i915_gem.c 132.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41 42
#define RQ_BUG_ON(expr)

43
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45
static void
46 47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49

50 51 52 53 54 55
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

56 57 58 59 60 61 62 63
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

64 65 66 67
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
68
	spin_lock(&dev_priv->mm.object_stat_lock);
69 70
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
71
	spin_unlock(&dev_priv->mm.object_stat_lock);
72 73 74 75 76
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
77
	spin_lock(&dev_priv->mm.object_stat_lock);
78 79
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
80
	spin_unlock(&dev_priv->mm.object_stat_lock);
81 82
}

83
static int
84
i915_gem_wait_for_error(struct i915_gpu_error *error)
85 86 87
{
	int ret;

88 89
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
90
	if (EXIT_COND)
91 92
		return 0;

93 94 95 96 97
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
98 99 100
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
101 102 103 104
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
105
		return ret;
106
	}
107
#undef EXIT_COND
108

109
	return 0;
110 111
}

112
int i915_mutex_lock_interruptible(struct drm_device *dev)
113
{
114
	struct drm_i915_private *dev_priv = dev->dev_private;
115 116
	int ret;

117
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 119 120 121 122 123 124
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

125
	WARN_ON(i915_verify_lists(dev));
126 127
	return 0;
}
128

129 130
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131
			    struct drm_file *file)
132
{
133
	struct drm_i915_private *dev_priv = dev->dev_private;
134
	struct drm_i915_gem_get_aperture *args = data;
135 136
	struct i915_gtt *ggtt = &dev_priv->gtt;
	struct i915_vma *vma;
137
	size_t pinned;
138

139
	pinned = 0;
140
	mutex_lock(&dev->struct_mutex);
141 142 143 144 145 146
	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
		if (vma->pin_count)
			pinned += vma->node.size;
	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
		if (vma->pin_count)
			pinned += vma->node.size;
147
	mutex_unlock(&dev->struct_mutex);
148

149
	args->aper_size = dev_priv->gtt.base.total;
150
	args->aper_available_size = args->aper_size - pinned;
151

152 153 154
	return 0;
}

155 156
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157
{
158 159 160 161 162
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
198

199 200 201 202 203 204 205 206 207 208 209 210 211
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
212

213 214 215 216 217 218 219 220 221 222 223 224 225
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
226
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227
		char *vaddr = obj->phys_handle->vaddr;
228 229 230
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 232 233 234 235 236 237 238 239 240 241 242 243 244
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
245
				mark_page_accessed(page);
246
			page_cache_release(page);
247 248
			vaddr += PAGE_SIZE;
		}
249
		obj->dirty = 0;
250 251
	}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
283 284 285 286 287 288 289
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
290
	int ret;
291 292 293 294 295 296 297 298 299 300 301 302 303 304

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

305 306 307 308
	ret = drop_pages(obj);
	if (ret)
		return ret;

309 310 311 312 313 314
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
315 316 317
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
318 319 320 321 322 323 324 325 326 327
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
328
	int ret = 0;
329 330 331 332 333 334 335

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
336

337
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 339 340 341 342 343 344 345 346 347
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
348 349 350 351
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
352 353
	}

354
	drm_clflush_virt_range(vaddr, args->size);
355
	i915_gem_chipset_flush(dev);
356 357

out:
358
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359
	return ret;
360 361
}

362 363 364
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
365
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 367 368 369 370
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371
	kmem_cache_free(dev_priv->objects, obj);
372 373
}

374 375 376 377 378
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
379
{
380
	struct drm_i915_gem_object *obj;
381 382
	int ret;
	u32 handle;
383

384
	size = roundup(size, PAGE_SIZE);
385 386
	if (size == 0)
		return -EINVAL;
387 388

	/* Allocate the new object */
389
	obj = i915_gem_alloc_object(dev, size);
390 391 392
	if (obj == NULL)
		return -ENOMEM;

393
	ret = drm_gem_handle_create(file, &obj->base, &handle);
394
	/* drop reference from allocate - handle holds it now */
395 396 397
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
398

399
	*handle_p = handle;
400 401 402
	return 0;
}

403 404 405 406 407 408
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
409
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 411
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
412
			       args->size, &args->handle);
413 414 415 416 417 418 419 420 421 422
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
423

424
	return i915_gem_create(file, dev,
425
			       args->size, &args->handle);
426 427
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

454
static inline int
455 456
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

516 517 518
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
519
static int
520 521 522 523 524 525 526
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

527
	if (unlikely(page_do_bit17_swizzling))
528 529 530 531 532 533 534 535 536 537 538
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

539
	return ret ? -EFAULT : 0;
540 541
}

542 543 544 545
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
546
	if (unlikely(swizzled)) {
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

564 565 566 567 568 569 570 571 572 573 574 575
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
576 577 578
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
579 580 581 582 583 584 585 586 587 588 589

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

590
	return ret ? - EFAULT : 0;
591 592
}

593
static int
594 595 596 597
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
598
{
599
	char __user *user_data;
600
	ssize_t remain;
601
	loff_t offset;
602
	int shmem_page_offset, page_length, ret = 0;
603
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604
	int prefaulted = 0;
605
	int needs_clflush = 0;
606
	struct sg_page_iter sg_iter;
607

V
Ville Syrjälä 已提交
608
	user_data = to_user_ptr(args->data_ptr);
609 610
	remain = args->size;

611
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612

613
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 615 616
	if (ret)
		return ret;

617
	offset = args->offset;
618

619 620
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
621
		struct page *page = sg_page_iter_page(&sg_iter);
622 623 624 625

		if (remain <= 0)
			break;

626 627 628 629 630
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
631
		shmem_page_offset = offset_in_page(offset);
632 633 634 635
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

636 637 638
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

639 640 641 642 643
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
644 645 646

		mutex_unlock(&dev->struct_mutex);

647
		if (likely(!i915.prefault_disable) && !prefaulted) {
648
			ret = fault_in_multipages_writeable(user_data, remain);
649 650 651 652 653 654 655
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
656

657 658 659
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
660

661
		mutex_lock(&dev->struct_mutex);
662 663

		if (ret)
664 665
			goto out;

666
next_page:
667
		remain -= page_length;
668
		user_data += page_length;
669 670 671
		offset += page_length;
	}

672
out:
673 674
	i915_gem_object_unpin_pages(obj);

675 676 677
	return ret;
}

678 679 680 681 682 683 684
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685
		     struct drm_file *file)
686 687
{
	struct drm_i915_gem_pread *args = data;
688
	struct drm_i915_gem_object *obj;
689
	int ret = 0;
690

691 692 693 694
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
695
		       to_user_ptr(args->data_ptr),
696 697 698
		       args->size))
		return -EFAULT;

699
	ret = i915_mutex_lock_interruptible(dev);
700
	if (ret)
701
		return ret;
702

703
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704
	if (&obj->base == NULL) {
705 706
		ret = -ENOENT;
		goto unlock;
707
	}
708

709
	/* Bounds check source.  */
710 711
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
712
		ret = -EINVAL;
713
		goto out;
C
Chris Wilson 已提交
714 715
	}

716 717 718 719 720 721 722 723
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
724 725
	trace_i915_gem_object_pread(obj, args->offset, args->size);

726
	ret = i915_gem_shmem_pread(dev, obj, args, file);
727

728
out:
729
	drm_gem_object_unreference(&obj->base);
730
unlock:
731
	mutex_unlock(&dev->struct_mutex);
732
	return ret;
733 734
}

735 736
/* This is the fast write path which cannot handle
 * page faults in the source data
737
 */
738 739 740 741 742 743

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
744
{
745 746
	void __iomem *vaddr_atomic;
	void *vaddr;
747
	unsigned long unwritten;
748

P
Peter Zijlstra 已提交
749
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 751 752
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
753
						      user_data, length);
P
Peter Zijlstra 已提交
754
	io_mapping_unmap_atomic(vaddr_atomic);
755
	return unwritten;
756 757
}

758 759 760 761
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
762
static int
763 764
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
765
			 struct drm_i915_gem_pwrite *args,
766
			 struct drm_file *file)
767
{
768
	struct drm_i915_private *dev_priv = dev->dev_private;
769
	ssize_t remain;
770
	loff_t offset, page_base;
771
	char __user *user_data;
D
Daniel Vetter 已提交
772 773
	int page_offset, page_length, ret;

774
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
775 776 777 778 779 780 781 782 783 784
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
785

V
Ville Syrjälä 已提交
786
	user_data = to_user_ptr(args->data_ptr);
787 788
	remain = args->size;

789
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790

791
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792

793 794 795
	while (remain > 0) {
		/* Operation in this page
		 *
796 797 798
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
799
		 */
800 801
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
802 803 804 805 806
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
807 808
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
809
		 */
B
Ben Widawsky 已提交
810
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
811 812
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
813
			goto out_flush;
D
Daniel Vetter 已提交
814
		}
815

816 817 818
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
819 820
	}

821
out_flush:
822
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
823
out_unpin:
B
Ben Widawsky 已提交
824
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
825
out:
826
	return ret;
827 828
}

829 830 831 832
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
833
static int
834 835 836 837 838
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
839
{
840
	char *vaddr;
841
	int ret;
842

843
	if (unlikely(page_do_bit17_swizzling))
844
		return -EINVAL;
845

846 847 848 849
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
850 851
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
852 853 854 855
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
856

857
	return ret ? -EFAULT : 0;
858 859
}

860 861
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
862
static int
863 864 865 866 867
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
868
{
869 870
	char *vaddr;
	int ret;
871

872
	vaddr = kmap(page);
873
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 875 876
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
877 878
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 880
						user_data,
						page_length);
881 882 883 884 885
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
886 887 888
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
889
	kunmap(page);
890

891
	return ret ? -EFAULT : 0;
892 893 894
}

static int
895 896 897 898
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
899 900
{
	ssize_t remain;
901 902
	loff_t offset;
	char __user *user_data;
903
	int shmem_page_offset, page_length, ret = 0;
904
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905
	int hit_slowpath = 0;
906 907
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
908
	struct sg_page_iter sg_iter;
909

V
Ville Syrjälä 已提交
910
	user_data = to_user_ptr(args->data_ptr);
911 912
	remain = args->size;

913
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914

915 916 917 918 919
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
920
		needs_clflush_after = cpu_write_needs_clflush(obj);
921 922 923
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
924
	}
925 926 927 928 929
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
930

931 932 933 934
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

935
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936

937 938
	i915_gem_object_pin_pages(obj);

939
	offset = args->offset;
940
	obj->dirty = 1;
941

942 943
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
944
		struct page *page = sg_page_iter_page(&sg_iter);
945
		int partial_cacheline_write;
946

947 948 949
		if (remain <= 0)
			break;

950 951 952 953 954
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
955
		shmem_page_offset = offset_in_page(offset);
956 957 958 959 960

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

961 962 963 964 965 966 967
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

968 969 970
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

971 972 973 974 975 976
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
977 978 979

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
980 981 982 983
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
984

985
		mutex_lock(&dev->struct_mutex);
986 987

		if (ret)
988 989
			goto out;

990
next_page:
991
		remain -= page_length;
992
		user_data += page_length;
993
		offset += page_length;
994 995
	}

996
out:
997 998
	i915_gem_object_unpin_pages(obj);

999
	if (hit_slowpath) {
1000 1001 1002 1003 1004 1005 1006
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007
			if (i915_gem_clflush_object(obj, obj->pin_display))
1008
				needs_clflush_after = true;
1009
		}
1010
	}
1011

1012
	if (needs_clflush_after)
1013
		i915_gem_chipset_flush(dev);
1014 1015
	else
		obj->cache_dirty = true;
1016

1017
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018
	return ret;
1019 1020 1021 1022 1023 1024 1025 1026 1027
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028
		      struct drm_file *file)
1029
{
1030
	struct drm_i915_private *dev_priv = dev->dev_private;
1031
	struct drm_i915_gem_pwrite *args = data;
1032
	struct drm_i915_gem_object *obj;
1033 1034 1035 1036 1037 1038
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1039
		       to_user_ptr(args->data_ptr),
1040 1041 1042
		       args->size))
		return -EFAULT;

1043
	if (likely(!i915.prefault_disable)) {
1044 1045 1046 1047 1048
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1049

1050 1051
	intel_runtime_pm_get(dev_priv);

1052
	ret = i915_mutex_lock_interruptible(dev);
1053
	if (ret)
1054
		goto put_rpm;
1055

1056
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057
	if (&obj->base == NULL) {
1058 1059
		ret = -ENOENT;
		goto unlock;
1060
	}
1061

1062
	/* Bounds check destination. */
1063 1064
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1065
		ret = -EINVAL;
1066
		goto out;
C
Chris Wilson 已提交
1067 1068
	}

1069 1070 1071 1072 1073 1074 1075 1076
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1077 1078
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1079
	ret = -EFAULT;
1080 1081 1082 1083 1084 1085
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1086 1087 1088
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1089
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1090 1091 1092
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1093
	}
1094

1095 1096 1097 1098 1099 1100
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1101

1102
out:
1103
	drm_gem_object_unreference(&obj->base);
1104
unlock:
1105
	mutex_unlock(&dev->struct_mutex);
1106 1107 1108
put_rpm:
	intel_runtime_pm_put(dev_priv);

1109 1110 1111
	return ret;
}

1112
int
1113
i915_gem_check_wedge(struct i915_gpu_error *error,
1114 1115
		     bool interruptible)
{
1116
	if (i915_reset_in_progress(error)) {
1117 1118 1119 1120 1121
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1122 1123
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1124 1125
			return -EIO;

1126 1127 1128 1129 1130 1131 1132
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1133 1134 1135 1136 1137
	}

	return 0;
}

1138 1139 1140 1141 1142 1143
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1144
		       struct intel_engine_cs *ring)
1145 1146 1147 1148
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

D
Daniel Vetter 已提交
1149
static int __i915_spin_request(struct drm_i915_gem_request *req)
1150
{
1151 1152
	unsigned long timeout;

D
Daniel Vetter 已提交
1153
	if (i915_gem_request_get_ring(req)->irq_refcount)
1154 1155 1156 1157
		return -EBUSY;

	timeout = jiffies + 1;
	while (!need_resched()) {
D
Daniel Vetter 已提交
1158
		if (i915_gem_request_completed(req, true))
1159 1160 1161 1162
			return 0;

		if (time_after_eq(jiffies, timeout))
			break;
1163

1164 1165
		cpu_relax_lowlatency();
	}
D
Daniel Vetter 已提交
1166
	if (i915_gem_request_completed(req, false))
1167 1168 1169
		return 0;

	return -EAGAIN;
1170 1171
}

1172
/**
1173 1174 1175
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1176 1177 1178
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1179 1180 1181 1182 1183 1184 1185
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1186
 * Returns 0 if the request was found within the alloted time. Else returns the
1187 1188
 * errno with remaining time filled in timeout argument.
 */
1189
int __i915_wait_request(struct drm_i915_gem_request *req,
1190
			unsigned reset_counter,
1191
			bool interruptible,
1192
			s64 *timeout,
1193
			struct intel_rps_client *rps)
1194
{
1195
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1196
	struct drm_device *dev = ring->dev;
1197
	struct drm_i915_private *dev_priv = dev->dev_private;
1198 1199
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1200
	DEFINE_WAIT(wait);
1201
	unsigned long timeout_expire;
1202
	s64 before, now;
1203 1204
	int ret;

1205
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1206

1207 1208 1209
	if (list_empty(&req->list))
		return 0;

1210
	if (i915_gem_request_completed(req, true))
1211 1212
		return 0;

1213 1214
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1215

1216
	if (INTEL_INFO(dev_priv)->gen >= 6)
1217
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1218

1219
	/* Record current time in case interrupted by signal, or wedged */
1220
	trace_i915_gem_request_wait_begin(req);
1221
	before = ktime_get_raw_ns();
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

	/* Optimistic spin for the next jiffie before touching IRQs */
	ret = __i915_spin_request(req);
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1233 1234
	for (;;) {
		struct timer_list timer;
1235

1236 1237
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1238

1239 1240
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1241 1242 1243 1244 1245 1246 1247 1248
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1249

1250
		if (i915_gem_request_completed(req, false)) {
1251 1252 1253
			ret = 0;
			break;
		}
1254

1255 1256 1257 1258 1259
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1260
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1261 1262 1263 1264 1265 1266
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1267 1268
			unsigned long expire;

1269
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1270
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1271 1272 1273
			mod_timer(&timer, expire);
		}

1274
		io_schedule();
1275 1276 1277 1278 1279 1280

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1281 1282
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1283 1284

	finish_wait(&ring->irq_queue, &wait);
1285

1286 1287 1288 1289
out:
	now = ktime_get_raw_ns();
	trace_i915_gem_request_wait_end(req);

1290
	if (timeout) {
1291 1292 1293
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1304 1305
	}

1306
	return ret;
1307 1308
}

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_private *dev_private;
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	dev_private = req->ring->dev->dev_private;
	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1348 1349 1350

	put_pid(request->pid);
	request->pid = NULL;
1351 1352 1353 1354 1355 1356
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

1357 1358 1359
	if (i915.enable_execlists)
		intel_lr_context_complete_check(request);

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->ring;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1397
/**
1398
 * Waits for a request to be signaled, and cleans up the
1399 1400 1401
 * request and object lists appropriately for that event.
 */
int
1402
i915_wait_request(struct drm_i915_gem_request *req)
1403
{
1404 1405 1406
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1407 1408
	int ret;

1409 1410 1411 1412 1413 1414
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1415 1416
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1417
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1418 1419 1420
	if (ret)
		return ret;

1421 1422
	ret = __i915_wait_request(req,
				  atomic_read(&dev_priv->gpu_error.reset_counter),
1423
				  interruptible, NULL, NULL);
1424 1425
	if (ret)
		return ret;
1426

1427
	__i915_gem_request_retire__upto(req);
1428 1429 1430
	return 0;
}

1431 1432 1433 1434
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1435
int
1436 1437 1438
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1439
	int ret, i;
1440

1441
	if (!obj->active)
1442 1443
		return 0;

1444 1445 1446 1447 1448
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1449

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
			i = obj->last_write_req->ring->id;
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
		RQ_BUG_ON(obj->active);
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
	int ring = req->ring->id;

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1485 1486
}

1487 1488 1489 1490 1491
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1492
					    struct intel_rps_client *rps,
1493 1494 1495 1496
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1497
	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1498
	unsigned reset_counter;
1499
	int ret, i, n = 0;
1500 1501 1502 1503

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1504
	if (!obj->active)
1505 1506
		return 0;

1507
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1508 1509 1510
	if (ret)
		return ret;

1511
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1533
	mutex_unlock(&dev->struct_mutex);
1534 1535
	for (i = 0; ret == 0 && i < n; i++)
		ret = __i915_wait_request(requests[i], reset_counter, true,
1536
					  NULL, rps);
1537 1538
	mutex_lock(&dev->struct_mutex);

1539 1540 1541 1542 1543 1544 1545
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1546 1547
}

1548 1549 1550 1551 1552 1553
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1554
/**
1555 1556
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1557 1558 1559
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1560
			  struct drm_file *file)
1561 1562
{
	struct drm_i915_gem_set_domain *args = data;
1563
	struct drm_i915_gem_object *obj;
1564 1565
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1566 1567
	int ret;

1568
	/* Only handle setting domains to types used by the CPU. */
1569
	if (write_domain & I915_GEM_GPU_DOMAINS)
1570 1571
		return -EINVAL;

1572
	if (read_domains & I915_GEM_GPU_DOMAINS)
1573 1574 1575 1576 1577 1578 1579 1580
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1581
	ret = i915_mutex_lock_interruptible(dev);
1582
	if (ret)
1583
		return ret;
1584

1585
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1586
	if (&obj->base == NULL) {
1587 1588
		ret = -ENOENT;
		goto unlock;
1589
	}
1590

1591 1592 1593 1594
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1595
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1596
							  to_rps_client(file),
1597
							  !write_domain);
1598 1599 1600
	if (ret)
		goto unref;

1601
	if (read_domains & I915_GEM_DOMAIN_GTT)
1602
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1603
	else
1604
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1605

1606 1607 1608 1609 1610
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1611
unref:
1612
	drm_gem_object_unreference(&obj->base);
1613
unlock:
1614 1615 1616 1617 1618 1619 1620 1621 1622
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1623
			 struct drm_file *file)
1624 1625
{
	struct drm_i915_gem_sw_finish *args = data;
1626
	struct drm_i915_gem_object *obj;
1627 1628
	int ret = 0;

1629
	ret = i915_mutex_lock_interruptible(dev);
1630
	if (ret)
1631
		return ret;
1632

1633
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1634
	if (&obj->base == NULL) {
1635 1636
		ret = -ENOENT;
		goto unlock;
1637 1638 1639
	}

	/* Pinned buffers may be scanout, so flush the cache */
1640
	if (obj->pin_display)
1641
		i915_gem_object_flush_cpu_write_domain(obj);
1642

1643
	drm_gem_object_unreference(&obj->base);
1644
unlock:
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1665 1666 1667
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1668
		    struct drm_file *file)
1669 1670 1671 1672 1673
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1674 1675 1676 1677 1678 1679
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1680
	obj = drm_gem_object_lookup(dev, file, args->handle);
1681
	if (obj == NULL)
1682
		return -ENOENT;
1683

1684 1685 1686 1687 1688 1689 1690 1691
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1692
	addr = vm_mmap(obj->filp, 0, args->size,
1693 1694
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1708
	drm_gem_object_unreference_unlocked(obj);
1709 1710 1711 1712 1713 1714 1715 1716
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1717 1718
/**
 * i915_gem_fault - fault a page into the GTT
1719 1720
 * @vma: VMA in question
 * @vmf: fault info
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1735 1736
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1737
	struct drm_i915_private *dev_priv = dev->dev_private;
1738
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1739 1740 1741
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1742
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1743

1744 1745
	intel_runtime_pm_get(dev_priv);

1746 1747 1748 1749
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1750 1751 1752
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1753

C
Chris Wilson 已提交
1754 1755
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1756 1757 1758 1759 1760 1761 1762 1763 1764
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1765 1766
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1767
		ret = -EFAULT;
1768 1769 1770
		goto unlock;
	}

1771
	/* Use a partial view if the object is bigger than the aperture. */
1772 1773
	if (obj->base.size >= dev_priv->gtt.mappable_end &&
	    obj->tiling_mode == I915_TILING_NONE) {
1774
		static const unsigned int chunk_size = 256; // 1 MiB
1775

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1788 1789
	if (ret)
		goto unlock;
1790

1791 1792 1793
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1794

1795
	ret = i915_gem_object_get_fence(obj);
1796
	if (ret)
1797
		goto unpin;
1798

1799
	/* Finally, remap it using the new GTT offset */
1800 1801
	pfn = dev_priv->gtt.mappable_base +
		i915_gem_obj_ggtt_offset_view(obj, &view);
1802
	pfn >>= PAGE_SHIFT;
1803

1804 1805 1806 1807 1808 1809 1810 1811 1812
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1813

1814 1815
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1816 1817 1818 1819 1820
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1842
unpin:
1843
	i915_gem_object_ggtt_unpin_view(obj, &view);
1844
unlock:
1845
	mutex_unlock(&dev->struct_mutex);
1846
out:
1847
	switch (ret) {
1848
	case -EIO:
1849 1850 1851 1852 1853 1854 1855
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1856 1857 1858
			ret = VM_FAULT_SIGBUS;
			break;
		}
1859
	case -EAGAIN:
D
Daniel Vetter 已提交
1860 1861 1862 1863
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1864
		 */
1865 1866
	case 0:
	case -ERESTARTSYS:
1867
	case -EINTR:
1868 1869 1870 1871 1872
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1873 1874
		ret = VM_FAULT_NOPAGE;
		break;
1875
	case -ENOMEM:
1876 1877
		ret = VM_FAULT_OOM;
		break;
1878
	case -ENOSPC:
1879
	case -EFAULT:
1880 1881
		ret = VM_FAULT_SIGBUS;
		break;
1882
	default:
1883
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1884 1885
		ret = VM_FAULT_SIGBUS;
		break;
1886
	}
1887 1888 1889

	intel_runtime_pm_put(dev_priv);
	return ret;
1890 1891
}

1892 1893 1894 1895
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1896
 * Preserve the reservation of the mmapping with the DRM core code, but
1897 1898 1899 1900 1901 1902 1903 1904 1905
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1906
void
1907
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1908
{
1909 1910
	if (!obj->fault_mappable)
		return;
1911

1912 1913
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1914
	obj->fault_mappable = false;
1915 1916
}

1917 1918 1919 1920 1921 1922 1923 1924 1925
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1926
uint32_t
1927
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1928
{
1929
	uint32_t gtt_size;
1930 1931

	if (INTEL_INFO(dev)->gen >= 4 ||
1932 1933
	    tiling_mode == I915_TILING_NONE)
		return size;
1934 1935 1936

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1937
		gtt_size = 1024*1024;
1938
	else
1939
		gtt_size = 512*1024;
1940

1941 1942
	while (gtt_size < size)
		gtt_size <<= 1;
1943

1944
	return gtt_size;
1945 1946
}

1947 1948 1949 1950 1951
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1952
 * potential fence register mapping.
1953
 */
1954 1955 1956
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1957 1958 1959 1960 1961
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1962
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1963
	    tiling_mode == I915_TILING_NONE)
1964 1965
		return 4096;

1966 1967 1968 1969
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1970
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1971 1972
}

1973 1974 1975 1976 1977
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1978
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1979 1980
		return 0;

1981 1982
	dev_priv->mm.shrinker_no_lock_stealing = true;

1983 1984
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1985
		goto out;
1986 1987 1988 1989 1990 1991 1992 1993

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1994 1995 1996 1997 1998
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1999 2000
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2001
		goto out;
2002 2003

	i915_gem_shrink_all(dev_priv);
2004 2005 2006 2007 2008
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2009 2010 2011 2012 2013 2014 2015
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2016
int
2017 2018
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2019
		  uint32_t handle,
2020
		  uint64_t *offset)
2021
{
2022
	struct drm_i915_gem_object *obj;
2023 2024
	int ret;

2025
	ret = i915_mutex_lock_interruptible(dev);
2026
	if (ret)
2027
		return ret;
2028

2029
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2030
	if (&obj->base == NULL) {
2031 2032 2033
		ret = -ENOENT;
		goto unlock;
	}
2034

2035
	if (obj->madv != I915_MADV_WILLNEED) {
2036
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2037
		ret = -EFAULT;
2038
		goto out;
2039 2040
	}

2041 2042 2043
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2044

2045
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2046

2047
out:
2048
	drm_gem_object_unreference(&obj->base);
2049
unlock:
2050
	mutex_unlock(&dev->struct_mutex);
2051
	return ret;
2052 2053
}

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2075
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2076 2077
}

D
Daniel Vetter 已提交
2078 2079 2080
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2081
{
2082
	i915_gem_object_free_mmap_offset(obj);
2083

2084 2085
	if (obj->base.filp == NULL)
		return;
2086

D
Daniel Vetter 已提交
2087 2088 2089 2090 2091
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2092
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2093 2094
	obj->madv = __I915_MADV_PURGED;
}
2095

2096 2097 2098
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2099
{
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2114 2115
}

2116
static void
2117
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2118
{
2119 2120
	struct sg_page_iter sg_iter;
	int ret;
2121

2122
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2123

C
Chris Wilson 已提交
2124 2125 2126 2127 2128 2129
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2130
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2131 2132 2133
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2134 2135
	i915_gem_gtt_finish_object(obj);

2136
	if (i915_gem_object_needs_bit17_swizzle(obj))
2137 2138
		i915_gem_object_save_bit_17_swizzle(obj);

2139 2140
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2141

2142
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2143
		struct page *page = sg_page_iter_page(&sg_iter);
2144

2145
		if (obj->dirty)
2146
			set_page_dirty(page);
2147

2148
		if (obj->madv == I915_MADV_WILLNEED)
2149
			mark_page_accessed(page);
2150

2151
		page_cache_release(page);
2152
	}
2153
	obj->dirty = 0;
2154

2155 2156
	sg_free_table(obj->pages);
	kfree(obj->pages);
2157
}
C
Chris Wilson 已提交
2158

2159
int
2160 2161 2162 2163
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2164
	if (obj->pages == NULL)
2165 2166
		return 0;

2167 2168 2169
	if (obj->pages_pin_count)
		return -EBUSY;

2170
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2171

2172 2173 2174
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2175
	list_del(&obj->global_list);
2176

2177
	ops->put_pages(obj);
2178
	obj->pages = NULL;
2179

2180
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2181 2182 2183 2184

	return 0;
}

2185
static int
C
Chris Wilson 已提交
2186
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2187
{
C
Chris Wilson 已提交
2188
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2189 2190
	int page_count, i;
	struct address_space *mapping;
2191 2192
	struct sg_table *st;
	struct scatterlist *sg;
2193
	struct sg_page_iter sg_iter;
2194
	struct page *page;
2195
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2196
	int ret;
C
Chris Wilson 已提交
2197
	gfp_t gfp;
2198

C
Chris Wilson 已提交
2199 2200 2201 2202 2203 2204 2205
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2206 2207 2208 2209
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2210
	page_count = obj->base.size / PAGE_SIZE;
2211 2212
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2213
		return -ENOMEM;
2214
	}
2215

2216 2217 2218 2219 2220
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2221
	mapping = file_inode(obj->base.filp)->i_mapping;
2222
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2223
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2224 2225 2226
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2227 2228
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2229 2230 2231 2232 2233
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2234 2235 2236 2237 2238 2239 2240 2241
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2242
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2243 2244
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2245
				goto err_pages;
I
Imre Deak 已提交
2246
			}
C
Chris Wilson 已提交
2247
		}
2248 2249 2250 2251 2252 2253 2254 2255
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2256 2257 2258 2259 2260 2261 2262 2263 2264
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2265 2266 2267

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2268
	}
2269 2270 2271 2272
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2273 2274
	obj->pages = st;

I
Imre Deak 已提交
2275 2276 2277 2278
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2279
	if (i915_gem_object_needs_bit17_swizzle(obj))
2280 2281
		i915_gem_object_do_bit_17_swizzle(obj);

2282 2283 2284 2285
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2286 2287 2288
	return 0;

err_pages:
2289 2290
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2291
		page_cache_release(sg_page_iter_page(&sg_iter));
2292 2293
	sg_free_table(st);
	kfree(st);
2294 2295 2296 2297 2298 2299 2300 2301 2302

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2303 2304 2305 2306
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2307 2308
}

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2323
	if (obj->pages)
2324 2325
		return 0;

2326
	if (obj->madv != I915_MADV_WILLNEED) {
2327
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2328
		return -EFAULT;
2329 2330
	}

2331 2332
	BUG_ON(obj->pages_pin_count);

2333 2334 2335 2336
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2337
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2338 2339 2340 2341

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2342
	return 0;
2343 2344
}

2345
void i915_vma_move_to_active(struct i915_vma *vma,
2346
			     struct drm_i915_gem_request *req)
2347
{
2348
	struct drm_i915_gem_object *obj = vma->obj;
2349 2350 2351
	struct intel_engine_cs *ring;

	ring = i915_gem_request_get_ring(req);
2352 2353

	/* Add a reference if we're newly entering the active list. */
2354
	if (obj->active == 0)
2355
		drm_gem_object_reference(&obj->base);
2356
	obj->active |= intel_ring_flag(ring);
2357

2358
	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2359
	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2360

2361
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2362 2363
}

2364 2365
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2366
{
2367 2368 2369 2370
	RQ_BUG_ON(obj->last_write_req == NULL);
	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));

	i915_gem_request_assign(&obj->last_write_req, NULL);
2371
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2372 2373
}

2374
static void
2375
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2376
{
2377
	struct i915_vma *vma;
2378

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
	RQ_BUG_ON(!(obj->active & (1 << ring)));

	list_del_init(&obj->ring_list[ring]);
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2391

2392 2393 2394 2395 2396 2397 2398
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2399 2400 2401
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2402
	}
2403

2404
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2405
	drm_gem_object_unreference(&obj->base);
2406 2407
}

2408
static int
2409
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2410
{
2411
	struct drm_i915_private *dev_priv = dev->dev_private;
2412
	struct intel_engine_cs *ring;
2413
	int ret, i, j;
2414

2415
	/* Carefully retire all requests without writing to the rings */
2416
	for_each_ring(ring, dev_priv, i) {
2417 2418 2419
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2420 2421
	}
	i915_gem_retire_requests(dev);
2422 2423

	/* Finally reset hw state */
2424
	for_each_ring(ring, dev_priv, i) {
2425
		intel_ring_init_seqno(ring, seqno);
2426

2427 2428
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2429
	}
2430

2431
	return 0;
2432 2433
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2460 2461
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2462
{
2463 2464 2465 2466
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2467
		int ret = i915_gem_init_seqno(dev, 0);
2468 2469
		if (ret)
			return ret;
2470

2471 2472
		dev_priv->next_seqno = 1;
	}
2473

2474
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2475
	return 0;
2476 2477
}

2478 2479 2480 2481 2482
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2483
void __i915_add_request(struct drm_i915_gem_request *request,
2484 2485
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2486
{
2487 2488
	struct intel_engine_cs *ring;
	struct drm_i915_private *dev_priv;
2489
	struct intel_ringbuffer *ringbuf;
2490
	u32 request_start;
2491 2492
	int ret;

2493
	if (WARN_ON(request == NULL))
2494
		return;
2495

2496 2497 2498 2499
	ring = request->ring;
	dev_priv = ring->dev->dev_private;
	ringbuf = request->ringbuf;

2500 2501 2502 2503 2504 2505 2506
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	intel_ring_reserved_space_use(ringbuf);

2507
	request_start = intel_ring_get_tail(ringbuf);
2508 2509 2510 2511 2512 2513 2514
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2515 2516
	if (flush_caches) {
		if (i915.enable_execlists)
2517
			ret = logical_ring_flush_all_caches(request);
2518
		else
2519
			ret = intel_ring_flush_all_caches(request);
2520 2521 2522
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2523

2524 2525 2526 2527 2528
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2529
	request->postfix = intel_ring_get_tail(ringbuf);
2530

2531
	if (i915.enable_execlists)
2532
		ret = ring->emit_request(request);
2533
	else {
2534
		ret = ring->add_request(request);
2535 2536

		request->tail = intel_ring_get_tail(ringbuf);
2537
	}
2538 2539
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2540

2541 2542 2543 2544 2545 2546 2547 2548
	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2549
	request->batch_obj = obj;
2550

2551
	request->emitted_jiffies = jiffies;
2552
	ring->last_submitted_seqno = request->seqno;
2553
	list_add_tail(&request->list, &ring->request_list);
2554

2555
	trace_i915_gem_request_add(request);
C
Chris Wilson 已提交
2556

2557
	i915_queue_hangcheck(ring->dev);
2558

2559 2560 2561 2562
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2563

2564 2565
	/* Sanity check that the reserved size was large enough. */
	intel_ring_reserved_space_end(ringbuf);
2566 2567
}

2568
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2569
				   const struct intel_context *ctx)
2570
{
2571
	unsigned long elapsed;
2572

2573 2574 2575
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2576 2577
		return true;

2578 2579
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2580
		if (!i915_gem_context_is_default(ctx)) {
2581
			DRM_DEBUG("context hanging too fast, banning!\n");
2582
			return true;
2583 2584 2585
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2586
			return true;
2587
		}
2588 2589 2590 2591 2592
	}

	return false;
}

2593
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2594
				  struct intel_context *ctx,
2595
				  const bool guilty)
2596
{
2597 2598 2599 2600
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2601

2602 2603 2604
	hs = &ctx->hang_stats;

	if (guilty) {
2605
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2606 2607 2608 2609
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2610 2611 2612
	}
}

2613 2614 2615 2616 2617 2618
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2619 2620 2621
	if (req->file_priv)
		i915_gem_request_remove_from_client(req);

2622 2623
	if (ctx) {
		if (i915.enable_execlists) {
2624 2625
			if (ctx != req->ring->default_context)
				intel_lr_context_unpin(req);
2626
		}
2627

2628 2629
		i915_gem_context_unreference(ctx);
	}
2630

2631
	kmem_cache_free(req->i915->requests, req);
2632 2633
}

2634
int i915_gem_request_alloc(struct intel_engine_cs *ring,
2635 2636
			   struct intel_context *ctx,
			   struct drm_i915_gem_request **req_out)
2637
{
2638
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
D
Daniel Vetter 已提交
2639
	struct drm_i915_gem_request *req;
2640 2641
	int ret;

2642 2643 2644
	if (!req_out)
		return -EINVAL;

2645
	*req_out = NULL;
2646

D
Daniel Vetter 已提交
2647 2648
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2649 2650
		return -ENOMEM;

D
Daniel Vetter 已提交
2651
	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2652 2653
	if (ret)
		goto err;
2654

2655 2656
	kref_init(&req->ref);
	req->i915 = dev_priv;
D
Daniel Vetter 已提交
2657
	req->ring = ring;
2658 2659
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2660 2661

	if (i915.enable_execlists)
2662
		ret = intel_logical_ring_alloc_request_extras(req);
2663
	else
D
Daniel Vetter 已提交
2664
		ret = intel_ring_alloc_request_extras(req);
2665 2666
	if (ret) {
		i915_gem_context_unreference(req->ctx);
2667
		goto err;
2668
	}
2669

2670 2671 2672 2673 2674 2675 2676
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
	if (i915.enable_execlists)
		ret = intel_logical_ring_reserve_space(req);
	else
		ret = intel_ring_reserve_space(req);
	if (ret) {
		/*
		 * At this point, the request is fully allocated even if not
		 * fully prepared. Thus it can be cleaned up using the proper
		 * free code.
		 */
		i915_gem_request_cancel(req);
		return ret;
	}
2690

2691
	*req_out = req;
2692
	return 0;
2693 2694 2695 2696

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2697 2698
}

2699 2700 2701 2702 2703 2704 2705
void i915_gem_request_cancel(struct drm_i915_gem_request *req)
{
	intel_ring_reserved_space_cancel(req->ringbuf);

	i915_gem_request_unreference(req);
}

2706
struct drm_i915_gem_request *
2707
i915_gem_find_active_request(struct intel_engine_cs *ring)
2708
{
2709 2710 2711
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2712
		if (i915_gem_request_completed(request, false))
2713
			continue;
2714

2715
		return request;
2716
	}
2717 2718 2719 2720 2721

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2722
				       struct intel_engine_cs *ring)
2723 2724 2725 2726
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2727
	request = i915_gem_find_active_request(ring);
2728 2729 2730 2731 2732 2733

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2734
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2735 2736

	list_for_each_entry_continue(request, &ring->request_list, list)
2737
		i915_set_reset_status(dev_priv, request->ctx, false);
2738
}
2739

2740
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2741
					struct intel_engine_cs *ring)
2742
{
2743 2744
	struct intel_ringbuffer *buffer;

2745
	while (!list_empty(&ring->active_list)) {
2746
		struct drm_i915_gem_object *obj;
2747

2748 2749
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
2750
				       ring_list[ring->id]);
2751

2752
		i915_gem_object_retire__read(obj, ring->id);
2753
	}
2754

2755 2756 2757 2758 2759 2760
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2761 2762 2763 2764
	if (i915.enable_execlists) {
		spin_lock_irq(&ring->execlist_lock);
		while (!list_empty(&ring->execlist_queue)) {
			struct drm_i915_gem_request *submit_req;
2765

2766 2767 2768 2769 2770 2771 2772
			submit_req = list_first_entry(&ring->execlist_queue,
					struct drm_i915_gem_request,
					execlist_link);
			list_del(&submit_req->execlist_link);
			i915_gem_request_unreference(submit_req);
		}
		spin_unlock_irq(&ring->execlist_lock);
2773 2774
	}

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

2789
		i915_gem_request_retire(request);
2790
	}
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
	list_for_each_entry(buffer, &ring->buffers, link) {
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2803 2804
}

2805
void i915_gem_reset(struct drm_device *dev)
2806
{
2807
	struct drm_i915_private *dev_priv = dev->dev_private;
2808
	struct intel_engine_cs *ring;
2809
	int i;
2810

2811 2812 2813 2814 2815 2816 2817 2818
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2819
	for_each_ring(ring, dev_priv, i)
2820
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2821

2822 2823
	i915_gem_context_reset(dev);

2824
	i915_gem_restore_fences(dev);
2825 2826

	WARN_ON(i915_verify_lists(dev));
2827 2828 2829 2830 2831
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2832
void
2833
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2834
{
C
Chris Wilson 已提交
2835
	WARN_ON(i915_verify_lists(ring->dev));
2836

2837 2838 2839 2840
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2841
	 */
2842
	while (!list_empty(&ring->request_list)) {
2843 2844
		struct drm_i915_gem_request *request;

2845
		request = list_first_entry(&ring->request_list,
2846 2847 2848
					   struct drm_i915_gem_request,
					   list);

2849
		if (!i915_gem_request_completed(request, true))
2850 2851
			break;

2852
		i915_gem_request_retire(request);
2853
	}
2854

2855 2856 2857 2858 2859 2860 2861 2862 2863
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
2864
				      ring_list[ring->id]);
2865

2866
		if (!list_empty(&obj->last_read_req[ring->id]->list))
2867 2868
			break;

2869
		i915_gem_object_retire__read(obj, ring->id);
2870 2871
	}

2872 2873
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2874
		ring->irq_put(ring);
2875
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2876
	}
2877

C
Chris Wilson 已提交
2878
	WARN_ON(i915_verify_lists(ring->dev));
2879 2880
}

2881
bool
2882 2883
i915_gem_retire_requests(struct drm_device *dev)
{
2884
	struct drm_i915_private *dev_priv = dev->dev_private;
2885
	struct intel_engine_cs *ring;
2886
	bool idle = true;
2887
	int i;
2888

2889
	for_each_ring(ring, dev_priv, i) {
2890
		i915_gem_retire_requests_ring(ring);
2891
		idle &= list_empty(&ring->request_list);
2892 2893 2894 2895 2896 2897 2898 2899 2900
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2901 2902 2903 2904 2905 2906 2907 2908
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2909 2910
}

2911
static void
2912 2913
i915_gem_retire_work_handler(struct work_struct *work)
{
2914 2915 2916
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2917
	bool idle;
2918

2919
	/* Come back later if the device is busy... */
2920 2921 2922 2923
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2924
	}
2925
	if (!idle)
2926 2927
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2928
}
2929

2930 2931 2932 2933 2934
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2935
	struct drm_device *dev = dev_priv->dev;
2936 2937
	struct intel_engine_cs *ring;
	int i;
2938

2939 2940 2941
	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2942 2943 2944 2945 2946 2947 2948 2949 2950

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
2951

2952 2953
		mutex_unlock(&dev->struct_mutex);
	}
2954 2955
}

2956 2957 2958 2959 2960 2961 2962 2963
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2964
	int i;
2965 2966 2967

	if (!obj->active)
		return 0;
2968

2969 2970
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_request *req;
2971

2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
2984 2985 2986 2987 2988
	}

	return 0;
}

2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
3014
	struct drm_i915_private *dev_priv = dev->dev_private;
3015 3016
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3017
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3018
	unsigned reset_counter;
3019 3020
	int i, n = 0;
	int ret;
3021

3022 3023 3024
	if (args->flags != 0)
		return -EINVAL;

3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3035 3036
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3037 3038 3039
	if (ret)
		goto out;

3040
	if (!obj->active)
3041
		goto out;
3042 3043

	/* Do this after OLR check to make sure we make forward progress polling
3044
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3045
	 */
3046
	if (args->timeout_ns == 0) {
3047 3048 3049 3050 3051
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3052
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3053 3054 3055 3056 3057 3058 3059 3060

	for (i = 0; i < I915_NUM_RINGS; i++) {
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3061 3062
	mutex_unlock(&dev->struct_mutex);

3063 3064 3065 3066 3067 3068 3069
	for (i = 0; i < n; i++) {
		if (ret == 0)
			ret = __i915_wait_request(req[i], reset_counter, true,
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
						  file->driver_priv);
		i915_gem_request_unreference__unlocked(req[i]);
	}
3070
	return ret;
3071 3072 3073 3074 3075 3076 3077

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3078 3079 3080
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3081 3082
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3083 3084 3085 3086
{
	struct intel_engine_cs *from;
	int ret;

3087
	from = i915_gem_request_get_ring(from_req);
3088 3089 3090
	if (to == from)
		return 0;

3091
	if (i915_gem_request_completed(from_req, true))
3092 3093 3094
		return 0;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3095
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3096
		ret = __i915_wait_request(from_req,
3097 3098 3099 3100
					  atomic_read(&i915->gpu_error.reset_counter),
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3101 3102 3103
		if (ret)
			return ret;

3104
		i915_gem_object_retire_request(obj, from_req);
3105 3106
	} else {
		int idx = intel_ring_sync_index(from, to);
3107 3108 3109
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3110 3111 3112 3113

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3114 3115 3116 3117 3118 3119
		if (*to_req == NULL) {
			ret = i915_gem_request_alloc(to, to->default_context, to_req);
			if (ret)
				return ret;
		}

3120 3121
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3136 3137 3138 3139 3140
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3141 3142 3143
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3144 3145 3146
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3147
 * rather than a particular GPU ring. Conceptually we serialise writes
3148
 * between engines inside the GPU. We only allow one engine to write
3149 3150 3151 3152 3153 3154 3155 3156 3157
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3158
 *
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3169 3170
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3171 3172
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3173 3174
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3175
{
3176 3177 3178
	const bool readonly = obj->base.pending_write_domain == 0;
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
	int ret, i, n;
3179

3180
	if (!obj->active)
3181 3182
		return 0;

3183 3184
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3185

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++)
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3196
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3197 3198 3199
		if (ret)
			return ret;
	}
3200

3201
	return 0;
3202 3203
}

3204 3205 3206 3207 3208 3209 3210
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3211 3212 3213
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3214 3215 3216
	/* Wait for any direct GTT access to complete */
	mb();

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3228
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3229
{
3230
	struct drm_i915_gem_object *obj = vma->obj;
3231
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3232
	int ret;
3233

3234
	if (list_empty(&vma->vma_link))
3235 3236
		return 0;

3237 3238 3239 3240
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3241

B
Ben Widawsky 已提交
3242
	if (vma->pin_count)
3243
		return -EBUSY;
3244

3245 3246
	BUG_ON(obj->pages == NULL);

3247 3248 3249 3250 3251
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3252

3253 3254
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3255
		i915_gem_object_finish_gtt(obj);
3256

3257 3258 3259 3260 3261
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3262

3263
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3264

3265
	vma->vm->unbind_vma(vma);
3266
	vma->bound = 0;
3267

3268
	list_del_init(&vma->mm_list);
3269 3270 3271 3272 3273 3274 3275
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3276
		vma->ggtt_view.pages = NULL;
3277
	}
3278

B
Ben Widawsky 已提交
3279 3280 3281 3282
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3283
	 * no more VMAs exist. */
I
Imre Deak 已提交
3284
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3285
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3286

3287 3288 3289 3290 3291 3292
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3293
	return 0;
3294 3295
}

3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3306
int i915_gpu_idle(struct drm_device *dev)
3307
{
3308
	struct drm_i915_private *dev_priv = dev->dev_private;
3309
	struct intel_engine_cs *ring;
3310
	int ret, i;
3311 3312

	/* Flush everything onto the inactive list. */
3313
	for_each_ring(ring, dev_priv, i) {
3314
		if (!i915.enable_execlists) {
3315 3316 3317
			struct drm_i915_gem_request *req;

			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3318 3319
			if (ret)
				return ret;
3320

3321
			ret = i915_switch_context(req);
3322 3323 3324 3325 3326
			if (ret) {
				i915_gem_request_cancel(req);
				return ret;
			}

3327
			i915_add_request_no_flush(req);
3328
		}
3329

3330
		ret = intel_ring_idle(ring);
3331 3332 3333
		if (ret)
			return ret;
	}
3334

3335
	WARN_ON(i915_verify_lists(dev));
3336
	return 0;
3337 3338
}

3339
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3340 3341
				     unsigned long cache_level)
{
3342
	struct drm_mm_node *gtt_space = &vma->node;
3343 3344
	struct drm_mm_node *other;

3345 3346 3347 3348 3349 3350
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3351
	 */
3352
	if (vma->vm->mm.color_adjust == NULL)
3353 3354
		return true;

3355
	if (!drm_mm_node_allocated(gtt_space))
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3372
/**
3373 3374
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3375
 */
3376
static struct i915_vma *
3377 3378
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3379
			   const struct i915_ggtt_view *ggtt_view,
3380
			   unsigned alignment,
3381
			   uint64_t flags)
3382
{
3383
	struct drm_device *dev = obj->base.dev;
3384
	struct drm_i915_private *dev_priv = dev->dev_private;
3385
	u32 fence_alignment, unfenced_alignment;
3386 3387
	u32 search_flag, alloc_flag;
	u64 start, end;
3388
	u64 size, fence_size;
B
Ben Widawsky 已提交
3389
	struct i915_vma *vma;
3390
	int ret;
3391

3392 3393 3394 3395 3396
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3397

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3427

3428 3429 3430 3431 3432 3433 3434
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
		end = min_t(u64, end, dev_priv->gtt.mappable_end);
	if (flags & PIN_ZONE_4G)
		end = min_t(u64, end, (1ULL << 32));

3435
	if (alignment == 0)
3436
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3437
						unfenced_alignment;
3438
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3439 3440 3441
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3442
		return ERR_PTR(-EINVAL);
3443 3444
	}

3445 3446 3447
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3448
	 */
3449
	if (size > end) {
3450
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3451 3452
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3453
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3454
			  end);
3455
		return ERR_PTR(-E2BIG);
3456 3457
	}

3458
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3459
	if (ret)
3460
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3461

3462 3463
	i915_gem_object_pin_pages(obj);

3464 3465 3466
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3467
	if (IS_ERR(vma))
3468
		goto err_unpin;
B
Ben Widawsky 已提交
3469

3470 3471 3472 3473 3474 3475 3476 3477
	if (flags & PIN_HIGH) {
		search_flag = DRM_MM_SEARCH_BELOW;
		alloc_flag = DRM_MM_CREATE_TOP;
	} else {
		search_flag = DRM_MM_SEARCH_DEFAULT;
		alloc_flag = DRM_MM_CREATE_DEFAULT;
	}

3478
search_free:
3479
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3480
						  size, alignment,
3481 3482
						  obj->cache_level,
						  start, end,
3483 3484
						  search_flag,
						  alloc_flag);
3485
	if (ret) {
3486
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3487 3488 3489
					       obj->cache_level,
					       start, end,
					       flags);
3490 3491
		if (ret == 0)
			goto search_free;
3492

3493
		goto err_free_vma;
3494
	}
3495
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3496
		ret = -EINVAL;
3497
		goto err_remove_node;
3498 3499
	}

3500
	trace_i915_vma_bind(vma, flags);
3501
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3502
	if (ret)
I
Imre Deak 已提交
3503
		goto err_remove_node;
3504

3505
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3506
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3507

3508
	return vma;
B
Ben Widawsky 已提交
3509

3510
err_remove_node:
3511
	drm_mm_remove_node(&vma->node);
3512
err_free_vma:
B
Ben Widawsky 已提交
3513
	i915_gem_vma_destroy(vma);
3514
	vma = ERR_PTR(ret);
3515
err_unpin:
B
Ben Widawsky 已提交
3516
	i915_gem_object_unpin_pages(obj);
3517
	return vma;
3518 3519
}

3520
bool
3521 3522
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3523 3524 3525 3526 3527
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3528
	if (obj->pages == NULL)
3529
		return false;
3530

3531 3532 3533 3534
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3535
	if (obj->stolen || obj->phys_handle)
3536
		return false;
3537

3538 3539 3540 3541 3542 3543 3544 3545
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3546 3547
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3548
		return false;
3549
	}
3550

C
Chris Wilson 已提交
3551
	trace_i915_gem_object_clflush(obj);
3552
	drm_clflush_sg(obj->pages);
3553
	obj->cache_dirty = false;
3554 3555

	return true;
3556 3557 3558 3559
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3560
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3561
{
C
Chris Wilson 已提交
3562 3563
	uint32_t old_write_domain;

3564
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3565 3566
		return;

3567
	/* No actual flushing is required for the GTT write domain.  Writes
3568 3569
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3570 3571 3572 3573
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3574
	 */
3575 3576
	wmb();

3577 3578
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3579

3580
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3581

C
Chris Wilson 已提交
3582
	trace_i915_gem_object_change_domain(obj,
3583
					    obj->base.read_domains,
C
Chris Wilson 已提交
3584
					    old_write_domain);
3585 3586 3587 3588
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3589
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3590
{
C
Chris Wilson 已提交
3591
	uint32_t old_write_domain;
3592

3593
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3594 3595
		return;

3596
	if (i915_gem_clflush_object(obj, obj->pin_display))
3597 3598
		i915_gem_chipset_flush(obj->base.dev);

3599 3600
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3601

3602
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3603

C
Chris Wilson 已提交
3604
	trace_i915_gem_object_change_domain(obj,
3605
					    obj->base.read_domains,
C
Chris Wilson 已提交
3606
					    old_write_domain);
3607 3608
}

3609 3610 3611 3612 3613 3614
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3615
int
3616
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3617
{
C
Chris Wilson 已提交
3618
	uint32_t old_write_domain, old_read_domains;
3619
	struct i915_vma *vma;
3620
	int ret;
3621

3622 3623 3624
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3625
	ret = i915_gem_object_wait_rendering(obj, !write);
3626 3627 3628
	if (ret)
		return ret;

3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3641
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3642

3643 3644 3645 3646 3647 3648 3649
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3650 3651
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3652

3653 3654 3655
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3656 3657
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3658
	if (write) {
3659 3660 3661
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3662 3663
	}

C
Chris Wilson 已提交
3664 3665 3666 3667
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3668
	/* And bump the LRU for this access */
3669 3670
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3671
		list_move_tail(&vma->mm_list,
3672
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3673

3674 3675 3676
	return 0;
}

3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
/**
 * Changes the cache-level of an object across all VMA.
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3690 3691 3692
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3693
	struct drm_device *dev = obj->base.dev;
3694
	struct i915_vma *vma, *next;
3695
	bool bound = false;
3696
	int ret = 0;
3697 3698

	if (obj->cache_level == cache_level)
3699
		goto out;
3700

3701 3702 3703 3704 3705
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3706
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3707 3708 3709 3710 3711 3712 3713 3714
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3715
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3716
			ret = i915_vma_unbind(vma);
3717 3718
			if (ret)
				return ret;
3719 3720
		} else
			bound = true;
3721 3722
	}

3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3735
		ret = i915_gem_object_wait_rendering(obj, false);
3736 3737 3738
		if (ret)
			return ret;

3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3756 3757 3758
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3759 3760 3761 3762 3763 3764 3765 3766
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3767 3768
		}

3769 3770 3771 3772 3773 3774 3775 3776
		list_for_each_entry(vma, &obj->vma_list, vma_link) {
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3777 3778
	}

3779 3780 3781 3782
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3783
out:
3784 3785 3786 3787
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3788 3789 3790 3791 3792
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3793 3794 3795 3796 3797
	}

	return 0;
}

B
Ben Widawsky 已提交
3798 3799
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3800
{
B
Ben Widawsky 已提交
3801
	struct drm_i915_gem_caching *args = data;
3802 3803 3804
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3805 3806
	if (&obj->base == NULL)
		return -ENOENT;
3807

3808 3809 3810 3811 3812 3813
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3814 3815 3816 3817
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3818 3819 3820 3821
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3822

3823 3824
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3825 3826
}

B
Ben Widawsky 已提交
3827 3828
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3829
{
3830
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
3831
	struct drm_i915_gem_caching *args = data;
3832 3833 3834 3835
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3836 3837
	switch (args->caching) {
	case I915_CACHING_NONE:
3838 3839
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3840
	case I915_CACHING_CACHED:
3841 3842 3843 3844 3845 3846
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3847
		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3848 3849
			return -ENODEV;

3850 3851
		level = I915_CACHE_LLC;
		break;
3852 3853 3854
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3855 3856 3857 3858
	default:
		return -EINVAL;
	}

3859 3860
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3861 3862
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3863
		goto rpm_put;
B
Ben Widawsky 已提交
3864

3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
3876 3877 3878
rpm_put:
	intel_runtime_pm_put(dev_priv);

3879 3880 3881
	return ret;
}

3882
/*
3883 3884 3885
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3886 3887
 */
int
3888 3889
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3890
				     const struct i915_ggtt_view *view)
3891
{
3892
	u32 old_read_domains, old_write_domain;
3893 3894
	int ret;

3895 3896 3897
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3898
	obj->pin_display++;
3899

3900 3901 3902 3903 3904 3905 3906 3907 3908
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3909 3910
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3911
	if (ret)
3912
		goto err_unpin_display;
3913

3914 3915 3916 3917
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3918 3919 3920
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3921
	if (ret)
3922
		goto err_unpin_display;
3923

3924
	i915_gem_object_flush_cpu_write_domain(obj);
3925

3926
	old_write_domain = obj->base.write_domain;
3927
	old_read_domains = obj->base.read_domains;
3928 3929 3930 3931

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3932
	obj->base.write_domain = 0;
3933
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3934 3935 3936

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3937
					    old_write_domain);
3938 3939

	return 0;
3940 3941

err_unpin_display:
3942
	obj->pin_display--;
3943 3944 3945 3946
	return ret;
}

void
3947 3948
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3949
{
3950 3951 3952
	if (WARN_ON(obj->pin_display == 0))
		return;

3953 3954
	i915_gem_object_ggtt_unpin_view(obj, view);

3955
	obj->pin_display--;
3956 3957
}

3958 3959 3960 3961 3962 3963
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3964
int
3965
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3966
{
C
Chris Wilson 已提交
3967
	uint32_t old_write_domain, old_read_domains;
3968 3969
	int ret;

3970 3971 3972
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3973
	ret = i915_gem_object_wait_rendering(obj, !write);
3974 3975 3976
	if (ret)
		return ret;

3977
	i915_gem_object_flush_gtt_write_domain(obj);
3978

3979 3980
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3981

3982
	/* Flush the CPU cache if it's still invalid. */
3983
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3984
		i915_gem_clflush_object(obj, false);
3985

3986
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3987 3988 3989 3990 3991
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3992
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3993 3994 3995 3996 3997

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3998 3999
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4000
	}
4001

C
Chris Wilson 已提交
4002 4003 4004 4005
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4006 4007 4008
	return 0;
}

4009 4010 4011
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4012 4013 4014 4015
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4016 4017 4018
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4019
static int
4020
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4021
{
4022 4023
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4024
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4025
	struct drm_i915_gem_request *request, *target = NULL;
4026
	unsigned reset_counter;
4027
	int ret;
4028

4029 4030 4031 4032 4033 4034 4035
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4036

4037
	spin_lock(&file_priv->mm.lock);
4038
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4039 4040
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4041

4042 4043 4044 4045 4046 4047 4048
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4049
		target = request;
4050
	}
4051
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4052 4053
	if (target)
		i915_gem_request_reference(target);
4054
	spin_unlock(&file_priv->mm.lock);
4055

4056
	if (target == NULL)
4057
		return 0;
4058

4059
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4060 4061
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4062

4063
	i915_gem_request_unreference__unlocked(target);
4064

4065 4066 4067
	return ret;
}

4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4087 4088 4089 4090 4091 4092
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4093
{
4094
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4095
	struct i915_vma *vma;
4096
	unsigned bound;
4097 4098
	int ret;

4099 4100 4101
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4102
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4103
		return -EINVAL;
4104

4105 4106 4107
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4108 4109 4110 4111 4112 4113 4114 4115 4116
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4117
	if (vma) {
B
Ben Widawsky 已提交
4118 4119 4120
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4121
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4122
			WARN(vma->pin_count,
4123
			     "bo is already pinned in %s with incorrect alignment:"
4124
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4125
			     " obj->map_and_fenceable=%d\n",
4126
			     ggtt_view ? "ggtt" : "ppgtt",
4127 4128
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4129
			     alignment,
4130
			     !!(flags & PIN_MAPPABLE),
4131
			     obj->map_and_fenceable);
4132
			ret = i915_vma_unbind(vma);
4133 4134
			if (ret)
				return ret;
4135 4136

			vma = NULL;
4137 4138 4139
		}
	}

4140
	bound = vma ? vma->bound : 0;
4141
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4142 4143
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4144 4145
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4146 4147
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4148 4149 4150
		if (ret)
			return ret;
	}
4151

4152 4153
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4168
		mappable = (vma->node.start + fence_size <=
4169 4170 4171 4172
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;

4173 4174
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4175

4176
	vma->pin_count++;
4177 4178 4179
	return 0;
}

4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4201
				      alignment, flags | PIN_GLOBAL);
4202 4203
}

4204
void
4205 4206
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4207
{
4208
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4209

B
Ben Widawsky 已提交
4210
	BUG_ON(!vma);
4211
	WARN_ON(vma->pin_count == 0);
4212
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4213

4214
	--vma->pin_count;
4215 4216 4217 4218
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4219
		    struct drm_file *file)
4220 4221
{
	struct drm_i915_gem_busy *args = data;
4222
	struct drm_i915_gem_object *obj;
4223 4224
	int ret;

4225
	ret = i915_mutex_lock_interruptible(dev);
4226
	if (ret)
4227
		return ret;
4228

4229
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4230
	if (&obj->base == NULL) {
4231 4232
		ret = -ENOENT;
		goto unlock;
4233
	}
4234

4235 4236 4237 4238
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4239
	 */
4240
	ret = i915_gem_object_flush_active(obj);
4241 4242
	if (ret)
		goto unref;
4243

4244 4245 4246 4247
	BUILD_BUG_ON(I915_NUM_RINGS > 16);
	args->busy = obj->active << 16;
	if (obj->last_write_req)
		args->busy |= obj->last_write_req->ring->id;
4248

4249
unref:
4250
	drm_gem_object_unreference(&obj->base);
4251
unlock:
4252
	mutex_unlock(&dev->struct_mutex);
4253
	return ret;
4254 4255 4256 4257 4258 4259
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4260
	return i915_gem_ring_throttle(dev, file_priv);
4261 4262
}

4263 4264 4265 4266
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4267
	struct drm_i915_private *dev_priv = dev->dev_private;
4268
	struct drm_i915_gem_madvise *args = data;
4269
	struct drm_i915_gem_object *obj;
4270
	int ret;
4271 4272 4273 4274 4275 4276 4277 4278 4279

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4280 4281 4282 4283
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4284
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4285
	if (&obj->base == NULL) {
4286 4287
		ret = -ENOENT;
		goto unlock;
4288 4289
	}

B
Ben Widawsky 已提交
4290
	if (i915_gem_obj_is_pinned(obj)) {
4291 4292
		ret = -EINVAL;
		goto out;
4293 4294
	}

4295 4296 4297 4298 4299 4300 4301 4302 4303
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4304 4305
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4306

C
Chris Wilson 已提交
4307
	/* if the object is no longer attached, discard its backing storage */
4308
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4309 4310
		i915_gem_object_truncate(obj);

4311
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4312

4313
out:
4314
	drm_gem_object_unreference(&obj->base);
4315
unlock:
4316
	mutex_unlock(&dev->struct_mutex);
4317
	return ret;
4318 4319
}

4320 4321
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4322
{
4323 4324
	int i;

4325
	INIT_LIST_HEAD(&obj->global_list);
4326 4327
	for (i = 0; i < I915_NUM_RINGS; i++)
		INIT_LIST_HEAD(&obj->ring_list[i]);
4328
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4329
	INIT_LIST_HEAD(&obj->vma_list);
4330
	INIT_LIST_HEAD(&obj->batch_pool_link);
4331

4332 4333
	obj->ops = ops;

4334 4335 4336 4337 4338 4339
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4340 4341 4342 4343 4344
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4345 4346
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4347
{
4348
	struct drm_i915_gem_object *obj;
4349
	struct address_space *mapping;
D
Daniel Vetter 已提交
4350
	gfp_t mask;
4351

4352
	obj = i915_gem_object_alloc(dev);
4353 4354
	if (obj == NULL)
		return NULL;
4355

4356
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4357
		i915_gem_object_free(obj);
4358 4359
		return NULL;
	}
4360

4361 4362 4363 4364 4365 4366 4367
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4368
	mapping = file_inode(obj->base.filp)->i_mapping;
4369
	mapping_set_gfp_mask(mapping, mask);
4370

4371
	i915_gem_object_init(obj, &i915_gem_object_ops);
4372

4373 4374
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4375

4376 4377
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4393 4394
	trace_i915_gem_object_create(obj);

4395
	return obj;
4396 4397
}

4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4422
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4423
{
4424
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4425
	struct drm_device *dev = obj->base.dev;
4426
	struct drm_i915_private *dev_priv = dev->dev_private;
4427
	struct i915_vma *vma, *next;
4428

4429 4430
	intel_runtime_pm_get(dev_priv);

4431 4432
	trace_i915_gem_object_destroy(obj);

4433
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4434 4435 4436 4437
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4438 4439
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4440

4441 4442
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4443

4444
			WARN_ON(i915_vma_unbind(vma));
4445

4446 4447
			dev_priv->mm.interruptible = was_interruptible;
		}
4448 4449
	}

B
Ben Widawsky 已提交
4450 4451 4452 4453 4454
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4455 4456
	WARN_ON(obj->frontbuffer_bits);

4457 4458 4459 4460 4461
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4462 4463
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4464
	if (discard_backing_storage(obj))
4465
		obj->madv = I915_MADV_DONTNEED;
4466
	i915_gem_object_put_pages(obj);
4467
	i915_gem_object_free_mmap_offset(obj);
4468

4469 4470
	BUG_ON(obj->pages);

4471 4472
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4473

4474 4475 4476
	if (obj->ops->release)
		obj->ops->release(obj);

4477 4478
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4479

4480
	kfree(obj->bit_17);
4481
	i915_gem_object_free(obj);
4482 4483

	intel_runtime_pm_put(dev_priv);
4484 4485
}

4486 4487
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4488 4489
{
	struct i915_vma *vma;
4490
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
4491 4492
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4493
			return vma;
4494 4495 4496 4497 4498 4499 4500 4501 4502
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4503

4504 4505 4506 4507
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4508 4509
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4510
			return vma;
4511 4512 4513
	return NULL;
}

B
Ben Widawsky 已提交
4514 4515
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4516
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4517
	WARN_ON(vma->node.allocated);
4518 4519 4520 4521 4522

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4523 4524
	vm = vma->vm;

4525 4526
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4527

4528
	list_del(&vma->vma_link);
4529

4530
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4531 4532
}

4533 4534 4535 4536
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4537
	struct intel_engine_cs *ring;
4538 4539 4540
	int i;

	for_each_ring(ring, dev_priv, i)
4541
		dev_priv->gt.stop_ring(ring);
4542 4543
}

4544
int
4545
i915_gem_suspend(struct drm_device *dev)
4546
{
4547
	struct drm_i915_private *dev_priv = dev->dev_private;
4548
	int ret = 0;
4549

4550
	mutex_lock(&dev->struct_mutex);
4551
	ret = i915_gpu_idle(dev);
4552
	if (ret)
4553
		goto err;
4554

4555
	i915_gem_retire_requests(dev);
4556

4557
	i915_gem_stop_ringbuffers(dev);
4558 4559
	mutex_unlock(&dev->struct_mutex);

4560
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4561
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4562
	flush_delayed_work(&dev_priv->mm.idle_work);
4563

4564 4565 4566 4567 4568
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4569
	return 0;
4570 4571 4572 4573

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4574 4575
}

4576
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
B
Ben Widawsky 已提交
4577
{
4578
	struct intel_engine_cs *ring = req->ring;
4579
	struct drm_device *dev = ring->dev;
4580
	struct drm_i915_private *dev_priv = dev->dev_private;
4581
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4582
	int i, ret;
B
Ben Widawsky 已提交
4583

4584
	if (!HAS_L3_DPF(dev) || !remap_info)
4585
		return 0;
B
Ben Widawsky 已提交
4586

4587
	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4588 4589
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4590

4591 4592 4593 4594 4595
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
4596
	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4597
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4598
		intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4599
		intel_ring_emit(ring, remap_info[i]);
B
Ben Widawsky 已提交
4600 4601
	}

4602
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4603

4604
	return ret;
B
Ben Widawsky 已提交
4605 4606
}

4607 4608
void i915_gem_init_swizzling(struct drm_device *dev)
{
4609
	struct drm_i915_private *dev_priv = dev->dev_private;
4610

4611
	if (INTEL_INFO(dev)->gen < 5 ||
4612 4613 4614 4615 4616 4617
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4618 4619 4620
	if (IS_GEN5(dev))
		return;

4621 4622
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4623
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4624
	else if (IS_GEN7(dev))
4625
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4626 4627
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4628 4629
	else
		BUG();
4630
}
D
Daniel Vetter 已提交
4631

4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4659
int i915_gem_init_rings(struct drm_device *dev)
4660
{
4661
	struct drm_i915_private *dev_priv = dev->dev_private;
4662
	int ret;
4663

4664
	ret = intel_init_render_ring_buffer(dev);
4665
	if (ret)
4666
		return ret;
4667 4668

	if (HAS_BSD(dev)) {
4669
		ret = intel_init_bsd_ring_buffer(dev);
4670 4671
		if (ret)
			goto cleanup_render_ring;
4672
	}
4673

4674
	if (HAS_BLT(dev)) {
4675 4676 4677 4678 4679
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4680 4681 4682 4683 4684 4685
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4686 4687 4688 4689 4690
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4691

4692 4693
	return 0;

B
Ben Widawsky 已提交
4694 4695
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4709
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4710
	struct intel_engine_cs *ring;
4711
	int ret, i, j;
4712 4713 4714 4715

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4716 4717 4718
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4719
	if (dev_priv->ellc_size)
4720
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4721

4722 4723 4724
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4725

4726
	if (HAS_PCH_NOP(dev)) {
4727 4728 4729 4730 4731 4732 4733 4734 4735
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4736 4737
	}

4738 4739
	i915_gem_init_swizzling(dev);

4740 4741 4742 4743 4744 4745 4746 4747
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4748 4749
	BUG_ON(!dev_priv->ring[RCS].default_context);

4750 4751 4752 4753 4754 4755 4756
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
D
Daniel Vetter 已提交
4757 4758 4759
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
4760
			goto out;
D
Daniel Vetter 已提交
4761
	}
4762

4763
	/* We can't enable contexts until all firmware is loaded */
4764 4765 4766
	if (HAS_GUC_UCODE(dev)) {
		ret = intel_guc_ucode_load(dev);
		if (ret) {
4767 4768 4769
			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
			ret = -EIO;
			goto out;
4770
		}
4771 4772
	}

4773 4774 4775 4776 4777 4778 4779 4780
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
	if (ret)
		goto out;

4781 4782
	/* Now it is safe to go back round and do everything else: */
	for_each_ring(ring, dev_priv, i) {
4783 4784
		struct drm_i915_gem_request *req;

4785 4786
		WARN_ON(!ring->default_context);

4787 4788 4789 4790 4791 4792
		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
		if (ret) {
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}

4793 4794
		if (ring->id == RCS) {
			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4795
				i915_gem_l3_remap(req, j);
4796
		}
4797

4798
		ret = i915_ppgtt_init_ring(req);
4799 4800
		if (ret && ret != -EIO) {
			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4801
			i915_gem_request_cancel(req);
4802 4803 4804
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
4805

4806
		ret = i915_gem_context_enable(req);
4807 4808
		if (ret && ret != -EIO) {
			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4809
			i915_gem_request_cancel(req);
4810 4811 4812
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
4813

4814
		i915_add_request_no_flush(req);
4815
	}
D
Daniel Vetter 已提交
4816

4817 4818
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4819
	return ret;
4820 4821
}

4822 4823 4824 4825 4826
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4827 4828 4829
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4830
	mutex_lock(&dev->struct_mutex);
4831 4832 4833

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4834 4835 4836
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4837 4838 4839
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4840
	if (!i915.enable_execlists) {
4841
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4842 4843 4844
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4845
	} else {
4846
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4847 4848 4849
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4850 4851
	}

4852 4853 4854 4855 4856 4857 4858 4859
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4860
	ret = i915_gem_init_userptr(dev);
4861 4862
	if (ret)
		goto out_unlock;
4863

4864
	i915_gem_init_global_gtt(dev);
4865

4866
	ret = i915_gem_context_init(dev);
4867 4868
	if (ret)
		goto out_unlock;
4869

D
Daniel Vetter 已提交
4870 4871
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4872
		goto out_unlock;
4873

4874
	ret = i915_gem_init_hw(dev);
4875 4876 4877 4878 4879 4880
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4881
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4882
		ret = 0;
4883
	}
4884 4885

out_unlock:
4886
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4887
	mutex_unlock(&dev->struct_mutex);
4888

4889
	return ret;
4890 4891
}

4892 4893 4894
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4895
	struct drm_i915_private *dev_priv = dev->dev_private;
4896
	struct intel_engine_cs *ring;
4897
	int i;
4898

4899
	for_each_ring(ring, dev_priv, i)
4900
		dev_priv->gt.cleanup_ring(ring);
4901 4902 4903 4904 4905 4906 4907 4908

    if (i915.enable_execlists)
            /*
             * Neither the BIOS, ourselves or any other kernel
             * expects the system to be in execlists mode on startup,
             * so we need to reset the GPU back to legacy mode.
             */
            intel_gpu_reset(dev);
4909 4910
}

4911
static void
4912
init_ring_lists(struct intel_engine_cs *ring)
4913 4914 4915 4916 4917
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4918 4919 4920
void
i915_gem_load(struct drm_device *dev)
{
4921
	struct drm_i915_private *dev_priv = dev->dev_private;
4922 4923
	int i;

4924
	dev_priv->objects =
4925 4926 4927 4928
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4929 4930 4931 4932 4933
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4934 4935 4936 4937 4938
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4939

B
Ben Widawsky 已提交
4940
	INIT_LIST_HEAD(&dev_priv->vm_list);
4941
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4942 4943
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4944
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4945 4946
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4947
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4948
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4949 4950
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4951 4952
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
4953
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4954

4955 4956
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4957 4958 4959
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4960 4961 4962 4963
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4964 4965 4966 4967
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

4968 4969 4970 4971 4972 4973 4974 4975
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

4976
	/* Initialize fence registers to zero */
4977 4978
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
4979

4980
	i915_gem_detect_bit_6_swizzle(dev);
4981
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4982

4983 4984
	dev_priv->mm.interruptible = true;

4985
	i915_gem_shrinker_init(dev_priv);
4986 4987

	mutex_init(&dev_priv->fb_tracking.lock);
4988
}
4989

4990
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4991
{
4992
	struct drm_i915_file_private *file_priv = file->driver_priv;
4993 4994 4995 4996 4997

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4998
	spin_lock(&file_priv->mm.lock);
4999 5000 5001 5002 5003 5004 5005 5006 5007
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5008
	spin_unlock(&file_priv->mm.lock);
5009

5010
	if (!list_empty(&file_priv->rps.link)) {
5011
		spin_lock(&to_i915(dev)->rps.client_lock);
5012
		list_del(&file_priv->rps.link);
5013
		spin_unlock(&to_i915(dev)->rps.client_lock);
5014
	}
5015 5016 5017 5018 5019
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5020
	int ret;
5021 5022 5023 5024 5025 5026 5027 5028 5029

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5030
	file_priv->file = file;
5031
	INIT_LIST_HEAD(&file_priv->rps.link);
5032 5033 5034 5035

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5036 5037 5038
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5039

5040
	return ret;
5041 5042
}

5043 5044
/**
 * i915_gem_track_fb - update frontbuffer tracking
5045 5046 5047
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5048 5049 5050 5051
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5069
/* All the new VM stuff */
5070 5071
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5072 5073 5074 5075
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5076
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5077 5078

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5079 5080 5081 5082
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5083 5084
			return vma->node.start;
	}
5085

5086 5087
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5088 5089 5090
	return -1;
}

5091 5092
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5093
{
5094
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5095 5096 5097
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5098 5099
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5100 5101
			return vma->node.start;

5102
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5123
				  const struct i915_ggtt_view *view)
5124 5125 5126 5127 5128 5129
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5130
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5131
		    drm_mm_node_allocated(&vma->node))
5132 5133 5134 5135 5136 5137 5138
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5139
	struct i915_vma *vma;
5140

5141 5142
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5154
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5155 5156 5157

	BUG_ON(list_empty(&o->vma_list));

5158 5159 5160 5161
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5162 5163
		if (vma->vm == vm)
			return vma->node.size;
5164
	}
5165 5166 5167
	return 0;
}

5168
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5169 5170
{
	struct i915_vma *vma;
5171
	list_for_each_entry(vma, &obj->vma_list, vma_link)
5172 5173
		if (vma->pin_count > 0)
			return true;
5174

5175
	return false;
5176
}
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216

/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
	if (IS_ERR_OR_NULL(obj))
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}