i915_gem.c 136.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/oom.h>
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
						   bool force);
44
static __must_check int
45 46
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
47 48 49
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57
					     struct shrink_control *sc);
58
static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59
					    struct shrink_control *sc);
60 61 62
static int i915_gem_shrinker_oom(struct notifier_block *nb,
				 unsigned long event,
				 void *ptr);
63
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64

65 66 67 68 69 70
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

71 72 73 74 75 76 77 78
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

79 80 81 82 83 84 85 86
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
87
	obj->fence_dirty = false;
88 89 90
	obj->fence_reg = I915_FENCE_REG_NONE;
}

91 92 93 94
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
95
	spin_lock(&dev_priv->mm.object_stat_lock);
96 97
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
98
	spin_unlock(&dev_priv->mm.object_stat_lock);
99 100 101 102 103
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
104
	spin_lock(&dev_priv->mm.object_stat_lock);
105 106
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
107
	spin_unlock(&dev_priv->mm.object_stat_lock);
108 109
}

110
static int
111
i915_gem_wait_for_error(struct i915_gpu_error *error)
112 113 114
{
	int ret;

115 116
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
117
	if (EXIT_COND)
118 119
		return 0;

120 121 122 123 124
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
125 126 127
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
128 129 130 131
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
132
		return ret;
133
	}
134
#undef EXIT_COND
135

136
	return 0;
137 138
}

139
int i915_mutex_lock_interruptible(struct drm_device *dev)
140
{
141
	struct drm_i915_private *dev_priv = dev->dev_private;
142 143
	int ret;

144
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 146 147 148 149 150 151
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

152
	WARN_ON(i915_verify_lists(dev));
153 154
	return 0;
}
155

156 157
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
158
			    struct drm_file *file)
159
{
160
	struct drm_i915_private *dev_priv = dev->dev_private;
161
	struct drm_i915_gem_get_aperture *args = data;
162 163
	struct drm_i915_gem_object *obj;
	size_t pinned;
164

165
	pinned = 0;
166
	mutex_lock(&dev->struct_mutex);
167
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
168
		if (i915_gem_obj_is_pinned(obj))
169
			pinned += i915_gem_obj_ggtt_size(obj);
170
	mutex_unlock(&dev->struct_mutex);
171

172
	args->aper_size = dev_priv->gtt.base.total;
173
	args->aper_available_size = args->aper_size - pinned;
174

175 176 177
	return 0;
}

178 179
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
180
{
181 182 183 184 185
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
186

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
221

222 223 224 225 226 227 228 229 230 231 232 233 234 235
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
236

237 238 239 240 241 242 243 244 245 246 247 248 249
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
250
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
251
		char *vaddr = obj->phys_handle->vaddr;
252 253 254
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
255 256 257 258 259 260 261 262 263 264 265 266 267 268
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
269
				mark_page_accessed(page);
270
			page_cache_release(page);
271 272
			vaddr += PAGE_SIZE;
		}
273
		obj->dirty = 0;
274 275
	}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
309 310 311 312 313 314 315
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
316
	int ret;
317 318 319 320 321 322 323 324 325 326 327 328 329 330

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

331 332 333 334
	ret = drop_pages(obj);
	if (ret)
		return ret;

335 336 337 338 339 340
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
341 342 343
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
344 345 346 347 348 349 350 351 352 353
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
354 355 356 357 358 359 360 361
	int ret;

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}

377
	drm_clflush_virt_range(vaddr, args->size);
378 379 380 381
	i915_gem_chipset_flush(dev);
	return 0;
}

382 383 384
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
385
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
386 387 388 389 390 391 392 393
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

394 395 396 397 398
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
399
{
400
	struct drm_i915_gem_object *obj;
401 402
	int ret;
	u32 handle;
403

404
	size = roundup(size, PAGE_SIZE);
405 406
	if (size == 0)
		return -EINVAL;
407 408

	/* Allocate the new object */
409
	obj = i915_gem_alloc_object(dev, size);
410 411 412
	if (obj == NULL)
		return -ENOMEM;

413
	ret = drm_gem_handle_create(file, &obj->base, &handle);
414
	/* drop reference from allocate - handle holds it now */
415 416 417
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
418

419
	*handle_p = handle;
420 421 422
	return 0;
}

423 424 425 426 427 428
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
429
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
430 431
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
432
			       args->size, &args->handle);
433 434 435 436 437 438 439 440 441 442
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
443

444
	return i915_gem_create(file, dev,
445
			       args->size, &args->handle);
446 447
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

474
static inline int
475 476
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
525 526

		i915_gem_object_retire(obj);
527 528 529 530 531 532 533 534 535 536 537
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

538 539 540
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
541
static int
542 543 544 545 546 547 548
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

549
	if (unlikely(page_do_bit17_swizzling))
550 551 552 553 554 555 556 557 558 559 560
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

561
	return ret ? -EFAULT : 0;
562 563
}

564 565 566 567
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
568
	if (unlikely(swizzled)) {
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

586 587 588 589 590 591 592 593 594 595 596 597
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
598 599 600
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
601 602 603 604 605 606 607 608 609 610 611

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

612
	return ret ? - EFAULT : 0;
613 614
}

615
static int
616 617 618 619
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
620
{
621
	char __user *user_data;
622
	ssize_t remain;
623
	loff_t offset;
624
	int shmem_page_offset, page_length, ret = 0;
625
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
626
	int prefaulted = 0;
627
	int needs_clflush = 0;
628
	struct sg_page_iter sg_iter;
629

V
Ville Syrjälä 已提交
630
	user_data = to_user_ptr(args->data_ptr);
631 632
	remain = args->size;

633
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
634

635
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
636 637 638
	if (ret)
		return ret;

639
	offset = args->offset;
640

641 642
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
643
		struct page *page = sg_page_iter_page(&sg_iter);
644 645 646 647

		if (remain <= 0)
			break;

648 649 650 651 652
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
653
		shmem_page_offset = offset_in_page(offset);
654 655 656 657
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

658 659 660
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

661 662 663 664 665
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
666 667 668

		mutex_unlock(&dev->struct_mutex);

669
		if (likely(!i915.prefault_disable) && !prefaulted) {
670
			ret = fault_in_multipages_writeable(user_data, remain);
671 672 673 674 675 676 677
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
678

679 680 681
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
682

683
		mutex_lock(&dev->struct_mutex);
684 685

		if (ret)
686 687
			goto out;

688
next_page:
689
		remain -= page_length;
690
		user_data += page_length;
691 692 693
		offset += page_length;
	}

694
out:
695 696
	i915_gem_object_unpin_pages(obj);

697 698 699
	return ret;
}

700 701 702 703 704 705 706
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
707
		     struct drm_file *file)
708 709
{
	struct drm_i915_gem_pread *args = data;
710
	struct drm_i915_gem_object *obj;
711
	int ret = 0;
712

713 714 715 716
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
717
		       to_user_ptr(args->data_ptr),
718 719 720
		       args->size))
		return -EFAULT;

721
	ret = i915_mutex_lock_interruptible(dev);
722
	if (ret)
723
		return ret;
724

725
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
726
	if (&obj->base == NULL) {
727 728
		ret = -ENOENT;
		goto unlock;
729
	}
730

731
	/* Bounds check source.  */
732 733
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
734
		ret = -EINVAL;
735
		goto out;
C
Chris Wilson 已提交
736 737
	}

738 739 740 741 742 743 744 745
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
746 747
	trace_i915_gem_object_pread(obj, args->offset, args->size);

748
	ret = i915_gem_shmem_pread(dev, obj, args, file);
749

750
out:
751
	drm_gem_object_unreference(&obj->base);
752
unlock:
753
	mutex_unlock(&dev->struct_mutex);
754
	return ret;
755 756
}

757 758
/* This is the fast write path which cannot handle
 * page faults in the source data
759
 */
760 761 762 763 764 765

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
766
{
767 768
	void __iomem *vaddr_atomic;
	void *vaddr;
769
	unsigned long unwritten;
770

P
Peter Zijlstra 已提交
771
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
772 773 774
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
775
						      user_data, length);
P
Peter Zijlstra 已提交
776
	io_mapping_unmap_atomic(vaddr_atomic);
777
	return unwritten;
778 779
}

780 781 782 783
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
784
static int
785 786
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
787
			 struct drm_i915_gem_pwrite *args,
788
			 struct drm_file *file)
789
{
790
	struct drm_i915_private *dev_priv = dev->dev_private;
791
	ssize_t remain;
792
	loff_t offset, page_base;
793
	char __user *user_data;
D
Daniel Vetter 已提交
794 795
	int page_offset, page_length, ret;

796
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
797 798 799 800 801 802 803 804 805 806
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
807

V
Ville Syrjälä 已提交
808
	user_data = to_user_ptr(args->data_ptr);
809 810
	remain = args->size;

811
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
812 813 814 815

	while (remain > 0) {
		/* Operation in this page
		 *
816 817 818
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
819
		 */
820 821
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
822 823 824 825 826
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
827 828
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
829
		 */
B
Ben Widawsky 已提交
830
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
831 832 833 834
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
835

836 837 838
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
839 840
	}

D
Daniel Vetter 已提交
841
out_unpin:
B
Ben Widawsky 已提交
842
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
843
out:
844
	return ret;
845 846
}

847 848 849 850
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
851
static int
852 853 854 855 856
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
857
{
858
	char *vaddr;
859
	int ret;
860

861
	if (unlikely(page_do_bit17_swizzling))
862
		return -EINVAL;
863

864 865 866 867
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
868 869
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
870 871 872 873
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
874

875
	return ret ? -EFAULT : 0;
876 877
}

878 879
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
880
static int
881 882 883 884 885
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
886
{
887 888
	char *vaddr;
	int ret;
889

890
	vaddr = kmap(page);
891
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 893 894
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
895 896
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 898
						user_data,
						page_length);
899 900 901 902 903
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
904 905 906
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
907
	kunmap(page);
908

909
	return ret ? -EFAULT : 0;
910 911 912
}

static int
913 914 915 916
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
917 918
{
	ssize_t remain;
919 920
	loff_t offset;
	char __user *user_data;
921
	int shmem_page_offset, page_length, ret = 0;
922
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923
	int hit_slowpath = 0;
924 925
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
926
	struct sg_page_iter sg_iter;
927

V
Ville Syrjälä 已提交
928
	user_data = to_user_ptr(args->data_ptr);
929 930
	remain = args->size;

931
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932

933 934 935 936 937
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
938
		needs_clflush_after = cpu_write_needs_clflush(obj);
939 940 941
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
942 943

		i915_gem_object_retire(obj);
944
	}
945 946 947 948 949
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
950

951 952 953 954 955 956
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

957
	offset = args->offset;
958
	obj->dirty = 1;
959

960 961
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
962
		struct page *page = sg_page_iter_page(&sg_iter);
963
		int partial_cacheline_write;
964

965 966 967
		if (remain <= 0)
			break;

968 969 970 971 972
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
973
		shmem_page_offset = offset_in_page(offset);
974 975 976 977 978

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

979 980 981 982 983 984 985
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

986 987 988
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

989 990 991 992 993 994
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
995 996 997

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
998 999 1000 1001
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1002

1003
		mutex_lock(&dev->struct_mutex);
1004 1005

		if (ret)
1006 1007
			goto out;

1008
next_page:
1009
		remain -= page_length;
1010
		user_data += page_length;
1011
		offset += page_length;
1012 1013
	}

1014
out:
1015 1016
	i915_gem_object_unpin_pages(obj);

1017
	if (hit_slowpath) {
1018 1019 1020 1021 1022 1023 1024
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1025 1026
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1027
		}
1028
	}
1029

1030
	if (needs_clflush_after)
1031
		i915_gem_chipset_flush(dev);
1032

1033
	return ret;
1034 1035 1036 1037 1038 1039 1040 1041 1042
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1043
		      struct drm_file *file)
1044
{
1045
	struct drm_i915_private *dev_priv = dev->dev_private;
1046
	struct drm_i915_gem_pwrite *args = data;
1047
	struct drm_i915_gem_object *obj;
1048 1049 1050 1051 1052 1053
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1054
		       to_user_ptr(args->data_ptr),
1055 1056 1057
		       args->size))
		return -EFAULT;

1058
	if (likely(!i915.prefault_disable)) {
1059 1060 1061 1062 1063
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1064

1065 1066
	intel_runtime_pm_get(dev_priv);

1067
	ret = i915_mutex_lock_interruptible(dev);
1068
	if (ret)
1069
		goto put_rpm;
1070

1071
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1072
	if (&obj->base == NULL) {
1073 1074
		ret = -ENOENT;
		goto unlock;
1075
	}
1076

1077
	/* Bounds check destination. */
1078 1079
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1080
		ret = -EINVAL;
1081
		goto out;
C
Chris Wilson 已提交
1082 1083
	}

1084 1085 1086 1087 1088 1089 1090 1091
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1092 1093
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1094
	ret = -EFAULT;
1095 1096 1097 1098 1099 1100
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1101 1102 1103
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1104
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1105 1106 1107
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1108
	}
1109

1110 1111 1112 1113 1114 1115
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1116

1117
out:
1118
	drm_gem_object_unreference(&obj->base);
1119
unlock:
1120
	mutex_unlock(&dev->struct_mutex);
1121 1122 1123
put_rpm:
	intel_runtime_pm_put(dev_priv);

1124 1125 1126
	return ret;
}

1127
int
1128
i915_gem_check_wedge(struct i915_gpu_error *error,
1129 1130
		     bool interruptible)
{
1131
	if (i915_reset_in_progress(error)) {
1132 1133 1134 1135 1136
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1137 1138
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1139 1140
			return -EIO;

1141 1142 1143 1144 1145 1146 1147
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1148 1149 1150 1151 1152 1153
	}

	return 0;
}

/*
1154
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1155
 */
1156
int
1157
i915_gem_check_olr(struct drm_i915_gem_request *req)
1158 1159 1160
{
	int ret;

1161
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1162 1163

	ret = 0;
1164
	if (req == req->ring->outstanding_lazy_request)
1165
		ret = i915_add_request(req->ring);
1166 1167 1168 1169

	return ret;
}

1170 1171 1172 1173 1174 1175
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1176
		       struct intel_engine_cs *ring)
1177 1178 1179 1180
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1181 1182 1183 1184 1185 1186 1187 1188
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
{
	if (file_priv == NULL)
		return true;

	return !atomic_xchg(&file_priv->rps_wait_boost, true);
}

1189
/**
1190 1191 1192
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1193 1194 1195
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1196 1197 1198 1199 1200 1201 1202
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1203
 * Returns 0 if the request was found within the alloted time. Else returns the
1204 1205
 * errno with remaining time filled in timeout argument.
 */
1206
int __i915_wait_request(struct drm_i915_gem_request *req,
1207
			unsigned reset_counter,
1208
			bool interruptible,
1209
			s64 *timeout,
1210
			struct drm_i915_file_private *file_priv)
1211
{
1212
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1213
	struct drm_device *dev = ring->dev;
1214
	struct drm_i915_private *dev_priv = dev->dev_private;
1215 1216
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1217
	DEFINE_WAIT(wait);
1218
	unsigned long timeout_expire;
1219
	s64 before, now;
1220 1221
	int ret;

1222
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1223

1224
	if (i915_gem_request_completed(req, true))
1225 1226
		return 0;

1227 1228
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1229

1230
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1231 1232 1233 1234 1235 1236 1237
		gen6_rps_boost(dev_priv);
		if (file_priv)
			mod_delayed_work(dev_priv->wq,
					 &file_priv->mm.idle_work,
					 msecs_to_jiffies(100));
	}

1238
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1239 1240
		return -ENODEV;

1241
	/* Record current time in case interrupted by signal, or wedged */
1242
	trace_i915_gem_request_wait_begin(req);
1243
	before = ktime_get_raw_ns();
1244 1245
	for (;;) {
		struct timer_list timer;
1246

1247 1248
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1249

1250 1251
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1252 1253 1254 1255 1256 1257 1258 1259
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1260

1261
		if (i915_gem_request_completed(req, false)) {
1262 1263 1264
			ret = 0;
			break;
		}
1265

1266 1267 1268 1269 1270
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1271
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1272 1273 1274 1275 1276 1277
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1278 1279
			unsigned long expire;

1280
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1281
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1282 1283 1284
			mod_timer(&timer, expire);
		}

1285
		io_schedule();
1286 1287 1288 1289 1290 1291

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1292
	now = ktime_get_raw_ns();
1293
	trace_i915_gem_request_wait_end(req);
1294

1295 1296
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1297 1298

	finish_wait(&ring->irq_queue, &wait);
1299 1300

	if (timeout) {
1301 1302 1303
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1314 1315
	}

1316
	return ret;
1317 1318 1319
}

/**
1320
 * Waits for a request to be signaled, and cleans up the
1321 1322 1323
 * request and object lists appropriately for that event.
 */
int
1324
i915_wait_request(struct drm_i915_gem_request *req)
1325
{
1326 1327 1328
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1329
	unsigned reset_counter;
1330 1331
	int ret;

1332 1333 1334 1335 1336 1337
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1338 1339
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1340
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1341 1342 1343
	if (ret)
		return ret;

1344
	ret = i915_gem_check_olr(req);
1345 1346 1347
	if (ret)
		return ret;

1348
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1349
	i915_gem_request_reference(req);
1350 1351
	ret = __i915_wait_request(req, reset_counter,
				  interruptible, NULL, NULL);
1352 1353
	i915_gem_request_unreference(req);
	return ret;
1354 1355
}

1356
static int
1357
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1358
{
1359 1360
	if (!obj->active)
		return 0;
1361 1362 1363 1364

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
1365 1366
	 * Note that the last_write_req is always the earlier of
	 * the two (read/write) requests, so if we haved successfully waited,
1367 1368
	 * we know we have passed the last write.
	 */
1369
	i915_gem_request_assign(&obj->last_write_req, NULL);
1370 1371 1372 1373

	return 0;
}

1374 1375 1376 1377 1378 1379 1380 1381
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1382
	struct drm_i915_gem_request *req;
1383 1384
	int ret;

1385 1386
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1387 1388
		return 0;

1389
	ret = i915_wait_request(req);
1390 1391 1392
	if (ret)
		return ret;

1393
	return i915_gem_object_wait_rendering__tail(obj);
1394 1395
}

1396 1397 1398 1399 1400
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1401
					    struct drm_i915_file_private *file_priv,
1402 1403
					    bool readonly)
{
1404
	struct drm_i915_gem_request *req;
1405 1406
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1407
	unsigned reset_counter;
1408 1409 1410 1411 1412
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1413 1414
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1415 1416
		return 0;

1417
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1418 1419 1420
	if (ret)
		return ret;

1421
	ret = i915_gem_check_olr(req);
1422 1423 1424
	if (ret)
		return ret;

1425
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1426
	i915_gem_request_reference(req);
1427
	mutex_unlock(&dev->struct_mutex);
1428
	ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1429
	mutex_lock(&dev->struct_mutex);
1430
	i915_gem_request_unreference(req);
1431 1432
	if (ret)
		return ret;
1433

1434
	return i915_gem_object_wait_rendering__tail(obj);
1435 1436
}

1437
/**
1438 1439
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1440 1441 1442
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1443
			  struct drm_file *file)
1444 1445
{
	struct drm_i915_gem_set_domain *args = data;
1446
	struct drm_i915_gem_object *obj;
1447 1448
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1449 1450
	int ret;

1451
	/* Only handle setting domains to types used by the CPU. */
1452
	if (write_domain & I915_GEM_GPU_DOMAINS)
1453 1454
		return -EINVAL;

1455
	if (read_domains & I915_GEM_GPU_DOMAINS)
1456 1457 1458 1459 1460 1461 1462 1463
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1464
	ret = i915_mutex_lock_interruptible(dev);
1465
	if (ret)
1466
		return ret;
1467

1468
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1469
	if (&obj->base == NULL) {
1470 1471
		ret = -ENOENT;
		goto unlock;
1472
	}
1473

1474 1475 1476 1477
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1478 1479 1480
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1481 1482 1483
	if (ret)
		goto unref;

1484
	if (read_domains & I915_GEM_DOMAIN_GTT)
1485
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1486
	else
1487
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1488

1489
unref:
1490
	drm_gem_object_unreference(&obj->base);
1491
unlock:
1492 1493 1494 1495 1496 1497 1498 1499 1500
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1501
			 struct drm_file *file)
1502 1503
{
	struct drm_i915_gem_sw_finish *args = data;
1504
	struct drm_i915_gem_object *obj;
1505 1506
	int ret = 0;

1507
	ret = i915_mutex_lock_interruptible(dev);
1508
	if (ret)
1509
		return ret;
1510

1511
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1512
	if (&obj->base == NULL) {
1513 1514
		ret = -ENOENT;
		goto unlock;
1515 1516 1517
	}

	/* Pinned buffers may be scanout, so flush the cache */
1518 1519
	if (obj->pin_display)
		i915_gem_object_flush_cpu_write_domain(obj, true);
1520

1521
	drm_gem_object_unreference(&obj->base);
1522
unlock:
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1543 1544 1545
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1546
		    struct drm_file *file)
1547 1548 1549 1550 1551
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1552 1553 1554 1555 1556 1557
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1558
	obj = drm_gem_object_lookup(dev, file, args->handle);
1559
	if (obj == NULL)
1560
		return -ENOENT;
1561

1562 1563 1564 1565 1566 1567 1568 1569
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1570
	addr = vm_mmap(obj->filp, 0, args->size,
1571 1572
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1586
	drm_gem_object_unreference_unlocked(obj);
1587 1588 1589 1590 1591 1592 1593 1594
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1613 1614
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1615
	struct drm_i915_private *dev_priv = dev->dev_private;
1616 1617 1618
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1619
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1620

1621 1622
	intel_runtime_pm_get(dev_priv);

1623 1624 1625 1626
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1627 1628 1629
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1630

C
Chris Wilson 已提交
1631 1632
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1633 1634 1635 1636 1637 1638 1639 1640 1641
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1642 1643
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1644
		ret = -EFAULT;
1645 1646 1647
		goto unlock;
	}

1648
	/* Now bind it into the GTT if needed */
1649
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1650 1651
	if (ret)
		goto unlock;
1652

1653 1654 1655
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1656

1657
	ret = i915_gem_object_get_fence(obj);
1658
	if (ret)
1659
		goto unpin;
1660

1661
	/* Finally, remap it using the new GTT offset */
1662 1663
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1664

1665
	if (!obj->fault_mappable) {
1666 1667 1668
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1669 1670
		int i;

1671
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1684
unpin:
B
Ben Widawsky 已提交
1685
	i915_gem_object_ggtt_unpin(obj);
1686
unlock:
1687
	mutex_unlock(&dev->struct_mutex);
1688
out:
1689
	switch (ret) {
1690
	case -EIO:
1691 1692 1693 1694 1695 1696 1697
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1698 1699 1700
			ret = VM_FAULT_SIGBUS;
			break;
		}
1701
	case -EAGAIN:
D
Daniel Vetter 已提交
1702 1703 1704 1705
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1706
		 */
1707 1708
	case 0:
	case -ERESTARTSYS:
1709
	case -EINTR:
1710 1711 1712 1713 1714
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1715 1716
		ret = VM_FAULT_NOPAGE;
		break;
1717
	case -ENOMEM:
1718 1719
		ret = VM_FAULT_OOM;
		break;
1720
	case -ENOSPC:
1721
	case -EFAULT:
1722 1723
		ret = VM_FAULT_SIGBUS;
		break;
1724
	default:
1725
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1726 1727
		ret = VM_FAULT_SIGBUS;
		break;
1728
	}
1729 1730 1731

	intel_runtime_pm_put(dev_priv);
	return ret;
1732 1733
}

1734 1735 1736 1737
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1738
 * Preserve the reservation of the mmapping with the DRM core code, but
1739 1740 1741 1742 1743 1744 1745 1746 1747
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1748
void
1749
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1750
{
1751 1752
	if (!obj->fault_mappable)
		return;
1753

1754 1755
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1756
	obj->fault_mappable = false;
1757 1758
}

1759 1760 1761 1762 1763 1764 1765 1766 1767
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1768
uint32_t
1769
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1770
{
1771
	uint32_t gtt_size;
1772 1773

	if (INTEL_INFO(dev)->gen >= 4 ||
1774 1775
	    tiling_mode == I915_TILING_NONE)
		return size;
1776 1777 1778

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1779
		gtt_size = 1024*1024;
1780
	else
1781
		gtt_size = 512*1024;
1782

1783 1784
	while (gtt_size < size)
		gtt_size <<= 1;
1785

1786
	return gtt_size;
1787 1788
}

1789 1790 1791 1792 1793
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1794
 * potential fence register mapping.
1795
 */
1796 1797 1798
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1799 1800 1801 1802 1803
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1804
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1805
	    tiling_mode == I915_TILING_NONE)
1806 1807
		return 4096;

1808 1809 1810 1811
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1812
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1813 1814
}

1815 1816 1817 1818 1819
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1820
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1821 1822
		return 0;

1823 1824
	dev_priv->mm.shrinker_no_lock_stealing = true;

1825 1826
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1827
		goto out;
1828 1829 1830 1831 1832 1833 1834 1835

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1836 1837 1838 1839 1840
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1841 1842
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1843
		goto out;
1844 1845

	i915_gem_shrink_all(dev_priv);
1846 1847 1848 1849 1850
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1851 1852 1853 1854 1855 1856 1857
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1858
int
1859 1860
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1861
		  uint32_t handle,
1862
		  uint64_t *offset)
1863
{
1864
	struct drm_i915_private *dev_priv = dev->dev_private;
1865
	struct drm_i915_gem_object *obj;
1866 1867
	int ret;

1868
	ret = i915_mutex_lock_interruptible(dev);
1869
	if (ret)
1870
		return ret;
1871

1872
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1873
	if (&obj->base == NULL) {
1874 1875 1876
		ret = -ENOENT;
		goto unlock;
	}
1877

B
Ben Widawsky 已提交
1878
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1879
		ret = -E2BIG;
1880
		goto out;
1881 1882
	}

1883
	if (obj->madv != I915_MADV_WILLNEED) {
1884
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1885
		ret = -EFAULT;
1886
		goto out;
1887 1888
	}

1889 1890 1891
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1892

1893
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1894

1895
out:
1896
	drm_gem_object_unreference(&obj->base);
1897
unlock:
1898
	mutex_unlock(&dev->struct_mutex);
1899
	return ret;
1900 1901
}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1923
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1924 1925
}

1926 1927 1928 1929 1930 1931
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
}

D
Daniel Vetter 已提交
1932 1933 1934
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1935
{
1936
	i915_gem_object_free_mmap_offset(obj);
1937

1938 1939
	if (obj->base.filp == NULL)
		return;
1940

D
Daniel Vetter 已提交
1941 1942 1943 1944 1945
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1946
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1947 1948
	obj->madv = __I915_MADV_PURGED;
}
1949

1950 1951 1952
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1953
{
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1968 1969
}

1970
static void
1971
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1972
{
1973 1974
	struct sg_page_iter sg_iter;
	int ret;
1975

1976
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1977

C
Chris Wilson 已提交
1978 1979 1980 1981 1982 1983
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1984
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1985 1986 1987
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1988
	if (i915_gem_object_needs_bit17_swizzle(obj))
1989 1990
		i915_gem_object_save_bit_17_swizzle(obj);

1991 1992
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1993

1994
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1995
		struct page *page = sg_page_iter_page(&sg_iter);
1996

1997
		if (obj->dirty)
1998
			set_page_dirty(page);
1999

2000
		if (obj->madv == I915_MADV_WILLNEED)
2001
			mark_page_accessed(page);
2002

2003
		page_cache_release(page);
2004
	}
2005
	obj->dirty = 0;
2006

2007 2008
	sg_free_table(obj->pages);
	kfree(obj->pages);
2009
}
C
Chris Wilson 已提交
2010

2011
int
2012 2013 2014 2015
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2016
	if (obj->pages == NULL)
2017 2018
		return 0;

2019 2020 2021
	if (obj->pages_pin_count)
		return -EBUSY;

2022
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2023

2024 2025 2026
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2027
	list_del(&obj->global_list);
2028

2029
	ops->put_pages(obj);
2030
	obj->pages = NULL;
2031

2032
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2033 2034 2035 2036

	return 0;
}

2037 2038 2039
unsigned long
i915_gem_shrink(struct drm_i915_private *dev_priv,
		long target, unsigned flags)
C
Chris Wilson 已提交
2040
{
2041 2042 2043 2044 2045 2046 2047 2048
	const struct {
		struct list_head *list;
		unsigned int bit;
	} phases[] = {
		{ &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
		{ &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
		{ NULL, 0 },
	}, *phase;
2049
	unsigned long count = 0;
C
Chris Wilson 已提交
2050

2051
	/*
2052
	 * As we may completely rewrite the (un)bound list whilst unbinding
2053 2054 2055
	 * (due to retiring requests) we have to strictly process only
	 * one element of the list at the time, and recheck the list
	 * on every iteration.
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	 *
	 * In particular, we must hold a reference whilst removing the
	 * object as we may end up waiting for and/or retiring the objects.
	 * This might release the final reference (held by the active list)
	 * and result in the object being freed from under us. This is
	 * similar to the precautions the eviction code must take whilst
	 * removing objects.
	 *
	 * Also note that although these lists do not hold a reference to
	 * the object we can safely grab one here: The final object
	 * unreferencing and the bound_list are both protected by the
	 * dev->struct_mutex and so we won't ever be able to observe an
	 * object on the bound_list with a reference count equals 0.
2069
	 */
2070
	for (phase = phases; phase->list; phase++) {
2071
		struct list_head still_in_list;
2072

2073 2074
		if ((flags & phase->bit) == 0)
			continue;
2075

2076
		INIT_LIST_HEAD(&still_in_list);
2077
		while (count < target && !list_empty(phase->list)) {
2078 2079
			struct drm_i915_gem_object *obj;
			struct i915_vma *vma, *v;
2080

2081
			obj = list_first_entry(phase->list,
2082 2083
					       typeof(*obj), global_list);
			list_move_tail(&obj->global_list, &still_in_list);
2084

2085 2086
			if (flags & I915_SHRINK_PURGEABLE &&
			    !i915_gem_object_is_purgeable(obj))
2087
				continue;
2088

2089
			drm_gem_object_reference(&obj->base);
2090

2091 2092 2093
			/* For the unbound phase, this should be a no-op! */
			list_for_each_entry_safe(vma, v,
						 &obj->vma_list, vma_link)
2094 2095
				if (i915_vma_unbind(vma))
					break;
2096

2097 2098 2099 2100 2101
			if (i915_gem_object_put_pages(obj) == 0)
				count += obj->base.size >> PAGE_SHIFT;

			drm_gem_object_unreference(&obj->base);
		}
2102
		list_splice(&still_in_list, phase->list);
C
Chris Wilson 已提交
2103 2104 2105 2106 2107
	}

	return count;
}

2108
static unsigned long
C
Chris Wilson 已提交
2109 2110 2111
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	i915_gem_evict_everything(dev_priv->dev);
2112 2113
	return i915_gem_shrink(dev_priv, LONG_MAX,
			       I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
D
Daniel Vetter 已提交
2114 2115
}

2116
static int
C
Chris Wilson 已提交
2117
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2118
{
C
Chris Wilson 已提交
2119
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2120 2121
	int page_count, i;
	struct address_space *mapping;
2122 2123
	struct sg_table *st;
	struct scatterlist *sg;
2124
	struct sg_page_iter sg_iter;
2125
	struct page *page;
2126
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2127
	gfp_t gfp;
2128

C
Chris Wilson 已提交
2129 2130 2131 2132 2133 2134 2135
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2136 2137 2138 2139
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2140
	page_count = obj->base.size / PAGE_SIZE;
2141 2142
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2143
		return -ENOMEM;
2144
	}
2145

2146 2147 2148 2149 2150
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2151
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2152
	gfp = mapping_gfp_mask(mapping);
2153
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2154
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2155 2156 2157
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2158 2159
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2160 2161 2162 2163 2164
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2165 2166 2167 2168 2169 2170 2171 2172
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2173
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2174 2175 2176
			if (IS_ERR(page))
				goto err_pages;
		}
2177 2178 2179 2180 2181 2182 2183 2184
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2185 2186 2187 2188 2189 2190 2191 2192 2193
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2194 2195 2196

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2197
	}
2198 2199 2200 2201
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2202 2203
	obj->pages = st;

2204
	if (i915_gem_object_needs_bit17_swizzle(obj))
2205 2206
		i915_gem_object_do_bit_17_swizzle(obj);

2207 2208 2209 2210
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2211 2212 2213
	return 0;

err_pages:
2214 2215
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2216
		page_cache_release(sg_page_iter_page(&sg_iter));
2217 2218
	sg_free_table(st);
	kfree(st);
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2232 2233
}

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2248
	if (obj->pages)
2249 2250
		return 0;

2251
	if (obj->madv != I915_MADV_WILLNEED) {
2252
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2253
		return -EFAULT;
2254 2255
	}

2256 2257
	BUG_ON(obj->pages_pin_count);

2258 2259 2260 2261
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2262
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2263
	return 0;
2264 2265
}

B
Ben Widawsky 已提交
2266
static void
2267
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2268
			       struct intel_engine_cs *ring)
2269
{
2270 2271
	struct drm_i915_gem_request *req;
	struct intel_engine_cs *old_ring;
2272

2273
	BUG_ON(ring == NULL);
2274 2275 2276 2277 2278

	req = intel_ring_get_request(ring);
	old_ring = i915_gem_request_get_ring(obj->last_read_req);

	if (old_ring != ring && obj->last_write_req) {
2279 2280
		/* Keep the request relative to the current ring */
		i915_gem_request_assign(&obj->last_write_req, req);
2281
	}
2282 2283

	/* Add a reference if we're newly entering the active list. */
2284 2285 2286
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2287
	}
2288

2289
	list_move_tail(&obj->ring_list, &ring->active_list);
2290

2291
	i915_gem_request_assign(&obj->last_read_req, req);
2292 2293
}

B
Ben Widawsky 已提交
2294
void i915_vma_move_to_active(struct i915_vma *vma,
2295
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2296 2297 2298 2299 2300
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2301 2302
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2303
{
2304
	struct i915_vma *vma;
2305

2306
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2307
	BUG_ON(!obj->active);
2308

2309 2310 2311
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2312
	}
2313

2314 2315
	intel_fb_obj_flush(obj, true);

2316
	list_del_init(&obj->ring_list);
2317

2318 2319
	i915_gem_request_assign(&obj->last_read_req, NULL);
	i915_gem_request_assign(&obj->last_write_req, NULL);
2320 2321
	obj->base.write_domain = 0;

2322
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2323 2324 2325 2326 2327

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2328
}
2329

2330 2331 2332
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2333
	if (obj->last_read_req == NULL)
2334 2335
		return;

2336
	if (i915_gem_request_completed(obj->last_read_req, true))
2337 2338 2339
		i915_gem_object_move_to_inactive(obj);
}

2340
static int
2341
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2342
{
2343
	struct drm_i915_private *dev_priv = dev->dev_private;
2344
	struct intel_engine_cs *ring;
2345
	int ret, i, j;
2346

2347
	/* Carefully retire all requests without writing to the rings */
2348
	for_each_ring(ring, dev_priv, i) {
2349 2350 2351
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2352 2353
	}
	i915_gem_retire_requests(dev);
2354 2355

	/* Finally reset hw state */
2356
	for_each_ring(ring, dev_priv, i) {
2357
		intel_ring_init_seqno(ring, seqno);
2358

2359 2360
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2361
	}
2362

2363
	return 0;
2364 2365
}

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2392 2393
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2394
{
2395 2396 2397 2398
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2399
		int ret = i915_gem_init_seqno(dev, 0);
2400 2401
		if (ret)
			return ret;
2402

2403 2404
		dev_priv->next_seqno = 1;
	}
2405

2406
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2407
	return 0;
2408 2409
}

2410
int __i915_add_request(struct intel_engine_cs *ring,
2411
		       struct drm_file *file,
2412
		       struct drm_i915_gem_object *obj)
2413
{
2414
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2415
	struct drm_i915_gem_request *request;
2416
	struct intel_ringbuffer *ringbuf;
2417
	u32 request_start;
2418 2419
	int ret;

2420
	request = ring->outstanding_lazy_request;
2421 2422 2423 2424
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
2425
		ringbuf = request->ctx->engine[ring->id].ringbuf;
2426 2427 2428 2429
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2430 2431 2432 2433 2434 2435 2436
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2437
	if (i915.enable_execlists) {
2438
		ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2439 2440 2441 2442 2443 2444 2445
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2446

2447 2448 2449 2450 2451
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2452
	request->postfix = intel_ring_get_tail(ringbuf);
2453

2454
	if (i915.enable_execlists) {
2455
		ret = ring->emit_request(ringbuf, request);
2456 2457 2458 2459 2460 2461 2462
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
	}
2463

2464
	request->head = request_start;
2465
	request->tail = intel_ring_get_tail(ringbuf);
2466 2467 2468 2469 2470 2471 2472

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2473
	request->batch_obj = obj;
2474

2475 2476 2477 2478 2479 2480 2481 2482
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2483

2484
	request->emitted_jiffies = jiffies;
2485
	list_add_tail(&request->list, &ring->request_list);
2486
	request->file_priv = NULL;
2487

C
Chris Wilson 已提交
2488 2489 2490
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2491
		spin_lock(&file_priv->mm.lock);
2492
		request->file_priv = file_priv;
2493
		list_add_tail(&request->client_list,
2494
			      &file_priv->mm.request_list);
2495
		spin_unlock(&file_priv->mm.lock);
2496
	}
2497

2498
	trace_i915_gem_request_add(request);
2499
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2500

2501
	i915_queue_hangcheck(ring->dev);
2502

2503 2504 2505 2506 2507
	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2508

2509
	return 0;
2510 2511
}

2512 2513
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2514
{
2515
	struct drm_i915_file_private *file_priv = request->file_priv;
2516

2517 2518
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2519

2520
	spin_lock(&file_priv->mm.lock);
2521 2522
	list_del(&request->client_list);
	request->file_priv = NULL;
2523
	spin_unlock(&file_priv->mm.lock);
2524 2525
}

2526
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2527
				   const struct intel_context *ctx)
2528
{
2529
	unsigned long elapsed;
2530

2531 2532 2533
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2534 2535
		return true;

2536 2537
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2538
		if (!i915_gem_context_is_default(ctx)) {
2539
			DRM_DEBUG("context hanging too fast, banning!\n");
2540
			return true;
2541 2542 2543
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2544
			return true;
2545
		}
2546 2547 2548 2549 2550
	}

	return false;
}

2551
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2552
				  struct intel_context *ctx,
2553
				  const bool guilty)
2554
{
2555 2556 2557 2558
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2559

2560 2561 2562
	hs = &ctx->hang_stats;

	if (guilty) {
2563
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2564 2565 2566 2567
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2568 2569 2570
	}
}

2571 2572 2573 2574 2575
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2576 2577 2578 2579 2580 2581 2582 2583 2584
	i915_gem_request_unreference(request);
}

void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2585 2586
	if (ctx) {
		if (i915.enable_execlists) {
2587
			struct intel_engine_cs *ring = req->ring;
2588

2589 2590 2591
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2592

2593 2594
		i915_gem_context_unreference(ctx);
	}
2595 2596

	kfree(req);
2597 2598
}

2599
struct drm_i915_gem_request *
2600
i915_gem_find_active_request(struct intel_engine_cs *ring)
2601
{
2602 2603 2604
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2605
		if (i915_gem_request_completed(request, false))
2606
			continue;
2607

2608
		return request;
2609
	}
2610 2611 2612 2613 2614

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2615
				       struct intel_engine_cs *ring)
2616 2617 2618 2619
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2620
	request = i915_gem_find_active_request(ring);
2621 2622 2623 2624 2625 2626

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2627
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2628 2629

	list_for_each_entry_continue(request, &ring->request_list, list)
2630
		i915_set_reset_status(dev_priv, request->ctx, false);
2631
}
2632

2633
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2634
					struct intel_engine_cs *ring)
2635
{
2636
	while (!list_empty(&ring->active_list)) {
2637
		struct drm_i915_gem_object *obj;
2638

2639 2640 2641
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2642

2643
		i915_gem_object_move_to_inactive(obj);
2644
	}
2645

2646 2647 2648 2649 2650 2651
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2652
		struct drm_i915_gem_request *submit_req;
2653 2654

		submit_req = list_first_entry(&ring->execlist_queue,
2655
				struct drm_i915_gem_request,
2656 2657 2658
				execlist_link);
		list_del(&submit_req->execlist_link);
		intel_runtime_pm_put(dev_priv);
2659 2660 2661 2662

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2663
		i915_gem_context_unreference(submit_req->ctx);
2664 2665 2666
		kfree(submit_req);
	}

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2683

2684 2685
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2686 2687
}

2688
void i915_gem_restore_fences(struct drm_device *dev)
2689 2690 2691 2692
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2693
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2694
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2695

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2706 2707 2708
	}
}

2709
void i915_gem_reset(struct drm_device *dev)
2710
{
2711
	struct drm_i915_private *dev_priv = dev->dev_private;
2712
	struct intel_engine_cs *ring;
2713
	int i;
2714

2715 2716 2717 2718 2719 2720 2721 2722
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2723
	for_each_ring(ring, dev_priv, i)
2724
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2725

2726 2727
	i915_gem_context_reset(dev);

2728
	i915_gem_restore_fences(dev);
2729 2730 2731 2732 2733
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2734
void
2735
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2736
{
C
Chris Wilson 已提交
2737
	if (list_empty(&ring->request_list))
2738 2739
		return;

C
Chris Wilson 已提交
2740
	WARN_ON(i915_verify_lists(ring->dev));
2741

2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

2753
		if (!i915_gem_request_completed(obj->last_read_req, true))
2754 2755 2756 2757 2758 2759
			break;

		i915_gem_object_move_to_inactive(obj);
	}


2760
	while (!list_empty(&ring->request_list)) {
2761
		struct drm_i915_gem_request *request;
2762
		struct intel_ringbuffer *ringbuf;
2763

2764
		request = list_first_entry(&ring->request_list,
2765 2766 2767
					   struct drm_i915_gem_request,
					   list);

2768
		if (!i915_gem_request_completed(request, true))
2769 2770
			break;

2771
		trace_i915_gem_request_retire(request);
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783

		/* This is one of the few common intersection points
		 * between legacy ringbuffer submission and execlists:
		 * we need to tell them apart in order to find the correct
		 * ringbuffer to which the request belongs to.
		 */
		if (i915.enable_execlists) {
			struct intel_context *ctx = request->ctx;
			ringbuf = ctx->engine[ring->id].ringbuf;
		} else
			ringbuf = ring->buffer;

2784 2785 2786 2787 2788
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2789
		ringbuf->last_retired_head = request->postfix;
2790

2791
		i915_gem_free_request(request);
2792
	}
2793

2794 2795
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2796
		ring->irq_put(ring);
2797
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2798
	}
2799

C
Chris Wilson 已提交
2800
	WARN_ON(i915_verify_lists(ring->dev));
2801 2802
}

2803
bool
2804 2805
i915_gem_retire_requests(struct drm_device *dev)
{
2806
	struct drm_i915_private *dev_priv = dev->dev_private;
2807
	struct intel_engine_cs *ring;
2808
	bool idle = true;
2809
	int i;
2810

2811
	for_each_ring(ring, dev_priv, i) {
2812
		i915_gem_retire_requests_ring(ring);
2813
		idle &= list_empty(&ring->request_list);
2814 2815 2816 2817 2818 2819 2820 2821 2822
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2823 2824 2825 2826 2827 2828 2829 2830
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2831 2832
}

2833
static void
2834 2835
i915_gem_retire_work_handler(struct work_struct *work)
{
2836 2837 2838
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2839
	bool idle;
2840

2841
	/* Come back later if the device is busy... */
2842 2843 2844 2845
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2846
	}
2847
	if (!idle)
2848 2849
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2850
}
2851

2852 2853 2854 2855 2856 2857 2858
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2859 2860
}

2861 2862 2863 2864 2865 2866 2867 2868
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2869
	struct intel_engine_cs *ring;
2870 2871 2872
	int ret;

	if (obj->active) {
2873 2874
		ring = i915_gem_request_get_ring(obj->last_read_req);

2875
		ret = i915_gem_check_olr(obj->last_read_req);
2876 2877 2878
		if (ret)
			return ret;

2879
		i915_gem_retire_requests_ring(ring);
2880 2881 2882 2883 2884
	}

	return 0;
}

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2910
	struct drm_i915_private *dev_priv = dev->dev_private;
2911 2912
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2913
	struct drm_i915_gem_request *req;
2914
	unsigned reset_counter;
2915 2916
	int ret = 0;

2917 2918 2919
	if (args->flags != 0)
		return -EINVAL;

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2930 2931
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2932 2933 2934
	if (ret)
		goto out;

2935 2936
	if (!obj->active || !obj->last_read_req)
		goto out;
2937

2938
	req = obj->last_read_req;
2939 2940

	/* Do this after OLR check to make sure we make forward progress polling
2941
	 * on this IOCTL with a timeout <=0 (like busy ioctl)
2942
	 */
2943
	if (args->timeout_ns <= 0) {
2944 2945 2946 2947 2948
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2949
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2950
	i915_gem_request_reference(req);
2951 2952
	mutex_unlock(&dev->struct_mutex);

2953 2954
	ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
				  file->driver_priv);
2955 2956 2957 2958
	mutex_lock(&dev->struct_mutex);
	i915_gem_request_unreference(req);
	mutex_unlock(&dev->struct_mutex);
	return ret;
2959 2960 2961 2962 2963 2964 2965

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2978 2979
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2980
		     struct intel_engine_cs *to)
2981
{
2982
	struct intel_engine_cs *from;
2983 2984 2985
	u32 seqno;
	int ret, idx;

2986 2987
	from = i915_gem_request_get_ring(obj->last_read_req);

2988 2989 2990
	if (from == NULL || to == from)
		return 0;

2991
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2992
		return i915_gem_object_wait_rendering(obj, false);
2993 2994 2995

	idx = intel_ring_sync_index(from, to);

2996
	seqno = i915_gem_request_get_seqno(obj->last_read_req);
R
Rodrigo Vivi 已提交
2997 2998
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
2999
	if (seqno <= from->semaphore.sync_seqno[idx])
3000 3001
		return 0;

3002
	ret = i915_gem_check_olr(obj->last_read_req);
3003 3004
	if (ret)
		return ret;
3005

3006
	trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
3007
	ret = to->semaphore.sync_to(to, from, seqno);
3008
	if (!ret)
3009
		/* We use last_read_req because sync_to()
3010 3011 3012
		 * might have just caused seqno wrap under
		 * the radar.
		 */
3013 3014
		from->semaphore.sync_seqno[idx] =
				i915_gem_request_get_seqno(obj->last_read_req);
3015

3016
	return ret;
3017 3018
}

3019 3020 3021 3022 3023 3024 3025
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3026 3027 3028
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3029 3030 3031
	/* Wait for any direct GTT access to complete */
	mb();

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3043
int i915_vma_unbind(struct i915_vma *vma)
3044
{
3045
	struct drm_i915_gem_object *obj = vma->obj;
3046
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3047
	int ret;
3048

3049
	if (list_empty(&vma->vma_link))
3050 3051
		return 0;

3052 3053 3054 3055
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3056

B
Ben Widawsky 已提交
3057
	if (vma->pin_count)
3058
		return -EBUSY;
3059

3060 3061
	BUG_ON(obj->pages == NULL);

3062
	ret = i915_gem_object_finish_gpu(obj);
3063
	if (ret)
3064 3065 3066 3067 3068 3069
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3070 3071
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3072
		i915_gem_object_finish_gtt(obj);
3073

3074 3075 3076 3077 3078
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3079

3080
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3081

3082 3083
	vma->unbind_vma(vma);

3084
	list_del_init(&vma->mm_list);
3085 3086 3087 3088 3089 3090 3091 3092 3093
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3094

B
Ben Widawsky 已提交
3095 3096 3097 3098
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3099
	 * no more VMAs exist. */
3100
	if (list_empty(&obj->vma_list)) {
3101 3102 3103 3104
		/* Throw away the active reference before
		 * moving to the unbound list. */
		i915_gem_object_retire(obj);

3105
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3106
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3107
	}
3108

3109 3110 3111 3112 3113 3114
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3115
	return 0;
3116 3117
}

3118
int i915_gpu_idle(struct drm_device *dev)
3119
{
3120
	struct drm_i915_private *dev_priv = dev->dev_private;
3121
	struct intel_engine_cs *ring;
3122
	int ret, i;
3123 3124

	/* Flush everything onto the inactive list. */
3125
	for_each_ring(ring, dev_priv, i) {
3126 3127 3128 3129 3130
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3131

3132
		ret = intel_ring_idle(ring);
3133 3134 3135
		if (ret)
			return ret;
	}
3136

3137
	return 0;
3138 3139
}

3140 3141
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3142
{
3143
	struct drm_i915_private *dev_priv = dev->dev_private;
3144 3145
	int fence_reg;
	int fence_pitch_shift;
3146

3147 3148 3149 3150 3151 3152 3153 3154
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3169
	if (obj) {
3170
		u32 size = i915_gem_obj_ggtt_size(obj);
3171
		uint64_t val;
3172

3173
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3174
				 0xfffff000) << 32;
3175
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3176
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3177 3178 3179
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3180

3181 3182 3183 3184 3185 3186 3187 3188 3189
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3190 3191
}

3192 3193
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3194
{
3195
	struct drm_i915_private *dev_priv = dev->dev_private;
3196
	u32 val;
3197

3198
	if (obj) {
3199
		u32 size = i915_gem_obj_ggtt_size(obj);
3200 3201
		int pitch_val;
		int tile_width;
3202

3203
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3204
		     (size & -size) != size ||
3205 3206 3207
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3208

3209 3210 3211 3212 3213 3214 3215 3216 3217
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3218
		val = i915_gem_obj_ggtt_offset(obj);
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3234 3235
}

3236 3237
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3238
{
3239
	struct drm_i915_private *dev_priv = dev->dev_private;
3240 3241
	uint32_t val;

3242
	if (obj) {
3243
		u32 size = i915_gem_obj_ggtt_size(obj);
3244
		uint32_t pitch_val;
3245

3246
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3247
		     (size & -size) != size ||
3248 3249 3250
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3251

3252 3253
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3254

3255
		val = i915_gem_obj_ggtt_offset(obj);
3256 3257 3258 3259 3260 3261 3262
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3263

3264 3265 3266 3267
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3268 3269 3270 3271 3272
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3273 3274 3275
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3276 3277 3278 3279 3280 3281 3282 3283
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3284 3285 3286 3287
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3288 3289 3290 3291 3292 3293
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3294 3295 3296 3297 3298 3299

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3300 3301
}

3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3312
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3313 3314 3315
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3316 3317

	if (enable) {
3318
		obj->fence_reg = reg;
3319 3320 3321 3322 3323 3324 3325
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3326
	obj->fence_dirty = false;
3327 3328
}

3329
static int
3330
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3331
{
3332
	if (obj->last_fenced_req) {
3333
		int ret = i915_wait_request(obj->last_fenced_req);
3334 3335
		if (ret)
			return ret;
3336

3337
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3338 3339 3340 3341 3342 3343 3344 3345
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3346
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3347
	struct drm_i915_fence_reg *fence;
3348 3349
	int ret;

3350
	ret = i915_gem_object_wait_fence(obj);
3351 3352 3353
	if (ret)
		return ret;

3354 3355
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3356

3357 3358
	fence = &dev_priv->fence_regs[obj->fence_reg];

3359 3360 3361
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3362
	i915_gem_object_fence_lost(obj);
3363
	i915_gem_object_update_fence(obj, fence, false);
3364 3365 3366 3367 3368

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3369
i915_find_fence_reg(struct drm_device *dev)
3370 3371
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3372
	struct drm_i915_fence_reg *reg, *avail;
3373
	int i;
3374 3375

	/* First try to find a free reg */
3376
	avail = NULL;
3377 3378 3379
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3380
			return reg;
3381

3382
		if (!reg->pin_count)
3383
			avail = reg;
3384 3385
	}

3386
	if (avail == NULL)
3387
		goto deadlock;
3388 3389

	/* None available, try to steal one or wait for a user to finish */
3390
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3391
		if (reg->pin_count)
3392 3393
			continue;

C
Chris Wilson 已提交
3394
		return reg;
3395 3396
	}

3397 3398 3399 3400 3401 3402
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3403 3404
}

3405
/**
3406
 * i915_gem_object_get_fence - set up fencing for an object
3407 3408 3409 3410 3411 3412 3413 3414 3415
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3416 3417
 *
 * For an untiled surface, this removes any existing fence.
3418
 */
3419
int
3420
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3421
{
3422
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3423
	struct drm_i915_private *dev_priv = dev->dev_private;
3424
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3425
	struct drm_i915_fence_reg *reg;
3426
	int ret;
3427

3428 3429 3430
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3431
	if (obj->fence_dirty) {
3432
		ret = i915_gem_object_wait_fence(obj);
3433 3434 3435
		if (ret)
			return ret;
	}
3436

3437
	/* Just update our place in the LRU if our fence is getting reused. */
3438 3439
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3440
		if (!obj->fence_dirty) {
3441 3442 3443 3444 3445
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3446 3447 3448
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3449
		reg = i915_find_fence_reg(dev);
3450 3451
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3452

3453 3454 3455
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3456
			ret = i915_gem_object_wait_fence(old);
3457 3458 3459
			if (ret)
				return ret;

3460
			i915_gem_object_fence_lost(old);
3461
		}
3462
	} else
3463 3464
		return 0;

3465 3466
	i915_gem_object_update_fence(obj, reg, enable);

3467
	return 0;
3468 3469
}

3470
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3471 3472
				     unsigned long cache_level)
{
3473
	struct drm_mm_node *gtt_space = &vma->node;
3474 3475
	struct drm_mm_node *other;

3476 3477 3478 3479 3480 3481
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3482
	 */
3483
	if (vma->vm->mm.color_adjust == NULL)
3484 3485
		return true;

3486
	if (!drm_mm_node_allocated(gtt_space))
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3503 3504 3505
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3506
static struct i915_vma *
3507 3508 3509
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
			   unsigned alignment,
3510 3511
			   uint64_t flags,
			   const struct i915_ggtt_view *view)
3512
{
3513
	struct drm_device *dev = obj->base.dev;
3514
	struct drm_i915_private *dev_priv = dev->dev_private;
3515
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3516 3517 3518
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3519
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3520
	struct i915_vma *vma;
3521
	int ret;
3522

3523 3524 3525 3526 3527
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3528
						     obj->tiling_mode, true);
3529
	unfenced_alignment =
3530
		i915_gem_get_gtt_alignment(dev,
3531 3532
					   obj->base.size,
					   obj->tiling_mode, false);
3533

3534
	if (alignment == 0)
3535
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3536
						unfenced_alignment;
3537
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3538
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3539
		return ERR_PTR(-EINVAL);
3540 3541
	}

3542
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3543

3544 3545 3546
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3547 3548
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3549
			  obj->base.size,
3550
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3551
			  end);
3552
		return ERR_PTR(-E2BIG);
3553 3554
	}

3555
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3556
	if (ret)
3557
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3558

3559 3560
	i915_gem_object_pin_pages(obj);

3561
	vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
3562
	if (IS_ERR(vma))
3563
		goto err_unpin;
B
Ben Widawsky 已提交
3564

3565
search_free:
3566
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3567
						  size, alignment,
3568 3569
						  obj->cache_level,
						  start, end,
3570 3571
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3572
	if (ret) {
3573
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3574 3575 3576
					       obj->cache_level,
					       start, end,
					       flags);
3577 3578
		if (ret == 0)
			goto search_free;
3579

3580
		goto err_free_vma;
3581
	}
3582
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3583
		ret = -EINVAL;
3584
		goto err_remove_node;
3585 3586
	}

3587
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3588
	if (ret)
3589
		goto err_remove_node;
3590

3591 3592 3593 3594 3595 3596
	trace_i915_vma_bind(vma, flags);
	ret = i915_vma_bind(vma, obj->cache_level,
			    flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
	if (ret)
		goto err_finish_gtt;

3597
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3598
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3599

3600
	return vma;
B
Ben Widawsky 已提交
3601

3602 3603
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3604
err_remove_node:
3605
	drm_mm_remove_node(&vma->node);
3606
err_free_vma:
B
Ben Widawsky 已提交
3607
	i915_gem_vma_destroy(vma);
3608
	vma = ERR_PTR(ret);
3609
err_unpin:
B
Ben Widawsky 已提交
3610
	i915_gem_object_unpin_pages(obj);
3611
	return vma;
3612 3613
}

3614
bool
3615 3616
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3617 3618 3619 3620 3621
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3622
	if (obj->pages == NULL)
3623
		return false;
3624

3625 3626 3627 3628
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3629
	if (obj->stolen || obj->phys_handle)
3630
		return false;
3631

3632 3633 3634 3635 3636 3637 3638 3639
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3640
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3641
		return false;
3642

C
Chris Wilson 已提交
3643
	trace_i915_gem_object_clflush(obj);
3644
	drm_clflush_sg(obj->pages);
3645 3646

	return true;
3647 3648 3649 3650
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3651
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3652
{
C
Chris Wilson 已提交
3653 3654
	uint32_t old_write_domain;

3655
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3656 3657
		return;

3658
	/* No actual flushing is required for the GTT write domain.  Writes
3659 3660
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3661 3662 3663 3664
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3665
	 */
3666 3667
	wmb();

3668 3669
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3670

3671 3672
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3673
	trace_i915_gem_object_change_domain(obj,
3674
					    obj->base.read_domains,
C
Chris Wilson 已提交
3675
					    old_write_domain);
3676 3677 3678 3679
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3680 3681
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
				       bool force)
3682
{
C
Chris Wilson 已提交
3683
	uint32_t old_write_domain;
3684

3685
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3686 3687
		return;

3688 3689 3690
	if (i915_gem_clflush_object(obj, force))
		i915_gem_chipset_flush(obj->base.dev);

3691 3692
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3693

3694 3695
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3696
	trace_i915_gem_object_change_domain(obj,
3697
					    obj->base.read_domains,
C
Chris Wilson 已提交
3698
					    old_write_domain);
3699 3700
}

3701 3702 3703 3704 3705 3706
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3707
int
3708
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3709
{
C
Chris Wilson 已提交
3710
	uint32_t old_write_domain, old_read_domains;
3711
	struct i915_vma *vma;
3712
	int ret;
3713

3714 3715 3716
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3717
	ret = i915_gem_object_wait_rendering(obj, !write);
3718 3719 3720
	if (ret)
		return ret;

3721
	i915_gem_object_retire(obj);
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3735
	i915_gem_object_flush_cpu_write_domain(obj, false);
C
Chris Wilson 已提交
3736

3737 3738 3739 3740 3741 3742 3743
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3744 3745
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3746

3747 3748 3749
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3750 3751
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3752
	if (write) {
3753 3754 3755
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3756 3757
	}

3758 3759 3760
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
3761 3762 3763 3764
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3765
	/* And bump the LRU for this access */
3766 3767
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3768
		list_move_tail(&vma->mm_list,
3769
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3770

3771 3772 3773
	return 0;
}

3774 3775 3776
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3777
	struct drm_device *dev = obj->base.dev;
3778
	struct i915_vma *vma, *next;
3779 3780 3781 3782 3783
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3784
	if (i915_gem_obj_is_pinned(obj)) {
3785 3786 3787 3788
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3789
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3790
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3791
			ret = i915_vma_unbind(vma);
3792 3793 3794
			if (ret)
				return ret;
		}
3795 3796
	}

3797
	if (i915_gem_obj_bound_any(obj)) {
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3808
		if (INTEL_INFO(dev)->gen < 6) {
3809 3810 3811 3812 3813
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3814
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3815 3816 3817 3818 3819 3820
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
						    vma->bound & GLOBAL_BIND);
				if (ret)
					return ret;
			}
3821 3822
	}

3823 3824 3825 3826 3827
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

	if (cpu_write_needs_clflush(obj)) {
3828 3829 3830 3831 3832 3833 3834 3835
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
3836
		i915_gem_object_retire(obj);
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	return 0;
}

B
Ben Widawsky 已提交
3853 3854
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3855
{
B
Ben Widawsky 已提交
3856
	struct drm_i915_gem_caching *args = data;
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3870 3871 3872 3873 3874 3875
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3876 3877 3878 3879
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3880 3881 3882 3883
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3884 3885 3886 3887 3888 3889 3890

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3891 3892
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3893
{
B
Ben Widawsky 已提交
3894
	struct drm_i915_gem_caching *args = data;
3895 3896 3897 3898
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3899 3900
	switch (args->caching) {
	case I915_CACHING_NONE:
3901 3902
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3903
	case I915_CACHING_CACHED:
3904 3905
		level = I915_CACHE_LLC;
		break;
3906 3907 3908
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3909 3910 3911 3912
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3913 3914 3915 3916
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3931 3932
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3933 3934 3935 3936 3937 3938
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

D
Daniel Vetter 已提交
3939
	/* There are 2 sources that pin objects:
3940 3941 3942 3943
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *
	 * We can ignore reservations as we hold the struct_mutex and
D
Daniel Vetter 已提交
3944
	 * are only called outside of the reservation path.
3945
	 */
D
Daniel Vetter 已提交
3946
	return vma->pin_count;
3947 3948
}

3949
/*
3950 3951 3952
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3953 3954
 */
int
3955 3956
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3957
				     struct intel_engine_cs *pipelined)
3958
{
3959
	u32 old_read_domains, old_write_domain;
3960
	bool was_pin_display;
3961 3962
	int ret;

3963
	if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3964 3965
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3966 3967 3968
			return ret;
	}

3969 3970 3971
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3972
	was_pin_display = obj->pin_display;
3973 3974
	obj->pin_display = true;

3975 3976 3977 3978 3979 3980 3981 3982 3983
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3984 3985
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3986
	if (ret)
3987
		goto err_unpin_display;
3988

3989 3990 3991 3992
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3993
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3994
	if (ret)
3995
		goto err_unpin_display;
3996

3997
	i915_gem_object_flush_cpu_write_domain(obj, true);
3998

3999
	old_write_domain = obj->base.write_domain;
4000
	old_read_domains = obj->base.read_domains;
4001 4002 4003 4004

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4005
	obj->base.write_domain = 0;
4006
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4007 4008 4009

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4010
					    old_write_domain);
4011 4012

	return 0;
4013 4014

err_unpin_display:
4015 4016
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
4017 4018 4019 4020 4021 4022
	return ret;
}

void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
B
Ben Widawsky 已提交
4023
	i915_gem_object_ggtt_unpin(obj);
4024
	obj->pin_display = is_pin_display(obj);
4025 4026
}

4027
int
4028
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4029
{
4030 4031
	int ret;

4032
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4033 4034
		return 0;

4035
	ret = i915_gem_object_wait_rendering(obj, false);
4036 4037 4038
	if (ret)
		return ret;

4039 4040
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4041
	return 0;
4042 4043
}

4044 4045 4046 4047 4048 4049
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4050
int
4051
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4052
{
C
Chris Wilson 已提交
4053
	uint32_t old_write_domain, old_read_domains;
4054 4055
	int ret;

4056 4057 4058
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4059
	ret = i915_gem_object_wait_rendering(obj, !write);
4060 4061 4062
	if (ret)
		return ret;

4063
	i915_gem_object_retire(obj);
4064
	i915_gem_object_flush_gtt_write_domain(obj);
4065

4066 4067
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4068

4069
	/* Flush the CPU cache if it's still invalid. */
4070
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4071
		i915_gem_clflush_object(obj, false);
4072

4073
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4074 4075 4076 4077 4078
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4079
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4080 4081 4082 4083 4084

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4085 4086
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4087
	}
4088

4089 4090 4091
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
4092 4093 4094 4095
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4096 4097 4098
	return 0;
}

4099 4100 4101
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4102 4103 4104 4105
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4106 4107 4108
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4109
static int
4110
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4111
{
4112 4113
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4114
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4115
	struct drm_i915_gem_request *request, *target = NULL;
4116
	unsigned reset_counter;
4117
	int ret;
4118

4119 4120 4121 4122 4123 4124 4125
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4126

4127
	spin_lock(&file_priv->mm.lock);
4128
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4129 4130
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4131

4132
		target = request;
4133
	}
4134
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4135 4136
	if (target)
		i915_gem_request_reference(target);
4137
	spin_unlock(&file_priv->mm.lock);
4138

4139
	if (target == NULL)
4140
		return 0;
4141

4142
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4143 4144
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4145

4146 4147 4148 4149
	mutex_lock(&dev->struct_mutex);
	i915_gem_request_unreference(target);
	mutex_unlock(&dev->struct_mutex);

4150 4151 4152
	return ret;
}

4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4172
int
4173 4174 4175 4176 4177
i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
			 struct i915_address_space *vm,
			 uint32_t alignment,
			 uint64_t flags,
			 const struct i915_ggtt_view *view)
4178
{
4179
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4180
	struct i915_vma *vma;
4181
	unsigned bound;
4182 4183
	int ret;

4184 4185 4186
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4187
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4188
		return -EINVAL;
4189

4190 4191 4192
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4193
	vma = i915_gem_obj_to_vma_view(obj, vm, view);
4194
	if (vma) {
B
Ben Widawsky 已提交
4195 4196 4197
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4198
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4199
			WARN(vma->pin_count,
4200
			     "bo is already pinned with incorrect alignment:"
4201
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4202
			     " obj->map_and_fenceable=%d\n",
4203 4204
			     i915_gem_obj_offset_view(obj, vm, view->type),
			     alignment,
4205
			     !!(flags & PIN_MAPPABLE),
4206
			     obj->map_and_fenceable);
4207
			ret = i915_vma_unbind(vma);
4208 4209
			if (ret)
				return ret;
4210 4211

			vma = NULL;
4212 4213 4214
		}
	}

4215
	bound = vma ? vma->bound : 0;
4216
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4217 4218
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
						 flags, view);
4219 4220
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4221
	}
J
Jesse Barnes 已提交
4222

4223 4224 4225 4226 4227
	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
		ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
		if (ret)
			return ret;
	}
4228

4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

		mappable = (vma->node.start + obj->base.size <=
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;
	}

	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);

4252
	vma->pin_count++;
4253 4254
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4255 4256 4257 4258 4259

	return 0;
}

void
B
Ben Widawsky 已提交
4260
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4261
{
B
Ben Widawsky 已提交
4262
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4263

B
Ben Widawsky 已提交
4264 4265 4266 4267 4268
	BUG_ON(!vma);
	BUG_ON(vma->pin_count == 0);
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));

	if (--vma->pin_count == 0)
4269
		obj->pin_mappable = false;
4270 4271
}

4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4298 4299
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4300
		    struct drm_file *file)
4301 4302
{
	struct drm_i915_gem_busy *args = data;
4303
	struct drm_i915_gem_object *obj;
4304 4305
	int ret;

4306
	ret = i915_mutex_lock_interruptible(dev);
4307
	if (ret)
4308
		return ret;
4309

4310
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4311
	if (&obj->base == NULL) {
4312 4313
		ret = -ENOENT;
		goto unlock;
4314
	}
4315

4316 4317 4318 4319
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4320
	 */
4321
	ret = i915_gem_object_flush_active(obj);
4322

4323
	args->busy = obj->active;
4324 4325
	if (obj->last_read_req) {
		struct intel_engine_cs *ring;
4326
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4327 4328
		ring = i915_gem_request_get_ring(obj->last_read_req);
		args->busy |= intel_ring_flag(ring) << 16;
4329
	}
4330

4331
	drm_gem_object_unreference(&obj->base);
4332
unlock:
4333
	mutex_unlock(&dev->struct_mutex);
4334
	return ret;
4335 4336 4337 4338 4339 4340
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4341
	return i915_gem_ring_throttle(dev, file_priv);
4342 4343
}

4344 4345 4346 4347
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4348
	struct drm_i915_private *dev_priv = dev->dev_private;
4349
	struct drm_i915_gem_madvise *args = data;
4350
	struct drm_i915_gem_object *obj;
4351
	int ret;
4352 4353 4354 4355 4356 4357 4358 4359 4360

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4361 4362 4363 4364
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4365
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4366
	if (&obj->base == NULL) {
4367 4368
		ret = -ENOENT;
		goto unlock;
4369 4370
	}

B
Ben Widawsky 已提交
4371
	if (i915_gem_obj_is_pinned(obj)) {
4372 4373
		ret = -EINVAL;
		goto out;
4374 4375
	}

4376 4377 4378 4379 4380 4381 4382 4383 4384
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4385 4386
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4387

C
Chris Wilson 已提交
4388 4389
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4390 4391
		i915_gem_object_truncate(obj);

4392
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4393

4394
out:
4395
	drm_gem_object_unreference(&obj->base);
4396
unlock:
4397
	mutex_unlock(&dev->struct_mutex);
4398
	return ret;
4399 4400
}

4401 4402
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4403
{
4404
	INIT_LIST_HEAD(&obj->global_list);
4405
	INIT_LIST_HEAD(&obj->ring_list);
4406
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4407
	INIT_LIST_HEAD(&obj->vma_list);
4408
	INIT_LIST_HEAD(&obj->batch_pool_list);
4409

4410 4411
	obj->ops = ops;

4412 4413 4414 4415 4416 4417
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4418 4419 4420 4421 4422
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4423 4424
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4425
{
4426
	struct drm_i915_gem_object *obj;
4427
	struct address_space *mapping;
D
Daniel Vetter 已提交
4428
	gfp_t mask;
4429

4430
	obj = i915_gem_object_alloc(dev);
4431 4432
	if (obj == NULL)
		return NULL;
4433

4434
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4435
		i915_gem_object_free(obj);
4436 4437
		return NULL;
	}
4438

4439 4440 4441 4442 4443 4444 4445
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4446
	mapping = file_inode(obj->base.filp)->i_mapping;
4447
	mapping_set_gfp_mask(mapping, mask);
4448

4449
	i915_gem_object_init(obj, &i915_gem_object_ops);
4450

4451 4452
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4453

4454 4455
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4471 4472
	trace_i915_gem_object_create(obj);

4473
	return obj;
4474 4475
}

4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4500
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4501
{
4502
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4503
	struct drm_device *dev = obj->base.dev;
4504
	struct drm_i915_private *dev_priv = dev->dev_private;
4505
	struct i915_vma *vma, *next;
4506

4507 4508
	intel_runtime_pm_get(dev_priv);

4509 4510
	trace_i915_gem_object_destroy(obj);

4511
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4512 4513 4514 4515
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4516 4517
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4518

4519 4520
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4521

4522
			WARN_ON(i915_vma_unbind(vma));
4523

4524 4525
			dev_priv->mm.interruptible = was_interruptible;
		}
4526 4527
	}

B
Ben Widawsky 已提交
4528 4529 4530 4531 4532
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4533 4534
	WARN_ON(obj->frontbuffer_bits);

4535 4536 4537 4538 4539
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4540 4541
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4542
	if (discard_backing_storage(obj))
4543
		obj->madv = I915_MADV_DONTNEED;
4544
	i915_gem_object_put_pages(obj);
4545
	i915_gem_object_free_mmap_offset(obj);
4546

4547 4548
	BUG_ON(obj->pages);

4549 4550
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4551

4552 4553 4554
	if (obj->ops->release)
		obj->ops->release(obj);

4555 4556
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4557

4558
	kfree(obj->bit_17);
4559
	i915_gem_object_free(obj);
4560 4561

	intel_runtime_pm_put(dev_priv);
4562 4563
}

4564 4565 4566
struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
					  struct i915_address_space *vm,
					  const struct i915_ggtt_view *view)
4567 4568 4569
{
	struct i915_vma *vma;
	list_for_each_entry(vma, &obj->vma_list, vma_link)
4570
		if (vma->vm == vm && vma->ggtt_view.type == view->type)
4571 4572 4573 4574 4575
			return vma;

	return NULL;
}

B
Ben Widawsky 已提交
4576 4577
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4578
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4579
	WARN_ON(vma->node.allocated);
4580 4581 4582 4583 4584

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4585 4586
	vm = vma->vm;

4587 4588
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4589

4590
	list_del(&vma->vma_link);
4591

B
Ben Widawsky 已提交
4592 4593 4594
	kfree(vma);
}

4595 4596 4597 4598
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4599
	struct intel_engine_cs *ring;
4600 4601 4602
	int i;

	for_each_ring(ring, dev_priv, i)
4603
		dev_priv->gt.stop_ring(ring);
4604 4605
}

4606
int
4607
i915_gem_suspend(struct drm_device *dev)
4608
{
4609
	struct drm_i915_private *dev_priv = dev->dev_private;
4610
	int ret = 0;
4611

4612
	mutex_lock(&dev->struct_mutex);
4613
	ret = i915_gpu_idle(dev);
4614
	if (ret)
4615
		goto err;
4616

4617
	i915_gem_retire_requests(dev);
4618

4619
	/* Under UMS, be paranoid and evict. */
4620
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
4621
		i915_gem_evict_everything(dev);
4622

4623
	i915_gem_stop_ringbuffers(dev);
4624 4625 4626
	mutex_unlock(&dev->struct_mutex);

	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4627
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4628
	flush_delayed_work(&dev_priv->mm.idle_work);
4629

4630 4631 4632 4633 4634
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4635
	return 0;
4636 4637 4638 4639

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4640 4641
}

4642
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4643
{
4644
	struct drm_device *dev = ring->dev;
4645
	struct drm_i915_private *dev_priv = dev->dev_private;
4646 4647
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4648
	int i, ret;
B
Ben Widawsky 已提交
4649

4650
	if (!HAS_L3_DPF(dev) || !remap_info)
4651
		return 0;
B
Ben Widawsky 已提交
4652

4653 4654 4655
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4656

4657 4658 4659 4660 4661
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4662
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4663 4664 4665
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4666 4667
	}

4668
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4669

4670
	return ret;
B
Ben Widawsky 已提交
4671 4672
}

4673 4674
void i915_gem_init_swizzling(struct drm_device *dev)
{
4675
	struct drm_i915_private *dev_priv = dev->dev_private;
4676

4677
	if (INTEL_INFO(dev)->gen < 5 ||
4678 4679 4680 4681 4682 4683
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4684 4685 4686
	if (IS_GEN5(dev))
		return;

4687 4688
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4689
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4690
	else if (IS_GEN7(dev))
4691
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4692 4693
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4694 4695
	else
		BUG();
4696
}
D
Daniel Vetter 已提交
4697

4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4741
int i915_gem_init_rings(struct drm_device *dev)
4742
{
4743
	struct drm_i915_private *dev_priv = dev->dev_private;
4744
	int ret;
4745

4746
	ret = intel_init_render_ring_buffer(dev);
4747
	if (ret)
4748
		return ret;
4749 4750

	if (HAS_BSD(dev)) {
4751
		ret = intel_init_bsd_ring_buffer(dev);
4752 4753
		if (ret)
			goto cleanup_render_ring;
4754
	}
4755

4756
	if (intel_enable_blt(dev)) {
4757 4758 4759 4760 4761
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4762 4763 4764 4765 4766 4767
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4768 4769 4770 4771 4772
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4773

4774
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4775
	if (ret)
4776
		goto cleanup_bsd2_ring;
4777 4778 4779

	return 0;

4780 4781
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4782 4783
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4797
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4798
	struct intel_engine_cs *ring;
4799
	int ret, i;
4800 4801 4802 4803

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
4804
	if (dev_priv->ellc_size)
4805
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4806

4807 4808 4809
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4810

4811
	if (HAS_PCH_NOP(dev)) {
4812 4813 4814 4815 4816 4817 4818 4819 4820
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4821 4822
	}

4823 4824
	i915_gem_init_swizzling(dev);

4825 4826 4827 4828 4829 4830 4831 4832
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
4833 4834 4835 4836 4837
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
			return ret;
	}
4838

4839 4840 4841
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4842
	/*
4843 4844 4845 4846 4847
	 * XXX: Contexts should only be initialized once. Doing a switch to the
	 * default context switch however is something we'd like to do after
	 * reset or thaw (the latter may not actually be necessary for HW, but
	 * goes with our code better). Context switching requires rings (for
	 * the do_switch), but before enabling PPGTT. So don't move this.
4848
	 */
4849
	ret = i915_gem_context_enable(dev_priv);
4850
	if (ret && ret != -EIO) {
4851
		DRM_ERROR("Context enable failed %d\n", ret);
4852
		i915_gem_cleanup_ringbuffer(dev);
4853 4854 4855 4856 4857 4858 4859 4860

		return ret;
	}

	ret = i915_ppgtt_init_hw(dev);
	if (ret && ret != -EIO) {
		DRM_ERROR("PPGTT enable failed %d\n", ret);
		i915_gem_cleanup_ringbuffer(dev);
4861
	}
D
Daniel Vetter 已提交
4862

4863
	return ret;
4864 4865
}

4866 4867 4868 4869 4870
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4871 4872 4873
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4874
	mutex_lock(&dev->struct_mutex);
4875 4876 4877

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4878 4879 4880
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4881 4882 4883
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4884 4885 4886 4887 4888
	if (!i915.enable_execlists) {
		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4889 4890 4891 4892 4893
	} else {
		dev_priv->gt.do_execbuf = intel_execlists_submission;
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4894 4895
	}

4896
	ret = i915_gem_init_userptr(dev);
4897 4898
	if (ret)
		goto out_unlock;
4899

4900
	i915_gem_init_global_gtt(dev);
4901

4902
	ret = i915_gem_context_init(dev);
4903 4904
	if (ret)
		goto out_unlock;
4905

D
Daniel Vetter 已提交
4906 4907
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4908
		goto out_unlock;
4909

4910
	ret = i915_gem_init_hw(dev);
4911 4912 4913 4914 4915 4916 4917 4918
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4919
	}
4920 4921

out_unlock:
4922
	mutex_unlock(&dev->struct_mutex);
4923

4924
	return ret;
4925 4926
}

4927 4928 4929
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4930
	struct drm_i915_private *dev_priv = dev->dev_private;
4931
	struct intel_engine_cs *ring;
4932
	int i;
4933

4934
	for_each_ring(ring, dev_priv, i)
4935
		dev_priv->gt.cleanup_ring(ring);
4936 4937
}

4938
static void
4939
init_ring_lists(struct intel_engine_cs *ring)
4940 4941 4942 4943 4944
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4945 4946
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4947
{
4948 4949
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4950 4951 4952 4953
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4954
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4955 4956
}

4957 4958 4959
void
i915_gem_load(struct drm_device *dev)
{
4960
	struct drm_i915_private *dev_priv = dev->dev_private;
4961 4962 4963 4964 4965 4966 4967
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4968

B
Ben Widawsky 已提交
4969 4970 4971
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4972
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4973 4974
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4975
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4976 4977
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4978
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4979
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4980 4981
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4982 4983
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
4984
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4985

4986
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4987
	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4988 4989
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4990 4991
	}

4992 4993
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4994
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4995 4996
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4997

4998 4999 5000
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5001 5002 5003 5004
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5005
	/* Initialize fence registers to zero */
5006 5007
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5008

5009
	i915_gem_detect_bit_6_swizzle(dev);
5010
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5011

5012 5013
	dev_priv->mm.interruptible = true;

5014 5015 5016 5017
	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.shrinker);
5018 5019 5020

	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
	register_oom_notifier(&dev_priv->mm.oom_notifier);
5021

5022 5023
	i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);

5024
	mutex_init(&dev_priv->fb_tracking.lock);
5025
}
5026

5027
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5028
{
5029
	struct drm_i915_file_private *file_priv = file->driver_priv;
5030

5031 5032
	cancel_delayed_work_sync(&file_priv->mm.idle_work);

5033 5034 5035 5036
	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5037
	spin_lock(&file_priv->mm.lock);
5038 5039 5040 5041 5042 5043 5044 5045 5046
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5047
	spin_unlock(&file_priv->mm.lock);
5048
}
5049

5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
static void
i915_gem_file_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_file_private *file_priv =
		container_of(work, typeof(*file_priv), mm.idle_work.work);

	atomic_set(&file_priv->rps_wait_boost, false);
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5062
	int ret;
5063 5064 5065 5066 5067 5068 5069 5070 5071

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5072
	file_priv->file = file;
5073 5074 5075 5076 5077 5078

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);
	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
			  i915_gem_file_idle_work_handler);

5079 5080 5081
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5082

5083
	return ret;
5084 5085
}

5086 5087 5088 5089 5090 5091 5092 5093 5094
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5112 5113 5114 5115 5116
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
	if (!mutex_is_locked(mutex))
		return false;

5117
#if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES)
5118 5119 5120 5121 5122 5123 5124
	return mutex->owner == task;
#else
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
	return false;
#endif
}

5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
{
	if (!mutex_trylock(&dev->struct_mutex)) {
		if (!mutex_is_locked_by(&dev->struct_mutex, current))
			return false;

		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
			return false;

		*unlock = false;
	} else
		*unlock = true;

	return true;
}

5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
static int num_vma_bound(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	int count = 0;

	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
			count++;

	return count;
}

5153
static unsigned long
5154
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5155
{
5156
	struct drm_i915_private *dev_priv =
5157
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5158
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
5159
	struct drm_i915_gem_object *obj;
5160
	unsigned long count;
5161
	bool unlock;
5162

5163 5164
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return 0;
5165

5166
	count = 0;
5167
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5168
		if (obj->pages_pin_count == 0)
5169
			count += obj->base.size >> PAGE_SHIFT;
5170 5171

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5172 5173
		if (!i915_gem_obj_is_pinned(obj) &&
		    obj->pages_pin_count == num_vma_bound(obj))
5174
			count += obj->base.size >> PAGE_SHIFT;
5175
	}
5176

5177 5178
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5179

5180
	return count;
5181
}
5182 5183

/* All the new VM stuff */
5184 5185 5186
unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
				       struct i915_address_space *vm,
				       enum i915_ggtt_view_type view)
5187 5188 5189 5190
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5191
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5192 5193

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5194
		if (vma->vm == vm && vma->ggtt_view.type == view)
5195 5196 5197
			return vma->node.start;

	}
5198 5199
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5200 5201 5202
	return -1;
}

5203 5204 5205
bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
			     struct i915_address_space *vm,
			     enum i915_ggtt_view_type view)
5206 5207 5208 5209
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5210 5211 5212
		if (vma->vm == vm &&
		    vma->ggtt_view.type == view &&
		    drm_mm_node_allocated(&vma->node))
5213 5214 5215 5216 5217 5218 5219
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5220
	struct i915_vma *vma;
5221

5222 5223
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5235
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245

	BUG_ON(list_empty(&o->vma_list));

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == vm)
			return vma->node.size;

	return 0;
}

5246
static unsigned long
5247
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5248 5249
{
	struct drm_i915_private *dev_priv =
5250
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5251 5252
	struct drm_device *dev = dev_priv->dev;
	unsigned long freed;
5253
	bool unlock;
5254

5255 5256
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return SHRINK_STOP;
5257

5258 5259 5260 5261 5262
	freed = i915_gem_shrink(dev_priv,
				sc->nr_to_scan,
				I915_SHRINK_BOUND |
				I915_SHRINK_UNBOUND |
				I915_SHRINK_PURGEABLE);
5263
	if (freed < sc->nr_to_scan)
5264 5265 5266 5267
		freed += i915_gem_shrink(dev_priv,
					 sc->nr_to_scan - freed,
					 I915_SHRINK_BOUND |
					 I915_SHRINK_UNBOUND);
5268 5269
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5270

5271 5272
	return freed;
}
5273

5274 5275 5276 5277 5278 5279 5280 5281
static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
	struct drm_i915_private *dev_priv =
		container_of(nb, struct drm_i915_private, mm.oom_notifier);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj;
	unsigned long timeout = msecs_to_jiffies(5000) + 1;
5282
	unsigned long pinned, bound, unbound, freed_pages;
5283 5284 5285
	bool was_interruptible;
	bool unlock;

5286
	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5287
		schedule_timeout_killable(1);
5288 5289 5290
		if (fatal_signal_pending(current))
			return NOTIFY_DONE;
	}
5291 5292 5293 5294 5295 5296 5297 5298
	if (timeout == 0) {
		pr_err("Unable to purge GPU memory due lock contention.\n");
		return NOTIFY_DONE;
	}

	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

5299
	freed_pages = i915_gem_shrink_all(dev_priv);
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329

	dev_priv->mm.interruptible = was_interruptible;

	/* Because we may be allocating inside our own driver, we cannot
	 * assert that there are no objects with pinned pages that are not
	 * being pointed to by hardware.
	 */
	unbound = bound = pinned = 0;
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		if (!obj->base.filp) /* not backed by a freeable object */
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			unbound += obj->base.size;
	}
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		if (!obj->base.filp)
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			bound += obj->base.size;
	}

	if (unlock)
		mutex_unlock(&dev->struct_mutex);

5330 5331 5332
	if (freed_pages || unbound || bound)
		pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
			freed_pages << PAGE_SHIFT, pinned);
5333 5334 5335 5336 5337
	if (unbound || bound)
		pr_err("%lu and %lu bytes still available in the "
		       "bound and unbound GPU page lists.\n",
		       bound, unbound);

5338
	*(unsigned long *)ptr += freed_pages;
5339 5340 5341
	return NOTIFY_DONE;
}

5342 5343
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
{
5344
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5345 5346
	struct i915_vma *vma;

5347 5348 5349
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (vma->vm == ggtt &&
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5350
			return vma;
5351

5352
	return NULL;
5353
}