i915_gem.c 137.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56 57 58 59 60 61 62
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

63 64 65 66
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
67
	spin_lock(&dev_priv->mm.object_stat_lock);
68 69
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
70
	spin_unlock(&dev_priv->mm.object_stat_lock);
71 72 73 74 75
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
76
	spin_lock(&dev_priv->mm.object_stat_lock);
77 78
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
79
	spin_unlock(&dev_priv->mm.object_stat_lock);
80 81
}

82
static int
83
i915_gem_wait_for_error(struct i915_gpu_error *error)
84 85 86
{
	int ret;

87
	if (!i915_reset_in_progress(error))
88 89
		return 0;

90 91 92 93 94
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
95
	ret = wait_event_interruptible_timeout(error->reset_queue,
96
					       !i915_reset_in_progress(error),
97
					       10*HZ);
98 99 100 101
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
102
		return ret;
103 104
	} else {
		return 0;
105
	}
106 107
}

108
int i915_mutex_lock_interruptible(struct drm_device *dev)
109
{
110
	struct drm_i915_private *dev_priv = dev->dev_private;
111 112
	int ret;

113
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
114 115 116 117 118 119 120
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

121
	WARN_ON(i915_verify_lists(dev));
122 123
	return 0;
}
124

125 126
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
127
			    struct drm_file *file)
128
{
129
	struct drm_i915_private *dev_priv = to_i915(dev);
130
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
131
	struct drm_i915_gem_get_aperture *args = data;
132
	struct i915_vma *vma;
133
	size_t pinned;
134

135
	pinned = 0;
136
	mutex_lock(&dev->struct_mutex);
137
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
138 139
		if (vma->pin_count)
			pinned += vma->node.size;
140
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
141 142
		if (vma->pin_count)
			pinned += vma->node.size;
143
	mutex_unlock(&dev->struct_mutex);
144

145
	args->aper_size = ggtt->base.total;
146
	args->aper_available_size = args->aper_size - pinned;
147

148 149 150
	return 0;
}

151 152
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
153
{
154 155 156 157 158
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

176
		put_page(page);
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
194

195 196 197 198 199 200 201 202 203 204 205 206 207
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
208

209
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
210
	if (WARN_ON(ret)) {
211 212 213 214 215 216 217 218 219 220
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
221
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
222
		char *vaddr = obj->phys_handle->vaddr;
223 224 225
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
226 227 228 229 230 231 232 233 234 235 236 237 238 239
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
240
				mark_page_accessed(page);
241
			put_page(page);
242 243
			vaddr += PAGE_SIZE;
		}
244
		obj->dirty = 0;
245 246
	}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
270
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
271 272 273 274 275 276 277
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
278 279 280 281 282 283 284
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
285
	int ret;
286 287 288 289 290 291 292 293 294 295 296 297 298 299

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

300 301 302 303
	ret = drop_pages(obj);
	if (ret)
		return ret;

304 305 306 307 308 309
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
310 311 312
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
313 314 315 316 317 318 319 320 321 322
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
323
	int ret = 0;
324 325 326 327 328 329 330

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
331

332
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
333 334 335 336 337 338 339 340 341 342
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
343 344 345 346
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
347 348
	}

349
	drm_clflush_virt_range(vaddr, args->size);
350
	i915_gem_chipset_flush(dev);
351 352

out:
353
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
354
	return ret;
355 356
}

357 358 359
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
360
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
361 362 363 364 365
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
366
	kmem_cache_free(dev_priv->objects, obj);
367 368
}

369 370 371 372 373
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
374
{
375
	struct drm_i915_gem_object *obj;
376 377
	int ret;
	u32 handle;
378

379
	size = roundup(size, PAGE_SIZE);
380 381
	if (size == 0)
		return -EINVAL;
382 383

	/* Allocate the new object */
384
	obj = i915_gem_object_create(dev, size);
385 386
	if (IS_ERR(obj))
		return PTR_ERR(obj);
387

388
	ret = drm_gem_handle_create(file, &obj->base, &handle);
389
	/* drop reference from allocate - handle holds it now */
390 391 392
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
393

394
	*handle_p = handle;
395 396 397
	return 0;
}

398 399 400 401 402 403
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
404
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
405 406
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
407
			       args->size, &args->handle);
408 409 410 411 412 413 414 415 416 417
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
418

419
	return i915_gem_create(file, dev,
420
			       args->size, &args->handle);
421 422
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

449
static inline int
450 451
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

475 476 477 478 479 480 481 482 483 484 485 486
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

487
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

511 512 513
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
514
static int
515 516 517 518 519 520 521
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

522
	if (unlikely(page_do_bit17_swizzling))
523 524 525 526 527 528 529 530 531 532 533
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

534
	return ret ? -EFAULT : 0;
535 536
}

537 538 539 540
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
541
	if (unlikely(swizzled)) {
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

559 560 561 562 563 564 565 566 567 568 569 570
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
571 572 573
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
574 575 576 577 578 579 580 581 582 583 584

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

585
	return ret ? - EFAULT : 0;
586 587
}

588
static int
589 590 591 592
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
593
{
594
	char __user *user_data;
595
	ssize_t remain;
596
	loff_t offset;
597
	int shmem_page_offset, page_length, ret = 0;
598
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
599
	int prefaulted = 0;
600
	int needs_clflush = 0;
601
	struct sg_page_iter sg_iter;
602

V
Ville Syrjälä 已提交
603
	user_data = to_user_ptr(args->data_ptr);
604 605
	remain = args->size;

606
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
607

608
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
609 610 611
	if (ret)
		return ret;

612
	offset = args->offset;
613

614 615
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
616
		struct page *page = sg_page_iter_page(&sg_iter);
617 618 619 620

		if (remain <= 0)
			break;

621 622 623 624 625
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
626
		shmem_page_offset = offset_in_page(offset);
627 628 629 630
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

631 632 633
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

634 635 636 637 638
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
639 640 641

		mutex_unlock(&dev->struct_mutex);

642
		if (likely(!i915.prefault_disable) && !prefaulted) {
643
			ret = fault_in_multipages_writeable(user_data, remain);
644 645 646 647 648 649 650
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
651

652 653 654
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
655

656
		mutex_lock(&dev->struct_mutex);
657 658

		if (ret)
659 660
			goto out;

661
next_page:
662
		remain -= page_length;
663
		user_data += page_length;
664 665 666
		offset += page_length;
	}

667
out:
668 669
	i915_gem_object_unpin_pages(obj);

670 671 672
	return ret;
}

673 674 675 676 677 678 679
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
680
		     struct drm_file *file)
681 682
{
	struct drm_i915_gem_pread *args = data;
683
	struct drm_i915_gem_object *obj;
684
	int ret = 0;
685

686 687 688 689
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
690
		       to_user_ptr(args->data_ptr),
691 692 693
		       args->size))
		return -EFAULT;

694
	ret = i915_mutex_lock_interruptible(dev);
695
	if (ret)
696
		return ret;
697

698
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
699
	if (&obj->base == NULL) {
700 701
		ret = -ENOENT;
		goto unlock;
702
	}
703

704
	/* Bounds check source.  */
705 706
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
707
		ret = -EINVAL;
708
		goto out;
C
Chris Wilson 已提交
709 710
	}

711 712 713 714 715 716 717 718
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
719 720
	trace_i915_gem_object_pread(obj, args->offset, args->size);

721
	ret = i915_gem_shmem_pread(dev, obj, args, file);
722

723
out:
724
	drm_gem_object_unreference(&obj->base);
725
unlock:
726
	mutex_unlock(&dev->struct_mutex);
727
	return ret;
728 729
}

730 731
/* This is the fast write path which cannot handle
 * page faults in the source data
732
 */
733 734 735 736 737 738

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
739
{
740 741
	void __iomem *vaddr_atomic;
	void *vaddr;
742
	unsigned long unwritten;
743

P
Peter Zijlstra 已提交
744
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
745 746 747
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
748
						      user_data, length);
P
Peter Zijlstra 已提交
749
	io_mapping_unmap_atomic(vaddr_atomic);
750
	return unwritten;
751 752
}

753 754 755 756
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
757
static int
758 759
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
760
			 struct drm_i915_gem_pwrite *args,
761
			 struct drm_file *file)
762
{
763 764
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
765
	ssize_t remain;
766
	loff_t offset, page_base;
767
	char __user *user_data;
D
Daniel Vetter 已提交
768 769
	int page_offset, page_length, ret;

770
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
771 772 773 774 775 776 777 778 779 780
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
781

V
Ville Syrjälä 已提交
782
	user_data = to_user_ptr(args->data_ptr);
783 784
	remain = args->size;

785
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
786

787
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
788

789 790 791
	while (remain > 0) {
		/* Operation in this page
		 *
792 793 794
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
795
		 */
796 797
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
798 799 800 801 802
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
803 804
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
805
		 */
806
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
807 808
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
809
			goto out_flush;
D
Daniel Vetter 已提交
810
		}
811

812 813 814
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
815 816
	}

817
out_flush:
818
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
819
out_unpin:
B
Ben Widawsky 已提交
820
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
821
out:
822
	return ret;
823 824
}

825 826 827 828
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
829
static int
830 831 832 833 834
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
835
{
836
	char *vaddr;
837
	int ret;
838

839
	if (unlikely(page_do_bit17_swizzling))
840
		return -EINVAL;
841

842 843 844 845
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
846 847
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
848 849 850 851
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
852

853
	return ret ? -EFAULT : 0;
854 855
}

856 857
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
858
static int
859 860 861 862 863
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
864
{
865 866
	char *vaddr;
	int ret;
867

868
	vaddr = kmap(page);
869
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
870 871 872
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
873 874
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
875 876
						user_data,
						page_length);
877 878 879 880 881
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
882 883 884
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
885
	kunmap(page);
886

887
	return ret ? -EFAULT : 0;
888 889 890
}

static int
891 892 893 894
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
895 896
{
	ssize_t remain;
897 898
	loff_t offset;
	char __user *user_data;
899
	int shmem_page_offset, page_length, ret = 0;
900
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
901
	int hit_slowpath = 0;
902 903
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
904
	struct sg_page_iter sg_iter;
905

V
Ville Syrjälä 已提交
906
	user_data = to_user_ptr(args->data_ptr);
907 908
	remain = args->size;

909
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
910

911 912 913 914 915
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
916
		needs_clflush_after = cpu_write_needs_clflush(obj);
917 918 919
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
920
	}
921 922 923 924 925
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
926

927 928 929 930
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

931
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
932

933 934
	i915_gem_object_pin_pages(obj);

935
	offset = args->offset;
936
	obj->dirty = 1;
937

938 939
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
940
		struct page *page = sg_page_iter_page(&sg_iter);
941
		int partial_cacheline_write;
942

943 944 945
		if (remain <= 0)
			break;

946 947 948 949 950
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
951
		shmem_page_offset = offset_in_page(offset);
952 953 954 955 956

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

957 958 959 960 961 962 963
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

964 965 966
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

967 968 969 970 971 972
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
973 974 975

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
976 977 978 979
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
980

981
		mutex_lock(&dev->struct_mutex);
982 983

		if (ret)
984 985
			goto out;

986
next_page:
987
		remain -= page_length;
988
		user_data += page_length;
989
		offset += page_length;
990 991
	}

992
out:
993 994
	i915_gem_object_unpin_pages(obj);

995
	if (hit_slowpath) {
996 997 998 999 1000 1001 1002
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003
			if (i915_gem_clflush_object(obj, obj->pin_display))
1004
				needs_clflush_after = true;
1005
		}
1006
	}
1007

1008
	if (needs_clflush_after)
1009
		i915_gem_chipset_flush(dev);
1010 1011
	else
		obj->cache_dirty = true;
1012

1013
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1014
	return ret;
1015 1016 1017 1018 1019 1020 1021 1022 1023
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1024
		      struct drm_file *file)
1025
{
1026
	struct drm_i915_private *dev_priv = dev->dev_private;
1027
	struct drm_i915_gem_pwrite *args = data;
1028
	struct drm_i915_gem_object *obj;
1029 1030 1031 1032 1033 1034
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1035
		       to_user_ptr(args->data_ptr),
1036 1037 1038
		       args->size))
		return -EFAULT;

1039
	if (likely(!i915.prefault_disable)) {
1040 1041 1042 1043 1044
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1045

1046 1047
	intel_runtime_pm_get(dev_priv);

1048
	ret = i915_mutex_lock_interruptible(dev);
1049
	if (ret)
1050
		goto put_rpm;
1051

1052
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1053
	if (&obj->base == NULL) {
1054 1055
		ret = -ENOENT;
		goto unlock;
1056
	}
1057

1058
	/* Bounds check destination. */
1059 1060
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1061
		ret = -EINVAL;
1062
		goto out;
C
Chris Wilson 已提交
1063 1064
	}

1065 1066 1067 1068 1069 1070 1071 1072
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1073 1074
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1075
	ret = -EFAULT;
1076 1077 1078 1079 1080 1081
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1082 1083 1084
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1085
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1086 1087 1088
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1089
	}
1090

1091 1092 1093 1094 1095 1096
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1097

1098
out:
1099
	drm_gem_object_unreference(&obj->base);
1100
unlock:
1101
	mutex_unlock(&dev->struct_mutex);
1102 1103 1104
put_rpm:
	intel_runtime_pm_put(dev_priv);

1105 1106 1107
	return ret;
}

1108 1109
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1110
{
1111 1112
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1113

1114
	if (__i915_reset_in_progress(reset_counter)) {
1115 1116 1117 1118 1119
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1120
		return -EAGAIN;
1121 1122 1123 1124 1125
	}

	return 0;
}

1126 1127 1128 1129 1130 1131
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1132
		       struct intel_engine_cs *engine)
1133
{
1134
	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1169
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1170
{
1171
	unsigned long timeout;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1183

1184
	if (req->engine->irq_refcount)
1185 1186
		return -EBUSY;

1187 1188 1189 1190
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1191
	timeout = local_clock_us(&cpu) + 5;
1192
	while (!need_resched()) {
D
Daniel Vetter 已提交
1193
		if (i915_gem_request_completed(req, true))
1194 1195
			return 0;

1196 1197 1198
		if (signal_pending_state(state, current))
			break;

1199
		if (busywait_stop(timeout, cpu))
1200
			break;
1201

1202 1203
		cpu_relax_lowlatency();
	}
1204

D
Daniel Vetter 已提交
1205
	if (i915_gem_request_completed(req, false))
1206 1207 1208
		return 0;

	return -EAGAIN;
1209 1210
}

1211
/**
1212 1213
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1214 1215 1216
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1217 1218 1219 1220 1221 1222 1223
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1224
 * Returns 0 if the request was found within the alloted time. Else returns the
1225 1226
 * errno with remaining time filled in timeout argument.
 */
1227
int __i915_wait_request(struct drm_i915_gem_request *req,
1228
			bool interruptible,
1229
			s64 *timeout,
1230
			struct intel_rps_client *rps)
1231
{
1232
	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1233
	struct drm_device *dev = engine->dev;
1234
	struct drm_i915_private *dev_priv = dev->dev_private;
1235
	const bool irq_test_in_progress =
1236
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1237
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1238
	DEFINE_WAIT(wait);
1239
	unsigned long timeout_expire;
1240
	s64 before = 0; /* Only to silence a compiler warning. */
1241 1242
	int ret;

1243
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1244

1245 1246 1247
	if (list_empty(&req->list))
		return 0;

1248
	if (i915_gem_request_completed(req, true))
1249 1250
		return 0;

1251 1252 1253 1254 1255 1256 1257 1258 1259
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1260 1261 1262 1263 1264

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1265
	}
1266

1267
	if (INTEL_INFO(dev_priv)->gen >= 6)
1268
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1269

1270
	trace_i915_gem_request_wait_begin(req);
1271 1272

	/* Optimistic spin for the next jiffie before touching IRQs */
1273
	ret = __i915_spin_request(req, state);
1274 1275 1276
	if (ret == 0)
		goto out;

1277
	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1278 1279 1280 1281
		ret = -ENODEV;
		goto out;
	}

1282 1283
	for (;;) {
		struct timer_list timer;
1284

1285
		prepare_to_wait(&engine->irq_queue, &wait, state);
1286

1287
		/* We need to check whether any gpu reset happened in between
1288 1289 1290 1291 1292 1293
		 * the request being submitted and now. If a reset has occurred,
		 * the request is effectively complete (we either are in the
		 * process of or have discarded the rendering and completely
		 * reset the GPU. The results of the request are lost and we
		 * are free to continue on with the original operation.
		 */
1294
		if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1295
			ret = 0;
1296 1297
			break;
		}
1298

1299
		if (i915_gem_request_completed(req, false)) {
1300 1301 1302
			ret = 0;
			break;
		}
1303

1304
		if (signal_pending_state(state, current)) {
1305 1306 1307 1308
			ret = -ERESTARTSYS;
			break;
		}

1309
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1310 1311 1312 1313 1314
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
1315
		if (timeout || missed_irq(dev_priv, engine)) {
1316 1317
			unsigned long expire;

1318
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1319
			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1320 1321 1322
			mod_timer(&timer, expire);
		}

1323
		io_schedule();
1324 1325 1326 1327 1328 1329

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1330
	if (!irq_test_in_progress)
1331
		engine->irq_put(engine);
1332

1333
	finish_wait(&engine->irq_queue, &wait);
1334

1335 1336 1337
out:
	trace_i915_gem_request_wait_end(req);

1338
	if (timeout) {
1339
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1340 1341

		*timeout = tres < 0 ? 0 : tres;
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1352 1353
	}

1354
	return ret;
1355 1356
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1394 1395 1396

	put_pid(request->pid);
	request->pid = NULL;
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1422
	struct intel_engine_cs *engine = req->engine;
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1440
/**
1441
 * Waits for a request to be signaled, and cleans up the
1442 1443 1444
 * request and object lists appropriately for that event.
 */
int
1445
i915_wait_request(struct drm_i915_gem_request *req)
1446
{
1447
	struct drm_i915_private *dev_priv = req->i915;
1448
	bool interruptible;
1449 1450
	int ret;

1451 1452
	interruptible = dev_priv->mm.interruptible;

1453
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1454

1455
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1456 1457
	if (ret)
		return ret;
1458

1459
	__i915_gem_request_retire__upto(req);
1460 1461 1462
	return 0;
}

1463 1464 1465 1466
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1467
int
1468 1469 1470
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1471
	int ret, i;
1472

1473
	if (!obj->active)
1474 1475
		return 0;

1476 1477 1478 1479 1480
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1481

1482
			i = obj->last_write_req->engine->id;
1483 1484 1485 1486 1487 1488
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1489
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1490 1491 1492 1493 1494 1495 1496 1497 1498
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1499
		GEM_BUG_ON(obj->active);
1500 1501 1502 1503 1504 1505 1506 1507 1508
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1509
	int ring = req->engine->id;
1510 1511 1512 1513 1514 1515 1516

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1517 1518
}

1519 1520 1521 1522 1523
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1524
					    struct intel_rps_client *rps,
1525 1526 1527 1528
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1529
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1530
	int ret, i, n = 0;
1531 1532 1533 1534

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1535
	if (!obj->active)
1536 1537
		return 0;

1538 1539 1540 1541 1542 1543 1544 1545 1546
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1547
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1558
	mutex_unlock(&dev->struct_mutex);
1559
	ret = 0;
1560
	for (i = 0; ret == 0 && i < n; i++)
1561
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1562 1563
	mutex_lock(&dev->struct_mutex);

1564 1565 1566 1567 1568 1569 1570
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1571 1572
}

1573 1574 1575 1576 1577 1578
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1579
/**
1580 1581
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1582 1583 1584
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1585
			  struct drm_file *file)
1586 1587
{
	struct drm_i915_gem_set_domain *args = data;
1588
	struct drm_i915_gem_object *obj;
1589 1590
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1591 1592
	int ret;

1593
	/* Only handle setting domains to types used by the CPU. */
1594
	if (write_domain & I915_GEM_GPU_DOMAINS)
1595 1596
		return -EINVAL;

1597
	if (read_domains & I915_GEM_GPU_DOMAINS)
1598 1599 1600 1601 1602 1603 1604 1605
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1606
	ret = i915_mutex_lock_interruptible(dev);
1607
	if (ret)
1608
		return ret;
1609

1610
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1611
	if (&obj->base == NULL) {
1612 1613
		ret = -ENOENT;
		goto unlock;
1614
	}
1615

1616 1617 1618 1619
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1620
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1621
							  to_rps_client(file),
1622
							  !write_domain);
1623 1624 1625
	if (ret)
		goto unref;

1626
	if (read_domains & I915_GEM_DOMAIN_GTT)
1627
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1628
	else
1629
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1630

1631 1632 1633 1634 1635
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1636
unref:
1637
	drm_gem_object_unreference(&obj->base);
1638
unlock:
1639 1640 1641 1642 1643 1644 1645 1646 1647
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1648
			 struct drm_file *file)
1649 1650
{
	struct drm_i915_gem_sw_finish *args = data;
1651
	struct drm_i915_gem_object *obj;
1652 1653
	int ret = 0;

1654
	ret = i915_mutex_lock_interruptible(dev);
1655
	if (ret)
1656
		return ret;
1657

1658
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1659
	if (&obj->base == NULL) {
1660 1661
		ret = -ENOENT;
		goto unlock;
1662 1663 1664
	}

	/* Pinned buffers may be scanout, so flush the cache */
1665
	if (obj->pin_display)
1666
		i915_gem_object_flush_cpu_write_domain(obj);
1667

1668
	drm_gem_object_unreference(&obj->base);
1669
unlock:
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1690 1691 1692
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1693
		    struct drm_file *file)
1694 1695 1696 1697 1698
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1699 1700 1701 1702 1703 1704
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1705
	obj = drm_gem_object_lookup(dev, file, args->handle);
1706
	if (obj == NULL)
1707
		return -ENOENT;
1708

1709 1710 1711 1712 1713 1714 1715 1716
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1717
	addr = vm_mmap(obj->filp, 0, args->size,
1718 1719
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1733
	drm_gem_object_unreference_unlocked(obj);
1734 1735 1736 1737 1738 1739 1740 1741
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1742 1743
/**
 * i915_gem_fault - fault a page into the GTT
1744 1745
 * @vma: VMA in question
 * @vmf: fault info
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1760 1761
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1762 1763
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1764
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1765 1766 1767
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1768
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1769

1770 1771
	intel_runtime_pm_get(dev_priv);

1772 1773 1774 1775
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1776 1777 1778
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1779

C
Chris Wilson 已提交
1780 1781
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1782 1783 1784 1785 1786 1787 1788 1789 1790
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1791 1792
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1793
		ret = -EFAULT;
1794 1795 1796
		goto unlock;
	}

1797
	/* Use a partial view if the object is bigger than the aperture. */
1798
	if (obj->base.size >= ggtt->mappable_end &&
1799
	    obj->tiling_mode == I915_TILING_NONE) {
1800
		static const unsigned int chunk_size = 256; // 1 MiB
1801

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1814 1815
	if (ret)
		goto unlock;
1816

1817 1818 1819
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1820

1821
	ret = i915_gem_object_get_fence(obj);
1822
	if (ret)
1823
		goto unpin;
1824

1825
	/* Finally, remap it using the new GTT offset */
1826
	pfn = ggtt->mappable_base +
1827
		i915_gem_obj_ggtt_offset_view(obj, &view);
1828
	pfn >>= PAGE_SHIFT;
1829

1830 1831 1832 1833 1834 1835 1836 1837 1838
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1839

1840 1841
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1842 1843 1844 1845 1846
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1868
unpin:
1869
	i915_gem_object_ggtt_unpin_view(obj, &view);
1870
unlock:
1871
	mutex_unlock(&dev->struct_mutex);
1872
out:
1873
	switch (ret) {
1874
	case -EIO:
1875 1876 1877 1878 1879 1880 1881
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1882 1883 1884
			ret = VM_FAULT_SIGBUS;
			break;
		}
1885
	case -EAGAIN:
D
Daniel Vetter 已提交
1886 1887 1888 1889
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1890
		 */
1891 1892
	case 0:
	case -ERESTARTSYS:
1893
	case -EINTR:
1894 1895 1896 1897 1898
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1899 1900
		ret = VM_FAULT_NOPAGE;
		break;
1901
	case -ENOMEM:
1902 1903
		ret = VM_FAULT_OOM;
		break;
1904
	case -ENOSPC:
1905
	case -EFAULT:
1906 1907
		ret = VM_FAULT_SIGBUS;
		break;
1908
	default:
1909
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1910 1911
		ret = VM_FAULT_SIGBUS;
		break;
1912
	}
1913 1914 1915

	intel_runtime_pm_put(dev_priv);
	return ret;
1916 1917
}

1918 1919 1920 1921
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1922
 * Preserve the reservation of the mmapping with the DRM core code, but
1923 1924 1925 1926 1927 1928 1929 1930 1931
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1932
void
1933
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1934
{
1935 1936 1937 1938 1939 1940
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1941 1942
	if (!obj->fault_mappable)
		return;
1943

1944 1945
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1956
	obj->fault_mappable = false;
1957 1958
}

1959 1960 1961 1962 1963 1964 1965 1966 1967
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1968
uint32_t
1969
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1970
{
1971
	uint32_t gtt_size;
1972 1973

	if (INTEL_INFO(dev)->gen >= 4 ||
1974 1975
	    tiling_mode == I915_TILING_NONE)
		return size;
1976 1977 1978

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1979
		gtt_size = 1024*1024;
1980
	else
1981
		gtt_size = 512*1024;
1982

1983 1984
	while (gtt_size < size)
		gtt_size <<= 1;
1985

1986
	return gtt_size;
1987 1988
}

1989 1990 1991 1992 1993
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1994
 * potential fence register mapping.
1995
 */
1996 1997 1998
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1999 2000 2001 2002 2003
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2004
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2005
	    tiling_mode == I915_TILING_NONE)
2006 2007
		return 4096;

2008 2009 2010 2011
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2012
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2013 2014
}

2015 2016 2017 2018 2019
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2020
	if (drm_vma_node_has_offset(&obj->base.vma_node))
2021 2022
		return 0;

2023 2024
	dev_priv->mm.shrinker_no_lock_stealing = true;

2025 2026
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2027
		goto out;
2028 2029 2030 2031 2032 2033 2034 2035

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2036 2037 2038 2039 2040
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2041 2042
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2043
		goto out;
2044 2045

	i915_gem_shrink_all(dev_priv);
2046 2047 2048 2049 2050
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2051 2052 2053 2054 2055 2056 2057
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2058
int
2059 2060
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2061
		  uint32_t handle,
2062
		  uint64_t *offset)
2063
{
2064
	struct drm_i915_gem_object *obj;
2065 2066
	int ret;

2067
	ret = i915_mutex_lock_interruptible(dev);
2068
	if (ret)
2069
		return ret;
2070

2071
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2072
	if (&obj->base == NULL) {
2073 2074 2075
		ret = -ENOENT;
		goto unlock;
	}
2076

2077
	if (obj->madv != I915_MADV_WILLNEED) {
2078
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2079
		ret = -EFAULT;
2080
		goto out;
2081 2082
	}

2083 2084 2085
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2086

2087
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2088

2089
out:
2090
	drm_gem_object_unreference(&obj->base);
2091
unlock:
2092
	mutex_unlock(&dev->struct_mutex);
2093
	return ret;
2094 2095
}

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2117
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2118 2119
}

D
Daniel Vetter 已提交
2120 2121 2122
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2123
{
2124
	i915_gem_object_free_mmap_offset(obj);
2125

2126 2127
	if (obj->base.filp == NULL)
		return;
2128

D
Daniel Vetter 已提交
2129 2130 2131 2132 2133
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2134
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2135 2136
	obj->madv = __I915_MADV_PURGED;
}
2137

2138 2139 2140
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2141
{
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2156 2157
}

2158
static void
2159
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2160
{
2161 2162
	struct sg_page_iter sg_iter;
	int ret;
2163

2164
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2165

C
Chris Wilson 已提交
2166
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2167
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2168 2169 2170
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2171
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2172 2173 2174
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2175 2176
	i915_gem_gtt_finish_object(obj);

2177
	if (i915_gem_object_needs_bit17_swizzle(obj))
2178 2179
		i915_gem_object_save_bit_17_swizzle(obj);

2180 2181
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2182

2183
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2184
		struct page *page = sg_page_iter_page(&sg_iter);
2185

2186
		if (obj->dirty)
2187
			set_page_dirty(page);
2188

2189
		if (obj->madv == I915_MADV_WILLNEED)
2190
			mark_page_accessed(page);
2191

2192
		put_page(page);
2193
	}
2194
	obj->dirty = 0;
2195

2196 2197
	sg_free_table(obj->pages);
	kfree(obj->pages);
2198
}
C
Chris Wilson 已提交
2199

2200
int
2201 2202 2203 2204
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2205
	if (obj->pages == NULL)
2206 2207
		return 0;

2208 2209 2210
	if (obj->pages_pin_count)
		return -EBUSY;

2211
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2212

2213 2214 2215
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2216
	list_del(&obj->global_list);
2217

2218
	if (obj->mapping) {
2219 2220 2221 2222
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2223 2224 2225
		obj->mapping = NULL;
	}

2226
	ops->put_pages(obj);
2227
	obj->pages = NULL;
2228

2229
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2230 2231 2232 2233

	return 0;
}

2234
static int
C
Chris Wilson 已提交
2235
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2236
{
C
Chris Wilson 已提交
2237
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2238 2239
	int page_count, i;
	struct address_space *mapping;
2240 2241
	struct sg_table *st;
	struct scatterlist *sg;
2242
	struct sg_page_iter sg_iter;
2243
	struct page *page;
2244
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2245
	int ret;
C
Chris Wilson 已提交
2246
	gfp_t gfp;
2247

C
Chris Wilson 已提交
2248 2249 2250 2251 2252 2253 2254
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2255 2256 2257 2258
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2259
	page_count = obj->base.size / PAGE_SIZE;
2260 2261
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2262
		return -ENOMEM;
2263
	}
2264

2265 2266 2267 2268 2269
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2270
	mapping = file_inode(obj->base.filp)->i_mapping;
2271
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2272
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2273 2274 2275
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2276 2277
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2278 2279 2280 2281 2282
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2283 2284 2285 2286 2287 2288 2289 2290
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2291
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2292 2293
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2294
				goto err_pages;
I
Imre Deak 已提交
2295
			}
C
Chris Wilson 已提交
2296
		}
2297 2298 2299 2300 2301 2302 2303 2304
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2305 2306 2307 2308 2309 2310 2311 2312 2313
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2314 2315 2316

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2317
	}
2318 2319 2320 2321
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2322 2323
	obj->pages = st;

I
Imre Deak 已提交
2324 2325 2326 2327
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2328
	if (i915_gem_object_needs_bit17_swizzle(obj))
2329 2330
		i915_gem_object_do_bit_17_swizzle(obj);

2331 2332 2333 2334
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2335 2336 2337
	return 0;

err_pages:
2338 2339
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2340
		put_page(sg_page_iter_page(&sg_iter));
2341 2342
	sg_free_table(st);
	kfree(st);
2343 2344 2345 2346 2347 2348 2349 2350 2351

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2352 2353 2354 2355
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2356 2357
}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2372
	if (obj->pages)
2373 2374
		return 0;

2375
	if (obj->madv != I915_MADV_WILLNEED) {
2376
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2377
		return -EFAULT;
2378 2379
	}

2380 2381
	BUG_ON(obj->pages_pin_count);

2382 2383 2384 2385
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2386
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2387 2388 2389 2390

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2391
	return 0;
2392 2393
}

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

	if (obj->mapping == NULL) {
		struct page **pages;

2409 2410 2411 2412 2413 2414 2415
		pages = NULL;
		if (obj->base.size == PAGE_SIZE)
			obj->mapping = kmap(sg_page(obj->pages->sgl));
		else
			pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
					       sizeof(*pages),
					       GFP_TEMPORARY);
2416
		if (pages != NULL) {
2417 2418 2419
			struct sg_page_iter sg_iter;
			int n;

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
			n = 0;
			for_each_sg_page(obj->pages->sgl, &sg_iter,
					 obj->pages->nents, 0)
				pages[n++] = sg_page_iter_page(&sg_iter);

			obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
			drm_free_large(pages);
		}
		if (obj->mapping == NULL) {
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2437
void i915_vma_move_to_active(struct i915_vma *vma,
2438
			     struct drm_i915_gem_request *req)
2439
{
2440
	struct drm_i915_gem_object *obj = vma->obj;
2441
	struct intel_engine_cs *engine;
2442

2443
	engine = i915_gem_request_get_engine(req);
2444 2445

	/* Add a reference if we're newly entering the active list. */
2446
	if (obj->active == 0)
2447
		drm_gem_object_reference(&obj->base);
2448
	obj->active |= intel_engine_flag(engine);
2449

2450
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2451
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2452

2453
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2454 2455
}

2456 2457
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2458
{
2459 2460
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2461 2462

	i915_gem_request_assign(&obj->last_write_req, NULL);
2463
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2464 2465
}

2466
static void
2467
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2468
{
2469
	struct i915_vma *vma;
2470

2471 2472
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2473

2474
	list_del_init(&obj->engine_list[ring]);
2475 2476
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2477
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2478 2479 2480 2481 2482
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2483

2484 2485 2486 2487 2488 2489 2490
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2491 2492 2493
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2494
	}
2495

2496
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2497
	drm_gem_object_unreference(&obj->base);
2498 2499
}

2500
static int
2501
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2502
{
2503
	struct drm_i915_private *dev_priv = dev->dev_private;
2504
	struct intel_engine_cs *engine;
2505
	int ret;
2506

2507
	/* Carefully retire all requests without writing to the rings */
2508
	for_each_engine(engine, dev_priv) {
2509
		ret = intel_engine_idle(engine);
2510 2511
		if (ret)
			return ret;
2512 2513
	}
	i915_gem_retire_requests(dev);
2514 2515

	/* Finally reset hw state */
2516
	for_each_engine(engine, dev_priv)
2517
		intel_ring_init_seqno(engine, seqno);
2518

2519
	return 0;
2520 2521
}

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2548 2549
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2550
{
2551 2552 2553 2554
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2555
		int ret = i915_gem_init_seqno(dev, 0);
2556 2557
		if (ret)
			return ret;
2558

2559 2560
		dev_priv->next_seqno = 1;
	}
2561

2562
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2563
	return 0;
2564 2565
}

2566 2567 2568 2569 2570
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2571
void __i915_add_request(struct drm_i915_gem_request *request,
2572 2573
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2574
{
2575
	struct intel_engine_cs *engine;
2576
	struct drm_i915_private *dev_priv;
2577
	struct intel_ringbuffer *ringbuf;
2578
	u32 request_start;
2579 2580
	int ret;

2581
	if (WARN_ON(request == NULL))
2582
		return;
2583

2584
	engine = request->engine;
2585
	dev_priv = request->i915;
2586 2587
	ringbuf = request->ringbuf;

2588 2589 2590 2591 2592 2593 2594
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	intel_ring_reserved_space_use(ringbuf);

2595
	request_start = intel_ring_get_tail(ringbuf);
2596 2597 2598 2599 2600 2601 2602
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2603 2604
	if (flush_caches) {
		if (i915.enable_execlists)
2605
			ret = logical_ring_flush_all_caches(request);
2606
		else
2607
			ret = intel_ring_flush_all_caches(request);
2608 2609 2610
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2611

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2634 2635 2636 2637 2638
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2639
	request->postfix = intel_ring_get_tail(ringbuf);
2640

2641
	if (i915.enable_execlists)
2642
		ret = engine->emit_request(request);
2643
	else {
2644
		ret = engine->add_request(request);
2645 2646

		request->tail = intel_ring_get_tail(ringbuf);
2647
	}
2648 2649
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2650

2651
	i915_queue_hangcheck(engine->dev);
2652

2653 2654 2655 2656
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2657

2658 2659
	/* Sanity check that the reserved size was large enough. */
	intel_ring_reserved_space_end(ringbuf);
2660 2661
}

2662
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2663
				   const struct intel_context *ctx)
2664
{
2665
	unsigned long elapsed;
2666

2667 2668 2669
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2670 2671
		return true;

2672 2673
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2674
		if (!i915_gem_context_is_default(ctx)) {
2675
			DRM_DEBUG("context hanging too fast, banning!\n");
2676
			return true;
2677 2678 2679
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2680
			return true;
2681
		}
2682 2683 2684 2685 2686
	}

	return false;
}

2687
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2688
				  struct intel_context *ctx,
2689
				  const bool guilty)
2690
{
2691 2692 2693 2694
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2695

2696 2697 2698
	hs = &ctx->hang_stats;

	if (guilty) {
2699
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2700 2701 2702 2703
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2704 2705 2706
	}
}

2707 2708 2709 2710 2711 2712
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2713 2714 2715
	if (req->file_priv)
		i915_gem_request_remove_from_client(req);

2716
	if (ctx) {
D
Dave Gordon 已提交
2717
		if (i915.enable_execlists && ctx != req->i915->kernel_context)
2718
			intel_lr_context_unpin(ctx, req->engine);
2719

2720 2721
		i915_gem_context_unreference(ctx);
	}
2722

2723
	kmem_cache_free(req->i915->requests, req);
2724 2725
}

2726
static inline int
2727
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2728 2729
			 struct intel_context *ctx,
			 struct drm_i915_gem_request **req_out)
2730
{
2731
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
2732
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
2733
	struct drm_i915_gem_request *req;
2734 2735
	int ret;

2736 2737 2738
	if (!req_out)
		return -EINVAL;

2739
	*req_out = NULL;
2740

2741 2742 2743 2744 2745
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2746 2747 2748
	if (ret)
		return ret;

D
Daniel Vetter 已提交
2749 2750
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2751 2752
		return -ENOMEM;

2753
	ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2754 2755
	if (ret)
		goto err;
2756

2757 2758
	kref_init(&req->ref);
	req->i915 = dev_priv;
2759
	req->engine = engine;
2760
	req->reset_counter = reset_counter;
2761 2762
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2763 2764

	if (i915.enable_execlists)
2765
		ret = intel_logical_ring_alloc_request_extras(req);
2766
	else
D
Daniel Vetter 已提交
2767
		ret = intel_ring_alloc_request_extras(req);
2768 2769
	if (ret) {
		i915_gem_context_unreference(req->ctx);
2770
		goto err;
2771
	}
2772

2773 2774 2775 2776 2777 2778 2779
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
	if (i915.enable_execlists)
		ret = intel_logical_ring_reserve_space(req);
	else
		ret = intel_ring_reserve_space(req);
	if (ret) {
		/*
		 * At this point, the request is fully allocated even if not
		 * fully prepared. Thus it can be cleaned up using the proper
		 * free code.
		 */
2790 2791
		intel_ring_reserved_space_cancel(req->ringbuf);
		i915_gem_request_unreference(req);
2792 2793
		return ret;
	}
2794

2795
	*req_out = req;
2796
	return 0;
2797 2798 2799 2800

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2801 2802
}

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct intel_context *ctx)
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
2823
		ctx = to_i915(engine->dev)->kernel_context;
2824 2825 2826 2827
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

2828
struct drm_i915_gem_request *
2829
i915_gem_find_active_request(struct intel_engine_cs *engine)
2830
{
2831 2832
	struct drm_i915_gem_request *request;

2833
	list_for_each_entry(request, &engine->request_list, list) {
2834
		if (i915_gem_request_completed(request, false))
2835
			continue;
2836

2837
		return request;
2838
	}
2839 2840 2841 2842

	return NULL;
}

2843
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2844
				       struct intel_engine_cs *engine)
2845 2846 2847 2848
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2849
	request = i915_gem_find_active_request(engine);
2850 2851 2852 2853

	if (request == NULL)
		return;

2854
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2855

2856
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2857

2858
	list_for_each_entry_continue(request, &engine->request_list, list)
2859
		i915_set_reset_status(dev_priv, request->ctx, false);
2860
}
2861

2862
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2863
					struct intel_engine_cs *engine)
2864
{
2865 2866
	struct intel_ringbuffer *buffer;

2867
	while (!list_empty(&engine->active_list)) {
2868
		struct drm_i915_gem_object *obj;
2869

2870
		obj = list_first_entry(&engine->active_list,
2871
				       struct drm_i915_gem_object,
2872
				       engine_list[engine->id]);
2873

2874
		i915_gem_object_retire__read(obj, engine->id);
2875
	}
2876

2877 2878 2879 2880 2881 2882
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2883
	if (i915.enable_execlists) {
2884 2885
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2886

2887
		spin_lock_bh(&engine->execlist_lock);
2888
		/* list_splice_tail_init checks for empty lists */
2889 2890
		list_splice_tail_init(&engine->execlist_queue,
				      &engine->execlist_retired_req_list);
2891
		spin_unlock_bh(&engine->execlist_lock);
2892

2893
		intel_execlists_retire_requests(engine);
2894 2895
	}

2896 2897 2898 2899 2900 2901 2902
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2903
	while (!list_empty(&engine->request_list)) {
2904 2905
		struct drm_i915_gem_request *request;

2906
		request = list_first_entry(&engine->request_list,
2907 2908 2909
					   struct drm_i915_gem_request,
					   list);

2910
		i915_gem_request_retire(request);
2911
	}
2912 2913 2914 2915 2916 2917 2918 2919

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2920
	list_for_each_entry(buffer, &engine->buffers, link) {
2921 2922 2923
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2924 2925

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2926 2927
}

2928
void i915_gem_reset(struct drm_device *dev)
2929
{
2930
	struct drm_i915_private *dev_priv = dev->dev_private;
2931
	struct intel_engine_cs *engine;
2932

2933 2934 2935 2936 2937
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2938
	for_each_engine(engine, dev_priv)
2939
		i915_gem_reset_engine_status(dev_priv, engine);
2940

2941
	for_each_engine(engine, dev_priv)
2942
		i915_gem_reset_engine_cleanup(dev_priv, engine);
2943

2944 2945
	i915_gem_context_reset(dev);

2946
	i915_gem_restore_fences(dev);
2947 2948

	WARN_ON(i915_verify_lists(dev));
2949 2950 2951 2952 2953
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2954
void
2955
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2956
{
2957
	WARN_ON(i915_verify_lists(engine->dev));
2958

2959 2960 2961 2962
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2963
	 */
2964
	while (!list_empty(&engine->request_list)) {
2965 2966
		struct drm_i915_gem_request *request;

2967
		request = list_first_entry(&engine->request_list,
2968 2969 2970
					   struct drm_i915_gem_request,
					   list);

2971
		if (!i915_gem_request_completed(request, true))
2972 2973
			break;

2974
		i915_gem_request_retire(request);
2975
	}
2976

2977 2978 2979 2980
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
2981
	while (!list_empty(&engine->active_list)) {
2982 2983
		struct drm_i915_gem_object *obj;

2984 2985
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
2986
				       engine_list[engine->id]);
2987

2988
		if (!list_empty(&obj->last_read_req[engine->id]->list))
2989 2990
			break;

2991
		i915_gem_object_retire__read(obj, engine->id);
2992 2993
	}

2994 2995 2996 2997
	if (unlikely(engine->trace_irq_req &&
		     i915_gem_request_completed(engine->trace_irq_req, true))) {
		engine->irq_put(engine);
		i915_gem_request_assign(&engine->trace_irq_req, NULL);
2998
	}
2999

3000
	WARN_ON(i915_verify_lists(engine->dev));
3001 3002
}

3003
bool
3004 3005
i915_gem_retire_requests(struct drm_device *dev)
{
3006
	struct drm_i915_private *dev_priv = dev->dev_private;
3007
	struct intel_engine_cs *engine;
3008
	bool idle = true;
3009

3010
	for_each_engine(engine, dev_priv) {
3011 3012
		i915_gem_retire_requests_ring(engine);
		idle &= list_empty(&engine->request_list);
3013
		if (i915.enable_execlists) {
3014
			spin_lock_bh(&engine->execlist_lock);
3015
			idle &= list_empty(&engine->execlist_queue);
3016
			spin_unlock_bh(&engine->execlist_lock);
3017

3018
			intel_execlists_retire_requests(engine);
3019
		}
3020 3021 3022 3023 3024 3025 3026 3027
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
3028 3029
}

3030
static void
3031 3032
i915_gem_retire_work_handler(struct work_struct *work)
{
3033 3034 3035
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
3036
	bool idle;
3037

3038
	/* Come back later if the device is busy... */
3039 3040 3041 3042
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
3043
	}
3044
	if (!idle)
3045 3046
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
3047
}
3048

3049 3050 3051 3052 3053
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3054
	struct drm_device *dev = dev_priv->dev;
3055
	struct intel_engine_cs *engine;
3056

3057 3058
	for_each_engine(engine, dev_priv)
		if (!list_empty(&engine->request_list))
3059
			return;
3060

3061
	/* we probably should sync with hangcheck here, using cancel_work_sync.
3062
	 * Also locking seems to be fubar here, engine->request_list is protected
3063 3064
	 * by dev->struct_mutex. */

3065 3066 3067
	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
3068
		for_each_engine(engine, dev_priv)
3069
			i915_gem_batch_pool_fini(&engine->batch_pool);
3070

3071 3072
		mutex_unlock(&dev->struct_mutex);
	}
3073 3074
}

3075 3076 3077 3078 3079 3080 3081 3082
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3083
	int i;
3084 3085 3086

	if (!obj->active)
		return 0;
3087

3088
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3089
		struct drm_i915_gem_request *req;
3090

3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
3103 3104 3105 3106 3107
	}

	return 0;
}

3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3135
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3136 3137
	int i, n = 0;
	int ret;
3138

3139 3140 3141
	if (args->flags != 0)
		return -EINVAL;

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3152 3153
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3154 3155 3156
	if (ret)
		goto out;

3157
	if (!obj->active)
3158
		goto out;
3159 3160

	/* Do this after OLR check to make sure we make forward progress polling
3161
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3162
	 */
3163
	if (args->timeout_ns == 0) {
3164 3165 3166 3167 3168
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3169

3170
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3171 3172 3173 3174 3175 3176
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3177 3178
	mutex_unlock(&dev->struct_mutex);

3179 3180
	for (i = 0; i < n; i++) {
		if (ret == 0)
3181
			ret = __i915_wait_request(req[i], true,
3182
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3183
						  to_rps_client(file));
3184 3185
		i915_gem_request_unreference__unlocked(req[i]);
	}
3186
	return ret;
3187 3188 3189 3190 3191 3192 3193

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3194 3195 3196
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3197 3198
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3199 3200 3201 3202
{
	struct intel_engine_cs *from;
	int ret;

3203
	from = i915_gem_request_get_engine(from_req);
3204 3205 3206
	if (to == from)
		return 0;

3207
	if (i915_gem_request_completed(from_req, true))
3208 3209 3210
		return 0;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3211
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3212
		ret = __i915_wait_request(from_req,
3213 3214 3215
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3216 3217 3218
		if (ret)
			return ret;

3219
		i915_gem_object_retire_request(obj, from_req);
3220 3221
	} else {
		int idx = intel_ring_sync_index(from, to);
3222 3223 3224
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3225 3226 3227 3228

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3229
		if (*to_req == NULL) {
3230 3231 3232 3233 3234 3235 3236
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3237 3238
		}

3239 3240
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3255 3256 3257 3258 3259
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3260 3261 3262
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3263 3264 3265
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3266
 * rather than a particular GPU ring. Conceptually we serialise writes
3267
 * between engines inside the GPU. We only allow one engine to write
3268 3269 3270 3271 3272 3273 3274 3275 3276
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3277
 *
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3288 3289
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3290 3291
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3292 3293
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3294
{
3295
	const bool readonly = obj->base.pending_write_domain == 0;
3296
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3297
	int ret, i, n;
3298

3299
	if (!obj->active)
3300 3301
		return 0;

3302 3303
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3304

3305 3306 3307 3308 3309
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3310
		for (i = 0; i < I915_NUM_ENGINES; i++)
3311 3312 3313 3314
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3315
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3316 3317 3318
		if (ret)
			return ret;
	}
3319

3320
	return 0;
3321 3322
}

3323 3324 3325 3326 3327 3328 3329
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3330 3331 3332
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3344
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3345
{
3346
	struct drm_i915_gem_object *obj = vma->obj;
3347
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3348
	int ret;
3349

3350
	if (list_empty(&vma->obj_link))
3351 3352
		return 0;

3353 3354 3355 3356
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3357

B
Ben Widawsky 已提交
3358
	if (vma->pin_count)
3359
		return -EBUSY;
3360

3361 3362
	BUG_ON(obj->pages == NULL);

3363 3364 3365 3366 3367
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3368

3369
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3370
		i915_gem_object_finish_gtt(obj);
3371

3372 3373 3374 3375 3376
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3377

3378
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3379

3380
	vma->vm->unbind_vma(vma);
3381
	vma->bound = 0;
3382

3383
	list_del_init(&vma->vm_link);
3384
	if (vma->is_ggtt) {
3385 3386 3387 3388 3389 3390
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3391
		vma->ggtt_view.pages = NULL;
3392
	}
3393

B
Ben Widawsky 已提交
3394 3395 3396 3397
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3398
	 * no more VMAs exist. */
I
Imre Deak 已提交
3399
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3400
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3401

3402 3403 3404 3405 3406 3407
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3408
	return 0;
3409 3410
}

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3421
int i915_gpu_idle(struct drm_device *dev)
3422
{
3423
	struct drm_i915_private *dev_priv = dev->dev_private;
3424
	struct intel_engine_cs *engine;
3425
	int ret;
3426 3427

	/* Flush everything onto the inactive list. */
3428
	for_each_engine(engine, dev_priv) {
3429
		if (!i915.enable_execlists) {
3430 3431
			struct drm_i915_gem_request *req;

3432
			req = i915_gem_request_alloc(engine, NULL);
3433 3434
			if (IS_ERR(req))
				return PTR_ERR(req);
3435

3436
			ret = i915_switch_context(req);
3437
			i915_add_request_no_flush(req);
3438 3439
			if (ret)
				return ret;
3440
		}
3441

3442
		ret = intel_engine_idle(engine);
3443 3444 3445
		if (ret)
			return ret;
	}
3446

3447
	WARN_ON(i915_verify_lists(dev));
3448
	return 0;
3449 3450
}

3451
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3452 3453
				     unsigned long cache_level)
{
3454
	struct drm_mm_node *gtt_space = &vma->node;
3455 3456
	struct drm_mm_node *other;

3457 3458 3459 3460 3461 3462
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3463
	 */
3464
	if (vma->vm->mm.color_adjust == NULL)
3465 3466
		return true;

3467
	if (!drm_mm_node_allocated(gtt_space))
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3484
/**
3485 3486
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3487
 */
3488
static struct i915_vma *
3489 3490
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3491
			   const struct i915_ggtt_view *ggtt_view,
3492
			   unsigned alignment,
3493
			   uint64_t flags)
3494
{
3495
	struct drm_device *dev = obj->base.dev;
3496 3497
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3498
	u32 fence_alignment, unfenced_alignment;
3499 3500
	u32 search_flag, alloc_flag;
	u64 start, end;
3501
	u64 size, fence_size;
B
Ben Widawsky 已提交
3502
	struct i915_vma *vma;
3503
	int ret;
3504

3505 3506 3507 3508 3509
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3510

3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3540

3541 3542 3543
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3544
		end = min_t(u64, end, ggtt->mappable_end);
3545
	if (flags & PIN_ZONE_4G)
3546
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3547

3548
	if (alignment == 0)
3549
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3550
						unfenced_alignment;
3551
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3552 3553 3554
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3555
		return ERR_PTR(-EINVAL);
3556 3557
	}

3558 3559 3560
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3561
	 */
3562
	if (size > end) {
3563
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3564 3565
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3566
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3567
			  end);
3568
		return ERR_PTR(-E2BIG);
3569 3570
	}

3571
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3572
	if (ret)
3573
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3574

3575 3576
	i915_gem_object_pin_pages(obj);

3577 3578 3579
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3580
	if (IS_ERR(vma))
3581
		goto err_unpin;
B
Ben Widawsky 已提交
3582

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3601
	} else {
3602 3603 3604 3605 3606 3607 3608
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3609

3610
search_free:
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3624

3625 3626
			goto err_free_vma;
		}
3627
	}
3628
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3629
		ret = -EINVAL;
3630
		goto err_remove_node;
3631 3632
	}

3633
	trace_i915_vma_bind(vma, flags);
3634
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3635
	if (ret)
I
Imre Deak 已提交
3636
		goto err_remove_node;
3637

3638
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3639
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3640

3641
	return vma;
B
Ben Widawsky 已提交
3642

3643
err_remove_node:
3644
	drm_mm_remove_node(&vma->node);
3645
err_free_vma:
B
Ben Widawsky 已提交
3646
	i915_gem_vma_destroy(vma);
3647
	vma = ERR_PTR(ret);
3648
err_unpin:
B
Ben Widawsky 已提交
3649
	i915_gem_object_unpin_pages(obj);
3650
	return vma;
3651 3652
}

3653
bool
3654 3655
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3656 3657 3658 3659 3660
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3661
	if (obj->pages == NULL)
3662
		return false;
3663

3664 3665 3666 3667
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3668
	if (obj->stolen || obj->phys_handle)
3669
		return false;
3670

3671 3672 3673 3674 3675 3676 3677 3678
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3679 3680
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3681
		return false;
3682
	}
3683

C
Chris Wilson 已提交
3684
	trace_i915_gem_object_clflush(obj);
3685
	drm_clflush_sg(obj->pages);
3686
	obj->cache_dirty = false;
3687 3688

	return true;
3689 3690 3691 3692
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3693
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3694
{
C
Chris Wilson 已提交
3695 3696
	uint32_t old_write_domain;

3697
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3698 3699
		return;

3700
	/* No actual flushing is required for the GTT write domain.  Writes
3701 3702
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3703 3704 3705 3706
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3707
	 */
3708 3709
	wmb();

3710 3711
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3712

3713
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3714

C
Chris Wilson 已提交
3715
	trace_i915_gem_object_change_domain(obj,
3716
					    obj->base.read_domains,
C
Chris Wilson 已提交
3717
					    old_write_domain);
3718 3719 3720 3721
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3722
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3723
{
C
Chris Wilson 已提交
3724
	uint32_t old_write_domain;
3725

3726
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3727 3728
		return;

3729
	if (i915_gem_clflush_object(obj, obj->pin_display))
3730 3731
		i915_gem_chipset_flush(obj->base.dev);

3732 3733
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3734

3735
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3736

C
Chris Wilson 已提交
3737
	trace_i915_gem_object_change_domain(obj,
3738
					    obj->base.read_domains,
C
Chris Wilson 已提交
3739
					    old_write_domain);
3740 3741
}

3742 3743 3744 3745 3746 3747
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3748
int
3749
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3750
{
3751 3752 3753
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3754
	uint32_t old_write_domain, old_read_domains;
3755
	struct i915_vma *vma;
3756
	int ret;
3757

3758 3759 3760
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3761
	ret = i915_gem_object_wait_rendering(obj, !write);
3762 3763 3764
	if (ret)
		return ret;

3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3777
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3778

3779 3780 3781 3782 3783 3784 3785
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3786 3787
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3788

3789 3790 3791
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3792 3793
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3794
	if (write) {
3795 3796 3797
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3798 3799
	}

C
Chris Wilson 已提交
3800 3801 3802 3803
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3804
	/* And bump the LRU for this access */
3805 3806
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3807
		list_move_tail(&vma->vm_link,
3808
			       &ggtt->base.inactive_list);
3809

3810 3811 3812
	return 0;
}

3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
/**
 * Changes the cache-level of an object across all VMA.
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3826 3827 3828
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3829
	struct drm_device *dev = obj->base.dev;
3830
	struct i915_vma *vma, *next;
3831
	bool bound = false;
3832
	int ret = 0;
3833 3834

	if (obj->cache_level == cache_level)
3835
		goto out;
3836

3837 3838 3839 3840 3841
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3842
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3843 3844 3845 3846 3847 3848 3849 3850
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3851
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3852
			ret = i915_vma_unbind(vma);
3853 3854
			if (ret)
				return ret;
3855 3856
		} else
			bound = true;
3857 3858
	}

3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3871
		ret = i915_gem_object_wait_rendering(obj, false);
3872 3873 3874
		if (ret)
			return ret;

3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3892 3893 3894
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3895 3896 3897 3898 3899 3900 3901 3902
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3903 3904
		}

3905
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3906 3907 3908 3909 3910 3911 3912
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3913 3914
	}

3915
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3916 3917 3918
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3919
out:
3920 3921 3922 3923
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3924 3925 3926 3927 3928
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3929 3930 3931 3932 3933
	}

	return 0;
}

B
Ben Widawsky 已提交
3934 3935
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3936
{
B
Ben Widawsky 已提交
3937
	struct drm_i915_gem_caching *args = data;
3938 3939 3940
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3941 3942
	if (&obj->base == NULL)
		return -ENOENT;
3943

3944 3945 3946 3947 3948 3949
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3950 3951 3952 3953
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3954 3955 3956 3957
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3958

3959 3960
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3961 3962
}

B
Ben Widawsky 已提交
3963 3964
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3965
{
3966
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
3967
	struct drm_i915_gem_caching *args = data;
3968 3969 3970 3971
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3972 3973
	switch (args->caching) {
	case I915_CACHING_NONE:
3974 3975
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3976
	case I915_CACHING_CACHED:
3977 3978 3979 3980 3981 3982
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3983
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3984 3985
			return -ENODEV;

3986 3987
		level = I915_CACHE_LLC;
		break;
3988 3989 3990
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3991 3992 3993 3994
	default:
		return -EINVAL;
	}

3995 3996
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3997 3998
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3999
		goto rpm_put;
B
Ben Widawsky 已提交
4000

4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4012 4013 4014
rpm_put:
	intel_runtime_pm_put(dev_priv);

4015 4016 4017
	return ret;
}

4018
/*
4019 4020 4021
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4022 4023
 */
int
4024 4025
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4026
				     const struct i915_ggtt_view *view)
4027
{
4028
	u32 old_read_domains, old_write_domain;
4029 4030
	int ret;

4031 4032 4033
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4034
	obj->pin_display++;
4035

4036 4037 4038 4039 4040 4041 4042 4043 4044
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4045 4046
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4047
	if (ret)
4048
		goto err_unpin_display;
4049

4050 4051 4052 4053
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4054 4055 4056
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4057
	if (ret)
4058
		goto err_unpin_display;
4059

4060
	i915_gem_object_flush_cpu_write_domain(obj);
4061

4062
	old_write_domain = obj->base.write_domain;
4063
	old_read_domains = obj->base.read_domains;
4064 4065 4066 4067

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4068
	obj->base.write_domain = 0;
4069
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4070 4071 4072

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4073
					    old_write_domain);
4074 4075

	return 0;
4076 4077

err_unpin_display:
4078
	obj->pin_display--;
4079 4080 4081 4082
	return ret;
}

void
4083 4084
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4085
{
4086 4087 4088
	if (WARN_ON(obj->pin_display == 0))
		return;

4089 4090
	i915_gem_object_ggtt_unpin_view(obj, view);

4091
	obj->pin_display--;
4092 4093
}

4094 4095 4096 4097 4098 4099
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4100
int
4101
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4102
{
C
Chris Wilson 已提交
4103
	uint32_t old_write_domain, old_read_domains;
4104 4105
	int ret;

4106 4107 4108
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4109
	ret = i915_gem_object_wait_rendering(obj, !write);
4110 4111 4112
	if (ret)
		return ret;

4113
	i915_gem_object_flush_gtt_write_domain(obj);
4114

4115 4116
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4117

4118
	/* Flush the CPU cache if it's still invalid. */
4119
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4120
		i915_gem_clflush_object(obj, false);
4121

4122
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4123 4124 4125 4126 4127
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4128
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4129 4130 4131 4132 4133

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4134 4135
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4136
	}
4137

C
Chris Wilson 已提交
4138 4139 4140 4141
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4142 4143 4144
	return 0;
}

4145 4146 4147
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4148 4149 4150 4151
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4152 4153 4154
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4155
static int
4156
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4157
{
4158 4159
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4160
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4161
	struct drm_i915_gem_request *request, *target = NULL;
4162
	int ret;
4163

4164 4165 4166 4167
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4168 4169 4170
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4171

4172
	spin_lock(&file_priv->mm.lock);
4173
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4174 4175
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4176

4177 4178 4179 4180 4181 4182 4183
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4184
		target = request;
4185
	}
4186 4187
	if (target)
		i915_gem_request_reference(target);
4188
	spin_unlock(&file_priv->mm.lock);
4189

4190
	if (target == NULL)
4191
		return 0;
4192

4193
	ret = __i915_wait_request(target, true, NULL, NULL);
4194 4195
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4196

4197
	i915_gem_request_unreference__unlocked(target);
4198

4199 4200 4201
	return ret;
}

4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4218 4219 4220 4221
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4222 4223 4224
	return false;
}

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4243
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4244 4245 4246 4247

	obj->map_and_fenceable = mappable && fenceable;
}

4248 4249 4250 4251 4252 4253
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4254
{
4255
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4256
	struct i915_vma *vma;
4257
	unsigned bound;
4258 4259
	int ret;

4260 4261 4262
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4263
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4264
		return -EINVAL;
4265

4266 4267 4268
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4269 4270 4271 4272 4273 4274
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4275
	if (vma) {
B
Ben Widawsky 已提交
4276 4277 4278
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4279
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4280
			WARN(vma->pin_count,
4281
			     "bo is already pinned in %s with incorrect alignment:"
4282
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4283
			     " obj->map_and_fenceable=%d\n",
4284
			     ggtt_view ? "ggtt" : "ppgtt",
4285 4286
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4287
			     alignment,
4288
			     !!(flags & PIN_MAPPABLE),
4289
			     obj->map_and_fenceable);
4290
			ret = i915_vma_unbind(vma);
4291 4292
			if (ret)
				return ret;
4293 4294

			vma = NULL;
4295 4296 4297
		}
	}

4298
	bound = vma ? vma->bound : 0;
4299
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4300 4301
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4302 4303
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4304 4305
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4306 4307 4308
		if (ret)
			return ret;
	}
4309

4310 4311
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4312
		__i915_vma_set_map_and_fenceable(vma);
4313 4314
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4315

4316
	vma->pin_count++;
4317 4318 4319
	return 0;
}

4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4337 4338 4339 4340
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4341
	BUG_ON(!view);
4342

4343
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4344
				      alignment, flags | PIN_GLOBAL);
4345 4346
}

4347
void
4348 4349
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4350
{
4351
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4352

4353
	WARN_ON(vma->pin_count == 0);
4354
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4355

4356
	--vma->pin_count;
4357 4358 4359 4360
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4361
		    struct drm_file *file)
4362 4363
{
	struct drm_i915_gem_busy *args = data;
4364
	struct drm_i915_gem_object *obj;
4365 4366
	int ret;

4367
	ret = i915_mutex_lock_interruptible(dev);
4368
	if (ret)
4369
		return ret;
4370

4371
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4372
	if (&obj->base == NULL) {
4373 4374
		ret = -ENOENT;
		goto unlock;
4375
	}
4376

4377 4378 4379 4380
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4381
	 */
4382
	ret = i915_gem_object_flush_active(obj);
4383 4384
	if (ret)
		goto unref;
4385

4386 4387 4388 4389
	args->busy = 0;
	if (obj->active) {
		int i;

4390
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4391 4392 4393 4394
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4395
				args->busy |= 1 << (16 + req->engine->exec_id);
4396 4397
		}
		if (obj->last_write_req)
4398
			args->busy |= obj->last_write_req->engine->exec_id;
4399
	}
4400

4401
unref:
4402
	drm_gem_object_unreference(&obj->base);
4403
unlock:
4404
	mutex_unlock(&dev->struct_mutex);
4405
	return ret;
4406 4407 4408 4409 4410 4411
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4412
	return i915_gem_ring_throttle(dev, file_priv);
4413 4414
}

4415 4416 4417 4418
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4419
	struct drm_i915_private *dev_priv = dev->dev_private;
4420
	struct drm_i915_gem_madvise *args = data;
4421
	struct drm_i915_gem_object *obj;
4422
	int ret;
4423 4424 4425 4426 4427 4428 4429 4430 4431

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4432 4433 4434 4435
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4436
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4437
	if (&obj->base == NULL) {
4438 4439
		ret = -ENOENT;
		goto unlock;
4440 4441
	}

B
Ben Widawsky 已提交
4442
	if (i915_gem_obj_is_pinned(obj)) {
4443 4444
		ret = -EINVAL;
		goto out;
4445 4446
	}

4447 4448 4449 4450 4451 4452 4453 4454 4455
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4456 4457
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4458

C
Chris Wilson 已提交
4459
	/* if the object is no longer attached, discard its backing storage */
4460
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4461 4462
		i915_gem_object_truncate(obj);

4463
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4464

4465
out:
4466
	drm_gem_object_unreference(&obj->base);
4467
unlock:
4468
	mutex_unlock(&dev->struct_mutex);
4469
	return ret;
4470 4471
}

4472 4473
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4474
{
4475 4476
	int i;

4477
	INIT_LIST_HEAD(&obj->global_list);
4478
	for (i = 0; i < I915_NUM_ENGINES; i++)
4479
		INIT_LIST_HEAD(&obj->engine_list[i]);
4480
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4481
	INIT_LIST_HEAD(&obj->vma_list);
4482
	INIT_LIST_HEAD(&obj->batch_pool_link);
4483

4484 4485
	obj->ops = ops;

4486 4487 4488 4489 4490 4491
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4492
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4493
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4494 4495 4496 4497
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4498
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4499
						  size_t size)
4500
{
4501
	struct drm_i915_gem_object *obj;
4502
	struct address_space *mapping;
D
Daniel Vetter 已提交
4503
	gfp_t mask;
4504
	int ret;
4505

4506
	obj = i915_gem_object_alloc(dev);
4507
	if (obj == NULL)
4508
		return ERR_PTR(-ENOMEM);
4509

4510 4511 4512
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4513

4514 4515 4516 4517 4518 4519 4520
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4521
	mapping = file_inode(obj->base.filp)->i_mapping;
4522
	mapping_set_gfp_mask(mapping, mask);
4523

4524
	i915_gem_object_init(obj, &i915_gem_object_ops);
4525

4526 4527
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4528

4529 4530
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4546 4547
	trace_i915_gem_object_create(obj);

4548
	return obj;
4549 4550 4551 4552 4553

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4554 4555
}

4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4580
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4581
{
4582
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4583
	struct drm_device *dev = obj->base.dev;
4584
	struct drm_i915_private *dev_priv = dev->dev_private;
4585
	struct i915_vma *vma, *next;
4586

4587 4588
	intel_runtime_pm_get(dev_priv);

4589 4590
	trace_i915_gem_object_destroy(obj);

4591
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4592 4593 4594 4595
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4596 4597
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4598

4599 4600
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4601

4602
			WARN_ON(i915_vma_unbind(vma));
4603

4604 4605
			dev_priv->mm.interruptible = was_interruptible;
		}
4606 4607
	}

B
Ben Widawsky 已提交
4608 4609 4610 4611 4612
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4613 4614
	WARN_ON(obj->frontbuffer_bits);

4615 4616 4617 4618 4619
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4620 4621
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4622
	if (discard_backing_storage(obj))
4623
		obj->madv = I915_MADV_DONTNEED;
4624
	i915_gem_object_put_pages(obj);
4625
	i915_gem_object_free_mmap_offset(obj);
4626

4627 4628
	BUG_ON(obj->pages);

4629 4630
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4631

4632 4633 4634
	if (obj->ops->release)
		obj->ops->release(obj);

4635 4636
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4637

4638
	kfree(obj->bit_17);
4639
	i915_gem_object_free(obj);
4640 4641

	intel_runtime_pm_put(dev_priv);
4642 4643
}

4644 4645
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4646 4647
{
	struct i915_vma *vma;
4648
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4649 4650
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4651
			return vma;
4652 4653 4654 4655 4656 4657 4658 4659
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4660

4661
	GEM_BUG_ON(!view);
4662

4663
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4664
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4665
			return vma;
4666 4667 4668
	return NULL;
}

B
Ben Widawsky 已提交
4669 4670 4671
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4672 4673 4674 4675 4676

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4677 4678
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4679

4680
	list_del(&vma->obj_link);
4681

4682
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4683 4684
}

4685
static void
4686
i915_gem_stop_engines(struct drm_device *dev)
4687 4688
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4689
	struct intel_engine_cs *engine;
4690

4691
	for_each_engine(engine, dev_priv)
4692
		dev_priv->gt.stop_engine(engine);
4693 4694
}

4695
int
4696
i915_gem_suspend(struct drm_device *dev)
4697
{
4698
	struct drm_i915_private *dev_priv = dev->dev_private;
4699
	int ret = 0;
4700

4701
	mutex_lock(&dev->struct_mutex);
4702
	ret = i915_gpu_idle(dev);
4703
	if (ret)
4704
		goto err;
4705

4706
	i915_gem_retire_requests(dev);
4707

4708
	i915_gem_stop_engines(dev);
4709 4710
	mutex_unlock(&dev->struct_mutex);

4711
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4712
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4713
	flush_delayed_work(&dev_priv->mm.idle_work);
4714

4715 4716 4717 4718 4719
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4720
	return 0;
4721 4722 4723 4724

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4725 4726
}

4727
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
B
Ben Widawsky 已提交
4728
{
4729
	struct intel_engine_cs *engine = req->engine;
4730
	struct drm_device *dev = engine->dev;
4731
	struct drm_i915_private *dev_priv = dev->dev_private;
4732
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4733
	int i, ret;
B
Ben Widawsky 已提交
4734

4735
	if (!HAS_L3_DPF(dev) || !remap_info)
4736
		return 0;
B
Ben Widawsky 已提交
4737

4738
	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4739 4740
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4741

4742 4743 4744 4745 4746
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
4747
	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4748 4749 4750
		intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
		intel_ring_emit(engine, remap_info[i]);
B
Ben Widawsky 已提交
4751 4752
	}

4753
	intel_ring_advance(engine);
B
Ben Widawsky 已提交
4754

4755
	return ret;
B
Ben Widawsky 已提交
4756 4757
}

4758 4759
void i915_gem_init_swizzling(struct drm_device *dev)
{
4760
	struct drm_i915_private *dev_priv = dev->dev_private;
4761

4762
	if (INTEL_INFO(dev)->gen < 5 ||
4763 4764 4765 4766 4767 4768
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4769 4770 4771
	if (IS_GEN5(dev))
		return;

4772 4773
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4774
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4775
	else if (IS_GEN7(dev))
4776
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4777 4778
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4779 4780
	else
		BUG();
4781
}
D
Daniel Vetter 已提交
4782

4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4810
int i915_gem_init_engines(struct drm_device *dev)
4811
{
4812
	struct drm_i915_private *dev_priv = dev->dev_private;
4813
	int ret;
4814

4815
	ret = intel_init_render_ring_buffer(dev);
4816
	if (ret)
4817
		return ret;
4818 4819

	if (HAS_BSD(dev)) {
4820
		ret = intel_init_bsd_ring_buffer(dev);
4821 4822
		if (ret)
			goto cleanup_render_ring;
4823
	}
4824

4825
	if (HAS_BLT(dev)) {
4826 4827 4828 4829 4830
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4831 4832 4833 4834 4835 4836
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4837 4838 4839 4840 4841
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4842

4843 4844
	return 0;

B
Ben Widawsky 已提交
4845
cleanup_vebox_ring:
4846
	intel_cleanup_engine(&dev_priv->engine[VECS]);
4847
cleanup_blt_ring:
4848
	intel_cleanup_engine(&dev_priv->engine[BCS]);
4849
cleanup_bsd_ring:
4850
	intel_cleanup_engine(&dev_priv->engine[VCS]);
4851
cleanup_render_ring:
4852
	intel_cleanup_engine(&dev_priv->engine[RCS]);
4853 4854 4855 4856 4857 4858 4859

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4860
	struct drm_i915_private *dev_priv = dev->dev_private;
4861
	struct intel_engine_cs *engine;
4862
	int ret, j;
4863 4864 4865 4866

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4867 4868 4869
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4870
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4871
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4872

4873 4874 4875
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4876

4877
	if (HAS_PCH_NOP(dev)) {
4878 4879 4880 4881 4882 4883 4884 4885 4886
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4887 4888
	}

4889 4890
	i915_gem_init_swizzling(dev);

4891 4892 4893 4894 4895 4896 4897 4898
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4899
	BUG_ON(!dev_priv->kernel_context);
4900

4901 4902 4903 4904 4905 4906 4907
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4908
	for_each_engine(engine, dev_priv) {
4909
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4910
		if (ret)
4911
			goto out;
D
Daniel Vetter 已提交
4912
	}
4913

4914 4915
	intel_mocs_init_l3cc_table(dev);

4916
	/* We can't enable contexts until all firmware is loaded */
4917 4918 4919
	if (HAS_GUC_UCODE(dev)) {
		ret = intel_guc_ucode_load(dev);
		if (ret) {
4920 4921 4922
			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
			ret = -EIO;
			goto out;
4923
		}
4924 4925
	}

4926 4927 4928 4929 4930 4931 4932 4933
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
	if (ret)
		goto out;

4934
	/* Now it is safe to go back round and do everything else: */
4935
	for_each_engine(engine, dev_priv) {
4936 4937
		struct drm_i915_gem_request *req;

4938
		req = i915_gem_request_alloc(engine, NULL);
4939 4940
		if (IS_ERR(req)) {
			ret = PTR_ERR(req);
4941
			break;
4942 4943
		}

4944
		if (engine->id == RCS) {
4945 4946 4947 4948 4949
			for (j = 0; j < NUM_L3_SLICES(dev); j++) {
				ret = i915_gem_l3_remap(req, j);
				if (ret)
					goto err_request;
			}
4950
		}
4951

4952
		ret = i915_ppgtt_init_ring(req);
4953 4954
		if (ret)
			goto err_request;
4955

4956
		ret = i915_gem_context_enable(req);
4957 4958 4959 4960 4961 4962 4963
		if (ret)
			goto err_request;

err_request:
		i915_add_request_no_flush(req);
		if (ret) {
			DRM_ERROR("Failed to enable %s, error=%d\n",
4964
				  engine->name, ret);
4965
			i915_gem_cleanup_engines(dev);
4966
			break;
4967
		}
4968
	}
D
Daniel Vetter 已提交
4969

4970 4971
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4972
	return ret;
4973 4974
}

4975 4976 4977 4978 4979
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4980 4981 4982
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4983
	mutex_lock(&dev->struct_mutex);
4984

4985
	if (!i915.enable_execlists) {
4986
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4987 4988 4989
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
4990
	} else {
4991
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4992 4993 4994
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4995 4996
	}

4997 4998 4999 5000 5001 5002 5003 5004
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5005
	ret = i915_gem_init_userptr(dev);
5006 5007
	if (ret)
		goto out_unlock;
5008

5009
	i915_gem_init_ggtt(dev);
5010

5011
	ret = i915_gem_context_init(dev);
5012 5013
	if (ret)
		goto out_unlock;
5014

5015
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
5016
	if (ret)
5017
		goto out_unlock;
5018

5019
	ret = i915_gem_init_hw(dev);
5020 5021 5022 5023 5024 5025
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5026
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5027
		ret = 0;
5028
	}
5029 5030

out_unlock:
5031
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5032
	mutex_unlock(&dev->struct_mutex);
5033

5034
	return ret;
5035 5036
}

5037
void
5038
i915_gem_cleanup_engines(struct drm_device *dev)
5039
{
5040
	struct drm_i915_private *dev_priv = dev->dev_private;
5041
	struct intel_engine_cs *engine;
5042

5043
	for_each_engine(engine, dev_priv)
5044
		dev_priv->gt.cleanup_engine(engine);
5045

5046 5047 5048 5049 5050 5051 5052
	if (i915.enable_execlists)
		/*
		 * Neither the BIOS, ourselves or any other kernel
		 * expects the system to be in execlists mode on startup,
		 * so we need to reset the GPU back to legacy mode.
		 */
		intel_gpu_reset(dev, ALL_ENGINES);
5053 5054
}

5055
static void
5056
init_engine_lists(struct intel_engine_cs *engine)
5057
{
5058 5059
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
5060 5061
}

5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

5086
void
5087
i915_gem_load_init(struct drm_device *dev)
5088
{
5089
	struct drm_i915_private *dev_priv = dev->dev_private;
5090 5091
	int i;

5092
	dev_priv->objects =
5093 5094 5095 5096
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5097 5098 5099 5100 5101
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5102 5103 5104 5105 5106
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5107

B
Ben Widawsky 已提交
5108
	INIT_LIST_HEAD(&dev_priv->vm_list);
5109
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5110 5111
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5112
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5113 5114
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5115
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5116
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5117 5118
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5119 5120
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5121
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5122

5123 5124
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5125 5126 5127 5128 5129 5130 5131 5132
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5133
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5134

5135
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5136

5137 5138
	dev_priv->mm.interruptible = true;

5139
	mutex_init(&dev_priv->fb_tracking.lock);
5140
}
5141

5142 5143 5144 5145 5146 5147 5148 5149 5150
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5151
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5152
{
5153
	struct drm_i915_file_private *file_priv = file->driver_priv;
5154 5155 5156 5157 5158

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5159
	spin_lock(&file_priv->mm.lock);
5160 5161 5162 5163 5164 5165 5166 5167 5168
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5169
	spin_unlock(&file_priv->mm.lock);
5170

5171
	if (!list_empty(&file_priv->rps.link)) {
5172
		spin_lock(&to_i915(dev)->rps.client_lock);
5173
		list_del(&file_priv->rps.link);
5174
		spin_unlock(&to_i915(dev)->rps.client_lock);
5175
	}
5176 5177 5178 5179 5180
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5181
	int ret;
5182 5183 5184 5185 5186 5187 5188 5189 5190

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5191
	file_priv->file = file;
5192
	INIT_LIST_HEAD(&file_priv->rps.link);
5193 5194 5195 5196

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5197 5198
	file_priv->bsd_ring = -1;

5199 5200 5201
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5202

5203
	return ret;
5204 5205
}

5206 5207
/**
 * i915_gem_track_fb - update frontbuffer tracking
5208 5209 5210
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5211 5212 5213 5214
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5232
/* All the new VM stuff */
5233 5234
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5235 5236 5237 5238
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5239
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5240

5241
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5242
		if (vma->is_ggtt &&
5243 5244 5245
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5246 5247
			return vma->node.start;
	}
5248

5249 5250
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5251 5252 5253
	return -1;
}

5254 5255
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5256 5257 5258
{
	struct i915_vma *vma;

5259
	list_for_each_entry(vma, &o->vma_list, obj_link)
5260
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5261 5262
			return vma->node.start;

5263
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5264 5265 5266 5267 5268 5269 5270 5271
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5272
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5273
		if (vma->is_ggtt &&
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5284
				  const struct i915_ggtt_view *view)
5285 5286 5287
{
	struct i915_vma *vma;

5288
	list_for_each_entry(vma, &o->vma_list, obj_link)
5289
		if (vma->is_ggtt &&
5290
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5291
		    drm_mm_node_allocated(&vma->node))
5292 5293 5294 5295 5296 5297 5298
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5299
	struct i915_vma *vma;
5300

5301
	list_for_each_entry(vma, &o->vma_list, obj_link)
5302
		if (drm_mm_node_allocated(&vma->node))
5303 5304 5305 5306 5307
			return true;

	return false;
}

5308
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5309 5310 5311
{
	struct i915_vma *vma;

5312
	GEM_BUG_ON(list_empty(&o->vma_list));
5313

5314
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5315
		if (vma->is_ggtt &&
5316
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5317
			return vma->node.size;
5318
	}
5319

5320 5321 5322
	return 0;
}

5323
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5324 5325
{
	struct i915_vma *vma;
5326
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5327 5328
		if (vma->pin_count > 0)
			return true;
5329

5330
	return false;
5331
}
5332

5333 5334 5335 5336 5337 5338 5339
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5340
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5341 5342 5343 5344 5345 5346 5347
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5348 5349 5350 5351 5352 5353 5354 5355 5356 5357
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5358
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5359
	if (IS_ERR(obj))
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5373
	obj->dirty = 1;		/* Backing store is now out of date */
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}