i915_gem.c 135.2 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41 42
#define RQ_BUG_ON(expr)

43
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45
static void
46 47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49

50 51 52 53 54 55
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

56 57 58 59 60 61 62 63
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

64 65 66 67
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
68
	spin_lock(&dev_priv->mm.object_stat_lock);
69 70
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
71
	spin_unlock(&dev_priv->mm.object_stat_lock);
72 73 74 75 76
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
77
	spin_lock(&dev_priv->mm.object_stat_lock);
78 79
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
80
	spin_unlock(&dev_priv->mm.object_stat_lock);
81 82
}

83
static int
84
i915_gem_wait_for_error(struct i915_gpu_error *error)
85 86 87
{
	int ret;

88 89
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
90
	if (EXIT_COND)
91 92
		return 0;

93 94 95 96 97
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
98 99 100
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
101 102 103 104
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
105
		return ret;
106
	}
107
#undef EXIT_COND
108

109
	return 0;
110 111
}

112
int i915_mutex_lock_interruptible(struct drm_device *dev)
113
{
114
	struct drm_i915_private *dev_priv = dev->dev_private;
115 116
	int ret;

117
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 119 120 121 122 123 124
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

125
	WARN_ON(i915_verify_lists(dev));
126 127
	return 0;
}
128

129 130
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131
			    struct drm_file *file)
132
{
133
	struct drm_i915_private *dev_priv = dev->dev_private;
134
	struct drm_i915_gem_get_aperture *args = data;
135 136
	struct i915_gtt *ggtt = &dev_priv->gtt;
	struct i915_vma *vma;
137
	size_t pinned;
138

139
	pinned = 0;
140
	mutex_lock(&dev->struct_mutex);
141 142 143 144 145 146
	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
		if (vma->pin_count)
			pinned += vma->node.size;
	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
		if (vma->pin_count)
			pinned += vma->node.size;
147
	mutex_unlock(&dev->struct_mutex);
148

149
	args->aper_size = dev_priv->gtt.base.total;
150
	args->aper_available_size = args->aper_size - pinned;
151

152 153 154
	return 0;
}

155 156
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157
{
158 159 160 161 162
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
198

199 200 201 202 203 204 205 206 207 208 209 210 211
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
212

213 214 215 216 217 218 219 220 221 222 223 224 225
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
226
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227
		char *vaddr = obj->phys_handle->vaddr;
228 229 230
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 232 233 234 235 236 237 238 239 240 241 242 243 244
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
245
				mark_page_accessed(page);
246
			page_cache_release(page);
247 248
			vaddr += PAGE_SIZE;
		}
249
		obj->dirty = 0;
250 251
	}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
283 284 285 286 287 288 289
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
290
	int ret;
291 292 293 294 295 296 297 298 299 300 301 302 303 304

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

305 306 307 308
	ret = drop_pages(obj);
	if (ret)
		return ret;

309 310 311 312 313 314
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
315 316 317
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
318 319 320 321 322 323 324 325 326 327
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
328
	int ret = 0;
329 330 331 332 333 334 335

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
336

337
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 339 340 341 342 343 344 345 346 347
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
348 349 350 351
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
352 353
	}

354
	drm_clflush_virt_range(vaddr, args->size);
355
	i915_gem_chipset_flush(dev);
356 357

out:
358
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359
	return ret;
360 361
}

362 363 364
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
365
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 367 368 369 370
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371
	kmem_cache_free(dev_priv->objects, obj);
372 373
}

374 375 376 377 378
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
379
{
380
	struct drm_i915_gem_object *obj;
381 382
	int ret;
	u32 handle;
383

384
	size = roundup(size, PAGE_SIZE);
385 386
	if (size == 0)
		return -EINVAL;
387 388

	/* Allocate the new object */
389
	obj = i915_gem_alloc_object(dev, size);
390 391 392
	if (obj == NULL)
		return -ENOMEM;

393
	ret = drm_gem_handle_create(file, &obj->base, &handle);
394
	/* drop reference from allocate - handle holds it now */
395 396 397
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
398

399
	*handle_p = handle;
400 401 402
	return 0;
}

403 404 405 406 407 408
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
409
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 411
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
412
			       args->size, &args->handle);
413 414 415 416 417 418 419 420 421 422
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
423

424
	return i915_gem_create(file, dev,
425
			       args->size, &args->handle);
426 427
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

454
static inline int
455 456
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

516 517 518
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
519
static int
520 521 522 523 524 525 526
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

527
	if (unlikely(page_do_bit17_swizzling))
528 529 530 531 532 533 534 535 536 537 538
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

539
	return ret ? -EFAULT : 0;
540 541
}

542 543 544 545
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
546
	if (unlikely(swizzled)) {
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

564 565 566 567 568 569 570 571 572 573 574 575
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
576 577 578
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
579 580 581 582 583 584 585 586 587 588 589

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

590
	return ret ? - EFAULT : 0;
591 592
}

593
static int
594 595 596 597
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
598
{
599
	char __user *user_data;
600
	ssize_t remain;
601
	loff_t offset;
602
	int shmem_page_offset, page_length, ret = 0;
603
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604
	int prefaulted = 0;
605
	int needs_clflush = 0;
606
	struct sg_page_iter sg_iter;
607

V
Ville Syrjälä 已提交
608
	user_data = to_user_ptr(args->data_ptr);
609 610
	remain = args->size;

611
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612

613
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 615 616
	if (ret)
		return ret;

617
	offset = args->offset;
618

619 620
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
621
		struct page *page = sg_page_iter_page(&sg_iter);
622 623 624 625

		if (remain <= 0)
			break;

626 627 628 629 630
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
631
		shmem_page_offset = offset_in_page(offset);
632 633 634 635
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

636 637 638
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

639 640 641 642 643
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
644 645 646

		mutex_unlock(&dev->struct_mutex);

647
		if (likely(!i915.prefault_disable) && !prefaulted) {
648
			ret = fault_in_multipages_writeable(user_data, remain);
649 650 651 652 653 654 655
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
656

657 658 659
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
660

661
		mutex_lock(&dev->struct_mutex);
662 663

		if (ret)
664 665
			goto out;

666
next_page:
667
		remain -= page_length;
668
		user_data += page_length;
669 670 671
		offset += page_length;
	}

672
out:
673 674
	i915_gem_object_unpin_pages(obj);

675 676 677
	return ret;
}

678 679 680 681 682 683 684
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685
		     struct drm_file *file)
686 687
{
	struct drm_i915_gem_pread *args = data;
688
	struct drm_i915_gem_object *obj;
689
	int ret = 0;
690

691 692 693 694
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
695
		       to_user_ptr(args->data_ptr),
696 697 698
		       args->size))
		return -EFAULT;

699
	ret = i915_mutex_lock_interruptible(dev);
700
	if (ret)
701
		return ret;
702

703
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704
	if (&obj->base == NULL) {
705 706
		ret = -ENOENT;
		goto unlock;
707
	}
708

709
	/* Bounds check source.  */
710 711
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
712
		ret = -EINVAL;
713
		goto out;
C
Chris Wilson 已提交
714 715
	}

716 717 718 719 720 721 722 723
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
724 725
	trace_i915_gem_object_pread(obj, args->offset, args->size);

726
	ret = i915_gem_shmem_pread(dev, obj, args, file);
727

728
out:
729
	drm_gem_object_unreference(&obj->base);
730
unlock:
731
	mutex_unlock(&dev->struct_mutex);
732
	return ret;
733 734
}

735 736
/* This is the fast write path which cannot handle
 * page faults in the source data
737
 */
738 739 740 741 742 743

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
744
{
745 746
	void __iomem *vaddr_atomic;
	void *vaddr;
747
	unsigned long unwritten;
748

P
Peter Zijlstra 已提交
749
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 751 752
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
753
						      user_data, length);
P
Peter Zijlstra 已提交
754
	io_mapping_unmap_atomic(vaddr_atomic);
755
	return unwritten;
756 757
}

758 759 760 761
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
762
static int
763 764
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
765
			 struct drm_i915_gem_pwrite *args,
766
			 struct drm_file *file)
767
{
768
	struct drm_i915_private *dev_priv = dev->dev_private;
769
	ssize_t remain;
770
	loff_t offset, page_base;
771
	char __user *user_data;
D
Daniel Vetter 已提交
772 773
	int page_offset, page_length, ret;

774
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
775 776 777 778 779 780 781 782 783 784
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
785

V
Ville Syrjälä 已提交
786
	user_data = to_user_ptr(args->data_ptr);
787 788
	remain = args->size;

789
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790

791
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792

793 794 795
	while (remain > 0) {
		/* Operation in this page
		 *
796 797 798
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
799
		 */
800 801
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
802 803 804 805 806
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
807 808
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
809
		 */
B
Ben Widawsky 已提交
810
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
811 812
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
813
			goto out_flush;
D
Daniel Vetter 已提交
814
		}
815

816 817 818
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
819 820
	}

821
out_flush:
822
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
823
out_unpin:
B
Ben Widawsky 已提交
824
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
825
out:
826
	return ret;
827 828
}

829 830 831 832
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
833
static int
834 835 836 837 838
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
839
{
840
	char *vaddr;
841
	int ret;
842

843
	if (unlikely(page_do_bit17_swizzling))
844
		return -EINVAL;
845

846 847 848 849
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
850 851
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
852 853 854 855
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
856

857
	return ret ? -EFAULT : 0;
858 859
}

860 861
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
862
static int
863 864 865 866 867
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
868
{
869 870
	char *vaddr;
	int ret;
871

872
	vaddr = kmap(page);
873
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 875 876
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
877 878
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 880
						user_data,
						page_length);
881 882 883 884 885
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
886 887 888
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
889
	kunmap(page);
890

891
	return ret ? -EFAULT : 0;
892 893 894
}

static int
895 896 897 898
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
899 900
{
	ssize_t remain;
901 902
	loff_t offset;
	char __user *user_data;
903
	int shmem_page_offset, page_length, ret = 0;
904
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905
	int hit_slowpath = 0;
906 907
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
908
	struct sg_page_iter sg_iter;
909

V
Ville Syrjälä 已提交
910
	user_data = to_user_ptr(args->data_ptr);
911 912
	remain = args->size;

913
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914

915 916 917 918 919
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
920
		needs_clflush_after = cpu_write_needs_clflush(obj);
921 922 923
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
924
	}
925 926 927 928 929
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
930

931 932 933 934
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

935
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936

937 938
	i915_gem_object_pin_pages(obj);

939
	offset = args->offset;
940
	obj->dirty = 1;
941

942 943
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
944
		struct page *page = sg_page_iter_page(&sg_iter);
945
		int partial_cacheline_write;
946

947 948 949
		if (remain <= 0)
			break;

950 951 952 953 954
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
955
		shmem_page_offset = offset_in_page(offset);
956 957 958 959 960

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

961 962 963 964 965 966 967
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

968 969 970
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

971 972 973 974 975 976
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
977 978 979

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
980 981 982 983
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
984

985
		mutex_lock(&dev->struct_mutex);
986 987

		if (ret)
988 989
			goto out;

990
next_page:
991
		remain -= page_length;
992
		user_data += page_length;
993
		offset += page_length;
994 995
	}

996
out:
997 998
	i915_gem_object_unpin_pages(obj);

999
	if (hit_slowpath) {
1000 1001 1002 1003 1004 1005 1006
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007
			if (i915_gem_clflush_object(obj, obj->pin_display))
1008
				needs_clflush_after = true;
1009
		}
1010
	}
1011

1012
	if (needs_clflush_after)
1013
		i915_gem_chipset_flush(dev);
1014 1015
	else
		obj->cache_dirty = true;
1016

1017
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018
	return ret;
1019 1020 1021 1022 1023 1024 1025 1026 1027
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028
		      struct drm_file *file)
1029
{
1030
	struct drm_i915_private *dev_priv = dev->dev_private;
1031
	struct drm_i915_gem_pwrite *args = data;
1032
	struct drm_i915_gem_object *obj;
1033 1034 1035 1036 1037 1038
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1039
		       to_user_ptr(args->data_ptr),
1040 1041 1042
		       args->size))
		return -EFAULT;

1043
	if (likely(!i915.prefault_disable)) {
1044 1045 1046 1047 1048
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1049

1050 1051
	intel_runtime_pm_get(dev_priv);

1052
	ret = i915_mutex_lock_interruptible(dev);
1053
	if (ret)
1054
		goto put_rpm;
1055

1056
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057
	if (&obj->base == NULL) {
1058 1059
		ret = -ENOENT;
		goto unlock;
1060
	}
1061

1062
	/* Bounds check destination. */
1063 1064
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1065
		ret = -EINVAL;
1066
		goto out;
C
Chris Wilson 已提交
1067 1068
	}

1069 1070 1071 1072 1073 1074 1075 1076
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1077 1078
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1079
	ret = -EFAULT;
1080 1081 1082 1083 1084 1085
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1086 1087 1088
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1089
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1090 1091 1092
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1093
	}
1094

1095 1096 1097 1098 1099 1100
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1101

1102
out:
1103
	drm_gem_object_unreference(&obj->base);
1104
unlock:
1105
	mutex_unlock(&dev->struct_mutex);
1106 1107 1108
put_rpm:
	intel_runtime_pm_put(dev_priv);

1109 1110 1111
	return ret;
}

1112
int
1113
i915_gem_check_wedge(struct i915_gpu_error *error,
1114 1115
		     bool interruptible)
{
1116
	if (i915_reset_in_progress(error)) {
1117 1118 1119 1120 1121
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1122 1123
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1124 1125
			return -EIO;

1126 1127 1128 1129 1130 1131 1132
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1133 1134 1135 1136 1137
	}

	return 0;
}

1138 1139 1140 1141 1142 1143
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1144
		       struct intel_engine_cs *ring)
1145 1146 1147 1148
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1181
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182
{
1183
	unsigned long timeout;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1195

D
Daniel Vetter 已提交
1196
	if (i915_gem_request_get_ring(req)->irq_refcount)
1197 1198
		return -EBUSY;

1199
	timeout = local_clock_us(&cpu) + 5;
1200
	while (!need_resched()) {
D
Daniel Vetter 已提交
1201
		if (i915_gem_request_completed(req, true))
1202 1203
			return 0;

1204 1205 1206
		if (signal_pending_state(state, current))
			break;

1207
		if (busywait_stop(timeout, cpu))
1208
			break;
1209

1210 1211
		cpu_relax_lowlatency();
	}
D
Daniel Vetter 已提交
1212
	if (i915_gem_request_completed(req, false))
1213 1214 1215
		return 0;

	return -EAGAIN;
1216 1217
}

1218
/**
1219 1220 1221
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1222 1223 1224
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1225 1226 1227 1228 1229 1230 1231
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1232
 * Returns 0 if the request was found within the alloted time. Else returns the
1233 1234
 * errno with remaining time filled in timeout argument.
 */
1235
int __i915_wait_request(struct drm_i915_gem_request *req,
1236
			unsigned reset_counter,
1237
			bool interruptible,
1238
			s64 *timeout,
1239
			struct intel_rps_client *rps)
1240
{
1241
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1242
	struct drm_device *dev = ring->dev;
1243
	struct drm_i915_private *dev_priv = dev->dev_private;
1244 1245
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1246
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1247
	DEFINE_WAIT(wait);
1248
	unsigned long timeout_expire;
1249
	s64 before, now;
1250 1251
	int ret;

1252
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1253

1254 1255 1256
	if (list_empty(&req->list))
		return 0;

1257
	if (i915_gem_request_completed(req, true))
1258 1259
		return 0;

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
	}
1270

1271
	if (INTEL_INFO(dev_priv)->gen >= 6)
1272
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1273

1274
	/* Record current time in case interrupted by signal, or wedged */
1275
	trace_i915_gem_request_wait_begin(req);
1276
	before = ktime_get_raw_ns();
1277 1278

	/* Optimistic spin for the next jiffie before touching IRQs */
1279
	ret = __i915_spin_request(req, state);
1280 1281 1282 1283 1284 1285 1286 1287
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1288 1289
	for (;;) {
		struct timer_list timer;
1290

1291
		prepare_to_wait(&ring->irq_queue, &wait, state);
1292

1293 1294
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1295 1296 1297 1298 1299 1300 1301 1302
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1303

1304
		if (i915_gem_request_completed(req, false)) {
1305 1306 1307
			ret = 0;
			break;
		}
1308

1309
		if (signal_pending_state(state, current)) {
1310 1311 1312 1313
			ret = -ERESTARTSYS;
			break;
		}

1314
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1315 1316 1317 1318 1319 1320
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1321 1322
			unsigned long expire;

1323
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1324
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1325 1326 1327
			mod_timer(&timer, expire);
		}

1328
		io_schedule();
1329 1330 1331 1332 1333 1334

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1335 1336
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1337 1338

	finish_wait(&ring->irq_queue, &wait);
1339

1340 1341 1342 1343
out:
	now = ktime_get_raw_ns();
	trace_i915_gem_request_wait_end(req);

1344
	if (timeout) {
1345 1346 1347
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1358 1359
	}

1360
	return ret;
1361 1362
}

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_private *dev_private;
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	dev_private = req->ring->dev->dev_private;
	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1402 1403 1404

	put_pid(request->pid);
	request->pid = NULL;
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->ring;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1448
/**
1449
 * Waits for a request to be signaled, and cleans up the
1450 1451 1452
 * request and object lists appropriately for that event.
 */
int
1453
i915_wait_request(struct drm_i915_gem_request *req)
1454
{
1455 1456 1457
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1458 1459
	int ret;

1460 1461 1462 1463 1464 1465
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1466 1467
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1468
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1469 1470 1471
	if (ret)
		return ret;

1472 1473
	ret = __i915_wait_request(req,
				  atomic_read(&dev_priv->gpu_error.reset_counter),
1474
				  interruptible, NULL, NULL);
1475 1476
	if (ret)
		return ret;
1477

1478
	__i915_gem_request_retire__upto(req);
1479 1480 1481
	return 0;
}

1482 1483 1484 1485
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1486
int
1487 1488 1489
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1490
	int ret, i;
1491

1492
	if (!obj->active)
1493 1494
		return 0;

1495 1496 1497 1498 1499
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1500

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
			i = obj->last_write_req->ring->id;
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
		RQ_BUG_ON(obj->active);
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
	int ring = req->ring->id;

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1536 1537
}

1538 1539 1540 1541 1542
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1543
					    struct intel_rps_client *rps,
1544 1545 1546 1547
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1548
	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1549
	unsigned reset_counter;
1550
	int ret, i, n = 0;
1551 1552 1553 1554

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1555
	if (!obj->active)
1556 1557
		return 0;

1558
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1559 1560 1561
	if (ret)
		return ret;

1562
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1584
	mutex_unlock(&dev->struct_mutex);
1585 1586
	for (i = 0; ret == 0 && i < n; i++)
		ret = __i915_wait_request(requests[i], reset_counter, true,
1587
					  NULL, rps);
1588 1589
	mutex_lock(&dev->struct_mutex);

1590 1591 1592 1593 1594 1595 1596
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1597 1598
}

1599 1600 1601 1602 1603 1604
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1605
/**
1606 1607
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1608 1609 1610
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1611
			  struct drm_file *file)
1612 1613
{
	struct drm_i915_gem_set_domain *args = data;
1614
	struct drm_i915_gem_object *obj;
1615 1616
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1617 1618
	int ret;

1619
	/* Only handle setting domains to types used by the CPU. */
1620
	if (write_domain & I915_GEM_GPU_DOMAINS)
1621 1622
		return -EINVAL;

1623
	if (read_domains & I915_GEM_GPU_DOMAINS)
1624 1625 1626 1627 1628 1629 1630 1631
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1632
	ret = i915_mutex_lock_interruptible(dev);
1633
	if (ret)
1634
		return ret;
1635

1636
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1637
	if (&obj->base == NULL) {
1638 1639
		ret = -ENOENT;
		goto unlock;
1640
	}
1641

1642 1643 1644 1645
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1646
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1647
							  to_rps_client(file),
1648
							  !write_domain);
1649 1650 1651
	if (ret)
		goto unref;

1652
	if (read_domains & I915_GEM_DOMAIN_GTT)
1653
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1654
	else
1655
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1656

1657 1658 1659 1660 1661
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1662
unref:
1663
	drm_gem_object_unreference(&obj->base);
1664
unlock:
1665 1666 1667 1668 1669 1670 1671 1672 1673
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1674
			 struct drm_file *file)
1675 1676
{
	struct drm_i915_gem_sw_finish *args = data;
1677
	struct drm_i915_gem_object *obj;
1678 1679
	int ret = 0;

1680
	ret = i915_mutex_lock_interruptible(dev);
1681
	if (ret)
1682
		return ret;
1683

1684
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1685
	if (&obj->base == NULL) {
1686 1687
		ret = -ENOENT;
		goto unlock;
1688 1689 1690
	}

	/* Pinned buffers may be scanout, so flush the cache */
1691
	if (obj->pin_display)
1692
		i915_gem_object_flush_cpu_write_domain(obj);
1693

1694
	drm_gem_object_unreference(&obj->base);
1695
unlock:
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1716 1717 1718
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1719
		    struct drm_file *file)
1720 1721 1722 1723 1724
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1725 1726 1727 1728 1729 1730
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1731
	obj = drm_gem_object_lookup(dev, file, args->handle);
1732
	if (obj == NULL)
1733
		return -ENOENT;
1734

1735 1736 1737 1738 1739 1740 1741 1742
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1743
	addr = vm_mmap(obj->filp, 0, args->size,
1744 1745
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1759
	drm_gem_object_unreference_unlocked(obj);
1760 1761 1762 1763 1764 1765 1766 1767
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1768 1769
/**
 * i915_gem_fault - fault a page into the GTT
1770 1771
 * @vma: VMA in question
 * @vmf: fault info
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1786 1787
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1788
	struct drm_i915_private *dev_priv = dev->dev_private;
1789
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1790 1791 1792
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1793
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1794

1795 1796
	intel_runtime_pm_get(dev_priv);

1797 1798 1799 1800
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1801 1802 1803
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1804

C
Chris Wilson 已提交
1805 1806
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1807 1808 1809 1810 1811 1812 1813 1814 1815
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1816 1817
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1818
		ret = -EFAULT;
1819 1820 1821
		goto unlock;
	}

1822
	/* Use a partial view if the object is bigger than the aperture. */
1823 1824
	if (obj->base.size >= dev_priv->gtt.mappable_end &&
	    obj->tiling_mode == I915_TILING_NONE) {
1825
		static const unsigned int chunk_size = 256; // 1 MiB
1826

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1839 1840
	if (ret)
		goto unlock;
1841

1842 1843 1844
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1845

1846
	ret = i915_gem_object_get_fence(obj);
1847
	if (ret)
1848
		goto unpin;
1849

1850
	/* Finally, remap it using the new GTT offset */
1851 1852
	pfn = dev_priv->gtt.mappable_base +
		i915_gem_obj_ggtt_offset_view(obj, &view);
1853
	pfn >>= PAGE_SHIFT;
1854

1855 1856 1857 1858 1859 1860 1861 1862 1863
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1864

1865 1866
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1867 1868 1869 1870 1871
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1893
unpin:
1894
	i915_gem_object_ggtt_unpin_view(obj, &view);
1895
unlock:
1896
	mutex_unlock(&dev->struct_mutex);
1897
out:
1898
	switch (ret) {
1899
	case -EIO:
1900 1901 1902 1903 1904 1905 1906
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1907 1908 1909
			ret = VM_FAULT_SIGBUS;
			break;
		}
1910
	case -EAGAIN:
D
Daniel Vetter 已提交
1911 1912 1913 1914
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1915
		 */
1916 1917
	case 0:
	case -ERESTARTSYS:
1918
	case -EINTR:
1919 1920 1921 1922 1923
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1924 1925
		ret = VM_FAULT_NOPAGE;
		break;
1926
	case -ENOMEM:
1927 1928
		ret = VM_FAULT_OOM;
		break;
1929
	case -ENOSPC:
1930
	case -EFAULT:
1931 1932
		ret = VM_FAULT_SIGBUS;
		break;
1933
	default:
1934
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1935 1936
		ret = VM_FAULT_SIGBUS;
		break;
1937
	}
1938 1939 1940

	intel_runtime_pm_put(dev_priv);
	return ret;
1941 1942
}

1943 1944 1945 1946
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1947
 * Preserve the reservation of the mmapping with the DRM core code, but
1948 1949 1950 1951 1952 1953 1954 1955 1956
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1957
void
1958
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1959
{
1960 1961
	if (!obj->fault_mappable)
		return;
1962

1963 1964
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1965
	obj->fault_mappable = false;
1966 1967
}

1968 1969 1970 1971 1972 1973 1974 1975 1976
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1977
uint32_t
1978
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1979
{
1980
	uint32_t gtt_size;
1981 1982

	if (INTEL_INFO(dev)->gen >= 4 ||
1983 1984
	    tiling_mode == I915_TILING_NONE)
		return size;
1985 1986 1987

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1988
		gtt_size = 1024*1024;
1989
	else
1990
		gtt_size = 512*1024;
1991

1992 1993
	while (gtt_size < size)
		gtt_size <<= 1;
1994

1995
	return gtt_size;
1996 1997
}

1998 1999 2000 2001 2002
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
2003
 * potential fence register mapping.
2004
 */
2005 2006 2007
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2008 2009 2010 2011 2012
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2013
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2014
	    tiling_mode == I915_TILING_NONE)
2015 2016
		return 4096;

2017 2018 2019 2020
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2021
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2022 2023
}

2024 2025 2026 2027 2028
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2029
	if (drm_vma_node_has_offset(&obj->base.vma_node))
2030 2031
		return 0;

2032 2033
	dev_priv->mm.shrinker_no_lock_stealing = true;

2034 2035
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2036
		goto out;
2037 2038 2039 2040 2041 2042 2043 2044

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2045 2046 2047 2048 2049
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2050 2051
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2052
		goto out;
2053 2054

	i915_gem_shrink_all(dev_priv);
2055 2056 2057 2058 2059
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2060 2061 2062 2063 2064 2065 2066
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2067
int
2068 2069
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2070
		  uint32_t handle,
2071
		  uint64_t *offset)
2072
{
2073
	struct drm_i915_gem_object *obj;
2074 2075
	int ret;

2076
	ret = i915_mutex_lock_interruptible(dev);
2077
	if (ret)
2078
		return ret;
2079

2080
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2081
	if (&obj->base == NULL) {
2082 2083 2084
		ret = -ENOENT;
		goto unlock;
	}
2085

2086
	if (obj->madv != I915_MADV_WILLNEED) {
2087
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2088
		ret = -EFAULT;
2089
		goto out;
2090 2091
	}

2092 2093 2094
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2095

2096
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2097

2098
out:
2099
	drm_gem_object_unreference(&obj->base);
2100
unlock:
2101
	mutex_unlock(&dev->struct_mutex);
2102
	return ret;
2103 2104
}

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2126
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2127 2128
}

D
Daniel Vetter 已提交
2129 2130 2131
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2132
{
2133
	i915_gem_object_free_mmap_offset(obj);
2134

2135 2136
	if (obj->base.filp == NULL)
		return;
2137

D
Daniel Vetter 已提交
2138 2139 2140 2141 2142
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2143
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2144 2145
	obj->madv = __I915_MADV_PURGED;
}
2146

2147 2148 2149
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2150
{
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2165 2166
}

2167
static void
2168
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2169
{
2170 2171
	struct sg_page_iter sg_iter;
	int ret;
2172

2173
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2174

C
Chris Wilson 已提交
2175 2176 2177 2178 2179 2180
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2181
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2182 2183 2184
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2185 2186
	i915_gem_gtt_finish_object(obj);

2187
	if (i915_gem_object_needs_bit17_swizzle(obj))
2188 2189
		i915_gem_object_save_bit_17_swizzle(obj);

2190 2191
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2192

2193
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2194
		struct page *page = sg_page_iter_page(&sg_iter);
2195

2196
		if (obj->dirty)
2197
			set_page_dirty(page);
2198

2199
		if (obj->madv == I915_MADV_WILLNEED)
2200
			mark_page_accessed(page);
2201

2202
		page_cache_release(page);
2203
	}
2204
	obj->dirty = 0;
2205

2206 2207
	sg_free_table(obj->pages);
	kfree(obj->pages);
2208
}
C
Chris Wilson 已提交
2209

2210
int
2211 2212 2213 2214
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2215
	if (obj->pages == NULL)
2216 2217
		return 0;

2218 2219 2220
	if (obj->pages_pin_count)
		return -EBUSY;

2221
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2222

2223 2224 2225
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2226
	list_del(&obj->global_list);
2227

2228
	ops->put_pages(obj);
2229
	obj->pages = NULL;
2230

2231
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2232 2233 2234 2235

	return 0;
}

2236
static int
C
Chris Wilson 已提交
2237
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2238
{
C
Chris Wilson 已提交
2239
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2240 2241
	int page_count, i;
	struct address_space *mapping;
2242 2243
	struct sg_table *st;
	struct scatterlist *sg;
2244
	struct sg_page_iter sg_iter;
2245
	struct page *page;
2246
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2247
	int ret;
C
Chris Wilson 已提交
2248
	gfp_t gfp;
2249

C
Chris Wilson 已提交
2250 2251 2252 2253 2254 2255 2256
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2257 2258 2259 2260
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2261
	page_count = obj->base.size / PAGE_SIZE;
2262 2263
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2264
		return -ENOMEM;
2265
	}
2266

2267 2268 2269 2270 2271
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2272
	mapping = file_inode(obj->base.filp)->i_mapping;
2273
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2274
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2275 2276 2277
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2278 2279
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2280 2281 2282 2283 2284
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2285 2286 2287 2288 2289 2290 2291 2292
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2293
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2294 2295
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2296
				goto err_pages;
I
Imre Deak 已提交
2297
			}
C
Chris Wilson 已提交
2298
		}
2299 2300 2301 2302 2303 2304 2305 2306
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2307 2308 2309 2310 2311 2312 2313 2314 2315
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2316 2317 2318

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2319
	}
2320 2321 2322 2323
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2324 2325
	obj->pages = st;

I
Imre Deak 已提交
2326 2327 2328 2329
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2330
	if (i915_gem_object_needs_bit17_swizzle(obj))
2331 2332
		i915_gem_object_do_bit_17_swizzle(obj);

2333 2334 2335 2336
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2337 2338 2339
	return 0;

err_pages:
2340 2341
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2342
		page_cache_release(sg_page_iter_page(&sg_iter));
2343 2344
	sg_free_table(st);
	kfree(st);
2345 2346 2347 2348 2349 2350 2351 2352 2353

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2354 2355 2356 2357
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2358 2359
}

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2374
	if (obj->pages)
2375 2376
		return 0;

2377
	if (obj->madv != I915_MADV_WILLNEED) {
2378
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2379
		return -EFAULT;
2380 2381
	}

2382 2383
	BUG_ON(obj->pages_pin_count);

2384 2385 2386 2387
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2388
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2389 2390 2391 2392

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2393
	return 0;
2394 2395
}

2396
void i915_vma_move_to_active(struct i915_vma *vma,
2397
			     struct drm_i915_gem_request *req)
2398
{
2399
	struct drm_i915_gem_object *obj = vma->obj;
2400 2401 2402
	struct intel_engine_cs *ring;

	ring = i915_gem_request_get_ring(req);
2403 2404

	/* Add a reference if we're newly entering the active list. */
2405
	if (obj->active == 0)
2406
		drm_gem_object_reference(&obj->base);
2407
	obj->active |= intel_ring_flag(ring);
2408

2409
	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2410
	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2411

2412
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2413 2414
}

2415 2416
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2417
{
2418 2419 2420 2421
	RQ_BUG_ON(obj->last_write_req == NULL);
	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));

	i915_gem_request_assign(&obj->last_write_req, NULL);
2422
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2423 2424
}

2425
static void
2426
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2427
{
2428
	struct i915_vma *vma;
2429

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
	RQ_BUG_ON(!(obj->active & (1 << ring)));

	list_del_init(&obj->ring_list[ring]);
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2442

2443 2444 2445 2446 2447 2448 2449
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2450 2451 2452
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2453
	}
2454

2455
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2456
	drm_gem_object_unreference(&obj->base);
2457 2458
}

2459
static int
2460
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2461
{
2462
	struct drm_i915_private *dev_priv = dev->dev_private;
2463
	struct intel_engine_cs *ring;
2464
	int ret, i, j;
2465

2466
	/* Carefully retire all requests without writing to the rings */
2467
	for_each_ring(ring, dev_priv, i) {
2468 2469 2470
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2471 2472
	}
	i915_gem_retire_requests(dev);
2473 2474

	/* Finally reset hw state */
2475
	for_each_ring(ring, dev_priv, i) {
2476
		intel_ring_init_seqno(ring, seqno);
2477

2478 2479
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2480
	}
2481

2482
	return 0;
2483 2484
}

2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2511 2512
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2513
{
2514 2515 2516 2517
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2518
		int ret = i915_gem_init_seqno(dev, 0);
2519 2520
		if (ret)
			return ret;
2521

2522 2523
		dev_priv->next_seqno = 1;
	}
2524

2525
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2526
	return 0;
2527 2528
}

2529 2530 2531 2532 2533
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2534
void __i915_add_request(struct drm_i915_gem_request *request,
2535 2536
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2537
{
2538 2539
	struct intel_engine_cs *ring;
	struct drm_i915_private *dev_priv;
2540
	struct intel_ringbuffer *ringbuf;
2541
	u32 request_start;
2542 2543
	int ret;

2544
	if (WARN_ON(request == NULL))
2545
		return;
2546

2547 2548 2549 2550
	ring = request->ring;
	dev_priv = ring->dev->dev_private;
	ringbuf = request->ringbuf;

2551 2552 2553 2554 2555 2556 2557
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	intel_ring_reserved_space_use(ringbuf);

2558
	request_start = intel_ring_get_tail(ringbuf);
2559 2560 2561 2562 2563 2564 2565
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2566 2567
	if (flush_caches) {
		if (i915.enable_execlists)
2568
			ret = logical_ring_flush_all_caches(request);
2569
		else
2570
			ret = intel_ring_flush_all_caches(request);
2571 2572 2573
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2574

2575 2576 2577 2578 2579
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2580
	request->postfix = intel_ring_get_tail(ringbuf);
2581

2582
	if (i915.enable_execlists)
2583
		ret = ring->emit_request(request);
2584
	else {
2585
		ret = ring->add_request(request);
2586 2587

		request->tail = intel_ring_get_tail(ringbuf);
2588
	}
2589 2590
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2591

2592 2593 2594 2595 2596 2597 2598 2599
	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2600
	request->batch_obj = obj;
2601

2602
	request->emitted_jiffies = jiffies;
2603
	ring->last_submitted_seqno = request->seqno;
2604
	list_add_tail(&request->list, &ring->request_list);
2605

2606
	trace_i915_gem_request_add(request);
C
Chris Wilson 已提交
2607

2608
	i915_queue_hangcheck(ring->dev);
2609

2610 2611 2612 2613
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2614

2615 2616
	/* Sanity check that the reserved size was large enough. */
	intel_ring_reserved_space_end(ringbuf);
2617 2618
}

2619
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2620
				   const struct intel_context *ctx)
2621
{
2622
	unsigned long elapsed;
2623

2624 2625 2626
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2627 2628
		return true;

2629 2630
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2631
		if (!i915_gem_context_is_default(ctx)) {
2632
			DRM_DEBUG("context hanging too fast, banning!\n");
2633
			return true;
2634 2635 2636
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2637
			return true;
2638
		}
2639 2640 2641 2642 2643
	}

	return false;
}

2644
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2645
				  struct intel_context *ctx,
2646
				  const bool guilty)
2647
{
2648 2649 2650 2651
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2652

2653 2654 2655
	hs = &ctx->hang_stats;

	if (guilty) {
2656
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2657 2658 2659 2660
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2661 2662 2663
	}
}

2664 2665 2666 2667 2668 2669
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2670 2671 2672
	if (req->file_priv)
		i915_gem_request_remove_from_client(req);

2673 2674
	if (ctx) {
		if (i915.enable_execlists) {
2675 2676
			if (ctx != req->ring->default_context)
				intel_lr_context_unpin(req);
2677
		}
2678

2679 2680
		i915_gem_context_unreference(ctx);
	}
2681

2682
	kmem_cache_free(req->i915->requests, req);
2683 2684
}

2685
int i915_gem_request_alloc(struct intel_engine_cs *ring,
2686 2687
			   struct intel_context *ctx,
			   struct drm_i915_gem_request **req_out)
2688
{
2689
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
D
Daniel Vetter 已提交
2690
	struct drm_i915_gem_request *req;
2691 2692
	int ret;

2693 2694 2695
	if (!req_out)
		return -EINVAL;

2696
	*req_out = NULL;
2697

D
Daniel Vetter 已提交
2698 2699
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2700 2701
		return -ENOMEM;

D
Daniel Vetter 已提交
2702
	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2703 2704
	if (ret)
		goto err;
2705

2706 2707
	kref_init(&req->ref);
	req->i915 = dev_priv;
D
Daniel Vetter 已提交
2708
	req->ring = ring;
2709 2710
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2711 2712

	if (i915.enable_execlists)
2713
		ret = intel_logical_ring_alloc_request_extras(req);
2714
	else
D
Daniel Vetter 已提交
2715
		ret = intel_ring_alloc_request_extras(req);
2716 2717
	if (ret) {
		i915_gem_context_unreference(req->ctx);
2718
		goto err;
2719
	}
2720

2721 2722 2723 2724 2725 2726 2727
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	if (i915.enable_execlists)
		ret = intel_logical_ring_reserve_space(req);
	else
		ret = intel_ring_reserve_space(req);
	if (ret) {
		/*
		 * At this point, the request is fully allocated even if not
		 * fully prepared. Thus it can be cleaned up using the proper
		 * free code.
		 */
		i915_gem_request_cancel(req);
		return ret;
	}
2741

2742
	*req_out = req;
2743
	return 0;
2744 2745 2746 2747

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2748 2749
}

2750 2751 2752 2753 2754 2755 2756
void i915_gem_request_cancel(struct drm_i915_gem_request *req)
{
	intel_ring_reserved_space_cancel(req->ringbuf);

	i915_gem_request_unreference(req);
}

2757
struct drm_i915_gem_request *
2758
i915_gem_find_active_request(struct intel_engine_cs *ring)
2759
{
2760 2761 2762
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2763
		if (i915_gem_request_completed(request, false))
2764
			continue;
2765

2766
		return request;
2767
	}
2768 2769 2770 2771 2772

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2773
				       struct intel_engine_cs *ring)
2774 2775 2776 2777
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2778
	request = i915_gem_find_active_request(ring);
2779 2780 2781 2782 2783 2784

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2785
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2786 2787

	list_for_each_entry_continue(request, &ring->request_list, list)
2788
		i915_set_reset_status(dev_priv, request->ctx, false);
2789
}
2790

2791
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2792
					struct intel_engine_cs *ring)
2793
{
2794 2795
	struct intel_ringbuffer *buffer;

2796
	while (!list_empty(&ring->active_list)) {
2797
		struct drm_i915_gem_object *obj;
2798

2799 2800
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
2801
				       ring_list[ring->id]);
2802

2803
		i915_gem_object_retire__read(obj, ring->id);
2804
	}
2805

2806 2807 2808 2809 2810 2811
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2812 2813
	if (i915.enable_execlists) {
		spin_lock_irq(&ring->execlist_lock);
2814

2815 2816 2817
		/* list_splice_tail_init checks for empty lists */
		list_splice_tail_init(&ring->execlist_queue,
				      &ring->execlist_retired_req_list);
2818

2819
		spin_unlock_irq(&ring->execlist_lock);
2820
		intel_execlists_retire_requests(ring);
2821 2822
	}

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

2837
		i915_gem_request_retire(request);
2838
	}
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
	list_for_each_entry(buffer, &ring->buffers, link) {
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2851 2852
}

2853
void i915_gem_reset(struct drm_device *dev)
2854
{
2855
	struct drm_i915_private *dev_priv = dev->dev_private;
2856
	struct intel_engine_cs *ring;
2857
	int i;
2858

2859 2860 2861 2862 2863 2864 2865 2866
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2867
	for_each_ring(ring, dev_priv, i)
2868
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2869

2870 2871
	i915_gem_context_reset(dev);

2872
	i915_gem_restore_fences(dev);
2873 2874

	WARN_ON(i915_verify_lists(dev));
2875 2876 2877 2878 2879
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2880
void
2881
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2882
{
C
Chris Wilson 已提交
2883
	WARN_ON(i915_verify_lists(ring->dev));
2884

2885 2886 2887 2888
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2889
	 */
2890
	while (!list_empty(&ring->request_list)) {
2891 2892
		struct drm_i915_gem_request *request;

2893
		request = list_first_entry(&ring->request_list,
2894 2895 2896
					   struct drm_i915_gem_request,
					   list);

2897
		if (!i915_gem_request_completed(request, true))
2898 2899
			break;

2900
		i915_gem_request_retire(request);
2901
	}
2902

2903 2904 2905 2906 2907 2908 2909 2910 2911
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
2912
				      ring_list[ring->id]);
2913

2914
		if (!list_empty(&obj->last_read_req[ring->id]->list))
2915 2916
			break;

2917
		i915_gem_object_retire__read(obj, ring->id);
2918 2919
	}

2920 2921
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2922
		ring->irq_put(ring);
2923
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2924
	}
2925

C
Chris Wilson 已提交
2926
	WARN_ON(i915_verify_lists(ring->dev));
2927 2928
}

2929
bool
2930 2931
i915_gem_retire_requests(struct drm_device *dev)
{
2932
	struct drm_i915_private *dev_priv = dev->dev_private;
2933
	struct intel_engine_cs *ring;
2934
	bool idle = true;
2935
	int i;
2936

2937
	for_each_ring(ring, dev_priv, i) {
2938
		i915_gem_retire_requests_ring(ring);
2939
		idle &= list_empty(&ring->request_list);
2940 2941 2942 2943 2944 2945 2946 2947 2948
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2949 2950 2951 2952 2953 2954 2955 2956
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2957 2958
}

2959
static void
2960 2961
i915_gem_retire_work_handler(struct work_struct *work)
{
2962 2963 2964
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2965
	bool idle;
2966

2967
	/* Come back later if the device is busy... */
2968 2969 2970 2971
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2972
	}
2973
	if (!idle)
2974 2975
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2976
}
2977

2978 2979 2980 2981 2982
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2983
	struct drm_device *dev = dev_priv->dev;
2984 2985
	struct intel_engine_cs *ring;
	int i;
2986

2987 2988 2989
	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2990 2991 2992 2993 2994 2995 2996 2997 2998

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
2999

3000 3001
		mutex_unlock(&dev->struct_mutex);
	}
3002 3003
}

3004 3005 3006 3007 3008 3009 3010 3011
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3012
	int i;
3013 3014 3015

	if (!obj->active)
		return 0;
3016

3017 3018
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_request *req;
3019

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
3032 3033 3034 3035 3036
	}

	return 0;
}

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
3062
	struct drm_i915_private *dev_priv = dev->dev_private;
3063 3064
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3065
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3066
	unsigned reset_counter;
3067 3068
	int i, n = 0;
	int ret;
3069

3070 3071 3072
	if (args->flags != 0)
		return -EINVAL;

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3083 3084
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3085 3086 3087
	if (ret)
		goto out;

3088
	if (!obj->active)
3089
		goto out;
3090 3091

	/* Do this after OLR check to make sure we make forward progress polling
3092
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3093
	 */
3094
	if (args->timeout_ns == 0) {
3095 3096 3097 3098 3099
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3100
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3101 3102 3103 3104 3105 3106 3107 3108

	for (i = 0; i < I915_NUM_RINGS; i++) {
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3109 3110
	mutex_unlock(&dev->struct_mutex);

3111 3112 3113 3114
	for (i = 0; i < n; i++) {
		if (ret == 0)
			ret = __i915_wait_request(req[i], reset_counter, true,
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3115
						  to_rps_client(file));
3116 3117
		i915_gem_request_unreference__unlocked(req[i]);
	}
3118
	return ret;
3119 3120 3121 3122 3123 3124 3125

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3126 3127 3128
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3129 3130
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3131 3132 3133 3134
{
	struct intel_engine_cs *from;
	int ret;

3135
	from = i915_gem_request_get_ring(from_req);
3136 3137 3138
	if (to == from)
		return 0;

3139
	if (i915_gem_request_completed(from_req, true))
3140 3141 3142
		return 0;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3143
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3144
		ret = __i915_wait_request(from_req,
3145 3146 3147 3148
					  atomic_read(&i915->gpu_error.reset_counter),
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3149 3150 3151
		if (ret)
			return ret;

3152
		i915_gem_object_retire_request(obj, from_req);
3153 3154
	} else {
		int idx = intel_ring_sync_index(from, to);
3155 3156 3157
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3158 3159 3160 3161

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3162 3163 3164 3165 3166 3167
		if (*to_req == NULL) {
			ret = i915_gem_request_alloc(to, to->default_context, to_req);
			if (ret)
				return ret;
		}

3168 3169
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3184 3185 3186 3187 3188
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3189 3190 3191
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3192 3193 3194
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3195
 * rather than a particular GPU ring. Conceptually we serialise writes
3196
 * between engines inside the GPU. We only allow one engine to write
3197 3198 3199 3200 3201 3202 3203 3204 3205
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3206
 *
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3217 3218
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3219 3220
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3221 3222
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3223
{
3224 3225 3226
	const bool readonly = obj->base.pending_write_domain == 0;
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
	int ret, i, n;
3227

3228
	if (!obj->active)
3229 3230
		return 0;

3231 3232
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3233

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++)
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3244
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3245 3246 3247
		if (ret)
			return ret;
	}
3248

3249
	return 0;
3250 3251
}

3252 3253 3254 3255 3256 3257 3258
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3259 3260 3261
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3262 3263 3264
	/* Wait for any direct GTT access to complete */
	mb();

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3276
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3277
{
3278
	struct drm_i915_gem_object *obj = vma->obj;
3279
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3280
	int ret;
3281

3282
	if (list_empty(&vma->vma_link))
3283 3284
		return 0;

3285 3286 3287 3288
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3289

B
Ben Widawsky 已提交
3290
	if (vma->pin_count)
3291
		return -EBUSY;
3292

3293 3294
	BUG_ON(obj->pages == NULL);

3295 3296 3297 3298 3299
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3300

3301 3302
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3303
		i915_gem_object_finish_gtt(obj);
3304

3305 3306 3307 3308 3309
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3310

3311
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3312

3313
	vma->vm->unbind_vma(vma);
3314
	vma->bound = 0;
3315

3316
	list_del_init(&vma->mm_list);
3317 3318 3319 3320 3321 3322 3323
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3324
		vma->ggtt_view.pages = NULL;
3325
	}
3326

B
Ben Widawsky 已提交
3327 3328 3329 3330
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3331
	 * no more VMAs exist. */
I
Imre Deak 已提交
3332
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3333
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3334

3335 3336 3337 3338 3339 3340
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3341
	return 0;
3342 3343
}

3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3354
int i915_gpu_idle(struct drm_device *dev)
3355
{
3356
	struct drm_i915_private *dev_priv = dev->dev_private;
3357
	struct intel_engine_cs *ring;
3358
	int ret, i;
3359 3360

	/* Flush everything onto the inactive list. */
3361
	for_each_ring(ring, dev_priv, i) {
3362
		if (!i915.enable_execlists) {
3363 3364 3365
			struct drm_i915_gem_request *req;

			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3366 3367
			if (ret)
				return ret;
3368

3369
			ret = i915_switch_context(req);
3370 3371 3372 3373 3374
			if (ret) {
				i915_gem_request_cancel(req);
				return ret;
			}

3375
			i915_add_request_no_flush(req);
3376
		}
3377

3378
		ret = intel_ring_idle(ring);
3379 3380 3381
		if (ret)
			return ret;
	}
3382

3383
	WARN_ON(i915_verify_lists(dev));
3384
	return 0;
3385 3386
}

3387
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3388 3389
				     unsigned long cache_level)
{
3390
	struct drm_mm_node *gtt_space = &vma->node;
3391 3392
	struct drm_mm_node *other;

3393 3394 3395 3396 3397 3398
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3399
	 */
3400
	if (vma->vm->mm.color_adjust == NULL)
3401 3402
		return true;

3403
	if (!drm_mm_node_allocated(gtt_space))
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3420
/**
3421 3422
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3423
 */
3424
static struct i915_vma *
3425 3426
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3427
			   const struct i915_ggtt_view *ggtt_view,
3428
			   unsigned alignment,
3429
			   uint64_t flags)
3430
{
3431
	struct drm_device *dev = obj->base.dev;
3432
	struct drm_i915_private *dev_priv = dev->dev_private;
3433
	u32 fence_alignment, unfenced_alignment;
3434 3435
	u32 search_flag, alloc_flag;
	u64 start, end;
3436
	u64 size, fence_size;
B
Ben Widawsky 已提交
3437
	struct i915_vma *vma;
3438
	int ret;
3439

3440 3441 3442 3443 3444
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3445

3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3475

3476 3477 3478 3479 3480 3481 3482
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
		end = min_t(u64, end, dev_priv->gtt.mappable_end);
	if (flags & PIN_ZONE_4G)
		end = min_t(u64, end, (1ULL << 32));

3483
	if (alignment == 0)
3484
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3485
						unfenced_alignment;
3486
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3487 3488 3489
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3490
		return ERR_PTR(-EINVAL);
3491 3492
	}

3493 3494 3495
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3496
	 */
3497
	if (size > end) {
3498
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3499 3500
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3501
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3502
			  end);
3503
		return ERR_PTR(-E2BIG);
3504 3505
	}

3506
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3507
	if (ret)
3508
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3509

3510 3511
	i915_gem_object_pin_pages(obj);

3512 3513 3514
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3515
	if (IS_ERR(vma))
3516
		goto err_unpin;
B
Ben Widawsky 已提交
3517

3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3536
	} else {
3537 3538 3539 3540 3541 3542 3543
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3544

3545
search_free:
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3559

3560 3561
			goto err_free_vma;
		}
3562
	}
3563
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3564
		ret = -EINVAL;
3565
		goto err_remove_node;
3566 3567
	}

3568
	trace_i915_vma_bind(vma, flags);
3569
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3570
	if (ret)
I
Imre Deak 已提交
3571
		goto err_remove_node;
3572

3573
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3574
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3575

3576
	return vma;
B
Ben Widawsky 已提交
3577

3578
err_remove_node:
3579
	drm_mm_remove_node(&vma->node);
3580
err_free_vma:
B
Ben Widawsky 已提交
3581
	i915_gem_vma_destroy(vma);
3582
	vma = ERR_PTR(ret);
3583
err_unpin:
B
Ben Widawsky 已提交
3584
	i915_gem_object_unpin_pages(obj);
3585
	return vma;
3586 3587
}

3588
bool
3589 3590
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3591 3592 3593 3594 3595
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3596
	if (obj->pages == NULL)
3597
		return false;
3598

3599 3600 3601 3602
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3603
	if (obj->stolen || obj->phys_handle)
3604
		return false;
3605

3606 3607 3608 3609 3610 3611 3612 3613
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3614 3615
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3616
		return false;
3617
	}
3618

C
Chris Wilson 已提交
3619
	trace_i915_gem_object_clflush(obj);
3620
	drm_clflush_sg(obj->pages);
3621
	obj->cache_dirty = false;
3622 3623

	return true;
3624 3625 3626 3627
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3628
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3629
{
C
Chris Wilson 已提交
3630 3631
	uint32_t old_write_domain;

3632
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3633 3634
		return;

3635
	/* No actual flushing is required for the GTT write domain.  Writes
3636 3637
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3638 3639 3640 3641
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3642
	 */
3643 3644
	wmb();

3645 3646
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3647

3648
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3649

C
Chris Wilson 已提交
3650
	trace_i915_gem_object_change_domain(obj,
3651
					    obj->base.read_domains,
C
Chris Wilson 已提交
3652
					    old_write_domain);
3653 3654 3655 3656
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3657
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3658
{
C
Chris Wilson 已提交
3659
	uint32_t old_write_domain;
3660

3661
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3662 3663
		return;

3664
	if (i915_gem_clflush_object(obj, obj->pin_display))
3665 3666
		i915_gem_chipset_flush(obj->base.dev);

3667 3668
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3669

3670
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3671

C
Chris Wilson 已提交
3672
	trace_i915_gem_object_change_domain(obj,
3673
					    obj->base.read_domains,
C
Chris Wilson 已提交
3674
					    old_write_domain);
3675 3676
}

3677 3678 3679 3680 3681 3682
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3683
int
3684
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3685
{
C
Chris Wilson 已提交
3686
	uint32_t old_write_domain, old_read_domains;
3687
	struct i915_vma *vma;
3688
	int ret;
3689

3690 3691 3692
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3693
	ret = i915_gem_object_wait_rendering(obj, !write);
3694 3695 3696
	if (ret)
		return ret;

3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3709
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3710

3711 3712 3713 3714 3715 3716 3717
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3718 3719
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3720

3721 3722 3723
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3724 3725
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3726
	if (write) {
3727 3728 3729
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3730 3731
	}

C
Chris Wilson 已提交
3732 3733 3734 3735
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3736
	/* And bump the LRU for this access */
3737 3738
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3739
		list_move_tail(&vma->mm_list,
3740
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3741

3742 3743 3744
	return 0;
}

3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
/**
 * Changes the cache-level of an object across all VMA.
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3758 3759 3760
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3761
	struct drm_device *dev = obj->base.dev;
3762
	struct i915_vma *vma, *next;
3763
	bool bound = false;
3764
	int ret = 0;
3765 3766

	if (obj->cache_level == cache_level)
3767
		goto out;
3768

3769 3770 3771 3772 3773
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3774
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3775 3776 3777 3778 3779 3780 3781 3782
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3783
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3784
			ret = i915_vma_unbind(vma);
3785 3786
			if (ret)
				return ret;
3787 3788
		} else
			bound = true;
3789 3790
	}

3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3803
		ret = i915_gem_object_wait_rendering(obj, false);
3804 3805 3806
		if (ret)
			return ret;

3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3824 3825 3826
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3827 3828 3829 3830 3831 3832 3833 3834
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3835 3836
		}

3837 3838 3839 3840 3841 3842 3843 3844
		list_for_each_entry(vma, &obj->vma_list, vma_link) {
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3845 3846
	}

3847 3848 3849 3850
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3851
out:
3852 3853 3854 3855
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3856 3857 3858 3859 3860
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3861 3862 3863 3864 3865
	}

	return 0;
}

B
Ben Widawsky 已提交
3866 3867
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3868
{
B
Ben Widawsky 已提交
3869
	struct drm_i915_gem_caching *args = data;
3870 3871 3872
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3873 3874
	if (&obj->base == NULL)
		return -ENOENT;
3875

3876 3877 3878 3879 3880 3881
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3882 3883 3884 3885
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3886 3887 3888 3889
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3890

3891 3892
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3893 3894
}

B
Ben Widawsky 已提交
3895 3896
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3897
{
3898
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
3899
	struct drm_i915_gem_caching *args = data;
3900 3901 3902 3903
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3904 3905
	switch (args->caching) {
	case I915_CACHING_NONE:
3906 3907
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3908
	case I915_CACHING_CACHED:
3909 3910 3911 3912 3913 3914
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3915
		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3916 3917
			return -ENODEV;

3918 3919
		level = I915_CACHE_LLC;
		break;
3920 3921 3922
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3923 3924 3925 3926
	default:
		return -EINVAL;
	}

3927 3928
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3929 3930
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3931
		goto rpm_put;
B
Ben Widawsky 已提交
3932

3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
3944 3945 3946
rpm_put:
	intel_runtime_pm_put(dev_priv);

3947 3948 3949
	return ret;
}

3950
/*
3951 3952 3953
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3954 3955
 */
int
3956 3957
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3958
				     const struct i915_ggtt_view *view)
3959
{
3960
	u32 old_read_domains, old_write_domain;
3961 3962
	int ret;

3963 3964 3965
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3966
	obj->pin_display++;
3967

3968 3969 3970 3971 3972 3973 3974 3975 3976
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3977 3978
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3979
	if (ret)
3980
		goto err_unpin_display;
3981

3982 3983 3984 3985
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3986 3987 3988
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3989
	if (ret)
3990
		goto err_unpin_display;
3991

3992
	i915_gem_object_flush_cpu_write_domain(obj);
3993

3994
	old_write_domain = obj->base.write_domain;
3995
	old_read_domains = obj->base.read_domains;
3996 3997 3998 3999

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4000
	obj->base.write_domain = 0;
4001
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4002 4003 4004

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4005
					    old_write_domain);
4006 4007

	return 0;
4008 4009

err_unpin_display:
4010
	obj->pin_display--;
4011 4012 4013 4014
	return ret;
}

void
4015 4016
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4017
{
4018 4019 4020
	if (WARN_ON(obj->pin_display == 0))
		return;

4021 4022
	i915_gem_object_ggtt_unpin_view(obj, view);

4023
	obj->pin_display--;
4024 4025
}

4026 4027 4028 4029 4030 4031
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4032
int
4033
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4034
{
C
Chris Wilson 已提交
4035
	uint32_t old_write_domain, old_read_domains;
4036 4037
	int ret;

4038 4039 4040
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4041
	ret = i915_gem_object_wait_rendering(obj, !write);
4042 4043 4044
	if (ret)
		return ret;

4045
	i915_gem_object_flush_gtt_write_domain(obj);
4046

4047 4048
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4049

4050
	/* Flush the CPU cache if it's still invalid. */
4051
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4052
		i915_gem_clflush_object(obj, false);
4053

4054
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4055 4056 4057 4058 4059
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4060
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4061 4062 4063 4064 4065

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4066 4067
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4068
	}
4069

C
Chris Wilson 已提交
4070 4071 4072 4073
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4074 4075 4076
	return 0;
}

4077 4078 4079
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4080 4081 4082 4083
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4084 4085 4086
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4087
static int
4088
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4089
{
4090 4091
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4092
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4093
	struct drm_i915_gem_request *request, *target = NULL;
4094
	unsigned reset_counter;
4095
	int ret;
4096

4097 4098 4099 4100 4101 4102 4103
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4104

4105
	spin_lock(&file_priv->mm.lock);
4106
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4107 4108
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4109

4110 4111 4112 4113 4114 4115 4116
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4117
		target = request;
4118
	}
4119
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4120 4121
	if (target)
		i915_gem_request_reference(target);
4122
	spin_unlock(&file_priv->mm.lock);
4123

4124
	if (target == NULL)
4125
		return 0;
4126

4127
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4128 4129
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4130

4131
	i915_gem_request_unreference__unlocked(target);
4132

4133 4134 4135
	return ret;
}

4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4152 4153 4154 4155
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4156 4157 4158
	return false;
}

4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
		    to_i915(obj->base.dev)->gtt.mappable_end);

	obj->map_and_fenceable = mappable && fenceable;
}

4182 4183 4184 4185 4186 4187
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4188
{
4189
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4190
	struct i915_vma *vma;
4191
	unsigned bound;
4192 4193
	int ret;

4194 4195 4196
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4197
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4198
		return -EINVAL;
4199

4200 4201 4202
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4203 4204 4205 4206 4207 4208 4209 4210 4211
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4212
	if (vma) {
B
Ben Widawsky 已提交
4213 4214 4215
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4216
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4217
			WARN(vma->pin_count,
4218
			     "bo is already pinned in %s with incorrect alignment:"
4219
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4220
			     " obj->map_and_fenceable=%d\n",
4221
			     ggtt_view ? "ggtt" : "ppgtt",
4222 4223
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4224
			     alignment,
4225
			     !!(flags & PIN_MAPPABLE),
4226
			     obj->map_and_fenceable);
4227
			ret = i915_vma_unbind(vma);
4228 4229
			if (ret)
				return ret;
4230 4231

			vma = NULL;
4232 4233 4234
		}
	}

4235
	bound = vma ? vma->bound : 0;
4236
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4237 4238
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4239 4240
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4241 4242
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4243 4244 4245
		if (ret)
			return ret;
	}
4246

4247 4248
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4249
		__i915_vma_set_map_and_fenceable(vma);
4250 4251
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4252

4253
	vma->pin_count++;
4254 4255 4256
	return 0;
}

4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4278
				      alignment, flags | PIN_GLOBAL);
4279 4280
}

4281
void
4282 4283
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4284
{
4285
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4286

B
Ben Widawsky 已提交
4287
	BUG_ON(!vma);
4288
	WARN_ON(vma->pin_count == 0);
4289
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4290

4291
	--vma->pin_count;
4292 4293 4294 4295
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4296
		    struct drm_file *file)
4297 4298
{
	struct drm_i915_gem_busy *args = data;
4299
	struct drm_i915_gem_object *obj;
4300 4301
	int ret;

4302
	ret = i915_mutex_lock_interruptible(dev);
4303
	if (ret)
4304
		return ret;
4305

4306
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4307
	if (&obj->base == NULL) {
4308 4309
		ret = -ENOENT;
		goto unlock;
4310
	}
4311

4312 4313 4314 4315
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4316
	 */
4317
	ret = i915_gem_object_flush_active(obj);
4318 4319
	if (ret)
		goto unref;
4320

4321 4322 4323 4324
	BUILD_BUG_ON(I915_NUM_RINGS > 16);
	args->busy = obj->active << 16;
	if (obj->last_write_req)
		args->busy |= obj->last_write_req->ring->id;
4325

4326
unref:
4327
	drm_gem_object_unreference(&obj->base);
4328
unlock:
4329
	mutex_unlock(&dev->struct_mutex);
4330
	return ret;
4331 4332 4333 4334 4335 4336
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4337
	return i915_gem_ring_throttle(dev, file_priv);
4338 4339
}

4340 4341 4342 4343
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4344
	struct drm_i915_private *dev_priv = dev->dev_private;
4345
	struct drm_i915_gem_madvise *args = data;
4346
	struct drm_i915_gem_object *obj;
4347
	int ret;
4348 4349 4350 4351 4352 4353 4354 4355 4356

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4357 4358 4359 4360
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4361
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4362
	if (&obj->base == NULL) {
4363 4364
		ret = -ENOENT;
		goto unlock;
4365 4366
	}

B
Ben Widawsky 已提交
4367
	if (i915_gem_obj_is_pinned(obj)) {
4368 4369
		ret = -EINVAL;
		goto out;
4370 4371
	}

4372 4373 4374 4375 4376 4377 4378 4379 4380
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4381 4382
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4383

C
Chris Wilson 已提交
4384
	/* if the object is no longer attached, discard its backing storage */
4385
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4386 4387
		i915_gem_object_truncate(obj);

4388
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4389

4390
out:
4391
	drm_gem_object_unreference(&obj->base);
4392
unlock:
4393
	mutex_unlock(&dev->struct_mutex);
4394
	return ret;
4395 4396
}

4397 4398
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4399
{
4400 4401
	int i;

4402
	INIT_LIST_HEAD(&obj->global_list);
4403 4404
	for (i = 0; i < I915_NUM_RINGS; i++)
		INIT_LIST_HEAD(&obj->ring_list[i]);
4405
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4406
	INIT_LIST_HEAD(&obj->vma_list);
4407
	INIT_LIST_HEAD(&obj->batch_pool_link);
4408

4409 4410
	obj->ops = ops;

4411 4412 4413 4414 4415 4416
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4417 4418 4419 4420 4421
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4422 4423
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4424
{
4425
	struct drm_i915_gem_object *obj;
4426
	struct address_space *mapping;
D
Daniel Vetter 已提交
4427
	gfp_t mask;
4428

4429
	obj = i915_gem_object_alloc(dev);
4430 4431
	if (obj == NULL)
		return NULL;
4432

4433
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4434
		i915_gem_object_free(obj);
4435 4436
		return NULL;
	}
4437

4438 4439 4440 4441 4442 4443 4444
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4445
	mapping = file_inode(obj->base.filp)->i_mapping;
4446
	mapping_set_gfp_mask(mapping, mask);
4447

4448
	i915_gem_object_init(obj, &i915_gem_object_ops);
4449

4450 4451
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4452

4453 4454
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4470 4471
	trace_i915_gem_object_create(obj);

4472
	return obj;
4473 4474
}

4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4499
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4500
{
4501
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4502
	struct drm_device *dev = obj->base.dev;
4503
	struct drm_i915_private *dev_priv = dev->dev_private;
4504
	struct i915_vma *vma, *next;
4505

4506 4507
	intel_runtime_pm_get(dev_priv);

4508 4509
	trace_i915_gem_object_destroy(obj);

4510
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4511 4512 4513 4514
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4515 4516
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4517

4518 4519
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4520

4521
			WARN_ON(i915_vma_unbind(vma));
4522

4523 4524
			dev_priv->mm.interruptible = was_interruptible;
		}
4525 4526
	}

B
Ben Widawsky 已提交
4527 4528 4529 4530 4531
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4532 4533
	WARN_ON(obj->frontbuffer_bits);

4534 4535 4536 4537 4538
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4539 4540
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4541
	if (discard_backing_storage(obj))
4542
		obj->madv = I915_MADV_DONTNEED;
4543
	i915_gem_object_put_pages(obj);
4544
	i915_gem_object_free_mmap_offset(obj);
4545

4546 4547
	BUG_ON(obj->pages);

4548 4549
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4550

4551 4552 4553
	if (obj->ops->release)
		obj->ops->release(obj);

4554 4555
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4556

4557
	kfree(obj->bit_17);
4558
	i915_gem_object_free(obj);
4559 4560

	intel_runtime_pm_put(dev_priv);
4561 4562
}

4563 4564
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4565 4566
{
	struct i915_vma *vma;
4567
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
4568 4569
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4570
			return vma;
4571 4572 4573 4574 4575 4576 4577 4578 4579
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4580

4581 4582 4583 4584
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4585 4586
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4587
			return vma;
4588 4589 4590
	return NULL;
}

B
Ben Widawsky 已提交
4591 4592
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4593
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4594
	WARN_ON(vma->node.allocated);
4595 4596 4597 4598 4599

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4600 4601
	vm = vma->vm;

4602 4603
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4604

4605
	list_del(&vma->vma_link);
4606

4607
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4608 4609
}

4610 4611 4612 4613
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4614
	struct intel_engine_cs *ring;
4615 4616 4617
	int i;

	for_each_ring(ring, dev_priv, i)
4618
		dev_priv->gt.stop_ring(ring);
4619 4620
}

4621
int
4622
i915_gem_suspend(struct drm_device *dev)
4623
{
4624
	struct drm_i915_private *dev_priv = dev->dev_private;
4625
	int ret = 0;
4626

4627
	mutex_lock(&dev->struct_mutex);
4628
	ret = i915_gpu_idle(dev);
4629
	if (ret)
4630
		goto err;
4631

4632
	i915_gem_retire_requests(dev);
4633

4634
	i915_gem_stop_ringbuffers(dev);
4635 4636
	mutex_unlock(&dev->struct_mutex);

4637
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4638
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4639
	flush_delayed_work(&dev_priv->mm.idle_work);
4640

4641 4642 4643 4644 4645
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4646
	return 0;
4647 4648 4649 4650

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4651 4652
}

4653
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
B
Ben Widawsky 已提交
4654
{
4655
	struct intel_engine_cs *ring = req->ring;
4656
	struct drm_device *dev = ring->dev;
4657
	struct drm_i915_private *dev_priv = dev->dev_private;
4658
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4659
	int i, ret;
B
Ben Widawsky 已提交
4660

4661
	if (!HAS_L3_DPF(dev) || !remap_info)
4662
		return 0;
B
Ben Widawsky 已提交
4663

4664
	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4665 4666
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4667

4668 4669 4670 4671 4672
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
4673
	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4674
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4675
		intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4676
		intel_ring_emit(ring, remap_info[i]);
B
Ben Widawsky 已提交
4677 4678
	}

4679
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4680

4681
	return ret;
B
Ben Widawsky 已提交
4682 4683
}

4684 4685
void i915_gem_init_swizzling(struct drm_device *dev)
{
4686
	struct drm_i915_private *dev_priv = dev->dev_private;
4687

4688
	if (INTEL_INFO(dev)->gen < 5 ||
4689 4690 4691 4692 4693 4694
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4695 4696 4697
	if (IS_GEN5(dev))
		return;

4698 4699
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4700
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4701
	else if (IS_GEN7(dev))
4702
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4703 4704
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4705 4706
	else
		BUG();
4707
}
D
Daniel Vetter 已提交
4708

4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4736
int i915_gem_init_rings(struct drm_device *dev)
4737
{
4738
	struct drm_i915_private *dev_priv = dev->dev_private;
4739
	int ret;
4740

4741
	ret = intel_init_render_ring_buffer(dev);
4742
	if (ret)
4743
		return ret;
4744 4745

	if (HAS_BSD(dev)) {
4746
		ret = intel_init_bsd_ring_buffer(dev);
4747 4748
		if (ret)
			goto cleanup_render_ring;
4749
	}
4750

4751
	if (HAS_BLT(dev)) {
4752 4753 4754 4755 4756
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4757 4758 4759 4760 4761 4762
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4763 4764 4765 4766 4767
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4768

4769 4770
	return 0;

B
Ben Widawsky 已提交
4771 4772
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4786
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4787
	struct intel_engine_cs *ring;
4788
	int ret, i, j;
4789 4790 4791 4792

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4793 4794 4795
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4796
	if (dev_priv->ellc_size)
4797
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4798

4799 4800 4801
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4802

4803
	if (HAS_PCH_NOP(dev)) {
4804 4805 4806 4807 4808 4809 4810 4811 4812
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4813 4814
	}

4815 4816
	i915_gem_init_swizzling(dev);

4817 4818 4819 4820 4821 4822 4823 4824
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4825 4826
	BUG_ON(!dev_priv->ring[RCS].default_context);

4827 4828 4829 4830 4831 4832 4833
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
D
Daniel Vetter 已提交
4834 4835 4836
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
4837
			goto out;
D
Daniel Vetter 已提交
4838
	}
4839

4840
	/* We can't enable contexts until all firmware is loaded */
4841 4842 4843
	if (HAS_GUC_UCODE(dev)) {
		ret = intel_guc_ucode_load(dev);
		if (ret) {
4844 4845 4846
			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
			ret = -EIO;
			goto out;
4847
		}
4848 4849
	}

4850 4851 4852 4853 4854 4855 4856 4857
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
	if (ret)
		goto out;

4858 4859
	/* Now it is safe to go back round and do everything else: */
	for_each_ring(ring, dev_priv, i) {
4860 4861
		struct drm_i915_gem_request *req;

4862 4863
		WARN_ON(!ring->default_context);

4864 4865 4866 4867 4868 4869
		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
		if (ret) {
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}

4870 4871
		if (ring->id == RCS) {
			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4872
				i915_gem_l3_remap(req, j);
4873
		}
4874

4875
		ret = i915_ppgtt_init_ring(req);
4876 4877
		if (ret && ret != -EIO) {
			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4878
			i915_gem_request_cancel(req);
4879 4880 4881
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
4882

4883
		ret = i915_gem_context_enable(req);
4884 4885
		if (ret && ret != -EIO) {
			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4886
			i915_gem_request_cancel(req);
4887 4888 4889
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
4890

4891
		i915_add_request_no_flush(req);
4892
	}
D
Daniel Vetter 已提交
4893

4894 4895
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4896
	return ret;
4897 4898
}

4899 4900 4901 4902 4903
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4904 4905 4906
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4907
	mutex_lock(&dev->struct_mutex);
4908

4909
	if (!i915.enable_execlists) {
4910
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4911 4912 4913
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4914
	} else {
4915
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4916 4917 4918
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4919 4920
	}

4921 4922 4923 4924 4925 4926 4927 4928
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4929
	ret = i915_gem_init_userptr(dev);
4930 4931
	if (ret)
		goto out_unlock;
4932

4933
	i915_gem_init_global_gtt(dev);
4934

4935
	ret = i915_gem_context_init(dev);
4936 4937
	if (ret)
		goto out_unlock;
4938

D
Daniel Vetter 已提交
4939 4940
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4941
		goto out_unlock;
4942

4943
	ret = i915_gem_init_hw(dev);
4944 4945 4946 4947 4948 4949
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4950
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4951
		ret = 0;
4952
	}
4953 4954

out_unlock:
4955
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4956
	mutex_unlock(&dev->struct_mutex);
4957

4958
	return ret;
4959 4960
}

4961 4962 4963
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4964
	struct drm_i915_private *dev_priv = dev->dev_private;
4965
	struct intel_engine_cs *ring;
4966
	int i;
4967

4968
	for_each_ring(ring, dev_priv, i)
4969
		dev_priv->gt.cleanup_ring(ring);
4970 4971 4972 4973 4974 4975 4976 4977

    if (i915.enable_execlists)
            /*
             * Neither the BIOS, ourselves or any other kernel
             * expects the system to be in execlists mode on startup,
             * so we need to reset the GPU back to legacy mode.
             */
            intel_gpu_reset(dev);
4978 4979
}

4980
static void
4981
init_ring_lists(struct intel_engine_cs *ring)
4982 4983 4984 4985 4986
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4987 4988 4989
void
i915_gem_load(struct drm_device *dev)
{
4990
	struct drm_i915_private *dev_priv = dev->dev_private;
4991 4992
	int i;

4993
	dev_priv->objects =
4994 4995 4996 4997
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4998 4999 5000 5001 5002
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5003 5004 5005 5006 5007
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5008

B
Ben Widawsky 已提交
5009
	INIT_LIST_HEAD(&dev_priv->vm_list);
5010
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5011 5012
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5013
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5014 5015
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5016
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5017
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5018 5019
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5020 5021
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5022
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5023

5024 5025
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5026
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
5027 5028
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5029 5030 5031 5032
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5033 5034 5035 5036
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5037 5038 5039 5040 5041 5042 5043 5044
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5045
	/* Initialize fence registers to zero */
5046 5047
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5048

5049
	i915_gem_detect_bit_6_swizzle(dev);
5050
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5051

5052 5053
	dev_priv->mm.interruptible = true;

5054
	i915_gem_shrinker_init(dev_priv);
5055 5056

	mutex_init(&dev_priv->fb_tracking.lock);
5057
}
5058

5059
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5060
{
5061
	struct drm_i915_file_private *file_priv = file->driver_priv;
5062 5063 5064 5065 5066

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5067
	spin_lock(&file_priv->mm.lock);
5068 5069 5070 5071 5072 5073 5074 5075 5076
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5077
	spin_unlock(&file_priv->mm.lock);
5078

5079
	if (!list_empty(&file_priv->rps.link)) {
5080
		spin_lock(&to_i915(dev)->rps.client_lock);
5081
		list_del(&file_priv->rps.link);
5082
		spin_unlock(&to_i915(dev)->rps.client_lock);
5083
	}
5084 5085 5086 5087 5088
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5089
	int ret;
5090 5091 5092 5093 5094 5095 5096 5097 5098

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5099
	file_priv->file = file;
5100
	INIT_LIST_HEAD(&file_priv->rps.link);
5101 5102 5103 5104

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5105 5106 5107
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5108

5109
	return ret;
5110 5111
}

5112 5113
/**
 * i915_gem_track_fb - update frontbuffer tracking
5114 5115 5116
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5117 5118 5119 5120
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5138
/* All the new VM stuff */
5139 5140
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5141 5142 5143 5144
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5145
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5146 5147

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5148 5149 5150 5151
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5152 5153
			return vma->node.start;
	}
5154

5155 5156
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5157 5158 5159
	return -1;
}

5160 5161
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5162
{
5163
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5164 5165 5166
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5167 5168
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5169 5170
			return vma->node.start;

5171
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5192
				  const struct i915_ggtt_view *view)
5193 5194 5195 5196 5197 5198
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5199
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5200
		    drm_mm_node_allocated(&vma->node))
5201 5202 5203 5204 5205 5206 5207
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5208
	struct i915_vma *vma;
5209

5210 5211
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5223
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5224 5225 5226

	BUG_ON(list_empty(&o->vma_list));

5227 5228 5229 5230
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5231 5232
		if (vma->vm == vm)
			return vma->node.size;
5233
	}
5234 5235 5236
	return 0;
}

5237
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5238 5239
{
	struct i915_vma *vma;
5240
	list_for_each_entry(vma, &obj->vma_list, vma_link)
5241 5242
		if (vma->pin_count > 0)
			return true;
5243

5244
	return false;
5245
}
5246

5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
	if (WARN_ON(obj->ops != &i915_gem_object_ops))
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
	if (IS_ERR_OR_NULL(obj))
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5287
	obj->dirty = 1;		/* Backing store is now out of date */
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}