
		pages = NULL;
		if (obj->base.size == PAGE_SIZE)
			obj->mapping = kmap(sg_page(obj->pages->sgl));
		else
			pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
					       sizeof(*pages),
					       GFP_TEMPORARY);
2422
		if (pages != NULL) {
2423 2424 2425
			struct sg_page_iter sg_iter;
			int n;

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
			n = 0;
			for_each_sg_page(obj->pages->sgl, &sg_iter,
					 obj->pages->nents, 0)
				pages[n++] = sg_page_iter_page(&sg_iter);

			obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
			drm_free_large(pages);
		}
		if (obj->mapping == NULL) {
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2443
void i915_vma_move_to_active(struct i915_vma *vma,
2444
			     struct drm_i915_gem_request *req)
2445
{
2446
	struct drm_i915_gem_object *obj = vma->obj;
2447
	struct intel_engine_cs *engine;
2448

2449
	engine = i915_gem_request_get_engine(req);
2450 2451

	/* Add a reference if we're newly entering the active list. */
2452
	if (obj->active == 0)
2453
		drm_gem_object_reference(&obj->base);
2454
	obj->active |= intel_engine_flag(engine);
2455

2456
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2457
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2458

2459
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2460 2461
}

2462 2463
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2464
{
2465 2466
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2467 2468

	i915_gem_request_assign(&obj->last_write_req, NULL);
2469
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2470 2471
}

2472
static void
2473
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2474
{
2475
	struct i915_vma *vma;
2476

2477 2478
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2479

2480
	list_del_init(&obj->engine_list[ring]);
2481 2482
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2483
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2484 2485 2486 2487 2488
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2489

2490 2491 2492 2493 2494 2495 2496
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2497 2498 2499
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2500
	}
2501

2502
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2503
	drm_gem_object_unreference(&obj->base);
2504 2505
}

2506
static int
2507
i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2508
{
2509
	struct intel_engine_cs *engine;
2510
	int ret;
2511

2512
	/* Carefully retire all requests without writing to the rings */
2513
	for_each_engine(engine, dev_priv) {
2514
		ret = intel_engine_idle(engine);
2515 2516
		if (ret)
			return ret;
2517
	}
2518
	i915_gem_retire_requests(dev_priv);
2519 2520

	/* Finally reset hw state */
2521
	for_each_engine(engine, dev_priv)
2522
		intel_ring_init_seqno(engine, seqno);
2523

2524
	return 0;
2525 2526
}

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
2538
	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2553
int
2554
i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2555
{
2556 2557
	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2558
		int ret = i915_gem_init_seqno(dev_priv, 0);
2559 2560
		if (ret)
			return ret;
2561

2562 2563
		dev_priv->next_seqno = 1;
	}
2564

2565
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2566
	return 0;
2567 2568
}

2569 2570 2571 2572 2573
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2574
void __i915_add_request(struct drm_i915_gem_request *request,
2575 2576
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2577
{
2578
	struct intel_engine_cs *engine;
2579
	struct drm_i915_private *dev_priv;
2580
	struct intel_ringbuffer *ringbuf;
2581
	u32 request_start;
2582
	u32 reserved_tail;
2583 2584
	int ret;

2585
	if (WARN_ON(request == NULL))
2586
		return;
2587

2588
	engine = request->engine;
2589
	dev_priv = request->i915;
2590 2591
	ringbuf = request->ringbuf;

2592 2593 2594 2595 2596
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
2597
	request_start = intel_ring_get_tail(ringbuf);
2598 2599 2600
	reserved_tail = request->reserved_space;
	request->reserved_space = 0;

2601 2602 2603 2604 2605 2606 2607
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2608 2609
	if (flush_caches) {
		if (i915.enable_execlists)
2610
			ret = logical_ring_flush_all_caches(request);
2611
		else
2612
			ret = intel_ring_flush_all_caches(request);
2613 2614 2615
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2616

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2639 2640 2641 2642 2643
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2644
	request->postfix = intel_ring_get_tail(ringbuf);
2645

2646
	if (i915.enable_execlists)
2647
		ret = engine->emit_request(request);
2648
	else {
2649
		ret = engine->add_request(request);
2650 2651

		request->tail = intel_ring_get_tail(ringbuf);
2652
	}
2653 2654
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2655

2656
	i915_queue_hangcheck(engine->i915);
2657

2658 2659 2660
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
2661
	intel_mark_busy(dev_priv);
2662

2663
	/* Sanity check that the reserved size was large enough. */
2664 2665 2666 2667 2668 2669 2670
	ret = intel_ring_get_tail(ringbuf) - request_start;
	if (ret < 0)
		ret += ringbuf->size;
	WARN_ONCE(ret > reserved_tail,
		  "Not enough space reserved (%d bytes) "
		  "for adding the request (%d bytes)\n",
		  reserved_tail, ret);
2671 2672
}

2673
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2674
				   const struct intel_context *ctx)
2675
{
2676
	unsigned long elapsed;
2677

2678 2679 2680
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2681 2682
		return true;

2683 2684
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2685
		if (!i915_gem_context_is_default(ctx)) {
2686
			DRM_DEBUG("context hanging too fast, banning!\n");
2687
			return true;
2688 2689 2690
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2691
			return true;
2692
		}
2693 2694 2695 2696 2697
	}

	return false;
}

2698
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2699
				  struct intel_context *ctx,
2700
				  const bool guilty)
2701
{
2702 2703 2704 2705
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2706

2707 2708 2709
	hs = &ctx->hang_stats;

	if (guilty) {
2710
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2711 2712 2713 2714
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2715 2716 2717
	}
}

2718 2719 2720 2721
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
2722
	kmem_cache_free(req->i915->requests, req);
2723 2724
}

2725
static inline int
2726
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2727 2728
			 struct intel_context *ctx,
			 struct drm_i915_gem_request **req_out)
2729
{
2730
	struct drm_i915_private *dev_priv = engine->i915;
2731
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
2732
	struct drm_i915_gem_request *req;
2733 2734
	int ret;

2735 2736 2737
	if (!req_out)
		return -EINVAL;

2738
	*req_out = NULL;
2739

2740 2741 2742 2743 2744
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2745 2746 2747
	if (ret)
		return ret;

D
Daniel Vetter 已提交
2748 2749
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2750 2751
		return -ENOMEM;

2752
	ret = i915_gem_get_seqno(engine->i915, &req->seqno);
2753 2754
	if (ret)
		goto err;
2755

2756 2757
	kref_init(&req->ref);
	req->i915 = dev_priv;
2758
	req->engine = engine;
2759
	req->reset_counter = reset_counter;
2760 2761
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2762

2763 2764 2765 2766 2767 2768 2769
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2770
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
2771 2772 2773 2774 2775 2776 2777

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;
2778

2779
	*req_out = req;
2780
	return 0;
2781

2782 2783
err_ctx:
	i915_gem_context_unreference(ctx);
2784 2785 2786
err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2787 2788
}

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct intel_context *ctx)
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
2809
		ctx = engine->i915->kernel_context;
2810 2811 2812 2813
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

2814
struct drm_i915_gem_request *
2815
i915_gem_find_active_request(struct intel_engine_cs *engine)
2816
{
2817 2818
	struct drm_i915_gem_request *request;

2819
	list_for_each_entry(request, &engine->request_list, list) {
2820
		if (i915_gem_request_completed(request, false))
2821
			continue;
2822

2823
		return request;
2824
	}
2825 2826 2827 2828

	return NULL;
}

2829
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2830
				       struct intel_engine_cs *engine)
2831 2832 2833 2834
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2835
	request = i915_gem_find_active_request(engine);
2836 2837 2838 2839

	if (request == NULL)
		return;

2840
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2841

2842
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2843

2844
	list_for_each_entry_continue(request, &engine->request_list, list)
2845
		i915_set_reset_status(dev_priv, request->ctx, false);
2846
}
2847

2848
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2849
					struct intel_engine_cs *engine)
2850
{
2851 2852
	struct intel_ringbuffer *buffer;

2853
	while (!list_empty(&engine->active_list)) {
2854
		struct drm_i915_gem_object *obj;
2855

2856
		obj = list_first_entry(&engine->active_list,
2857
				       struct drm_i915_gem_object,
2858
				       engine_list[engine->id]);
2859

2860
		i915_gem_object_retire__read(obj, engine->id);
2861
	}
2862

2863 2864 2865 2866 2867 2868
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2869
	if (i915.enable_execlists) {
2870 2871
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2872

2873
		intel_execlists_cancel_requests(engine);
2874 2875
	}

2876 2877 2878 2879 2880 2881 2882
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2883
	while (!list_empty(&engine->request_list)) {
2884 2885
		struct drm_i915_gem_request *request;

2886
		request = list_first_entry(&engine->request_list,
2887 2888 2889
					   struct drm_i915_gem_request,
					   list);

2890
		i915_gem_request_retire(request);
2891
	}
2892 2893 2894 2895 2896 2897 2898 2899

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2900
	list_for_each_entry(buffer, &engine->buffers, link) {
2901 2902 2903
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2904 2905

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2906 2907
}

2908
void i915_gem_reset(struct drm_device *dev)
2909
{
2910
	struct drm_i915_private *dev_priv = dev->dev_private;
2911
	struct intel_engine_cs *engine;
2912

2913 2914 2915 2916 2917
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2918
	for_each_engine(engine, dev_priv)
2919
		i915_gem_reset_engine_status(dev_priv, engine);
2920

2921
	for_each_engine(engine, dev_priv)
2922
		i915_gem_reset_engine_cleanup(dev_priv, engine);
2923

2924 2925
	i915_gem_context_reset(dev);

2926
	i915_gem_restore_fences(dev);
2927 2928

	WARN_ON(i915_verify_lists(dev));
2929 2930 2931 2932 2933
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2934
void
2935
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2936
{
2937
	WARN_ON(i915_verify_lists(engine->dev));
2938

2939 2940 2941 2942
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2943
	 */
2944
	while (!list_empty(&engine->request_list)) {
2945 2946
		struct drm_i915_gem_request *request;

2947
		request = list_first_entry(&engine->request_list,
2948 2949 2950
					   struct drm_i915_gem_request,
					   list);

2951
		if (!i915_gem_request_completed(request, true))
2952 2953
			break;

2954
		i915_gem_request_retire(request);
2955
	}
2956

2957 2958 2959 2960
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
2961
	while (!list_empty(&engine->active_list)) {
2962 2963
		struct drm_i915_gem_object *obj;

2964 2965
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
2966
				       engine_list[engine->id]);
2967

2968
		if (!list_empty(&obj->last_read_req[engine->id]->list))
2969 2970
			break;

2971
		i915_gem_object_retire__read(obj, engine->id);
2972 2973
	}

2974 2975 2976 2977
	if (unlikely(engine->trace_irq_req &&
		     i915_gem_request_completed(engine->trace_irq_req, true))) {
		engine->irq_put(engine);
		i915_gem_request_assign(&engine->trace_irq_req, NULL);
2978
	}
2979

2980
	WARN_ON(i915_verify_lists(engine->dev));
2981 2982
}

2983
bool
2984
i915_gem_retire_requests(struct drm_i915_private *dev_priv)
2985
{
2986
	struct intel_engine_cs *engine;
2987
	bool idle = true;
2988

2989
	for_each_engine(engine, dev_priv) {
2990 2991
		i915_gem_retire_requests_ring(engine);
		idle &= list_empty(&engine->request_list);
2992
		if (i915.enable_execlists) {
2993
			spin_lock_bh(&engine->execlist_lock);
2994
			idle &= list_empty(&engine->execlist_queue);
2995
			spin_unlock_bh(&engine->execlist_lock);
2996
		}
2997 2998 2999 3000 3001 3002 3003 3004
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
3005 3006
}

3007
static void
3008 3009
i915_gem_retire_work_handler(struct work_struct *work)
{
3010 3011 3012
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
3013
	bool idle;
3014

3015
	/* Come back later if the device is busy... */
3016 3017
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
3018
		idle = i915_gem_retire_requests(dev_priv);
3019
		mutex_unlock(&dev->struct_mutex);
3020
	}
3021
	if (!idle)
3022 3023
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
3024
}
3025

3026 3027 3028 3029 3030
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3031
	struct drm_device *dev = dev_priv->dev;
3032
	struct intel_engine_cs *engine;
3033

3034 3035
	for_each_engine(engine, dev_priv)
		if (!list_empty(&engine->request_list))
3036
			return;
3037

3038
	/* we probably should sync with hangcheck here, using cancel_work_sync.
3039
	 * Also locking seems to be fubar here, engine->request_list is protected
3040 3041
	 * by dev->struct_mutex. */

3042
	intel_mark_idle(dev_priv);
3043 3044

	if (mutex_trylock(&dev->struct_mutex)) {
3045
		for_each_engine(engine, dev_priv)
3046
			i915_gem_batch_pool_fini(&engine->batch_pool);
3047

3048 3049
		mutex_unlock(&dev->struct_mutex);
	}
3050 3051
}

3052 3053 3054 3055 3056 3057 3058 3059
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3060
	int i;
3061 3062 3063

	if (!obj->active)
		return 0;
3064

3065
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3066
		struct drm_i915_gem_request *req;
3067

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
3080 3081 3082 3083 3084
	}

	return 0;
}

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3112
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3113 3114
	int i, n = 0;
	int ret;
3115

3116 3117 3118
	if (args->flags != 0)
		return -EINVAL;

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3129 3130
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3131 3132 3133
	if (ret)
		goto out;

3134
	if (!obj->active)
3135
		goto out;
3136 3137

	/* Do this after OLR check to make sure we make forward progress polling
3138
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3139
	 */
3140
	if (args->timeout_ns == 0) {
3141 3142 3143 3144 3145
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3146

3147
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3148 3149 3150 3151 3152 3153
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3154 3155
	mutex_unlock(&dev->struct_mutex);

3156 3157
	for (i = 0; i < n; i++) {
		if (ret == 0)
3158
			ret = __i915_wait_request(req[i], true,
3159
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3160
						  to_rps_client(file));
3161
		i915_gem_request_unreference(req[i]);
3162
	}
3163
	return ret;
3164 3165 3166 3167 3168 3169 3170

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3171 3172 3173
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3174 3175
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3176 3177 3178 3179
{
	struct intel_engine_cs *from;
	int ret;

3180
	from = i915_gem_request_get_engine(from_req);
3181 3182 3183
	if (to == from)
		return 0;

3184
	if (i915_gem_request_completed(from_req, true))
3185 3186
		return 0;

3187
	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3188
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3189
		ret = __i915_wait_request(from_req,
3190 3191 3192
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3193 3194 3195
		if (ret)
			return ret;

3196
		i915_gem_object_retire_request(obj, from_req);
3197 3198
	} else {
		int idx = intel_ring_sync_index(from, to);
3199 3200 3201
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3202 3203 3204 3205

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3206
		if (*to_req == NULL) {
3207 3208 3209 3210 3211 3212 3213
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3214 3215
		}

3216 3217
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3232 3233 3234 3235 3236
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3237 3238 3239
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3240 3241 3242
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3243
 * rather than a particular GPU ring. Conceptually we serialise writes
3244
 * between engines inside the GPU. We only allow one engine to write
3245 3246 3247 3248 3249 3250 3251 3252 3253
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3254
 *
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3265 3266
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3267 3268
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3269 3270
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3271
{
3272
	const bool readonly = obj->base.pending_write_domain == 0;
3273
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3274
	int ret, i, n;
3275

3276
	if (!obj->active)
3277 3278
		return 0;

3279 3280
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3281

3282 3283 3284 3285 3286
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3287
		for (i = 0; i < I915_NUM_ENGINES; i++)
3288 3289 3290 3291
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3292
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3293 3294 3295
		if (ret)
			return ret;
	}
3296

3297
	return 0;
3298 3299
}

3300 3301 3302 3303 3304 3305 3306
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3307 3308 3309
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3332
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3333
{
3334
	struct drm_i915_gem_object *obj = vma->obj;
3335
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3336
	int ret;
3337

3338
	if (list_empty(&vma->obj_link))
3339 3340
		return 0;

3341 3342 3343 3344
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3345

B
Ben Widawsky 已提交
3346
	if (vma->pin_count)
3347
		return -EBUSY;
3348

3349 3350
	BUG_ON(obj->pages == NULL);

3351 3352 3353 3354 3355
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3356

3357
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3358
		i915_gem_object_finish_gtt(obj);
3359

3360 3361 3362 3363
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3364 3365

		__i915_vma_iounmap(vma);
3366
	}
3367

3368
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3369

3370
	vma->vm->unbind_vma(vma);
3371
	vma->bound = 0;
3372

3373
	list_del_init(&vma->vm_link);
3374
	if (vma->is_ggtt) {
3375 3376 3377 3378 3379 3380
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3381
		vma->ggtt_view.pages = NULL;
3382
	}
3383

B
Ben Widawsky 已提交
3384 3385 3386 3387
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3388
	 * no more VMAs exist. */
I
Imre Deak 已提交
3389
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3390
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3391

3392 3393 3394 3395 3396 3397
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3398
	return 0;
3399 3400
}

3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3411
int i915_gpu_idle(struct drm_device *dev)
3412
{
3413
	struct drm_i915_private *dev_priv = dev->dev_private;
3414
	struct intel_engine_cs *engine;
3415
	int ret;
3416 3417

	/* Flush everything onto the inactive list. */
3418
	for_each_engine(engine, dev_priv) {
3419
		if (!i915.enable_execlists) {
3420 3421
			struct drm_i915_gem_request *req;

3422
			req = i915_gem_request_alloc(engine, NULL);
3423 3424
			if (IS_ERR(req))
				return PTR_ERR(req);
3425

3426
			ret = i915_switch_context(req);
3427
			i915_add_request_no_flush(req);
3428 3429
			if (ret)
				return ret;
3430
		}
3431

3432
		ret = intel_engine_idle(engine);
3433 3434 3435
		if (ret)
			return ret;
	}
3436

3437
	WARN_ON(i915_verify_lists(dev));
3438
	return 0;
3439 3440
}

3441
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3442 3443
				     unsigned long cache_level)
{
3444
	struct drm_mm_node *gtt_space = &vma->node;
3445 3446
	struct drm_mm_node *other;

3447 3448 3449 3450 3451 3452
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3453
	 */
3454
	if (vma->vm->mm.color_adjust == NULL)
3455 3456
		return true;

3457
	if (!drm_mm_node_allocated(gtt_space))
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3474
/**
3475 3476
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3477
 */
3478
static struct i915_vma *
3479 3480
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3481
			   const struct i915_ggtt_view *ggtt_view,
3482
			   unsigned alignment,
3483
			   uint64_t flags)
3484
{
3485
	struct drm_device *dev = obj->base.dev;
3486 3487
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3488
	u32 fence_alignment, unfenced_alignment;
3489 3490
	u32 search_flag, alloc_flag;
	u64 start, end;
3491
	u64 size, fence_size;
B
Ben Widawsky 已提交
3492
	struct i915_vma *vma;
3493
	int ret;
3494

3495 3496 3497 3498 3499
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3500

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3530

3531 3532 3533
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3534
		end = min_t(u64, end, ggtt->mappable_end);
3535
	if (flags & PIN_ZONE_4G)
3536
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3537

3538
	if (alignment == 0)
3539
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3540
						unfenced_alignment;
3541
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3542 3543 3544
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3545
		return ERR_PTR(-EINVAL);
3546 3547
	}

3548 3549 3550
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3551
	 */
3552
	if (size > end) {
3553
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3554 3555
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3556
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3557
			  end);
3558
		return ERR_PTR(-E2BIG);
3559 3560
	}

3561
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3562
	if (ret)
3563
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3564

3565 3566
	i915_gem_object_pin_pages(obj);

3567 3568 3569
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3570
	if (IS_ERR(vma))
3571
		goto err_unpin;
B
Ben Widawsky 已提交
3572

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3591
	} else {
3592 3593 3594 3595 3596 3597 3598
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3599

3600
search_free:
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3614

3615 3616
			goto err_free_vma;
		}
3617
	}
3618
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3619
		ret = -EINVAL;
3620
		goto err_remove_node;
3621 3622
	}

3623
	trace_i915_vma_bind(vma, flags);
3624
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3625
	if (ret)
I
Imre Deak 已提交
3626
		goto err_remove_node;
3627

3628
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3629
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3630

3631
	return vma;
B
Ben Widawsky 已提交
3632

3633
err_remove_node:
3634
	drm_mm_remove_node(&vma->node);
3635
err_free_vma:
B
Ben Widawsky 已提交
3636
	i915_gem_vma_destroy(vma);
3637
	vma = ERR_PTR(ret);
3638
err_unpin:
B
Ben Widawsky 已提交
3639
	i915_gem_object_unpin_pages(obj);
3640
	return vma;
3641 3642
}

3643
bool
3644 3645
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3646 3647 3648 3649 3650
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3651
	if (obj->pages == NULL)
3652
		return false;
3653

3654 3655 3656 3657
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3658
	if (obj->stolen || obj->phys_handle)
3659
		return false;
3660

3661 3662 3663 3664 3665 3666 3667 3668
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3669 3670
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3671
		return false;
3672
	}
3673

C
Chris Wilson 已提交
3674
	trace_i915_gem_object_clflush(obj);
3675
	drm_clflush_sg(obj->pages);
3676
	obj->cache_dirty = false;
3677 3678

	return true;
3679 3680 3681 3682
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3683
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3684
{
C
Chris Wilson 已提交
3685 3686
	uint32_t old_write_domain;

3687
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3688 3689
		return;

3690
	/* No actual flushing is required for the GTT write domain.  Writes
3691 3692
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3693 3694 3695 3696
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3697
	 */
3698 3699
	wmb();

3700 3701
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3702

3703
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3704

C
Chris Wilson 已提交
3705
	trace_i915_gem_object_change_domain(obj,
3706
					    obj->base.read_domains,
C
Chris Wilson 已提交
3707
					    old_write_domain);
3708 3709 3710 3711
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3712
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3713
{
C
Chris Wilson 已提交
3714
	uint32_t old_write_domain;
3715

3716
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3717 3718
		return;

3719
	if (i915_gem_clflush_object(obj, obj->pin_display))
3720
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3721

3722 3723
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3724

3725
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3726

C
Chris Wilson 已提交
3727
	trace_i915_gem_object_change_domain(obj,
3728
					    obj->base.read_domains,
C
Chris Wilson 已提交
3729
					    old_write_domain);
3730 3731
}

3732 3733 3734 3735 3736 3737
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3738
int
3739
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3740
{
3741 3742 3743
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3744
	uint32_t old_write_domain, old_read_domains;
3745
	struct i915_vma *vma;
3746
	int ret;
3747

3748 3749 3750
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3751
	ret = i915_gem_object_wait_rendering(obj, !write);
3752 3753 3754
	if (ret)
		return ret;

3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3767
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3768

3769 3770 3771 3772 3773 3774 3775
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3776 3777
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3778

3779 3780 3781
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3782 3783
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3784
	if (write) {
3785 3786 3787
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3788 3789
	}

C
Chris Wilson 已提交
3790 3791 3792 3793
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3794
	/* And bump the LRU for this access */
3795 3796
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3797
		list_move_tail(&vma->vm_link,
3798
			       &ggtt->base.inactive_list);
3799

3800 3801 3802
	return 0;
}

3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
/**
 * Changes the cache-level of an object across all VMA.
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3816 3817 3818
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3819
	struct drm_device *dev = obj->base.dev;
3820
	struct i915_vma *vma, *next;
3821
	bool bound = false;
3822
	int ret = 0;
3823 3824

	if (obj->cache_level == cache_level)
3825
		goto out;
3826

3827 3828 3829 3830 3831
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3832
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3833 3834 3835 3836 3837 3838 3839 3840
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3841
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3842
			ret = i915_vma_unbind(vma);
3843 3844
			if (ret)
				return ret;
3845 3846
		} else
			bound = true;
3847 3848
	}

3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3861
		ret = i915_gem_object_wait_rendering(obj, false);
3862 3863 3864
		if (ret)
			return ret;

3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3882 3883 3884
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3885 3886 3887 3888 3889 3890 3891 3892
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3893 3894
		}

3895
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3896 3897 3898 3899 3900 3901 3902
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3903 3904
	}

3905
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3906 3907 3908
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3909
out:
3910 3911 3912 3913
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3914 3915 3916 3917
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
3918
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3919 3920 3921 3922 3923
	}

	return 0;
}

B
Ben Widawsky 已提交
3924 3925
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3926
{
B
Ben Widawsky 已提交
3927
	struct drm_i915_gem_caching *args = data;
3928 3929 3930
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3931 3932
	if (&obj->base == NULL)
		return -ENOENT;
3933

3934 3935 3936 3937 3938 3939
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3940 3941 3942 3943
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3944 3945 3946 3947
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3948

3949 3950
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3951 3952
}

B
Ben Widawsky 已提交
3953 3954
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3955
{
3956
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
3957
	struct drm_i915_gem_caching *args = data;
3958 3959 3960 3961
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3962 3963
	switch (args->caching) {
	case I915_CACHING_NONE:
3964 3965
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3966
	case I915_CACHING_CACHED:
3967 3968 3969 3970 3971 3972
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3973
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3974 3975
			return -ENODEV;

3976 3977
		level = I915_CACHE_LLC;
		break;
3978 3979 3980
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3981 3982 3983 3984
	default:
		return -EINVAL;
	}

3985 3986
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3987 3988
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3989
		goto rpm_put;
B
Ben Widawsky 已提交
3990

3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4002 4003 4004
rpm_put:
	intel_runtime_pm_put(dev_priv);

4005 4006 4007
	return ret;
}

4008
/*
4009 4010 4011
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4012 4013
 */
int
4014 4015
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4016
				     const struct i915_ggtt_view *view)
4017
{
4018
	u32 old_read_domains, old_write_domain;
4019 4020
	int ret;

4021 4022 4023
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4024
	obj->pin_display++;
4025

4026 4027 4028 4029 4030 4031 4032 4033 4034
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4035 4036
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4037
	if (ret)
4038
		goto err_unpin_display;
4039

4040 4041 4042 4043
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4044 4045 4046
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4047
	if (ret)
4048
		goto err_unpin_display;
4049

4050
	i915_gem_object_flush_cpu_write_domain(obj);
4051

4052
	old_write_domain = obj->base.write_domain;
4053
	old_read_domains = obj->base.read_domains;
4054 4055 4056 4057

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4058
	obj->base.write_domain = 0;
4059
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4060 4061 4062

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4063
					    old_write_domain);
4064 4065

	return 0;
4066 4067

err_unpin_display:
4068
	obj->pin_display--;
4069 4070 4071 4072
	return ret;
}

void
4073 4074
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4075
{
4076 4077 4078
	if (WARN_ON(obj->pin_display == 0))
		return;

4079 4080
	i915_gem_object_ggtt_unpin_view(obj, view);

4081
	obj->pin_display--;
4082 4083
}

4084 4085 4086 4087 4088 4089
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4090
int
4091
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4092
{
C
Chris Wilson 已提交
4093
	uint32_t old_write_domain, old_read_domains;
4094 4095
	int ret;

4096 4097 4098
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4099
	ret = i915_gem_object_wait_rendering(obj, !write);
4100 4101 4102
	if (ret)
		return ret;

4103
	i915_gem_object_flush_gtt_write_domain(obj);
4104

4105 4106
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4107

4108
	/* Flush the CPU cache if it's still invalid. */
4109
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4110
		i915_gem_clflush_object(obj, false);
4111

4112
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4113 4114 4115 4116 4117
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4118
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4119 4120 4121 4122 4123

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4124 4125
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4126
	}
4127

C
Chris Wilson 已提交
4128 4129 4130 4131
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4132 4133 4134
	return 0;
}

4135 4136 4137
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4138 4139 4140 4141
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4142 4143 4144
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4145
static int
4146
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4147
{
4148 4149
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4150
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4151
	struct drm_i915_gem_request *request, *target = NULL;
4152
	int ret;
4153

4154 4155 4156 4157
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4158 4159 4160
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4161

4162
	spin_lock(&file_priv->mm.lock);
4163
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4164 4165
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4166

4167 4168 4169 4170 4171 4172 4173
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4174
		target = request;
4175
	}
4176 4177
	if (target)
		i915_gem_request_reference(target);
4178
	spin_unlock(&file_priv->mm.lock);
4179

4180
	if (target == NULL)
4181
		return 0;
4182

4183
	ret = __i915_wait_request(target, true, NULL, NULL);
4184 4185
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4186

4187
	i915_gem_request_unreference(target);
4188

4189 4190 4191
	return ret;
}

4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4208 4209 4210 4211
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4212 4213 4214
	return false;
}

4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4233
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4234 4235 4236 4237

	obj->map_and_fenceable = mappable && fenceable;
}

4238 4239 4240 4241 4242 4243
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4244
{
4245
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4246
	struct i915_vma *vma;
4247
	unsigned bound;
4248 4249
	int ret;

4250 4251 4252
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4253
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4254
		return -EINVAL;
4255

4256 4257 4258
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4259 4260 4261 4262 4263 4264
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4265
	if (vma) {
B
Ben Widawsky 已提交
4266 4267 4268
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4269
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4270
			WARN(vma->pin_count,
4271
			     "bo is already pinned in %s with incorrect alignment:"
4272
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4273
			     " obj->map_and_fenceable=%d\n",
4274
			     ggtt_view ? "ggtt" : "ppgtt",
4275 4276
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4277
			     alignment,
4278
			     !!(flags & PIN_MAPPABLE),
4279
			     obj->map_and_fenceable);
4280
			ret = i915_vma_unbind(vma);
4281 4282
			if (ret)
				return ret;
4283 4284

			vma = NULL;
4285 4286 4287
		}
	}

4288
	bound = vma ? vma->bound : 0;
4289
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4290 4291
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4292 4293
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4294 4295
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4296 4297 4298
		if (ret)
			return ret;
	}
4299

4300 4301
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4302
		__i915_vma_set_map_and_fenceable(vma);
4303 4304
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4305

4306
	vma->pin_count++;
4307 4308 4309
	return 0;
}

4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4327 4328 4329 4330
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4331
	BUG_ON(!view);
4332

4333
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4334
				      alignment, flags | PIN_GLOBAL);
4335 4336
}

4337
void
4338 4339
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4340
{
4341
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4342

4343
	WARN_ON(vma->pin_count == 0);
4344
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4345

4346
	--vma->pin_count;
4347 4348 4349 4350
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4351
		    struct drm_file *file)
4352 4353
{
	struct drm_i915_gem_busy *args = data;
4354
	struct drm_i915_gem_object *obj;
4355 4356
	int ret;

4357
	ret = i915_mutex_lock_interruptible(dev);
4358
	if (ret)
4359
		return ret;
4360

4361
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4362
	if (&obj->base == NULL) {
4363 4364
		ret = -ENOENT;
		goto unlock;
4365
	}
4366

4367 4368 4369 4370
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4371
	 */
4372
	ret = i915_gem_object_flush_active(obj);
4373 4374
	if (ret)
		goto unref;
4375

4376 4377 4378 4379
	args->busy = 0;
	if (obj->active) {
		int i;

4380
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4381 4382 4383 4384
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4385
				args->busy |= 1 << (16 + req->engine->exec_id);
4386 4387
		}
		if (obj->last_write_req)
4388
			args->busy |= obj->last_write_req->engine->exec_id;
4389
	}
4390

4391
unref:
4392
	drm_gem_object_unreference(&obj->base);
4393
unlock:
4394
	mutex_unlock(&dev->struct_mutex);
4395
	return ret;
4396 4397 4398 4399 4400 4401
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4402
	return i915_gem_ring_throttle(dev, file_priv);
4403 4404
}

4405 4406 4407 4408
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4409
	struct drm_i915_private *dev_priv = dev->dev_private;
4410
	struct drm_i915_gem_madvise *args = data;
4411
	struct drm_i915_gem_object *obj;
4412
	int ret;
4413 4414 4415 4416 4417 4418 4419 4420 4421

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4422 4423 4424 4425
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4426
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4427
	if (&obj->base == NULL) {
4428 4429
		ret = -ENOENT;
		goto unlock;
4430 4431
	}

B
Ben Widawsky 已提交
4432
	if (i915_gem_obj_is_pinned(obj)) {
4433 4434
		ret = -EINVAL;
		goto out;
4435 4436
	}

4437 4438 4439 4440 4441 4442 4443 4444 4445
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4446 4447
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4448

C
Chris Wilson 已提交
4449
	/* if the object is no longer attached, discard its backing storage */
4450
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4451 4452
		i915_gem_object_truncate(obj);

4453
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4454

4455
out:
4456
	drm_gem_object_unreference(&obj->base);
4457
unlock:
4458
	mutex_unlock(&dev->struct_mutex);
4459
	return ret;
4460 4461
}

4462 4463
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4464
{
4465 4466
	int i;

4467
	INIT_LIST_HEAD(&obj->global_list);
4468
	for (i = 0; i < I915_NUM_ENGINES; i++)
4469
		INIT_LIST_HEAD(&obj->engine_list[i]);
4470
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4471
	INIT_LIST_HEAD(&obj->vma_list);
4472
	INIT_LIST_HEAD(&obj->batch_pool_link);
4473

4474 4475
	obj->ops = ops;

4476 4477 4478 4479 4480 4481
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4482
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4483
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4484 4485 4486 4487
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4488
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4489
						  size_t size)
4490
{
4491
	struct drm_i915_gem_object *obj;
4492
	struct address_space *mapping;
D
Daniel Vetter 已提交
4493
	gfp_t mask;
4494
	int ret;
4495

4496
	obj = i915_gem_object_alloc(dev);
4497
	if (obj == NULL)
4498
		return ERR_PTR(-ENOMEM);
4499

4500 4501 4502
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4503

4504 4505 4506 4507 4508 4509 4510
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4511
	mapping = file_inode(obj->base.filp)->i_mapping;
4512
	mapping_set_gfp_mask(mapping, mask);
4513

4514
	i915_gem_object_init(obj, &i915_gem_object_ops);
4515

4516 4517
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4518

4519 4520
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4536 4537
	trace_i915_gem_object_create(obj);

4538
	return obj;
4539 4540 4541 4542 4543

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4544 4545
}

4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4570
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4571
{
4572
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4573
	struct drm_device *dev = obj->base.dev;
4574
	struct drm_i915_private *dev_priv = dev->dev_private;
4575
	struct i915_vma *vma, *next;
4576

4577 4578
	intel_runtime_pm_get(dev_priv);

4579 4580
	trace_i915_gem_object_destroy(obj);

4581
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4582 4583 4584 4585
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4586 4587
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4588

4589 4590
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4591

4592
			WARN_ON(i915_vma_unbind(vma));
4593

4594 4595
			dev_priv->mm.interruptible = was_interruptible;
		}
4596 4597
	}

B
Ben Widawsky 已提交
4598 4599 4600 4601 4602
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4603 4604
	WARN_ON(obj->frontbuffer_bits);

4605 4606 4607 4608 4609
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4610 4611
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4612
	if (discard_backing_storage(obj))
4613
		obj->madv = I915_MADV_DONTNEED;
4614
	i915_gem_object_put_pages(obj);
4615
	i915_gem_object_free_mmap_offset(obj);
4616

4617 4618
	BUG_ON(obj->pages);

4619 4620
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4621

4622 4623 4624
	if (obj->ops->release)
		obj->ops->release(obj);

4625 4626
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4627

4628
	kfree(obj->bit_17);
4629
	i915_gem_object_free(obj);
4630 4631

	intel_runtime_pm_put(dev_priv);
4632 4633
}

4634 4635
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4636 4637
{
	struct i915_vma *vma;
4638
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4639 4640
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4641
			return vma;
4642 4643 4644 4645 4646 4647 4648 4649
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4650

4651
	GEM_BUG_ON(!view);
4652

4653
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4654
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4655
			return vma;
4656 4657 4658
	return NULL;
}

B
Ben Widawsky 已提交
4659 4660 4661
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4662 4663 4664 4665 4666

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4667 4668
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4669

4670
	list_del(&vma->obj_link);
4671

4672
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4673 4674
}

4675
static void
4676
i915_gem_stop_engines(struct drm_device *dev)
4677 4678
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4679
	struct intel_engine_cs *engine;
4680

4681
	for_each_engine(engine, dev_priv)
4682
		dev_priv->gt.stop_engine(engine);
4683 4684
}

4685
int
4686
i915_gem_suspend(struct drm_device *dev)
4687
{
4688
	struct drm_i915_private *dev_priv = dev->dev_private;
4689
	int ret = 0;
4690

4691
	mutex_lock(&dev->struct_mutex);
4692
	ret = i915_gpu_idle(dev);
4693
	if (ret)
4694
		goto err;
4695

4696
	i915_gem_retire_requests(dev_priv);
4697

4698
	i915_gem_stop_engines(dev);
4699
	i915_gem_context_lost(dev_priv);
4700 4701
	mutex_unlock(&dev->struct_mutex);

4702
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4703
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4704
	flush_delayed_work(&dev_priv->mm.idle_work);
4705

4706 4707 4708 4709 4710
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4711
	return 0;
4712 4713 4714 4715

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4716 4717
}

4718 4719
void i915_gem_init_swizzling(struct drm_device *dev)
{
4720
	struct drm_i915_private *dev_priv = dev->dev_private;
4721

4722
	if (INTEL_INFO(dev)->gen < 5 ||
4723 4724 4725 4726 4727 4728
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4729 4730 4731
	if (IS_GEN5(dev))
		return;

4732 4733
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4734
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4735
	else if (IS_GEN7(dev))
4736
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4737 4738
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4739 4740
	else
		BUG();
4741
}
D
Daniel Vetter 已提交
4742

4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4770
int i915_gem_init_engines(struct drm_device *dev)
4771
{
4772
	struct drm_i915_private *dev_priv = dev->dev_private;
4773
	int ret;
4774

4775
	ret = intel_init_render_ring_buffer(dev);
4776
	if (ret)
4777
		return ret;
4778 4779

	if (HAS_BSD(dev)) {
4780
		ret = intel_init_bsd_ring_buffer(dev);
4781 4782
		if (ret)
			goto cleanup_render_ring;
4783
	}
4784

4785
	if (HAS_BLT(dev)) {
4786 4787 4788 4789 4790
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4791 4792 4793 4794 4795 4796
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4797 4798 4799 4800 4801
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4802

4803 4804
	return 0;

B
Ben Widawsky 已提交
4805
cleanup_vebox_ring:
4806
	intel_cleanup_engine(&dev_priv->engine[VECS]);
4807
cleanup_blt_ring:
4808
	intel_cleanup_engine(&dev_priv->engine[BCS]);
4809
cleanup_bsd_ring:
4810
	intel_cleanup_engine(&dev_priv->engine[VCS]);
4811
cleanup_render_ring:
4812
	intel_cleanup_engine(&dev_priv->engine[RCS]);
4813 4814 4815 4816 4817 4818 4819

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4820
	struct drm_i915_private *dev_priv = dev->dev_private;
4821
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4822
	int ret;
4823

4824 4825 4826
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4827
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4828
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4829

4830 4831 4832
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4833

4834
	if (HAS_PCH_NOP(dev)) {
4835 4836 4837 4838 4839 4840 4841 4842 4843
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4844 4845
	}

4846 4847
	i915_gem_init_swizzling(dev);

4848 4849 4850 4851 4852 4853 4854 4855
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4856
	BUG_ON(!dev_priv->kernel_context);
4857

4858 4859 4860 4861 4862 4863 4864
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4865
	for_each_engine(engine, dev_priv) {
4866
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4867
		if (ret)
4868
			goto out;
D
Daniel Vetter 已提交
4869
	}
4870

4871 4872
	intel_mocs_init_l3cc_table(dev);

4873
	/* We can't enable contexts until all firmware is loaded */
4874 4875 4876
	if (HAS_GUC_UCODE(dev)) {
		ret = intel_guc_ucode_load(dev);
		if (ret) {
4877 4878 4879
			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
			ret = -EIO;
			goto out;
4880
		}
4881 4882
	}

4883 4884 4885 4886 4887
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
D
Daniel Vetter 已提交
4888

4889 4890
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4891
	return ret;
4892 4893
}

4894 4895 4896 4897 4898 4899
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	mutex_lock(&dev->struct_mutex);
4900

4901
	if (!i915.enable_execlists) {
4902
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4903 4904 4905
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
4906
	} else {
4907
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4908 4909 4910
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4911 4912
	}

4913 4914 4915 4916 4917 4918 4919 4920
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4921
	ret = i915_gem_init_userptr(dev);
4922 4923
	if (ret)
		goto out_unlock;
4924

4925
	i915_gem_init_ggtt(dev);
4926

4927
	ret = i915_gem_context_init(dev);
4928 4929
	if (ret)
		goto out_unlock;
4930

4931
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
4932
	if (ret)
4933
		goto out_unlock;
4934

4935
	ret = i915_gem_init_hw(dev);
4936 4937 4938 4939 4940 4941
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4942
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4943
		ret = 0;
4944
	}
4945 4946

out_unlock:
4947
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4948
	mutex_unlock(&dev->struct_mutex);
4949

4950
	return ret;
4951 4952
}

4953
void
4954
i915_gem_cleanup_engines(struct drm_device *dev)
4955
{
4956
	struct drm_i915_private *dev_priv = dev->dev_private;
4957
	struct intel_engine_cs *engine;
4958

4959
	for_each_engine(engine, dev_priv)
4960
		dev_priv->gt.cleanup_engine(engine);
4961 4962
}

4963
static void
4964
init_engine_lists(struct intel_engine_cs *engine)
4965
{
4966 4967
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
4968 4969
}

4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4984
	if (intel_vgpu_active(dev_priv))
4985 4986 4987 4988 4989 4990 4991 4992 4993
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4994
void
4995
i915_gem_load_init(struct drm_device *dev)
4996
{
4997
	struct drm_i915_private *dev_priv = dev->dev_private;
4998 4999
	int i;

5000
	dev_priv->objects =
5001 5002 5003 5004
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5005 5006 5007 5008 5009
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5010 5011 5012 5013 5014
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5015

B
Ben Widawsky 已提交
5016
	INIT_LIST_HEAD(&dev_priv->vm_list);
5017
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5018 5019
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5020
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5021 5022
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5023
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5024
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5025 5026
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5027 5028
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5029
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5030

5031 5032
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5033 5034 5035 5036 5037 5038 5039 5040
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5041
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5042

5043
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5044

5045 5046
	dev_priv->mm.interruptible = true;

5047
	mutex_init(&dev_priv->fb_tracking.lock);
5048
}
5049

5050 5051 5052 5053 5054 5055 5056 5057 5058
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5059
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5060
{
5061
	struct drm_i915_file_private *file_priv = file->driver_priv;
5062 5063 5064 5065 5066

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5067
	spin_lock(&file_priv->mm.lock);
5068 5069 5070 5071 5072 5073 5074 5075 5076
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5077
	spin_unlock(&file_priv->mm.lock);
5078

5079
	if (!list_empty(&file_priv->rps.link)) {
5080
		spin_lock(&to_i915(dev)->rps.client_lock);
5081
		list_del(&file_priv->rps.link);
5082
		spin_unlock(&to_i915(dev)->rps.client_lock);
5083
	}
5084 5085 5086 5087 5088
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5089
	int ret;
5090 5091 5092 5093 5094 5095 5096 5097 5098

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5099
	file_priv->file = file;
5100
	INIT_LIST_HEAD(&file_priv->rps.link);
5101 5102 5103 5104

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5105 5106
	file_priv->bsd_ring = -1;

5107 5108 5109
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5110

5111
	return ret;
5112 5113
}

5114 5115
/**
 * i915_gem_track_fb - update frontbuffer tracking
5116 5117 5118
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5119 5120 5121 5122
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5140
/* All the new VM stuff */
5141 5142
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5143 5144 5145 5146
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5147
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5148

5149
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5150
		if (vma->is_ggtt &&
5151 5152 5153
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5154 5155
			return vma->node.start;
	}
5156

5157 5158
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5159 5160 5161
	return -1;
}

5162 5163
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5164 5165 5166
{
	struct i915_vma *vma;

5167
	list_for_each_entry(vma, &o->vma_list, obj_link)
5168
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5169 5170
			return vma->node.start;

5171
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5172 5173 5174 5175 5176 5177 5178 5179
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5180
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5181
		if (vma->is_ggtt &&
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5192
				  const struct i915_ggtt_view *view)
5193 5194 5195
{
	struct i915_vma *vma;

5196
	list_for_each_entry(vma, &o->vma_list, obj_link)
5197
		if (vma->is_ggtt &&
5198
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5199
		    drm_mm_node_allocated(&vma->node))
5200 5201 5202 5203 5204 5205 5206
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5207
	struct i915_vma *vma;
5208

5209
	list_for_each_entry(vma, &o->vma_list, obj_link)
5210
		if (drm_mm_node_allocated(&vma->node))
5211 5212 5213 5214 5215
			return true;

	return false;
}

5216
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5217 5218 5219
{
	struct i915_vma *vma;

5220
	GEM_BUG_ON(list_empty(&o->vma_list));
5221

5222
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5223
		if (vma->is_ggtt &&
5224
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5225
			return vma->node.size;
5226
	}
5227

5228 5229 5230
	return 0;
}

5231
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5232 5233
{
	struct i915_vma *vma;
5234
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5235 5236
		if (vma->pin_count > 0)
			return true;
5237

5238
	return false;
5239
}
5240

5241 5242 5243 5244 5245 5246 5247
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5248
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5249 5250 5251 5252 5253 5254 5255
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5266
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5267
	if (IS_ERR(obj))
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5281
	obj->dirty = 1;		/* Backing store is now out of date */
5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}