i915_gem.c 103.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38

39
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 43 44
static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
								  uint64_t offset,
								  uint64_t size);
45
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
46 47 48
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
49 50
static void i915_gem_clear_fence_reg(struct drm_device *dev,
				     struct drm_i915_fence_reg *reg);
51 52
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
53
				struct drm_i915_gem_pwrite *args,
54 55
				struct drm_file *file);
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
56

57
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58
				    struct shrink_control *sc);
59
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

76 77
static int
i915_gem_wait_for_error(struct drm_device *dev)
78 79 80 81 82 83 84 85 86 87 88 89 90
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

91 92 93 94 95 96 97 98 99 100 101
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
102 103
}

104
int i915_mutex_lock_interruptible(struct drm_device *dev)
105 106 107
{
	int ret;

108
	ret = i915_gem_wait_for_error(dev);
109 110 111 112 113 114 115
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

116
	WARN_ON(i915_verify_lists(dev));
117 118
	return 0;
}
119

120
static inline bool
121
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
122
{
123
	return obj->gtt_space && !obj->active && obj->pin_count == 0;
124 125
}

J
Jesse Barnes 已提交
126 127
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
128
		    struct drm_file *file)
J
Jesse Barnes 已提交
129 130
{
	struct drm_i915_gem_init *args = data;
131 132 133 134

	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
135 136

	mutex_lock(&dev->struct_mutex);
137 138
	i915_gem_init_global_gtt(dev, args->gtt_start,
				 args->gtt_end, args->gtt_end);
139 140
	mutex_unlock(&dev->struct_mutex);

141
	return 0;
142 143
}

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = dev->dev_private;
149
	struct drm_i915_gem_get_aperture *args = data;
150 151
	struct drm_i915_gem_object *obj;
	size_t pinned;
152 153 154 155

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158 159
	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
		pinned += obj->gtt_space->size;
160
	mutex_unlock(&dev->struct_mutex);
161

162
	args->aper_size = dev_priv->mm.gtt_total;
163
	args->aper_available_size = args->aper_size - pinned;
164

165 166 167
	return 0;
}

168 169 170 171 172
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
173
{
174
	struct drm_i915_gem_object *obj;
175 176
	int ret;
	u32 handle;
177

178
	size = roundup(size, PAGE_SIZE);
179 180
	if (size == 0)
		return -EINVAL;
181 182

	/* Allocate the new object */
183
	obj = i915_gem_alloc_object(dev, size);
184 185 186
	if (obj == NULL)
		return -ENOMEM;

187
	ret = drm_gem_handle_create(file, &obj->base, &handle);
188
	if (ret) {
189 190
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
191
		kfree(obj);
192
		return ret;
193
	}
194

195
	/* drop reference from allocate - handle holds it now */
196
	drm_gem_object_unreference(&obj->base);
197 198
	trace_i915_gem_object_create(obj);

199
	*handle_p = handle;
200 201 202
	return 0;
}

203 204 205 206 207 208
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
209
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

234
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
235
{
236
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
237 238

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
239
		obj->tiling_mode != I915_TILING_NONE;
240 241
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
static inline int
__copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
			  const char *cpu_vaddr,
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

294
static int
295 296 297 298
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
299
{
300
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
301
	char __user *user_data;
302
	ssize_t remain;
303
	loff_t offset;
304
	int shmem_page_offset, page_length, ret = 0;
305
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
306
	int hit_slowpath = 0;
307

308
	user_data = (char __user *) (uintptr_t) args->data_ptr;
309 310
	remain = args->size;

311
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
312

313
	offset = args->offset;
314 315

	while (remain > 0) {
316
		struct page *page;
317
		char *vaddr;
318

319 320 321 322 323
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
324
		shmem_page_offset = offset_in_page(offset);
325 326 327 328
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

329
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
330 331 332 333
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}
334

335 336 337
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

338 339 340 341 342 343 344 345 346 347 348 349 350 351
		if (!page_do_bit17_swizzling) {
			vaddr = kmap_atomic(page);
			ret = __copy_to_user_inatomic(user_data,
						      vaddr + shmem_page_offset,
						      page_length);
			kunmap_atomic(vaddr);
			if (ret == 0) 
				goto next_page;
		}

		hit_slowpath = 1;

		mutex_unlock(&dev->struct_mutex);

352 353 354 355 356 357 358 359 360 361
		vaddr = kmap(page);
		if (page_do_bit17_swizzling)
			ret = __copy_to_user_swizzled(user_data,
						      vaddr, shmem_page_offset,
						      page_length);
		else
			ret = __copy_to_user(user_data,
					     vaddr + shmem_page_offset,
					     page_length);
		kunmap(page);
362

363 364
		mutex_lock(&dev->struct_mutex);
next_page:
365 366 367
		mark_page_accessed(page);
		page_cache_release(page);

368 369 370 371 372
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

373
		remain -= page_length;
374
		user_data += page_length;
375 376 377
		offset += page_length;
	}

378
out:
379 380 381 382 383
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
	}
384 385 386 387

	return ret;
}

388 389 390 391 392 393 394
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
395
		     struct drm_file *file)
396 397
{
	struct drm_i915_gem_pread *args = data;
398
	struct drm_i915_gem_object *obj;
399
	int ret = 0;
400

401 402 403 404 405 406 407 408 409 410 411 412 413
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret)
		return -EFAULT;

414
	ret = i915_mutex_lock_interruptible(dev);
415
	if (ret)
416
		return ret;
417

418
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
419
	if (&obj->base == NULL) {
420 421
		ret = -ENOENT;
		goto unlock;
422
	}
423

424
	/* Bounds check source.  */
425 426
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
427
		ret = -EINVAL;
428
		goto out;
C
Chris Wilson 已提交
429 430
	}

C
Chris Wilson 已提交
431 432
	trace_i915_gem_object_pread(obj, args->offset, args->size);

433 434 435 436
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
437
		goto out;
438

439
	ret = i915_gem_shmem_pread(dev, obj, args, file);
440

441
out:
442
	drm_gem_object_unreference(&obj->base);
443
unlock:
444
	mutex_unlock(&dev->struct_mutex);
445
	return ret;
446 447
}

448 449
/* This is the fast write path which cannot handle
 * page faults in the source data
450
 */
451 452 453 454 455 456

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
457 458
{
	char *vaddr_atomic;
459
	unsigned long unwritten;
460

P
Peter Zijlstra 已提交
461
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
462 463
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
464
	io_mapping_unmap_atomic(vaddr_atomic);
465
	return unwritten;
466 467 468 469 470 471
}

/* Here's the write path which can sleep for
 * page faults
 */

472
static inline void
473 474 475 476
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
477
{
478 479
	char __iomem *dst_vaddr;
	char *src_vaddr;
480

481 482 483 484 485 486 487 488 489
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
490 491
}

492 493 494 495
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
496
static int
497 498
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
499
			 struct drm_i915_gem_pwrite *args,
500
			 struct drm_file *file)
501
{
502
	drm_i915_private_t *dev_priv = dev->dev_private;
503
	ssize_t remain;
504
	loff_t offset, page_base;
505
	char __user *user_data;
506
	int page_offset, page_length;
507 508 509 510

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

511
	offset = obj->gtt_offset + args->offset;
512 513 514 515

	while (remain > 0) {
		/* Operation in this page
		 *
516 517 518
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
519
		 */
520 521
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
522 523 524 525 526
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
527 528
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
529
		 */
530 531 532
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))
			return -EFAULT;
533

534 535 536
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
537 538
	}

539
	return 0;
540 541
}

542 543 544 545 546 547 548
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
549
static int
550 551
i915_gem_gtt_pwrite_slow(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
552
			 struct drm_i915_gem_pwrite *args,
553
			 struct drm_file *file)
554
{
555 556 557 558 559 560 561 562
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
563
	int ret;
564 565 566 567 568 569 570 571 572 573 574 575
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

576
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
577 578 579
	if (user_pages == NULL)
		return -ENOMEM;

580
	mutex_unlock(&dev->struct_mutex);
581 582 583 584
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
585
	mutex_lock(&dev->struct_mutex);
586 587 588 589
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
590

591 592 593 594 595
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin_pages;

	ret = i915_gem_object_put_fence(obj);
596
	if (ret)
597
		goto out_unpin_pages;
598

599
	offset = obj->gtt_offset + args->offset;
600 601 602 603 604 605 606 607 608 609 610

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
611
		gtt_page_offset = offset_in_page(offset);
612
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
613
		data_page_offset = offset_in_page(data_ptr);
614 615 616 617 618 619 620

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

621 622 623 624 625
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
626 627 628 629 630 631 632 633 634

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
635
	drm_free_large(user_pages);
636 637 638 639

	return ret;
}

640
static int
641 642 643 644
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
645
{
646
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
647
	ssize_t remain;
648 649
	loff_t offset;
	char __user *user_data;
650
	int shmem_page_offset, page_length, ret = 0;
651
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
652
	int hit_slowpath = 0;
653

654
	user_data = (char __user *) (uintptr_t) args->data_ptr;
655 656
	remain = args->size;

657
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
658

659
	offset = args->offset;
660
	obj->dirty = 1;
661

662
	while (remain > 0) {
663
		struct page *page;
664
		char *vaddr;
665

666 667 668 669 670
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
671
		shmem_page_offset = offset_in_page(offset);
672 673 674 675 676

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

677
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
678 679 680 681 682
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

683 684 685
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
		if (!page_do_bit17_swizzling) {
			vaddr = kmap_atomic(page);
			ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
							user_data,
							page_length);
			kunmap_atomic(vaddr);

			if (ret == 0)
				goto next_page;
		}

		hit_slowpath = 1;

		mutex_unlock(&dev->struct_mutex);

701 702 703 704 705 706 707 708 709 710
		vaddr = kmap(page);
		if (page_do_bit17_swizzling)
			ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
							user_data,
							page_length);
		else
			ret = __copy_from_user(vaddr + shmem_page_offset,
					       user_data,
					       page_length);
		kunmap(page);
711

712 713
		mutex_lock(&dev->struct_mutex);
next_page:
714 715 716 717
		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

718 719 720 721 722
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

723
		remain -= page_length;
724
		user_data += page_length;
725
		offset += page_length;
726 727
	}

728
out:
729 730 731 732 733 734 735 736 737 738
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
		/* and flush dirty cachelines in case the object isn't in the cpu write
		 * domain anymore. */
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
			i915_gem_clflush_object(obj);
			intel_gtt_chipset_flush();
		}
739
	}
740

741
	return ret;
742 743 744 745 746 747 748 749 750
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
751
		      struct drm_file *file)
752 753
{
	struct drm_i915_gem_pwrite *args = data;
754
	struct drm_i915_gem_object *obj;
755 756 757 758 759 760 761 762 763 764 765 766 767 768
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret)
		return -EFAULT;
769

770
	ret = i915_mutex_lock_interruptible(dev);
771
	if (ret)
772
		return ret;
773

774
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
775
	if (&obj->base == NULL) {
776 777
		ret = -ENOENT;
		goto unlock;
778
	}
779

780
	/* Bounds check destination. */
781 782
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
783
		ret = -EINVAL;
784
		goto out;
C
Chris Wilson 已提交
785 786
	}

C
Chris Wilson 已提交
787 788
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

789 790 791 792 793 794
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
795
	if (obj->phys_obj) {
796
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
797 798 799 800 801
		goto out;
	}

	if (obj->gtt_space &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
802
		ret = i915_gem_object_pin(obj, 0, true);
803 804 805
		if (ret)
			goto out;

806 807 808 809 810
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			goto out_unpin;

		ret = i915_gem_object_put_fence(obj);
811 812 813 814 815 816 817 818 819
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
820

821 822 823 824 825
		if (ret != -EFAULT)
			goto out;
		/* Fall through to the shmfs paths because the gtt paths might
		 * fail with non-page-backed user pointers (e.g. gtt mappings
		 * when moving data between textures). */
826
	}
827

828 829 830 831
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret)
		goto out;

832
	ret = i915_gem_shmem_pwrite(dev, obj, args, file);
833

834
out:
835
	drm_gem_object_unreference(&obj->base);
836
unlock:
837
	mutex_unlock(&dev->struct_mutex);
838 839 840 841
	return ret;
}

/**
842 843
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
844 845 846
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
847
			  struct drm_file *file)
848 849
{
	struct drm_i915_gem_set_domain *args = data;
850
	struct drm_i915_gem_object *obj;
851 852
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
853 854 855 856 857
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

858
	/* Only handle setting domains to types used by the CPU. */
859
	if (write_domain & I915_GEM_GPU_DOMAINS)
860 861
		return -EINVAL;

862
	if (read_domains & I915_GEM_GPU_DOMAINS)
863 864 865 866 867 868 869 870
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

871
	ret = i915_mutex_lock_interruptible(dev);
872
	if (ret)
873
		return ret;
874

875
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
876
	if (&obj->base == NULL) {
877 878
		ret = -ENOENT;
		goto unlock;
879
	}
880

881 882
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
883 884 885 886 887 888 889

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
890
	} else {
891
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
892 893
	}

894
	drm_gem_object_unreference(&obj->base);
895
unlock:
896 897 898 899 900 901 902 903 904
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
905
			 struct drm_file *file)
906 907
{
	struct drm_i915_gem_sw_finish *args = data;
908
	struct drm_i915_gem_object *obj;
909 910 911 912 913
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

914
	ret = i915_mutex_lock_interruptible(dev);
915
	if (ret)
916
		return ret;
917

918
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
919
	if (&obj->base == NULL) {
920 921
		ret = -ENOENT;
		goto unlock;
922 923 924
	}

	/* Pinned buffers may be scanout, so flush the cache */
925
	if (obj->pin_count)
926 927
		i915_gem_object_flush_cpu_write_domain(obj);

928
	drm_gem_object_unreference(&obj->base);
929
unlock:
930 931 932 933 934 935 936 937 938 939 940 941 942
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
943
		    struct drm_file *file)
944 945 946 947 948 949 950 951
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

952
	obj = drm_gem_object_lookup(dev, file, args->handle);
953
	if (obj == NULL)
954
		return -ENOENT;
955 956 957 958 959 960

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
961
	drm_gem_object_unreference_unlocked(obj);
962 963 964 965 966 967 968 969
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
988 989
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
990
	drm_i915_private_t *dev_priv = dev->dev_private;
991 992 993
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
994
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
995 996 997 998 999

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1000 1001 1002
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1003

C
Chris Wilson 已提交
1004 1005
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1006
	/* Now bind it into the GTT if needed */
1007 1008 1009 1010
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1011
	}
1012
	if (!obj->gtt_space) {
1013
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1014 1015
		if (ret)
			goto unlock;
1016

1017 1018 1019 1020
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1021

1022 1023 1024
	if (!obj->has_global_gtt_mapping)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

1025 1026 1027
	if (obj->tiling_mode == I915_TILING_NONE)
		ret = i915_gem_object_put_fence(obj);
	else
1028
		ret = i915_gem_object_get_fence(obj, NULL);
1029 1030
	if (ret)
		goto unlock;
1031

1032 1033
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1034

1035 1036
	obj->fault_mappable = true;

1037
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1038 1039 1040 1041
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1042
unlock:
1043
	mutex_unlock(&dev->struct_mutex);
1044
out:
1045
	switch (ret) {
1046
	case -EIO:
1047
	case -EAGAIN:
1048 1049 1050 1051 1052 1053 1054
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1055
		set_need_resched();
1056 1057
	case 0:
	case -ERESTARTSYS:
1058
	case -EINTR:
1059
		return VM_FAULT_NOPAGE;
1060 1061 1062
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1063
		return VM_FAULT_SIGBUS;
1064 1065 1066
	}
}

1067 1068 1069 1070
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1071
 * Preserve the reservation of the mmapping with the DRM core code, but
1072 1073 1074 1075 1076 1077 1078 1079 1080
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1081
void
1082
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1083
{
1084 1085
	if (!obj->fault_mappable)
		return;
1086

1087 1088 1089 1090
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1091

1092
	obj->fault_mappable = false;
1093 1094
}

1095
static uint32_t
1096
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1097
{
1098
	uint32_t gtt_size;
1099 1100

	if (INTEL_INFO(dev)->gen >= 4 ||
1101 1102
	    tiling_mode == I915_TILING_NONE)
		return size;
1103 1104 1105

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1106
		gtt_size = 1024*1024;
1107
	else
1108
		gtt_size = 512*1024;
1109

1110 1111
	while (gtt_size < size)
		gtt_size <<= 1;
1112

1113
	return gtt_size;
1114 1115
}

1116 1117 1118 1119 1120
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1121
 * potential fence register mapping.
1122 1123
 */
static uint32_t
1124 1125 1126
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1127 1128 1129 1130 1131
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1132
	if (INTEL_INFO(dev)->gen >= 4 ||
1133
	    tiling_mode == I915_TILING_NONE)
1134 1135
		return 4096;

1136 1137 1138 1139
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1140
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1141 1142
}

1143 1144 1145
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1146 1147 1148
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1149 1150 1151 1152
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1153
uint32_t
1154 1155 1156
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1157 1158 1159 1160 1161
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1162
	    tiling_mode == I915_TILING_NONE)
1163 1164
		return 4096;

1165 1166 1167
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1168
	 */
1169
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1170 1171
}

1172
int
1173 1174 1175 1176
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1177
{
1178
	struct drm_i915_private *dev_priv = dev->dev_private;
1179
	struct drm_i915_gem_object *obj;
1180 1181 1182 1183 1184
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1185
	ret = i915_mutex_lock_interruptible(dev);
1186
	if (ret)
1187
		return ret;
1188

1189
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1190
	if (&obj->base == NULL) {
1191 1192 1193
		ret = -ENOENT;
		goto unlock;
	}
1194

1195
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1196
		ret = -E2BIG;
1197
		goto out;
1198 1199
	}

1200
	if (obj->madv != I915_MADV_WILLNEED) {
1201
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1202 1203
		ret = -EINVAL;
		goto out;
1204 1205
	}

1206
	if (!obj->base.map_list.map) {
1207
		ret = drm_gem_create_mmap_offset(&obj->base);
1208 1209
		if (ret)
			goto out;
1210 1211
	}

1212
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1213

1214
out:
1215
	drm_gem_object_unreference(&obj->base);
1216
unlock:
1217
	mutex_unlock(&dev->struct_mutex);
1218
	return ret;
1219 1220
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}


1249
static int
1250
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1261 1262 1263 1264
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1265 1266
		return -ENOMEM;

1267
	inode = obj->base.filp->f_path.dentry->d_inode;
1268
	mapping = inode->i_mapping;
1269 1270
	gfpmask |= mapping_gfp_mask(mapping);

1271
	for (i = 0; i < page_count; i++) {
1272
		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1273 1274 1275
		if (IS_ERR(page))
			goto err_pages;

1276
		obj->pages[i] = page;
1277 1278
	}

1279
	if (i915_gem_object_needs_bit17_swizzle(obj))
1280 1281 1282 1283 1284 1285
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1286
		page_cache_release(obj->pages[i]);
1287

1288 1289
	drm_free_large(obj->pages);
	obj->pages = NULL;
1290 1291 1292
	return PTR_ERR(page);
}

1293
static void
1294
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1295
{
1296
	int page_count = obj->base.size / PAGE_SIZE;
1297 1298
	int i;

1299
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1300

1301
	if (i915_gem_object_needs_bit17_swizzle(obj))
1302 1303
		i915_gem_object_save_bit_17_swizzle(obj);

1304 1305
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1306 1307

	for (i = 0; i < page_count; i++) {
1308 1309
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1310

1311 1312
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1313

1314
		page_cache_release(obj->pages[i]);
1315
	}
1316
	obj->dirty = 0;
1317

1318 1319
	drm_free_large(obj->pages);
	obj->pages = NULL;
1320 1321
}

1322
void
1323
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1324 1325
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1326
{
1327
	struct drm_device *dev = obj->base.dev;
1328
	struct drm_i915_private *dev_priv = dev->dev_private;
1329

1330
	BUG_ON(ring == NULL);
1331
	obj->ring = ring;
1332 1333

	/* Add a reference if we're newly entering the active list. */
1334 1335 1336
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1337
	}
1338

1339
	/* Move from whatever list we were on to the tail of execution. */
1340 1341
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1342

1343
	obj->last_rendering_seqno = seqno;
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	if (obj->fenced_gpu_access) {
		struct drm_i915_fence_reg *reg;

		BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);

		obj->last_fenced_seqno = seqno;
		obj->last_fenced_ring = ring;

		reg = &dev_priv->fence_regs[obj->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1362 1363
}

1364
static void
1365
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1366
{
1367
	struct drm_device *dev = obj->base.dev;
1368 1369
	drm_i915_private_t *dev_priv = dev->dev_private;

1370 1371
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (obj->pin_count != 0)
		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
	else
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1395
	obj->pending_gpu_write = false;
1396 1397 1398
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1399
}
1400

1401 1402
/* Immediately discard the backing storage */
static void
1403
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1404
{
C
Chris Wilson 已提交
1405
	struct inode *inode;
1406

1407 1408 1409
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
1410
	 * backing pages, *now*.
1411
	 */
1412
	inode = obj->base.filp->f_path.dentry->d_inode;
1413
	shmem_truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1414

1415 1416 1417
	if (obj->base.map_list.map)
		drm_gem_free_mmap_offset(&obj->base);

1418
	obj->madv = __I915_MADV_PURGED;
1419 1420 1421
}

static inline int
1422
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1423
{
1424
	return obj->madv == I915_MADV_DONTNEED;
1425 1426
}

1427
static void
C
Chris Wilson 已提交
1428 1429
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1430
{
1431
	struct drm_i915_gem_object *obj, *next;
1432

1433
	list_for_each_entry_safe(obj, next,
1434
				 &ring->gpu_write_list,
1435
				 gpu_write_list) {
1436 1437
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1438

1439 1440
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1441
			i915_gem_object_move_to_active(obj, ring,
C
Chris Wilson 已提交
1442
						       i915_gem_next_request_seqno(ring));
1443 1444

			trace_i915_gem_object_change_domain(obj,
1445
							    obj->base.read_domains,
1446 1447 1448 1449
							    old_write_domain);
		}
	}
}
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
	if (ring->outstanding_lazy_request == 0)
		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);

	return ring->outstanding_lazy_request;
}

1473
int
C
Chris Wilson 已提交
1474
i915_add_request(struct intel_ring_buffer *ring,
1475
		 struct drm_file *file,
C
Chris Wilson 已提交
1476
		 struct drm_i915_gem_request *request)
1477
{
C
Chris Wilson 已提交
1478
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1479
	uint32_t seqno;
1480
	u32 request_ring_position;
1481
	int was_empty;
1482 1483 1484
	int ret;

	BUG_ON(request == NULL);
1485
	seqno = i915_gem_next_request_seqno(ring);
1486

1487 1488 1489 1490 1491 1492 1493
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

1494 1495 1496
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1497

C
Chris Wilson 已提交
1498
	trace_i915_gem_request_add(ring, seqno);
1499 1500

	request->seqno = seqno;
1501
	request->ring = ring;
1502
	request->tail = request_ring_position;
1503
	request->emitted_jiffies = jiffies;
1504 1505 1506
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

C
Chris Wilson 已提交
1507 1508 1509
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1510
		spin_lock(&file_priv->mm.lock);
1511
		request->file_priv = file_priv;
1512
		list_add_tail(&request->client_list,
1513
			      &file_priv->mm.request_list);
1514
		spin_unlock(&file_priv->mm.lock);
1515
	}
1516

1517
	ring->outstanding_lazy_request = 0;
C
Chris Wilson 已提交
1518

B
Ben Gamari 已提交
1519
	if (!dev_priv->mm.suspended) {
1520 1521 1522 1523 1524
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
B
Ben Gamari 已提交
1525
		if (was_empty)
1526 1527
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1528
	}
1529
	return 0;
1530 1531
}

1532 1533
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1534
{
1535
	struct drm_i915_file_private *file_priv = request->file_priv;
1536

1537 1538
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1539

1540
	spin_lock(&file_priv->mm.lock);
1541 1542 1543 1544
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1545
	spin_unlock(&file_priv->mm.lock);
1546 1547
}

1548 1549
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1550
{
1551 1552
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1553

1554 1555 1556
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1557

1558
		list_del(&request->list);
1559
		i915_gem_request_remove_from_client(request);
1560 1561
		kfree(request);
	}
1562

1563
	while (!list_empty(&ring->active_list)) {
1564
		struct drm_i915_gem_object *obj;
1565

1566 1567 1568
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1569

1570 1571 1572
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1573 1574 1575
	}
}

1576 1577 1578 1579 1580
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

1581
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1582
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1583 1584 1585 1586 1587 1588 1589 1590
		struct drm_i915_gem_object *obj = reg->obj;

		if (!obj)
			continue;

		if (obj->tiling_mode)
			i915_gem_release_mmap(obj);

1591 1592 1593 1594 1595
		reg->obj->fence_reg = I915_FENCE_REG_NONE;
		reg->obj->fenced_gpu_access = false;
		reg->obj->last_fenced_seqno = 0;
		reg->obj->last_fenced_ring = NULL;
		i915_gem_clear_fence_reg(dev, reg);
1596 1597 1598
	}
}

1599
void i915_gem_reset(struct drm_device *dev)
1600
{
1601
	struct drm_i915_private *dev_priv = dev->dev_private;
1602
	struct drm_i915_gem_object *obj;
1603
	int i;
1604

1605 1606
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1607 1608 1609 1610 1611 1612

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1613
		obj = list_first_entry(&dev_priv->mm.flushing_list,
1614 1615
				      struct drm_i915_gem_object,
				      mm_list);
1616

1617 1618 1619
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1620 1621 1622 1623 1624
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1625
	list_for_each_entry(obj,
1626
			    &dev_priv->mm.inactive_list,
1627
			    mm_list)
1628
	{
1629
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1630
	}
1631 1632

	/* The fence registers are invalidated so clear them out */
1633
	i915_gem_reset_fences(dev);
1634 1635 1636 1637 1638
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1639
void
C
Chris Wilson 已提交
1640
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1641 1642
{
	uint32_t seqno;
1643
	int i;
1644

C
Chris Wilson 已提交
1645
	if (list_empty(&ring->request_list))
1646 1647
		return;

C
Chris Wilson 已提交
1648
	WARN_ON(i915_verify_lists(ring->dev));
1649

1650
	seqno = ring->get_seqno(ring);
1651

1652
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1653 1654 1655
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1656
	while (!list_empty(&ring->request_list)) {
1657 1658
		struct drm_i915_gem_request *request;

1659
		request = list_first_entry(&ring->request_list,
1660 1661 1662
					   struct drm_i915_gem_request,
					   list);

1663
		if (!i915_seqno_passed(seqno, request->seqno))
1664 1665
			break;

C
Chris Wilson 已提交
1666
		trace_i915_gem_request_retire(ring, request->seqno);
1667 1668 1669 1670 1671 1672
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
1673 1674

		list_del(&request->list);
1675
		i915_gem_request_remove_from_client(request);
1676 1677
		kfree(request);
	}
1678

1679 1680 1681 1682
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1683
		struct drm_i915_gem_object *obj;
1684

1685
		obj = list_first_entry(&ring->active_list,
1686 1687
				      struct drm_i915_gem_object,
				      ring_list);
1688

1689
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1690
			break;
1691

1692
		if (obj->base.write_domain != 0)
1693 1694 1695
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1696
	}
1697

C
Chris Wilson 已提交
1698 1699
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1700
		ring->irq_put(ring);
C
Chris Wilson 已提交
1701
		ring->trace_irq_seqno = 0;
1702
	}
1703

C
Chris Wilson 已提交
1704
	WARN_ON(i915_verify_lists(ring->dev));
1705 1706
}

1707 1708 1709 1710
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1711
	int i;
1712

1713
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1714
	    struct drm_i915_gem_object *obj, *next;
1715 1716 1717 1718 1719 1720

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
1721
	    list_for_each_entry_safe(obj, next,
1722
				     &dev_priv->mm.deferred_free_list,
1723
				     mm_list)
1724
		    i915_gem_free_object_tail(obj);
1725 1726
	}

1727
	for (i = 0; i < I915_NUM_RINGS; i++)
C
Chris Wilson 已提交
1728
		i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1729 1730
}

1731
static void
1732 1733 1734 1735
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1736 1737
	bool idle;
	int i;
1738 1739 1740 1741 1742

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1743 1744 1745 1746 1747 1748
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1749
	i915_gem_retire_requests(dev);
1750

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct intel_ring_buffer *ring = &dev_priv->ring[i];

		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

C
Chris Wilson 已提交
1762 1763
			ret = i915_gem_flush_ring(ring,
						  0, I915_GEM_GPU_DOMAINS);
1764 1765
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
C
Chris Wilson 已提交
1766
			    i915_add_request(ring, NULL, request))
1767 1768 1769 1770 1771 1772 1773
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1774
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1775

1776 1777 1778
	mutex_unlock(&dev->struct_mutex);
}

C
Chris Wilson 已提交
1779 1780 1781 1782
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1783
int
C
Chris Wilson 已提交
1784
i915_wait_request(struct intel_ring_buffer *ring,
1785 1786
		  uint32_t seqno,
		  bool do_retire)
1787
{
C
Chris Wilson 已提交
1788
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1789
	u32 ier;
1790 1791 1792 1793
	int ret = 0;

	BUG_ON(seqno == 0);

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		return recovery_complete ? -EIO : -EAGAIN;
	}
1806

1807
	if (seqno == ring->outstanding_lazy_request) {
1808 1809 1810 1811
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
1812
			return -ENOMEM;
1813

C
Chris Wilson 已提交
1814
		ret = i915_add_request(ring, NULL, request);
1815 1816 1817 1818 1819 1820
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
1821
	}
1822

1823
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
C
Chris Wilson 已提交
1824
		if (HAS_PCH_SPLIT(ring->dev))
1825 1826 1827
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1828 1829 1830
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
1831 1832
			ring->dev->driver->irq_preinstall(ring->dev);
			ring->dev->driver->irq_postinstall(ring->dev);
1833 1834
		}

C
Chris Wilson 已提交
1835
		trace_i915_gem_request_wait_begin(ring, seqno);
C
Chris Wilson 已提交
1836

1837
		ring->waiting_seqno = seqno;
1838
		if (ring->irq_get(ring)) {
1839
			if (dev_priv->mm.interruptible)
1840 1841 1842 1843 1844 1845 1846 1847 1848
				ret = wait_event_interruptible(ring->irq_queue,
							       i915_seqno_passed(ring->get_seqno(ring), seqno)
							       || atomic_read(&dev_priv->mm.wedged));
			else
				wait_event(ring->irq_queue,
					   i915_seqno_passed(ring->get_seqno(ring), seqno)
					   || atomic_read(&dev_priv->mm.wedged));

			ring->irq_put(ring);
1849 1850 1851
		} else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
							     seqno) ||
					   atomic_read(&dev_priv->mm.wedged), 3000))
1852
			ret = -EBUSY;
1853
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
1854

C
Chris Wilson 已提交
1855
		trace_i915_gem_request_wait_end(ring, seqno);
1856
	}
1857
	if (atomic_read(&dev_priv->mm.wedged))
1858
		ret = -EAGAIN;
1859 1860 1861 1862 1863 1864

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
1865
	if (ret == 0 && do_retire)
C
Chris Wilson 已提交
1866
		i915_gem_retire_requests_ring(ring);
1867 1868 1869 1870 1871 1872 1873 1874

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1875
int
1876
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
1877 1878 1879
{
	int ret;

1880 1881
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1882
	 */
1883
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
1884 1885 1886 1887

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
1888
	if (obj->active) {
1889 1890
		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
					true);
1891
		if (ret)
1892 1893 1894 1895 1896 1897
			return ret;
	}

	return 0;
}

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

1908 1909 1910
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

1922 1923 1924
/**
 * Unbinds an object from the GTT aperture.
 */
1925
int
1926
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
1927
{
1928
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1929 1930
	int ret = 0;

1931
	if (obj->gtt_space == NULL)
1932 1933
		return 0;

1934
	if (obj->pin_count != 0) {
1935 1936 1937 1938
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

1939 1940 1941 1942 1943 1944 1945 1946
	ret = i915_gem_object_finish_gpu(obj);
	if (ret == -ERESTARTSYS)
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

1947
	i915_gem_object_finish_gtt(obj);
1948

1949 1950
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
1951
	 * are flushed when we go to remap it.
1952
	 */
1953 1954
	if (ret == 0)
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1955
	if (ret == -ERESTARTSYS)
1956
		return ret;
1957
	if (ret) {
1958 1959 1960
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
1961
		i915_gem_clflush_object(obj);
1962
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1963
	}
1964

1965
	/* release the fence reg _after_ flushing */
1966 1967 1968
	ret = i915_gem_object_put_fence(obj);
	if (ret == -ERESTARTSYS)
		return ret;
1969

C
Chris Wilson 已提交
1970 1971
	trace_i915_gem_object_unbind(obj);

1972 1973
	if (obj->has_global_gtt_mapping)
		i915_gem_gtt_unbind_object(obj);
1974 1975 1976 1977
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
1978
	i915_gem_gtt_finish_object(obj);
1979

1980
	i915_gem_object_put_pages_gtt(obj);
1981

1982
	list_del_init(&obj->gtt_list);
1983
	list_del_init(&obj->mm_list);
1984
	/* Avoid an unnecessary call to unbind on rebind. */
1985
	obj->map_and_fenceable = true;
1986

1987 1988 1989
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
1990

1991
	if (i915_gem_object_is_purgeable(obj))
1992 1993
		i915_gem_object_truncate(obj);

1994
	return ret;
1995 1996
}

1997
int
C
Chris Wilson 已提交
1998
i915_gem_flush_ring(struct intel_ring_buffer *ring,
1999 2000 2001
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2002 2003
	int ret;

2004 2005 2006
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

C
Chris Wilson 已提交
2007 2008
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2009 2010 2011 2012
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

2013 2014 2015
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		i915_gem_process_flushing_list(ring, flush_domains);

2016
	return 0;
2017 2018
}

2019
static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
2020
{
2021 2022
	int ret;

2023
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2024 2025
		return 0;

2026
	if (!list_empty(&ring->gpu_write_list)) {
C
Chris Wilson 已提交
2027
		ret = i915_gem_flush_ring(ring,
2028
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2029 2030 2031 2032
		if (ret)
			return ret;
	}

2033 2034
	return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
				 do_retire);
2035 2036
}

2037
int i915_gpu_idle(struct drm_device *dev, bool do_retire)
2038 2039
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2040
	int ret, i;
2041 2042

	/* Flush everything onto the inactive list. */
2043
	for (i = 0; i < I915_NUM_RINGS; i++) {
2044
		ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
2045 2046 2047
		if (ret)
			return ret;
	}
2048

2049
	return 0;
2050 2051
}

2052 2053
static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
				       struct intel_ring_buffer *pipelined)
2054
{
2055
	struct drm_device *dev = obj->base.dev;
2056
	drm_i915_private_t *dev_priv = dev->dev_private;
2057 2058
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2059 2060
	uint64_t val;

2061
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2062
			 0xfffff000) << 32;
2063 2064
	val |= obj->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj->stride / 128) - 1) <<
2065 2066
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

2067
	if (obj->tiling_mode == I915_TILING_Y)
2068 2069 2070
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);

	return 0;
2087 2088
}

2089 2090
static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2091
{
2092
	struct drm_device *dev = obj->base.dev;
2093
	drm_i915_private_t *dev_priv = dev->dev_private;
2094 2095
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2096 2097
	uint64_t val;

2098
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2099
		    0xfffff000) << 32;
2100 2101 2102
	val |= obj->gtt_offset & 0xfffff000;
	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj->tiling_mode == I915_TILING_Y)
2103 2104 2105
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);

	return 0;
2122 2123
}

2124 2125
static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2126
{
2127
	struct drm_device *dev = obj->base.dev;
2128
	drm_i915_private_t *dev_priv = dev->dev_private;
2129
	u32 size = obj->gtt_space->size;
2130
	u32 fence_reg, val, pitch_val;
2131
	int tile_width;
2132

2133 2134 2135 2136 2137 2138
	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		 obj->gtt_offset, obj->map_and_fenceable, size))
		return -EINVAL;
2139

2140
	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2141
		tile_width = 128;
2142
	else
2143 2144 2145
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
2146
	pitch_val = obj->stride / tile_width;
2147
	pitch_val = ffs(pitch_val) - 1;
2148

2149 2150
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2151
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2152
	val |= I915_FENCE_SIZE_BITS(size);
2153 2154 2155
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2156
	fence_reg = obj->fence_reg;
2157 2158
	if (fence_reg < 8)
		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2159
	else
2160
		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, fence_reg);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(fence_reg, val);

	return 0;
2176 2177
}

2178 2179
static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2180
{
2181
	struct drm_device *dev = obj->base.dev;
2182
	drm_i915_private_t *dev_priv = dev->dev_private;
2183 2184
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2185 2186 2187
	uint32_t val;
	uint32_t pitch_val;

2188 2189 2190 2191 2192 2193
	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		 obj->gtt_offset, size))
		return -EINVAL;
2194

2195
	pitch_val = obj->stride / 128;
2196 2197
	pitch_val = ffs(pitch_val) - 1;

2198 2199
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2200
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2201
	val |= I830_FENCE_SIZE_BITS(size);
2202 2203 2204
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);

	return 0;
2219 2220
}

2221 2222 2223 2224 2225 2226 2227
static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
{
	return i915_seqno_passed(ring->get_seqno(ring), seqno);
}

static int
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2228
			    struct intel_ring_buffer *pipelined)
2229 2230 2231 2232
{
	int ret;

	if (obj->fenced_gpu_access) {
2233
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
2234
			ret = i915_gem_flush_ring(obj->last_fenced_ring,
2235 2236 2237 2238
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2239 2240 2241 2242 2243 2244 2245

		obj->fenced_gpu_access = false;
	}

	if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
		if (!ring_passed_seqno(obj->last_fenced_ring,
				       obj->last_fenced_seqno)) {
C
Chris Wilson 已提交
2246
			ret = i915_wait_request(obj->last_fenced_ring,
2247 2248
						obj->last_fenced_seqno,
						true);
2249 2250 2251 2252 2253 2254 2255 2256
			if (ret)
				return ret;
		}

		obj->last_fenced_seqno = 0;
		obj->last_fenced_ring = NULL;
	}

2257 2258 2259 2260 2261 2262
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

2274
	ret = i915_gem_object_flush_fence(obj, NULL);
2275 2276 2277 2278 2279
	if (ret)
		return ret;

	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2280 2281

		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
		i915_gem_clear_fence_reg(obj->base.dev,
					 &dev_priv->fence_regs[obj->fence_reg]);

		obj->fence_reg = I915_FENCE_REG_NONE;
	}

	return 0;
}

static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev,
		    struct intel_ring_buffer *pipelined)
2294 2295
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2296 2297
	struct drm_i915_fence_reg *reg, *first, *avail;
	int i;
2298 2299

	/* First try to find a free reg */
2300
	avail = NULL;
2301 2302 2303
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2304
			return reg;
2305

2306
		if (!reg->pin_count)
2307
			avail = reg;
2308 2309
	}

2310 2311
	if (avail == NULL)
		return NULL;
2312 2313

	/* None available, try to steal one or wait for a user to finish */
2314 2315
	avail = first = NULL;
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2316
		if (reg->pin_count)
2317 2318
			continue;

2319 2320 2321 2322 2323 2324 2325 2326 2327
		if (first == NULL)
			first = reg;

		if (!pipelined ||
		    !reg->obj->last_fenced_ring ||
		    reg->obj->last_fenced_ring == pipelined) {
			avail = reg;
			break;
		}
2328 2329
	}

2330 2331
	if (avail == NULL)
		avail = first;
2332

2333
	return avail;
2334 2335
}

2336
/**
2337
 * i915_gem_object_get_fence - set up a fence reg for an object
2338
 * @obj: object to map through a fence reg
2339 2340
 * @pipelined: ring on which to queue the change, or NULL for CPU access
 * @interruptible: must we wait uninterruptibly for the register to retire?
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2351
int
2352
i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2353
			  struct intel_ring_buffer *pipelined)
2354
{
2355
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2356
	struct drm_i915_private *dev_priv = dev->dev_private;
2357
	struct drm_i915_fence_reg *reg;
2358
	int ret;
2359

2360 2361 2362
	/* XXX disable pipelining. There are bugs. Shocking. */
	pipelined = NULL;

2363
	/* Just update our place in the LRU if our fence is getting reused. */
2364 2365
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2366
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2367

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
		if (obj->tiling_changed) {
			ret = i915_gem_object_flush_fence(obj, pipelined);
			if (ret)
				return ret;

			if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
				pipelined = NULL;

			if (pipelined) {
				reg->setup_seqno =
					i915_gem_next_request_seqno(pipelined);
				obj->last_fenced_seqno = reg->setup_seqno;
				obj->last_fenced_ring = pipelined;
			}

			goto update;
		}
2385 2386 2387 2388 2389

		if (!pipelined) {
			if (reg->setup_seqno) {
				if (!ring_passed_seqno(obj->last_fenced_ring,
						       reg->setup_seqno)) {
C
Chris Wilson 已提交
2390
					ret = i915_wait_request(obj->last_fenced_ring,
2391 2392
								reg->setup_seqno,
								true);
2393 2394 2395 2396 2397 2398 2399 2400
					if (ret)
						return ret;
				}

				reg->setup_seqno = 0;
			}
		} else if (obj->last_fenced_ring &&
			   obj->last_fenced_ring != pipelined) {
2401
			ret = i915_gem_object_flush_fence(obj, pipelined);
2402 2403 2404 2405
			if (ret)
				return ret;
		}

2406 2407 2408
		return 0;
	}

2409 2410
	reg = i915_find_fence_reg(dev, pipelined);
	if (reg == NULL)
2411
		return -EDEADLK;
2412

2413
	ret = i915_gem_object_flush_fence(obj, pipelined);
2414
	if (ret)
2415
		return ret;
2416

2417 2418 2419 2420 2421 2422 2423 2424
	if (reg->obj) {
		struct drm_i915_gem_object *old = reg->obj;

		drm_gem_object_reference(&old->base);

		if (old->tiling_mode)
			i915_gem_release_mmap(old);

2425
		ret = i915_gem_object_flush_fence(old, pipelined);
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
		if (ret) {
			drm_gem_object_unreference(&old->base);
			return ret;
		}

		if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
			pipelined = NULL;

		old->fence_reg = I915_FENCE_REG_NONE;
		old->last_fenced_ring = pipelined;
		old->last_fenced_seqno =
C
Chris Wilson 已提交
2437
			pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2438 2439 2440 2441

		drm_gem_object_unreference(&old->base);
	} else if (obj->last_fenced_seqno == 0)
		pipelined = NULL;
2442

2443
	reg->obj = obj;
2444 2445 2446
	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	obj->fence_reg = reg - dev_priv->fence_regs;
	obj->last_fenced_ring = pipelined;
2447

2448
	reg->setup_seqno =
C
Chris Wilson 已提交
2449
		pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2450 2451 2452 2453
	obj->last_fenced_seqno = reg->setup_seqno;

update:
	obj->tiling_changed = false;
2454
	switch (INTEL_INFO(dev)->gen) {
2455
	case 7:
2456
	case 6:
2457
		ret = sandybridge_write_fence_reg(obj, pipelined);
2458 2459 2460
		break;
	case 5:
	case 4:
2461
		ret = i965_write_fence_reg(obj, pipelined);
2462 2463
		break;
	case 3:
2464
		ret = i915_write_fence_reg(obj, pipelined);
2465 2466
		break;
	case 2:
2467
		ret = i830_write_fence_reg(obj, pipelined);
2468 2469
		break;
	}
2470

2471
	return ret;
2472 2473 2474 2475 2476 2477 2478
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
2479
 * data structures in dev_priv and obj.
2480 2481
 */
static void
2482 2483
i915_gem_clear_fence_reg(struct drm_device *dev,
			 struct drm_i915_fence_reg *reg)
2484
{
J
Jesse Barnes 已提交
2485
	drm_i915_private_t *dev_priv = dev->dev_private;
2486
	uint32_t fence_reg = reg - dev_priv->fence_regs;
2487

2488
	switch (INTEL_INFO(dev)->gen) {
2489
	case 7:
2490
	case 6:
2491
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2492 2493 2494
		break;
	case 5:
	case 4:
2495
		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2496 2497
		break;
	case 3:
2498 2499
		if (fence_reg >= 8)
			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2500
		else
2501
	case 2:
2502
			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2503 2504

		I915_WRITE(fence_reg, 0);
2505
		break;
2506
	}
2507

2508
	list_del_init(&reg->lru_list);
2509 2510
	reg->obj = NULL;
	reg->setup_seqno = 0;
2511
	reg->pin_count = 0;
2512 2513
}

2514 2515 2516 2517
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2518
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2519
			    unsigned alignment,
2520
			    bool map_and_fenceable)
2521
{
2522
	struct drm_device *dev = obj->base.dev;
2523 2524
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2525
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2526
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2527
	bool mappable, fenceable;
2528
	int ret;
2529

2530
	if (obj->madv != I915_MADV_WILLNEED) {
2531 2532 2533 2534
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2545

2546
	if (alignment == 0)
2547 2548
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2549
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2550 2551 2552 2553
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2554
	size = map_and_fenceable ? fence_size : obj->base.size;
2555

2556 2557 2558
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2559
	if (obj->base.size >
2560
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2561 2562 2563 2564
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2565
 search_free:
2566
	if (map_and_fenceable)
2567 2568
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2569
						    size, alignment, 0,
2570 2571 2572 2573
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2574
						size, alignment, 0);
2575 2576

	if (free_space != NULL) {
2577
		if (map_and_fenceable)
2578
			obj->gtt_space =
2579
				drm_mm_get_block_range_generic(free_space,
2580
							       size, alignment, 0,
2581 2582 2583
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2584
			obj->gtt_space =
2585
				drm_mm_get_block(free_space, size, alignment);
2586
	}
2587
	if (obj->gtt_space == NULL) {
2588 2589 2590
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2591 2592
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2593
		if (ret)
2594
			return ret;
2595

2596 2597 2598
		goto search_free;
	}

2599
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2600
	if (ret) {
2601 2602
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2603 2604

		if (ret == -ENOMEM) {
2605 2606
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2607 2608
			if (ret) {
				/* now try to shrink everyone else */
2609 2610 2611
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2612 2613
				}

2614
				return -ENOMEM;
2615 2616 2617 2618 2619
			}

			goto search_free;
		}

2620 2621 2622
		return ret;
	}

2623
	ret = i915_gem_gtt_prepare_object(obj);
2624
	if (ret) {
2625
		i915_gem_object_put_pages_gtt(obj);
2626 2627
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2628

2629
		if (i915_gem_evict_everything(dev, false))
2630 2631 2632
			return ret;

		goto search_free;
2633
	}
2634 2635 2636

	if (!dev_priv->mm.aliasing_ppgtt)
		i915_gem_gtt_bind_object(obj, obj->cache_level);
2637

2638
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2639
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2640

2641 2642 2643 2644
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2645 2646
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2647

2648
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2649

2650
	fenceable =
2651
		obj->gtt_space->size == fence_size &&
2652
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2653

2654
	mappable =
2655
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2656

2657
	obj->map_and_fenceable = mappable && fenceable;
2658

C
Chris Wilson 已提交
2659
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2660 2661 2662 2663
	return 0;
}

void
2664
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2665 2666 2667 2668 2669
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2670
	if (obj->pages == NULL)
2671 2672
		return;

2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2684
	trace_i915_gem_object_clflush(obj);
2685

2686
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2687 2688
}

2689
/** Flushes any GPU write domain for the object if it's dirty. */
2690
static int
2691
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2692
{
2693
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2694
		return 0;
2695 2696

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2697
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2698 2699 2700 2701
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2702
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2703
{
C
Chris Wilson 已提交
2704 2705
	uint32_t old_write_domain;

2706
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2707 2708
		return;

2709
	/* No actual flushing is required for the GTT write domain.  Writes
2710 2711
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2712 2713 2714 2715
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2716
	 */
2717 2718
	wmb();

2719 2720
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2721 2722

	trace_i915_gem_object_change_domain(obj,
2723
					    obj->base.read_domains,
C
Chris Wilson 已提交
2724
					    old_write_domain);
2725 2726 2727 2728
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2729
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2730
{
C
Chris Wilson 已提交
2731
	uint32_t old_write_domain;
2732

2733
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2734 2735 2736
		return;

	i915_gem_clflush_object(obj);
2737
	intel_gtt_chipset_flush();
2738 2739
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2740 2741

	trace_i915_gem_object_change_domain(obj,
2742
					    obj->base.read_domains,
C
Chris Wilson 已提交
2743
					    old_write_domain);
2744 2745
}

2746 2747 2748 2749 2750 2751
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2752
int
2753
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2754
{
C
Chris Wilson 已提交
2755
	uint32_t old_write_domain, old_read_domains;
2756
	int ret;
2757

2758
	/* Not valid to be called on unbound objects. */
2759
	if (obj->gtt_space == NULL)
2760 2761
		return -EINVAL;

2762 2763 2764
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2765 2766 2767 2768
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2769
	if (obj->pending_gpu_write || write) {
2770
		ret = i915_gem_object_wait_rendering(obj);
2771 2772 2773
		if (ret)
			return ret;
	}
2774

2775
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2776

2777 2778
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2779

2780 2781 2782
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2783 2784
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2785
	if (write) {
2786 2787 2788
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2789 2790
	}

C
Chris Wilson 已提交
2791 2792 2793 2794
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2795 2796 2797
	return 0;
}

2798 2799 2800
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
2801 2802
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
		if (INTEL_INFO(obj->base.dev)->gen < 6) {
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

2830 2831
		if (obj->has_global_gtt_mapping)
			i915_gem_gtt_bind_object(obj, cache_level);
2832 2833 2834
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
	return 0;
}

2864
/*
2865 2866 2867 2868 2869 2870 2871 2872
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
 *
 * For the display plane, we want to be in the GTT but out of any write
 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
 * ability to pipeline the waits, pinning and any additional subtleties
 * that may differentiate the display plane from ordinary buffers.
2873 2874
 */
int
2875 2876
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
2877
				     struct intel_ring_buffer *pipelined)
2878
{
2879
	u32 old_read_domains, old_write_domain;
2880 2881
	int ret;

2882 2883 2884 2885
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2886
	if (pipelined != obj->ring) {
2887
		ret = i915_gem_object_wait_rendering(obj);
2888
		if (ret == -ERESTARTSYS)
2889 2890 2891
			return ret;
	}

2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

2905 2906 2907 2908 2909 2910 2911 2912
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

2913 2914
	i915_gem_object_flush_cpu_write_domain(obj);

2915
	old_write_domain = obj->base.write_domain;
2916
	old_read_domains = obj->base.read_domains;
2917 2918 2919 2920 2921

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2922
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2923 2924 2925

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2926
					    old_write_domain);
2927 2928 2929 2930

	return 0;
}

2931
int
2932
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
2933
{
2934 2935
	int ret;

2936
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
2937 2938
		return 0;

2939
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
2940
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2941 2942 2943
		if (ret)
			return ret;
	}
2944

2945 2946 2947 2948
	ret = i915_gem_object_wait_rendering(obj);
	if (ret)
		return ret;

2949 2950
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2951
	return 0;
2952 2953
}

2954 2955 2956 2957 2958 2959
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
2960
int
2961
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2962
{
C
Chris Wilson 已提交
2963
	uint32_t old_write_domain, old_read_domains;
2964 2965
	int ret;

2966 2967 2968
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

2969 2970 2971 2972
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2973
	ret = i915_gem_object_wait_rendering(obj);
2974
	if (ret)
2975
		return ret;
2976

2977
	i915_gem_object_flush_gtt_write_domain(obj);
2978

2979 2980
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2981
	 */
2982
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2983

2984 2985
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2986

2987
	/* Flush the CPU cache if it's still invalid. */
2988
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2989 2990
		i915_gem_clflush_object(obj);

2991
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2992 2993 2994 2995 2996
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2997
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2998 2999 3000 3001 3002

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3003 3004
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3005
	}
3006

C
Chris Wilson 已提交
3007 3008 3009 3010
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3011 3012 3013
	return 0;
}

3014
/**
3015
 * Moves the object from a partially CPU read to a full one.
3016
 *
3017 3018
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3019
 */
3020
static void
3021
i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3022
{
3023
	if (!obj->page_cpu_valid)
3024 3025 3026 3027
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
3028
	if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3029 3030
		int i;

3031 3032
		for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
			if (obj->page_cpu_valid[i])
3033
				continue;
3034
			drm_clflush_pages(obj->pages + i, 1);
3035 3036 3037 3038 3039 3040
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3041 3042
	kfree(obj->page_cpu_valid);
	obj->page_cpu_valid = NULL;
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3058
i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3059 3060
					  uint64_t offset, uint64_t size)
{
C
Chris Wilson 已提交
3061
	uint32_t old_read_domains;
3062
	int i, ret;
3063

3064
	if (offset == 0 && size == obj->base.size)
3065
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3066

3067 3068 3069 3070
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3071
	ret = i915_gem_object_wait_rendering(obj);
3072
	if (ret)
3073
		return ret;
3074

3075 3076 3077
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
3078 3079
	if (obj->page_cpu_valid == NULL &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3080
		return 0;
3081

3082 3083 3084
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3085 3086 3087 3088
	if (obj->page_cpu_valid == NULL) {
		obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
					      GFP_KERNEL);
		if (obj->page_cpu_valid == NULL)
3089
			return -ENOMEM;
3090 3091
	} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3092 3093 3094 3095

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3096 3097
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3098
		if (obj->page_cpu_valid[i])
3099 3100
			continue;

3101
		drm_clflush_pages(obj->pages + i, 1);
3102

3103
		obj->page_cpu_valid[i] = 1;
3104 3105
	}

3106 3107 3108
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3109
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3110

3111 3112
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3113

C
Chris Wilson 已提交
3114 3115
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3116
					    obj->base.write_domain);
C
Chris Wilson 已提交
3117

3118 3119 3120 3121 3122 3123
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3124 3125 3126 3127
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3128 3129 3130
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3131
static int
3132
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3133
{
3134 3135
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3136
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3137 3138 3139 3140
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3141

3142 3143 3144
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3145
	spin_lock(&file_priv->mm.lock);
3146
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3147 3148
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3149

3150 3151
		ring = request->ring;
		seqno = request->seqno;
3152
	}
3153
	spin_unlock(&file_priv->mm.lock);
3154

3155 3156
	if (seqno == 0)
		return 0;
3157

3158
	ret = 0;
3159
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3160 3161 3162 3163 3164
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3165 3166 3167 3168 3169
		if (ring->irq_get(ring)) {
			ret = wait_event_interruptible(ring->irq_queue,
						       i915_seqno_passed(ring->get_seqno(ring), seqno)
						       || atomic_read(&dev_priv->mm.wedged));
			ring->irq_put(ring);
3170

3171 3172
			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
				ret = -EIO;
3173 3174
		} else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
							     seqno) ||
3175 3176
				    atomic_read(&dev_priv->mm.wedged), 3000)) {
			ret = -EBUSY;
3177
		}
3178 3179
	}

3180 3181
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3182 3183 3184 3185

	return ret;
}

3186
int
3187 3188
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3189
		    bool map_and_fenceable)
3190
{
3191
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
3192
	struct drm_i915_private *dev_priv = dev->dev_private;
3193 3194
	int ret;

3195
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3196
	WARN_ON(i915_verify_lists(dev));
3197

3198 3199 3200 3201
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3202
			     "bo is already pinned with incorrect alignment:"
3203 3204
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3205
			     obj->gtt_offset, alignment,
3206
			     map_and_fenceable,
3207
			     obj->map_and_fenceable);
3208 3209 3210 3211 3212 3213
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3214
	if (obj->gtt_space == NULL) {
3215
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3216
						  map_and_fenceable);
3217
		if (ret)
3218
			return ret;
3219
	}
J
Jesse Barnes 已提交
3220

3221 3222 3223
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

3224 3225 3226
	if (obj->pin_count++ == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
C
Chris Wilson 已提交
3227
				       &dev_priv->mm.pinned_list);
3228
	}
3229
	obj->pin_mappable |= map_and_fenceable;
3230

3231
	WARN_ON(i915_verify_lists(dev));
3232 3233 3234 3235
	return 0;
}

void
3236
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3237
{
3238
	struct drm_device *dev = obj->base.dev;
3239 3240
	drm_i915_private_t *dev_priv = dev->dev_private;

3241
	WARN_ON(i915_verify_lists(dev));
3242 3243
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3244

3245 3246 3247
	if (--obj->pin_count == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
3248
				       &dev_priv->mm.inactive_list);
3249
		obj->pin_mappable = false;
3250
	}
3251
	WARN_ON(i915_verify_lists(dev));
3252 3253 3254 3255
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3256
		   struct drm_file *file)
3257 3258
{
	struct drm_i915_gem_pin *args = data;
3259
	struct drm_i915_gem_object *obj;
3260 3261
	int ret;

3262 3263 3264
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3265

3266
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3267
	if (&obj->base == NULL) {
3268 3269
		ret = -ENOENT;
		goto unlock;
3270 3271
	}

3272
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3273
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3274 3275
		ret = -EINVAL;
		goto out;
3276 3277
	}

3278
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3279 3280
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3281 3282
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3283 3284
	}

3285 3286 3287
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3288
		ret = i915_gem_object_pin(obj, args->alignment, true);
3289 3290
		if (ret)
			goto out;
3291 3292 3293 3294 3295
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3296
	i915_gem_object_flush_cpu_write_domain(obj);
3297
	args->offset = obj->gtt_offset;
3298
out:
3299
	drm_gem_object_unreference(&obj->base);
3300
unlock:
3301
	mutex_unlock(&dev->struct_mutex);
3302
	return ret;
3303 3304 3305 3306
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3307
		     struct drm_file *file)
3308 3309
{
	struct drm_i915_gem_pin *args = data;
3310
	struct drm_i915_gem_object *obj;
3311
	int ret;
3312

3313 3314 3315
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3316

3317
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3318
	if (&obj->base == NULL) {
3319 3320
		ret = -ENOENT;
		goto unlock;
3321
	}
3322

3323
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3324 3325
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3326 3327
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3328
	}
3329 3330 3331
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3332 3333
		i915_gem_object_unpin(obj);
	}
3334

3335
out:
3336
	drm_gem_object_unreference(&obj->base);
3337
unlock:
3338
	mutex_unlock(&dev->struct_mutex);
3339
	return ret;
3340 3341 3342 3343
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3344
		    struct drm_file *file)
3345 3346
{
	struct drm_i915_gem_busy *args = data;
3347
	struct drm_i915_gem_object *obj;
3348 3349
	int ret;

3350
	ret = i915_mutex_lock_interruptible(dev);
3351
	if (ret)
3352
		return ret;
3353

3354
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3355
	if (&obj->base == NULL) {
3356 3357
		ret = -ENOENT;
		goto unlock;
3358
	}
3359

3360 3361 3362 3363
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3364
	 */
3365
	args->busy = obj->active;
3366 3367 3368 3369 3370 3371
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3372
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3373
			ret = i915_gem_flush_ring(obj->ring,
3374
						  0, obj->base.write_domain);
3375 3376 3377 3378
		} else if (obj->ring->outstanding_lazy_request ==
			   obj->last_rendering_seqno) {
			struct drm_i915_gem_request *request;

3379 3380 3381
			/* This ring is not being cleared by active usage,
			 * so emit a request to do so.
			 */
3382
			request = kzalloc(sizeof(*request), GFP_KERNEL);
3383
			if (request) {
3384
				ret = i915_add_request(obj->ring, NULL, request);
3385 3386 3387
				if (ret)
					kfree(request);
			} else
3388 3389
				ret = -ENOMEM;
		}
3390 3391 3392 3393 3394 3395

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
C
Chris Wilson 已提交
3396
		i915_gem_retire_requests_ring(obj->ring);
3397

3398
		args->busy = obj->active;
3399
	}
3400

3401
	drm_gem_object_unreference(&obj->base);
3402
unlock:
3403
	mutex_unlock(&dev->struct_mutex);
3404
	return ret;
3405 3406 3407 3408 3409 3410
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3411
	return i915_gem_ring_throttle(dev, file_priv);
3412 3413
}

3414 3415 3416 3417 3418
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3419
	struct drm_i915_gem_object *obj;
3420
	int ret;
3421 3422 3423 3424 3425 3426 3427 3428 3429

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3430 3431 3432 3433
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3434
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3435
	if (&obj->base == NULL) {
3436 3437
		ret = -ENOENT;
		goto unlock;
3438 3439
	}

3440
	if (obj->pin_count) {
3441 3442
		ret = -EINVAL;
		goto out;
3443 3444
	}

3445 3446
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3447

3448
	/* if the object is no longer bound, discard its backing storage */
3449 3450
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3451 3452
		i915_gem_object_truncate(obj);

3453
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3454

3455
out:
3456
	drm_gem_object_unreference(&obj->base);
3457
unlock:
3458
	mutex_unlock(&dev->struct_mutex);
3459
	return ret;
3460 3461
}

3462 3463
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3464
{
3465
	struct drm_i915_private *dev_priv = dev->dev_private;
3466
	struct drm_i915_gem_object *obj;
3467
	struct address_space *mapping;
3468

3469 3470 3471
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3472

3473 3474 3475 3476
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3477

3478 3479 3480
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
	mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);

3481 3482
	i915_gem_info_add_obj(dev_priv, size);

3483 3484
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3485

3486 3487
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3503
	obj->base.driver_private = NULL;
3504
	obj->fence_reg = I915_FENCE_REG_NONE;
3505
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3506
	INIT_LIST_HEAD(&obj->gtt_list);
3507
	INIT_LIST_HEAD(&obj->ring_list);
3508
	INIT_LIST_HEAD(&obj->exec_list);
3509 3510
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3511 3512
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3513

3514
	return obj;
3515 3516 3517 3518 3519
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3520

3521 3522 3523
	return 0;
}

3524
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3525
{
3526
	struct drm_device *dev = obj->base.dev;
3527 3528
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3529

3530 3531
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
3532
		list_move(&obj->mm_list,
3533 3534 3535
			  &dev_priv->mm.deferred_free_list);
		return;
	}
3536

3537 3538
	trace_i915_gem_object_destroy(obj);

3539
	if (obj->base.map_list.map)
3540
		drm_gem_free_mmap_offset(&obj->base);
3541

3542 3543
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3544

3545 3546 3547
	kfree(obj->page_cpu_valid);
	kfree(obj->bit_17);
	kfree(obj);
3548 3549
}

3550
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3551
{
3552 3553
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
	struct drm_device *dev = obj->base.dev;
3554

3555
	while (obj->pin_count > 0)
3556 3557
		i915_gem_object_unpin(obj);

3558
	if (obj->phys_obj)
3559 3560 3561 3562 3563
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

3564 3565 3566 3567 3568
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3569

3570
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3571

3572
	if (dev_priv->mm.suspended) {
3573 3574
		mutex_unlock(&dev->struct_mutex);
		return 0;
3575 3576
	}

3577
	ret = i915_gpu_idle(dev, true);
3578 3579
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3580
		return ret;
3581
	}
3582

3583 3584
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3585
		ret = i915_gem_evict_inactive(dev, false);
3586 3587 3588 3589 3590 3591
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

3592 3593
	i915_gem_reset_fences(dev);

3594 3595 3596 3597 3598
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3599
	del_timer_sync(&dev_priv->hangcheck_timer);
3600 3601

	i915_kernel_lost_context(dev);
3602
	i915_gem_cleanup_ringbuffer(dev);
3603

3604 3605
	mutex_unlock(&dev->struct_mutex);

3606 3607 3608
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3609 3610 3611
	return 0;
}

3612 3613 3614 3615
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3616
	if (INTEL_INFO(dev)->gen < 5 ||
3617 3618 3619 3620 3621 3622
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3623 3624 3625
	if (IS_GEN5(dev))
		return;

3626 3627 3628 3629 3630 3631
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
		I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
	else
		I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
}
D
Daniel Vetter 已提交
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668

void i915_gem_init_ppgtt(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t pd_offset;
	struct intel_ring_buffer *ring;
	int i;

	if (!dev_priv->mm.aliasing_ppgtt)
		return;

	pd_offset = dev_priv->mm.aliasing_ppgtt->pd_offset;
	pd_offset /= 64; /* in cachelines, */
	pd_offset <<= 16;

	if (INTEL_INFO(dev)->gen == 6) {
		uint32_t ecochk = I915_READ(GAM_ECOCHK);
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
				       ECOCHK_PPGTT_CACHE64B);
		I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
	} else if (INTEL_INFO(dev)->gen >= 7) {
		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
		/* GFX_MODE is per-ring on gen7+ */
	}

	for (i = 0; i < I915_NUM_RINGS; i++) {
		ring = &dev_priv->ring[i];

		if (INTEL_INFO(dev)->gen >= 7)
			I915_WRITE(RING_MODE_GEN7(ring),
				   GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));

		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
	}
}

3669
int
3670
i915_gem_init_hw(struct drm_device *dev)
3671 3672 3673
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3674

3675 3676
	i915_gem_init_swizzling(dev);

3677
	ret = intel_init_render_ring_buffer(dev);
3678
	if (ret)
3679
		return ret;
3680 3681

	if (HAS_BSD(dev)) {
3682
		ret = intel_init_bsd_ring_buffer(dev);
3683 3684
		if (ret)
			goto cleanup_render_ring;
3685
	}
3686

3687 3688 3689 3690 3691 3692
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3693 3694
	dev_priv->next_seqno = 1;

D
Daniel Vetter 已提交
3695 3696
	i915_gem_init_ppgtt(dev);

3697 3698
	return 0;

3699
cleanup_bsd_ring:
3700
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3701
cleanup_render_ring:
3702
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3703 3704 3705 3706 3707 3708 3709
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3710
	int i;
3711

3712 3713
	for (i = 0; i < I915_NUM_RINGS; i++)
		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3714 3715
}

3716 3717 3718 3719 3720
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3721
	int ret, i;
3722

J
Jesse Barnes 已提交
3723 3724 3725
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3726
	if (atomic_read(&dev_priv->mm.wedged)) {
3727
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3728
		atomic_set(&dev_priv->mm.wedged, 0);
3729 3730 3731
	}

	mutex_lock(&dev->struct_mutex);
3732 3733
	dev_priv->mm.suspended = 0;

3734
	ret = i915_gem_init_hw(dev);
3735 3736
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3737
		return ret;
3738
	}
3739

3740
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3741 3742
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3743 3744 3745 3746
	for (i = 0; i < I915_NUM_RINGS; i++) {
		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
	}
3747
	mutex_unlock(&dev->struct_mutex);
3748

3749 3750 3751
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3752

3753
	return 0;
3754 3755 3756 3757 3758 3759 3760 3761

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3762 3763 3764 3765 3766 3767
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3768 3769 3770
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3771
	drm_irq_uninstall(dev);
3772
	return i915_gem_idle(dev);
3773 3774 3775 3776 3777 3778 3779
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3780 3781 3782
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3783 3784 3785
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3786 3787
}

3788 3789 3790 3791 3792 3793 3794 3795
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3796 3797 3798
void
i915_gem_load(struct drm_device *dev)
{
3799
	int i;
3800 3801
	drm_i915_private_t *dev_priv = dev->dev_private;

3802
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3803 3804
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
3805
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3806
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3807
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
D
Daniel Vetter 已提交
3808
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3809 3810
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3811
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3812
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3813 3814
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3815
	init_completion(&dev_priv->error_completion);
3816

3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

3827 3828
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3829
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3830 3831
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3832

3833
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3834 3835 3836 3837
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3838
	/* Initialize fence registers to zero */
3839 3840
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3841
	}
3842

3843
	i915_gem_detect_bit_6_swizzle(dev);
3844
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3845

3846 3847
	dev_priv->mm.interruptible = true;

3848 3849 3850
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3851
}
3852 3853 3854 3855 3856

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3857 3858
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3859 3860 3861 3862 3863 3864 3865 3866
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3867
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3868 3869 3870 3871 3872
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3873
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3886
	kfree(phys_obj);
3887 3888 3889
	return ret;
}

3890
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3915
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3916 3917 3918 3919
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3920
				 struct drm_i915_gem_object *obj)
3921
{
3922
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3923
	char *vaddr;
3924 3925 3926
	int i;
	int page_count;

3927
	if (!obj->phys_obj)
3928
		return;
3929
	vaddr = obj->phys_obj->handle->vaddr;
3930

3931
	page_count = obj->base.size / PAGE_SIZE;
3932
	for (i = 0; i < page_count; i++) {
3933
		struct page *page = shmem_read_mapping_page(mapping, i);
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
3945
	}
3946
	intel_gtt_chipset_flush();
3947

3948 3949
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
3950 3951 3952 3953
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
3954
			    struct drm_i915_gem_object *obj,
3955 3956
			    int id,
			    int align)
3957
{
3958
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3959 3960 3961 3962 3963 3964 3965 3966
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

3967 3968
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
3969 3970 3971 3972 3973 3974 3975
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
3976
						obj->base.size, align);
3977
		if (ret) {
3978 3979
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
3980
			return ret;
3981 3982 3983 3984
		}
	}

	/* bind to the object */
3985 3986
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
3987

3988
	page_count = obj->base.size / PAGE_SIZE;
3989 3990

	for (i = 0; i < page_count; i++) {
3991 3992 3993
		struct page *page;
		char *dst, *src;

3994
		page = shmem_read_mapping_page(mapping, i);
3995 3996
		if (IS_ERR(page))
			return PTR_ERR(page);
3997

3998
		src = kmap_atomic(page);
3999
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4000
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4001
		kunmap_atomic(src);
4002

4003 4004 4005
		mark_page_accessed(page);
		page_cache_release(page);
	}
4006

4007 4008 4009 4010
	return 0;
}

static int
4011 4012
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4013 4014 4015
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4016
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4017
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4018

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4032

4033
	intel_gtt_chipset_flush();
4034 4035
	return 0;
}
4036

4037
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4038
{
4039
	struct drm_i915_file_private *file_priv = file->driver_priv;
4040 4041 4042 4043 4044

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4045
	spin_lock(&file_priv->mm.lock);
4046 4047 4048 4049 4050 4051 4052 4053 4054
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4055
	spin_unlock(&file_priv->mm.lock);
4056
}
4057

4058 4059 4060 4061 4062 4063 4064
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4065
		      list_empty(&dev_priv->mm.active_list);
4066 4067 4068 4069

	return !lists_empty;
}

4070
static int
4071
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4072
{
4073 4074 4075 4076 4077 4078
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
4079
	int nr_to_scan = sc->nr_to_scan;
4080 4081 4082
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4083
		return 0;
4084 4085 4086

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4087 4088 4089 4090 4091 4092 4093
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4094 4095
	}

4096
rescan:
4097
	/* first scan for clean buffers */
4098
	i915_gem_retire_requests(dev);
4099

4100 4101 4102 4103
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4104 4105
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4106
				break;
4107 4108 4109 4110
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4111 4112 4113 4114
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4115 4116
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4117
			nr_to_scan--;
4118
		else
4119 4120 4121 4122
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4123 4124 4125 4126 4127 4128
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4129
		if (i915_gpu_idle(dev, true) == 0)
4130 4131
			goto rescan;
	}
4132 4133
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4134
}