sched.c 233.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/stop_machine.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
P
Peter Zijlstra 已提交
70 71
#include <linux/debugfs.h>
#include <linux/ctype.h>
72
#include <linux/ftrace.h>
73
#include <linux/slab.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
77
#include <asm/mutex.h>
G
Glauber Costa 已提交
78 79 80
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
81

82
#include "sched_cpupri.h"
T
Tejun Heo 已提交
83
#include "workqueue_sched.h"
84
#include "sched_autogroup.h"
85

86
#define CREATE_TRACE_POINTS
87
#include <trace/events/sched.h>
88

L
Linus Torvalds 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
108
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
109
 */
110
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
111

I
Ingo Molnar 已提交
112 113 114
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
115 116 117
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
118
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
119 120 121
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
122

123 124 125 126 127
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

128 129
static inline int rt_policy(int policy)
{
130
	if (policy == SCHED_FIFO || policy == SCHED_RR)
131 132 133 134 135 136 137 138 139
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
140
/*
I
Ingo Molnar 已提交
141
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
142
 */
I
Ingo Molnar 已提交
143 144 145 146 147
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

148
struct rt_bandwidth {
I
Ingo Molnar 已提交
149
	/* nests inside the rq lock: */
150
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
151 152 153
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

187
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
188

189 190 191 192 193
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

194 195 196
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
197 198
}

199
static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
200
{
201 202
	unsigned long delta;
	ktime_t soft, hard, now;
203

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);

		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
221
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
222 223 224 225 226
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

227
	raw_spin_lock(&rt_b->rt_runtime_lock);
228
	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
229
	raw_spin_unlock(&rt_b->rt_runtime_lock);
230 231 232 233 234 235 236 237 238
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

239
/*
240
 * sched_domains_mutex serializes calls to init_sched_domains,
241 242 243 244
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
245
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
246

247 248
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
249 250
struct cfs_rq;

P
Peter Zijlstra 已提交
251 252
static LIST_HEAD(task_groups);

253 254 255 256
struct cfs_bandwidth {
#ifdef CONFIG_CFS_BANDWIDTH
	raw_spinlock_t lock;
	ktime_t period;
257
	u64 quota, runtime;
258
	s64 hierarchal_quota;
P
Paul Turner 已提交
259
	u64 runtime_expires;
260 261

	int idle, timer_active;
262
	struct hrtimer period_timer, slack_timer;
263 264
	struct list_head throttled_cfs_rq;

265 266 267
	/* statistics */
	int nr_periods, nr_throttled;
	u64 throttled_time;
268 269 270
#endif
};

S
Srivatsa Vaddagiri 已提交
271
/* task group related information */
272
struct task_group {
273
	struct cgroup_subsys_state css;
274

275
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
276 277 278 279 280
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
P
Peter Zijlstra 已提交
281 282

	atomic_t load_weight;
283 284 285 286 287 288
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

289
	struct rt_bandwidth rt_bandwidth;
290
#endif
291

292
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
293
	struct list_head list;
P
Peter Zijlstra 已提交
294 295 296 297

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
298 299 300 301

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif
302 303

	struct cfs_bandwidth cfs_bandwidth;
S
Srivatsa Vaddagiri 已提交
304 305
};

306
/* task_group_lock serializes the addition/removal of task groups */
307
static DEFINE_SPINLOCK(task_group_lock);
308

309 310
#ifdef CONFIG_FAIR_GROUP_SCHED

311
# define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
312

313
/*
314 315 316 317
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
318 319 320
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
321 322
#define MIN_SHARES	(1UL <<  1)
#define MAX_SHARES	(1UL << 18)
323

324
static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
325 326
#endif

S
Srivatsa Vaddagiri 已提交
327
/* Default task group.
I
Ingo Molnar 已提交
328
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
329
 */
330
struct task_group root_task_group;
S
Srivatsa Vaddagiri 已提交
331

D
Dhaval Giani 已提交
332
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
333

I
Ingo Molnar 已提交
334 335 336
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
337
	unsigned long nr_running, h_nr_running;
I
Ingo Molnar 已提交
338 339

	u64 exec_clock;
I
Ingo Molnar 已提交
340
	u64 min_vruntime;
341 342 343
#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
#endif
I
Ingo Molnar 已提交
344 345 346

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
347 348 349 350 351 352

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
353 354
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
355
	struct sched_entity *curr, *next, *last, *skip;
P
Peter Zijlstra 已提交
356

357
#ifdef	CONFIG_SCHED_DEBUG
P
Peter Zijlstra 已提交
358
	unsigned int nr_spread_over;
359
#endif
P
Peter Zijlstra 已提交
360

361
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
362 363
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
364 365
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
366 367 368 369 370 371
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
372
	int on_list;
I
Ingo Molnar 已提交
373 374
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
375 376 377

#ifdef CONFIG_SMP
	/*
378
	 * the part of load.weight contributed by tasks
379
	 */
380
	unsigned long task_weight;
381

382 383 384 385 386 387 388
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
389

390
	/*
391 392 393 394 395
	 * Maintaining per-cpu shares distribution for group scheduling
	 *
	 * load_stamp is the last time we updated the load average
	 * load_last is the last time we updated the load average and saw load
	 * load_unacc_exec_time is currently unaccounted execution time
396
	 */
P
Peter Zijlstra 已提交
397 398
	u64 load_avg;
	u64 load_period;
399
	u64 load_stamp, load_last, load_unacc_exec_time;
400

P
Peter Zijlstra 已提交
401
	unsigned long load_contribution;
402
#endif
403 404
#ifdef CONFIG_CFS_BANDWIDTH
	int runtime_enabled;
P
Paul Turner 已提交
405
	u64 runtime_expires;
406
	s64 runtime_remaining;
407

408
	u64 throttled_timestamp;
409
	int throttled, throttle_count;
410
	struct list_head throttled_list;
411
#endif
I
Ingo Molnar 已提交
412 413
#endif
};
L
Linus Torvalds 已提交
414

415 416 417 418 419 420 421 422
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_CFS_BANDWIDTH
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

static inline u64 default_cfs_period(void);
423
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
424 425 426 427 428 429 430 431 432 433
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}
455 456 457 458

static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
459
	cfs_b->runtime = 0;
460 461
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());
462

463
	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
464 465
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
466 467
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
468 469 470 471 472
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
473
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
474 475
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
/* requires cfs_b->lock, may release to reprogram timer */
static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
	while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
		raw_spin_unlock(&cfs_b->lock);
		/* ensure cfs_b->lock is available while we wait */
		hrtimer_cancel(&cfs_b->period_timer);

		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

500
static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
501 502
{
	hrtimer_cancel(&cfs_b->period_timer);
503
	hrtimer_cancel(&cfs_b->slack_timer);
504
}
505 506 507 508 509 510 511 512 513 514 515 516
#else
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
#endif /* CONFIG_CFS_BANDWIDTH */
#endif /* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
517 518 519
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
520
	unsigned long rt_nr_running;
521
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
522 523
	struct {
		int curr; /* highest queued rt task prio */
524
#ifdef CONFIG_SMP
525
		int next; /* next highest */
526
#endif
527
	} highest_prio;
P
Peter Zijlstra 已提交
528
#endif
P
Peter Zijlstra 已提交
529
#ifdef CONFIG_SMP
530
	unsigned long rt_nr_migratory;
531
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
532
	int overloaded;
533
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
534
#endif
P
Peter Zijlstra 已提交
535
	int rt_throttled;
P
Peter Zijlstra 已提交
536
	u64 rt_time;
P
Peter Zijlstra 已提交
537
	u64 rt_runtime;
I
Ingo Molnar 已提交
538
	/* Nests inside the rq lock: */
539
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
540

541
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
542 543
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
544 545 546 547
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
548 549
};

G
Gregory Haskins 已提交
550 551 552 553
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
554 555
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
556 557 558 559 560 561
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
562
	atomic_t rto_count;
563
	struct rcu_head rcu;
564 565
	cpumask_var_t span;
	cpumask_var_t online;
566

I
Ingo Molnar 已提交
567
	/*
568 569 570
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
571
	cpumask_var_t rto_mask;
572
	struct cpupri cpupri;
G
Gregory Haskins 已提交
573 574
};

575 576 577 578
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
579 580
static struct root_domain def_root_domain;

581
#endif /* CONFIG_SMP */
G
Gregory Haskins 已提交
582

L
Linus Torvalds 已提交
583 584 585 586 587 588 589
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
590
struct rq {
591
	/* runqueue lock: */
592
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
593 594 595 596 597 598

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
599 600
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
601
	unsigned long last_load_update_tick;
602
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
603
	u64 nohz_stamp;
604
	unsigned char nohz_balance_kick;
605
#endif
606
	int skip_clock_update;
607

608 609
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
610 611 612 613
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
614 615
	struct rt_rq rt;

I
Ingo Molnar 已提交
616
#ifdef CONFIG_FAIR_GROUP_SCHED
617 618
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
619 620
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
621
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
622 623 624 625 626 627 628 629 630 631
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

632
	struct task_struct *curr, *idle, *stop;
633
	unsigned long next_balance;
L
Linus Torvalds 已提交
634
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
635

636
	u64 clock;
637
	u64 clock_task;
I
Ingo Molnar 已提交
638

L
Linus Torvalds 已提交
639 640 641
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
642
	struct root_domain *rd;
L
Linus Torvalds 已提交
643 644
	struct sched_domain *sd;

645 646
	unsigned long cpu_power;

647
	unsigned char idle_balance;
L
Linus Torvalds 已提交
648
	/* For active balancing */
649
	int post_schedule;
L
Linus Torvalds 已提交
650 651
	int active_balance;
	int push_cpu;
652
	struct cpu_stop_work active_balance_work;
653 654
	/* cpu of this runqueue: */
	int cpu;
655
	int online;
L
Linus Torvalds 已提交
656

657 658
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
659 660
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
661 662
#endif

663 664 665
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64 prev_irq_time;
#endif
G
Glauber Costa 已提交
666 667 668
#ifdef CONFIG_PARAVIRT
	u64 prev_steal_time;
#endif
669 670 671
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	u64 prev_steal_time_rq;
#endif
672

673 674 675 676
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
677
#ifdef CONFIG_SCHED_HRTICK
678 679 680 681
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
682 683 684
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
685 686 687
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
688 689
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
690 691

	/* sys_sched_yield() stats */
692
	unsigned int yld_count;
L
Linus Torvalds 已提交
693 694

	/* schedule() stats */
695 696 697
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
698 699

	/* try_to_wake_up() stats */
700 701
	unsigned int ttwu_count;
	unsigned int ttwu_local;
L
Linus Torvalds 已提交
702
#endif
703 704

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
705
	struct llist_head wake_list;
706
#endif
L
Linus Torvalds 已提交
707 708
};

709
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
710

711

712
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
I
Ingo Molnar 已提交
713

714 715 716 717 718 719 720 721 722
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

723
#define rcu_dereference_check_sched_domain(p) \
724 725 726
	rcu_dereference_check((p), \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
727 728
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
729
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
730 731 732 733
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
734
#define for_each_domain(cpu, __sd) \
735
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
736 737 738 739 740

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
741
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
742

743 744 745 746 747
#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
748 749 750 751
 * We use task_subsys_state_check() and extend the RCU verification with
 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
 * task it moves into the cgroup. Therefore by holding either of those locks,
 * we pin the task to the current cgroup.
752 753 754
 */
static inline struct task_group *task_group(struct task_struct *p)
{
755
	struct task_group *tg;
756 757 758
	struct cgroup_subsys_state *css;

	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
759 760
			lockdep_is_held(&p->pi_lock) ||
			lockdep_is_held(&task_rq(p)->lock));
761 762 763
	tg = container_of(css, struct task_group, css);

	return autogroup_task_group(p, tg);
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

790
static void update_rq_clock_task(struct rq *rq, s64 delta);
791

792
static void update_rq_clock(struct rq *rq)
793
{
794
	s64 delta;
795

796
	if (rq->skip_clock_update > 0)
797
		return;
798

799 800 801
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
802 803
}

I
Ingo Molnar 已提交
804 805 806 807 808 809 810 811 812
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
813
/**
814
 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
815
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
816 817 818 819
 *
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
820
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
821
{
822
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
823 824
}

I
Ingo Molnar 已提交
825 826 827
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
828 829 830 831

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
832
enum {
P
Peter Zijlstra 已提交
833
#include "sched_features.h"
I
Ingo Molnar 已提交
834 835
};

P
Peter Zijlstra 已提交
836 837 838 839 840
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
841
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
842 843 844 845 846 847 848 849 850
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

851
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
852 853 854 855 856 857
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
858
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
859 860 861 862
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
863 864 865
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
866
	}
L
Li Zefan 已提交
867
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
868

L
Li Zefan 已提交
869
	return 0;
P
Peter Zijlstra 已提交
870 871 872 873 874 875 876
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
877
	char *cmp;
P
Peter Zijlstra 已提交
878 879 880 881 882 883 884 885 886 887
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
888
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
889

H
Hillf Danton 已提交
890
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
891 892 893 894 895
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
896
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
P
Peter Zijlstra 已提交
897 898 899 900 901 902 903 904 905 906 907
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

908
	*ppos += cnt;
P
Peter Zijlstra 已提交
909 910 911 912

	return cnt;
}

L
Li Zefan 已提交
913 914 915 916 917
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

918
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
919 920 921 922 923
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
924 925 926 927 928 929 930 931 932 933 934 935 936 937
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
938

939 940 941 942 943 944
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

945 946 947 948 949 950 951 952
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
953
/*
P
Peter Zijlstra 已提交
954
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
955 956
 * default: 1s
 */
P
Peter Zijlstra 已提交
957
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
958

959 960
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
961 962 963 964 965
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
966

967 968 969 970 971 972 973
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
974
	if (sysctl_sched_rt_runtime < 0)
975 976 977 978
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
979

L
Linus Torvalds 已提交
980
#ifndef prepare_arch_switch
981 982 983 984 985 986
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

987 988 989 990 991
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

992
static inline int task_running(struct rq *rq, struct task_struct *p)
993
{
P
Peter Zijlstra 已提交
994 995 996
#ifdef CONFIG_SMP
	return p->on_cpu;
#else
997
	return task_current(rq, p);
P
Peter Zijlstra 已提交
998
#endif
999 1000
}

P
Peter Zijlstra 已提交
1001
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1002
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1003
{
P
Peter Zijlstra 已提交
1004 1005 1006 1007 1008 1009 1010 1011
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->on_cpu = 1;
#endif
1012 1013
}

1014
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1015
{
P
Peter Zijlstra 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024
#ifdef CONFIG_SMP
	/*
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->on_cpu = 0;
#endif
1025 1026 1027 1028
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
1029 1030 1031 1032 1033 1034 1035
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

1036
	raw_spin_unlock_irq(&rq->lock);
1037 1038 1039
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
1040
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1041 1042 1043 1044 1045 1046 1047
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
P
Peter Zijlstra 已提交
1048
	next->on_cpu = 1;
1049 1050
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1051
	raw_spin_unlock_irq(&rq->lock);
1052
#else
1053
	raw_spin_unlock(&rq->lock);
1054 1055 1056
#endif
}

1057
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1058 1059 1060
{
#ifdef CONFIG_SMP
	/*
P
Peter Zijlstra 已提交
1061
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1062 1063 1064 1065
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
P
Peter Zijlstra 已提交
1066
	prev->on_cpu = 0;
1067 1068 1069
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
1070
#endif
1071 1072
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
1073

1074
/*
1075
 * __task_rq_lock - lock the rq @p resides on.
1076
 */
1077
static inline struct rq *__task_rq_lock(struct task_struct *p)
1078 1079
	__acquires(rq->lock)
{
1080 1081
	struct rq *rq;

1082 1083
	lockdep_assert_held(&p->pi_lock);

1084
	for (;;) {
1085
		rq = task_rq(p);
1086
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
1087
		if (likely(rq == task_rq(p)))
1088
			return rq;
1089
		raw_spin_unlock(&rq->lock);
1090 1091 1092
	}
}

L
Linus Torvalds 已提交
1093
/*
1094
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
1095
 */
1096
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1097
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
1098 1099
	__acquires(rq->lock)
{
1100
	struct rq *rq;
L
Linus Torvalds 已提交
1101

1102
	for (;;) {
1103
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
1104
		rq = task_rq(p);
1105
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
1106
		if (likely(rq == task_rq(p)))
1107
			return rq;
1108 1109
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
1110 1111 1112
	}
}

A
Alexey Dobriyan 已提交
1113
static void __task_rq_unlock(struct rq *rq)
1114 1115
	__releases(rq->lock)
{
1116
	raw_spin_unlock(&rq->lock);
1117 1118
}

1119 1120
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
1121
	__releases(rq->lock)
1122
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
1123
{
1124 1125
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
1126 1127 1128
}

/*
1129
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1130
 */
A
Alexey Dobriyan 已提交
1131
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1132 1133
	__acquires(rq->lock)
{
1134
	struct rq *rq;
L
Linus Torvalds 已提交
1135 1136 1137

	local_irq_disable();
	rq = this_rq();
1138
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
1139 1140 1141 1142

	return rq;
}

P
Peter Zijlstra 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1164
	if (!cpu_active(cpu_of(rq)))
1165
		return 0;
P
Peter Zijlstra 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1185
	raw_spin_lock(&rq->lock);
1186
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1187
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1188
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1189 1190 1191 1192

	return HRTIMER_NORESTART;
}

1193
#ifdef CONFIG_SMP
1194 1195 1196 1197
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1198
{
1199
	struct rq *rq = arg;
1200

1201
	raw_spin_lock(&rq->lock);
1202 1203
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1204
	raw_spin_unlock(&rq->lock);
1205 1206
}

1207 1208 1209 1210 1211 1212
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1213
{
1214 1215
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1216

1217
	hrtimer_set_expires(timer, time);
1218 1219 1220 1221

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1222
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1223 1224
		rq->hrtick_csd_pending = 1;
	}
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1239
		hrtick_clear(cpu_rq(cpu));
1240 1241 1242 1243 1244 1245
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1246
static __init void init_hrtick(void)
1247 1248 1249
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1250 1251 1252 1253 1254 1255 1256 1257
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1258
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1259
			HRTIMER_MODE_REL_PINNED, 0);
1260
}
1261

A
Andrew Morton 已提交
1262
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1263 1264
{
}
1265
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1266

1267
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1268
{
1269 1270
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1271

1272 1273 1274 1275
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1276

1277 1278
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1279
}
A
Andrew Morton 已提交
1280
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1281 1282 1283 1284 1285 1286 1287 1288
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1289 1290 1291
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1292
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1293

I
Ingo Molnar 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1307
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1308 1309 1310
{
	int cpu;

1311
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1312

1313
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1314 1315
		return;

1316
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1333
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1334 1335
		return;
	resched_task(cpu_curr(cpu));
1336
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1337
}
1338 1339

#ifdef CONFIG_NO_HZ
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

1354
	rcu_read_lock();
1355
	for_each_domain(cpu, sd) {
1356 1357 1358 1359 1360 1361
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
1362
	}
1363 1364
unlock:
	rcu_read_unlock();
1365 1366
	return cpu;
}
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1399
	set_tsk_need_resched(rq->idle);
1400 1401 1402 1403 1404 1405

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
static inline bool got_nohz_idle_kick(void)
{
	return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick;
}

#else /* CONFIG_NO_HZ */

static inline bool got_nohz_idle_kick(void)
{
	return false;
}

1419
#endif /* CONFIG_NO_HZ */
1420

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
1431 1432 1433 1434 1435 1436
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1448
#else /* !CONFIG_SMP */
1449
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1450
{
1451
	assert_raw_spin_locked(&task_rq(p)->lock);
1452
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1453
}
1454 1455 1456 1457

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1458 1459 1460 1461

static void sched_avg_update(struct rq *rq)
{
}
1462
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1463

1464 1465 1466 1467 1468 1469 1470 1471
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1472 1473 1474
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1475
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1476

1477 1478 1479
/*
 * delta *= weight / lw
 */
1480
static unsigned long
1481 1482 1483 1484 1485
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1486 1487 1488 1489 1490 1491 1492 1493 1494
	/*
	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
	 * 2^SCHED_LOAD_RESOLUTION.
	 */
	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
		tmp = (u64)delta_exec * scale_load_down(weight);
	else
		tmp = (u64)delta_exec;
1495

1496
	if (!lw->inv_weight) {
1497 1498 1499
		unsigned long w = scale_load_down(lw->weight);

		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1500
			lw->inv_weight = 1;
1501 1502
		else if (unlikely(!w))
			lw->inv_weight = WMULT_CONST;
1503
		else
1504
			lw->inv_weight = WMULT_CONST / w;
1505
	}
1506 1507 1508 1509

	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1510
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1511
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1512 1513
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1514
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1515

1516
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1517 1518
}

1519
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1520 1521
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1522
	lw->inv_weight = 0;
1523 1524
}

1525
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1526 1527
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1528
	lw->inv_weight = 0;
1529 1530
}

P
Peter Zijlstra 已提交
1531 1532 1533 1534 1535 1536
static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

1537 1538 1539 1540
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1541
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1542 1543 1544 1545
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1546 1547
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1557 1558 1559
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1560 1561
 */
static const int prio_to_weight[40] = {
1562 1563 1564 1565 1566 1567 1568 1569
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1570 1571
};

1572 1573 1574 1575 1576 1577 1578
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1579
static const u32 prio_to_wmult[40] = {
1580 1581 1582 1583 1584 1585 1586 1587
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1588
};
1589

1590 1591 1592 1593 1594 1595 1596 1597
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1598 1599
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1600 1601
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1602 1603
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1604 1605
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1606 1607
#endif

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1618 1619
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
P
Peter Zijlstra 已提交
1620
typedef int (*tg_visitor)(struct task_group *, void *);
1621 1622

/*
1623 1624 1625 1626
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
1627
 */
1628 1629
static int walk_tg_tree_from(struct task_group *from,
			     tg_visitor down, tg_visitor up, void *data)
1630 1631
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1632
	int ret;
1633

1634 1635
	parent = from;

1636
down:
P
Peter Zijlstra 已提交
1637 1638
	ret = (*down)(parent, data);
	if (ret)
1639
		goto out;
1640 1641 1642 1643 1644 1645 1646
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1647
	ret = (*up)(parent, data);
1648 1649
	if (ret || parent == from)
		goto out;
1650 1651 1652 1653 1654

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
1655
out:
P
Peter Zijlstra 已提交
1656
	return ret;
1657 1658
}

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
 */

static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
{
	return walk_tg_tree_from(&root_task_group, down, up, data);
}

P
Peter Zijlstra 已提交
1671 1672 1673
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1674
}
P
Peter Zijlstra 已提交
1675 1676 1677
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1717 1718
static unsigned long power_of(int cpu)
{
1719
	return cpu_rq(cpu)->cpu_power;
1720 1721
}

P
Peter Zijlstra 已提交
1722 1723 1724 1725 1726
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1727
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1728

1729
	if (nr_running)
1730
		return rq->load.weight / nr_running;
P
Peter Zijlstra 已提交
1731

1732
	return 0;
P
Peter Zijlstra 已提交
1733 1734
}

1735 1736
#ifdef CONFIG_PREEMPT

1737 1738
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1739
/*
1740 1741 1742 1743 1744 1745
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1746
 */
1747 1748 1749 1750 1751
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1752
	raw_spin_unlock(&this_rq->lock);
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1767 1768 1769 1770 1771 1772
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1773
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1774
		if (busiest < this_rq) {
1775 1776 1777 1778
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1779 1780
			ret = 1;
		} else
1781 1782
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1783 1784 1785 1786
	}
	return ret;
}

1787 1788 1789 1790 1791 1792 1793 1794 1795
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1796
		raw_spin_unlock(&this_rq->lock);
1797 1798 1799 1800 1801 1802
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1803 1804 1805
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1806
	raw_spin_unlock(&busiest->lock);
1807 1808
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
#else /* CONFIG_SMP */

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	BUG_ON(rq1 != rq2);
	raw_spin_lock(&rq1->lock);
	__acquire(rq2->lock);	/* Fake it out ;) */
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	BUG_ON(rq1 != rq2);
	raw_spin_unlock(&rq1->lock);
	__release(rq2->lock);
}

1885 1886
#endif

1887
static void calc_load_account_idle(struct rq *this_rq);
1888
static void update_sysctl(void);
1889
static int get_update_sysctl_factor(void);
1890
static void update_cpu_load(struct rq *this_rq);
1891

P
Peter Zijlstra 已提交
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1905

1906
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1907

1908
#define sched_class_highest (&stop_sched_class)
1909 1910
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1911

1912 1913
#include "sched_stats.h"

1914
static void inc_nr_running(struct rq *rq)
1915 1916 1917 1918
{
	rq->nr_running++;
}

1919
static void dec_nr_running(struct rq *rq)
1920 1921 1922 1923
{
	rq->nr_running--;
}

1924 1925
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
1926 1927 1928
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
1929 1930 1931 1932
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
1933
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
1934
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
1935 1936
		return;
	}
1937

1938
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
1939
	load->inv_weight = prio_to_wmult[prio];
1940 1941
}

1942
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1943
{
1944
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1945
	sched_info_queued(p);
1946
	p->sched_class->enqueue_task(rq, p, flags);
1947 1948
}

1949
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1950
{
1951
	update_rq_clock(rq);
1952
	sched_info_dequeued(p);
1953
	p->sched_class->dequeue_task(rq, p, flags);
1954 1955
}

1956 1957 1958
/*
 * activate_task - move a task to the runqueue.
 */
1959
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1960 1961 1962 1963
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1964
	enqueue_task(rq, p, flags);
1965 1966 1967 1968 1969
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1970
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1971 1972 1973 1974
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1975
	dequeue_task(rq, p, flags);
1976 1977
}

1978 1979
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

1980 1981 1982 1983 1984 1985 1986
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
1987 1988 1989
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
1990
 */
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
2045 2046 2047
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
2048
#endif /* CONFIG_64BIT */
2049

2050 2051 2052 2053
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
2054 2055 2056
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
2057
	s64 delta;
2058 2059 2060 2061 2062 2063 2064 2065
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
2066 2067 2068
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

2069
	irq_time_write_begin();
2070 2071 2072 2073 2074 2075 2076
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
2077
		__this_cpu_add(cpu_hardirq_time, delta);
2078
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
2079
		__this_cpu_add(cpu_softirq_time, delta);
2080

2081
	irq_time_write_end();
2082 2083
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
2084
EXPORT_SYMBOL_GPL(account_system_vtime);
2085

G
Glauber Costa 已提交
2086 2087 2088 2089
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

#ifdef CONFIG_PARAVIRT
static inline u64 steal_ticks(u64 steal)
2090
{
G
Glauber Costa 已提交
2091 2092
	if (unlikely(steal > NSEC_PER_SEC))
		return div_u64(steal, TICK_NSEC);
2093

G
Glauber Costa 已提交
2094 2095 2096 2097
	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
}
#endif

2098
static void update_rq_clock_task(struct rq *rq, s64 delta)
2099
{
2100 2101 2102 2103 2104 2105 2106 2107
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2108
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_branch((&paravirt_steal_rq_enabled))) {
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

2150 2151
	rq->clock_task += delta;

2152 2153 2154 2155
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
2156 2157
}

2158
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
static int irqtime_account_hi_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

2189
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2190

2191 2192
#define sched_clock_irqtime	(0)

2193
#endif
2194

2195 2196 2197
#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
2198
#include "sched_autogroup.c"
2199
#include "sched_stoptask.c"
2200 2201 2202 2203
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

2234
/*
I
Ingo Molnar 已提交
2235
 * __normal_prio - return the priority that is based on the static prio
2236 2237 2238
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
2239
	return p->static_prio;
2240 2241
}

2242 2243 2244 2245 2246 2247 2248
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
2249
static inline int normal_prio(struct task_struct *p)
2250 2251 2252
{
	int prio;

2253
	if (task_has_rt_policy(p))
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
2267
static int effective_prio(struct task_struct *p)
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
2280 2281 2282 2283
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
2284
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
2285 2286 2287 2288
{
	return cpu_curr(task_cpu(p)) == p;
}

2289 2290
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
2291
				       int oldprio)
2292 2293 2294
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
2295 2296 2297 2298
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
2299 2300
}

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
2322
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2323 2324 2325
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
2326
#ifdef CONFIG_SMP
2327 2328 2329
/*
 * Is this task likely cache-hot:
 */
2330
static int
2331 2332 2333 2334
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2335 2336 2337
	if (p->sched_class != &fair_sched_class)
		return 0;

2338 2339 2340
	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

2341 2342 2343
	/*
	 * Buddy candidates are cache hot:
	 */
2344
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2345 2346
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2347 2348
		return 1;

2349 2350 2351 2352 2353
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2354 2355 2356 2357 2358
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2359
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2360
{
2361 2362 2363 2364 2365
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2366 2367
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2368 2369

#ifdef CONFIG_LOCKDEP
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
	 * see set_task_rq().
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
2380 2381 2382
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
2383 2384
#endif

2385
	trace_sched_migrate_task(p, new_cpu);
2386

2387 2388
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
2389
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
2390
	}
I
Ingo Molnar 已提交
2391 2392

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2393 2394
}

2395
struct migration_arg {
2396
	struct task_struct *task;
L
Linus Torvalds 已提交
2397
	int dest_cpu;
2398
};
L
Linus Torvalds 已提交
2399

2400 2401
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2402 2403 2404
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2405 2406 2407 2408 2409 2410 2411
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2412 2413 2414 2415 2416 2417
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2418
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2419 2420
{
	unsigned long flags;
I
Ingo Molnar 已提交
2421
	int running, on_rq;
R
Roland McGrath 已提交
2422
	unsigned long ncsw;
2423
	struct rq *rq;
L
Linus Torvalds 已提交
2424

2425 2426 2427 2428 2429 2430 2431 2432
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2433

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2445 2446 2447
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2448
			cpu_relax();
R
Roland McGrath 已提交
2449
		}
2450

2451 2452 2453 2454 2455 2456
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2457
		trace_sched_wait_task(p);
2458
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
2459
		on_rq = p->on_rq;
R
Roland McGrath 已提交
2460
		ncsw = 0;
2461
		if (!match_state || p->state == match_state)
2462
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2463
		task_rq_unlock(rq, p, &flags);
2464

R
Roland McGrath 已提交
2465 2466 2467 2468 2469 2470
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2481

2482 2483 2484 2485 2486
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2487
		 * So if it was still runnable (but just not actively
2488 2489 2490 2491
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
2492 2493 2494 2495
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2496 2497
			continue;
		}
2498

2499 2500 2501 2502 2503 2504 2505
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2506 2507

	return ncsw;
L
Linus Torvalds 已提交
2508 2509 2510 2511 2512 2513 2514 2515 2516
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
2517
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
2518 2519 2520 2521 2522
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2523
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2533
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2534
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2535

2536
#ifdef CONFIG_SMP
2537
/*
2538
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2539
 */
2540 2541 2542 2543 2544 2545 2546
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2547
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
2548 2549 2550
			return dest_cpu;

	/* Any allowed, online CPU? */
2551
	dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
2552 2553 2554 2555
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2556 2557 2558 2559 2560 2561 2562 2563 2564
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
2565 2566 2567 2568 2569
	}

	return dest_cpu;
}

2570
/*
2571
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2572
 */
2573
static inline
2574
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2575
{
2576
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
2588
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
2589
		     !cpu_online(cpu)))
2590
		cpu = select_fallback_rq(task_cpu(p), p);
2591 2592

	return cpu;
2593
}
2594 2595 2596 2597 2598 2599

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2600 2601
#endif

P
Peter Zijlstra 已提交
2602
static void
2603
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
2604
{
P
Peter Zijlstra 已提交
2605
#ifdef CONFIG_SCHEDSTATS
2606 2607
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
2618
		rcu_read_lock();
P
Peter Zijlstra 已提交
2619 2620 2621 2622 2623 2624
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
2625
		rcu_read_unlock();
P
Peter Zijlstra 已提交
2626
	}
2627 2628 2629 2630

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
2631 2632 2633
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
2634
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2635 2636

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
2637
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
2638 2639 2640 2641 2642 2643

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
2644
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
2645
	p->on_rq = 1;
2646 2647 2648 2649

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2650 2651
}

2652 2653 2654
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
2655
static void
2656
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
2657
{
2658
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
2659 2660 2661 2662 2663 2664 2665
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

2666
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

2712
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
2713
static void sched_ttwu_pending(void)
2714 2715
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
2716 2717
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
2718 2719 2720

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
2721 2722 2723
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
2724 2725 2726 2727 2728 2729 2730 2731
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
2732
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
2749
	sched_ttwu_pending();
2750 2751 2752 2753

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
2754 2755
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
2756
		raise_softirq_irqoff(SCHED_SOFTIRQ);
2757
	}
2758
	irq_exit();
2759 2760 2761 2762
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
2763
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
2764 2765
		smp_send_reschedule(cpu);
}
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785

#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_cpu) {
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;

}
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
#endif /* CONFIG_SMP */
2786

2787 2788 2789 2790
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

2791
#if defined(CONFIG_SMP)
2792
	if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2793
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
2794 2795 2796 2797 2798
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

2799 2800 2801
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
2802 2803 2804
}

/**
L
Linus Torvalds 已提交
2805
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2806
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2807
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2808
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2809 2810 2811 2812 2813 2814 2815
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2816 2817
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2818
 */
2819 2820
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
2821 2822
{
	unsigned long flags;
2823
	int cpu, success = 0;
P
Peter Zijlstra 已提交
2824

2825
	smp_wmb();
2826
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
2827
	if (!(p->state & state))
L
Linus Torvalds 已提交
2828 2829
		goto out;

2830
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
2831 2832
	cpu = task_cpu(p);

2833 2834
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2835 2836

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
2837
	/*
2838 2839
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
2840
	 */
2841 2842 2843
	while (p->on_cpu) {
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
		/*
2844 2845 2846 2847 2848
		 * In case the architecture enables interrupts in
		 * context_switch(), we cannot busy wait, since that
		 * would lead to deadlocks when an interrupt hits and
		 * tries to wake up @prev. So bail and do a complete
		 * remote wakeup.
2849
		 */
2850
		if (ttwu_activate_remote(p, wake_flags))
2851
			goto stat;
2852
#else
2853
		cpu_relax();
2854
#endif
2855
	}
2856
	/*
2857
	 * Pairs with the smp_wmb() in finish_lock_switch().
2858
	 */
2859
	smp_rmb();
L
Linus Torvalds 已提交
2860

2861
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2862
	p->state = TASK_WAKING;
2863

2864
	if (p->sched_class->task_waking)
2865
		p->sched_class->task_waking(p);
2866

2867
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2868 2869
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2870
		set_task_cpu(p, cpu);
2871
	}
L
Linus Torvalds 已提交
2872 2873
#endif /* CONFIG_SMP */

2874 2875
	ttwu_queue(p, cpu);
stat:
2876
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2877
out:
2878
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2879 2880 2881 2882

	return success;
}

T
Tejun Heo 已提交
2883 2884 2885 2886
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
2887
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2888
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2889
 * the current task.
T
Tejun Heo 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

2899 2900 2901 2902 2903 2904
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
2905
	if (!(p->state & TASK_NORMAL))
2906
		goto out;
T
Tejun Heo 已提交
2907

P
Peter Zijlstra 已提交
2908
	if (!p->on_rq)
P
Peter Zijlstra 已提交
2909 2910
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

2911
	ttwu_do_wakeup(rq, p, 0);
2912
	ttwu_stat(p, smp_processor_id(), 0);
2913 2914
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2915 2916
}

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2928
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2929
{
2930
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2931 2932 2933
}
EXPORT_SYMBOL(wake_up_process);

2934
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2935 2936 2937 2938 2939 2940 2941
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2942 2943 2944 2945 2946
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
2947 2948 2949
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2950 2951
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2952
	p->se.prev_sum_exec_runtime	= 0;
2953
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2954
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2955
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2956 2957

#ifdef CONFIG_SCHEDSTATS
2958
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2959
#endif
N
Nick Piggin 已提交
2960

P
Peter Zijlstra 已提交
2961
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
2962

2963 2964 2965
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2966 2967 2968 2969 2970
}

/*
 * fork()/clone()-time setup:
 */
2971
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
2972
{
2973
	unsigned long flags;
I
Ingo Molnar 已提交
2974 2975 2976
	int cpu = get_cpu();

	__sched_fork(p);
2977
	/*
2978
	 * We mark the process as running here. This guarantees that
2979 2980 2981
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2982
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2983

2984 2985 2986 2987 2988
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2989 2990 2991 2992
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2993
		if (task_has_rt_policy(p)) {
2994
			p->policy = SCHED_NORMAL;
2995
			p->static_prio = NICE_TO_PRIO(0);
2996 2997 2998 2999 3000 3001
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
3002

3003 3004 3005 3006 3007 3008
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
3009

H
Hiroshi Shimamoto 已提交
3010 3011
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
3012

P
Peter Zijlstra 已提交
3013 3014 3015
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

3016 3017 3018 3019 3020 3021 3022
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
3023
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3024
	set_task_cpu(p, cpu);
3025
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3026

3027
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
3028
	if (likely(sched_info_on()))
3029
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
3030
#endif
P
Peter Zijlstra 已提交
3031 3032
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
3033
#endif
3034
#ifdef CONFIG_PREEMPT_COUNT
3035
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
3036
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
3037
#endif
3038
#ifdef CONFIG_SMP
3039
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
3040
#endif
3041

N
Nick Piggin 已提交
3042
	put_cpu();
L
Linus Torvalds 已提交
3043 3044 3045 3046 3047 3048 3049 3050 3051
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
3052
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
3053 3054
{
	unsigned long flags;
I
Ingo Molnar 已提交
3055
	struct rq *rq;
3056

3057
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3058 3059 3060 3061 3062 3063
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
3064
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
3065 3066
#endif

3067
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
3068
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
3069
	p->on_rq = 1;
3070
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
3071
	check_preempt_curr(rq, p, WF_FORK);
3072
#ifdef CONFIG_SMP
3073 3074
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
3075
#endif
3076
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3077 3078
}

3079 3080 3081
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
3082
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
3083
 * @notifier: notifier struct to register
3084 3085 3086 3087 3088 3089 3090 3091 3092
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
3093
 * @notifier: notifier struct to unregister
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

3123
#else /* !CONFIG_PREEMPT_NOTIFIERS */
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

3135
#endif /* CONFIG_PREEMPT_NOTIFIERS */
3136

3137 3138 3139
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
3140
 * @prev: the current task that is being switched out
3141 3142 3143 3144 3145 3146 3147 3148 3149
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
3150 3151 3152
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
3153
{
3154 3155
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
3156
	fire_sched_out_preempt_notifiers(prev, next);
3157 3158
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
3159
	trace_sched_switch(prev, next);
3160 3161
}

L
Linus Torvalds 已提交
3162 3163
/**
 * finish_task_switch - clean up after a task-switch
3164
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
3165 3166
 * @prev: the thread we just switched away from.
 *
3167 3168 3169 3170
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
3171 3172
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
3173
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
3174 3175 3176
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
3177
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
3178 3179 3180
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
3181
	long prev_state;
L
Linus Torvalds 已提交
3182 3183 3184 3185 3186

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
3187
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
3188 3189
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
3190
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
3191 3192 3193 3194 3195
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
3196
	prev_state = prev->state;
3197
	finish_arch_switch(prev);
3198 3199 3200
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3201
	perf_event_task_sched_in(prev, current);
3202 3203 3204
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3205
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
3206

3207
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
3208 3209
	if (mm)
		mmdrop(mm);
3210
	if (unlikely(prev_state == TASK_DEAD)) {
3211 3212 3213
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
3214
		 */
3215
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
3216
		put_task_struct(prev);
3217
	}
L
Linus Torvalds 已提交
3218 3219
}

3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

3235
		raw_spin_lock_irqsave(&rq->lock, flags);
3236 3237
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
3238
		raw_spin_unlock_irqrestore(&rq->lock, flags);
3239 3240 3241 3242 3243 3244

		rq->post_schedule = 0;
	}
}

#else
3245

3246 3247 3248 3249 3250 3251
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
3252 3253
}

3254 3255
#endif

L
Linus Torvalds 已提交
3256 3257 3258 3259
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
3260
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
3261 3262
	__releases(rq->lock)
{
3263 3264
	struct rq *rq = this_rq();

3265
	finish_task_switch(rq, prev);
3266

3267 3268 3269 3270 3271
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
3272

3273 3274 3275 3276
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
3277
	if (current->set_child_tid)
3278
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
3279 3280 3281 3282 3283 3284
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
3285
static inline void
3286
context_switch(struct rq *rq, struct task_struct *prev,
3287
	       struct task_struct *next)
L
Linus Torvalds 已提交
3288
{
I
Ingo Molnar 已提交
3289
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
3290

3291
	prepare_task_switch(rq, prev, next);
3292

I
Ingo Molnar 已提交
3293 3294
	mm = next->mm;
	oldmm = prev->active_mm;
3295 3296 3297 3298 3299
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
3300
	arch_start_context_switch(prev);
3301

3302
	if (!mm) {
L
Linus Torvalds 已提交
3303 3304 3305 3306 3307 3308
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

3309
	if (!prev->mm) {
L
Linus Torvalds 已提交
3310 3311 3312
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
3313 3314 3315 3316 3317 3318 3319
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
3320
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3321
#endif
L
Linus Torvalds 已提交
3322 3323 3324 3325

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
3326 3327 3328 3329 3330 3331 3332
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
3350
}
L
Linus Torvalds 已提交
3351 3352

unsigned long nr_uninterruptible(void)
3353
{
L
Linus Torvalds 已提交
3354
	unsigned long i, sum = 0;
3355

3356
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3357
		sum += cpu_rq(i)->nr_uninterruptible;
3358 3359

	/*
L
Linus Torvalds 已提交
3360 3361
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
3362
	 */
L
Linus Torvalds 已提交
3363 3364
	if (unlikely((long)sum < 0))
		sum = 0;
3365

L
Linus Torvalds 已提交
3366
	return sum;
3367 3368
}

L
Linus Torvalds 已提交
3369
unsigned long long nr_context_switches(void)
3370
{
3371 3372
	int i;
	unsigned long long sum = 0;
3373

3374
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3375
		sum += cpu_rq(i)->nr_switches;
3376

L
Linus Torvalds 已提交
3377 3378
	return sum;
}
3379

L
Linus Torvalds 已提交
3380 3381 3382
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
3383

3384
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3385
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
3386

L
Linus Torvalds 已提交
3387 3388
	return sum;
}
3389

3390
unsigned long nr_iowait_cpu(int cpu)
3391
{
3392
	struct rq *this = cpu_rq(cpu);
3393 3394
	return atomic_read(&this->nr_iowait);
}
3395

3396 3397 3398 3399 3400
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
3401

3402

3403 3404 3405 3406 3407
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
3408

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

3424 3425 3426 3427 3428 3429 3430 3431 3432
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
3584 3585 3586 3587 3588 3589 3590 3591 3592
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
3593 3594 3595 3596

static void calc_global_nohz(unsigned long ticks)
{
}
3597 3598
#endif

3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3612 3613 3614
}

/*
3615 3616
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3617
 */
3618
void calc_global_load(unsigned long ticks)
3619
{
3620
	long active;
L
Linus Torvalds 已提交
3621

3622 3623 3624
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
3625
		return;
L
Linus Torvalds 已提交
3626

3627 3628
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3629

3630 3631 3632
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3633

3634 3635
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3636

3637
/*
3638 3639
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3640 3641 3642
 */
static void calc_load_account_active(struct rq *this_rq)
{
3643
	long delta;
3644

3645 3646
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3647

3648 3649 3650
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3651
		atomic_long_add(delta, &calc_load_tasks);
3652 3653

	this_rq->calc_load_update += LOAD_FREQ;
3654 3655
}

3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

3723
/*
I
Ingo Molnar 已提交
3724
 * Update rq->cpu_load[] statistics. This function is usually called every
3725 3726
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
3727
 */
I
Ingo Molnar 已提交
3728
static void update_cpu_load(struct rq *this_rq)
3729
{
3730
	unsigned long this_load = this_rq->load.weight;
3731 3732
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
3733
	int i, scale;
3734

I
Ingo Molnar 已提交
3735
	this_rq->nr_load_updates++;
3736

3737 3738 3739 3740 3741 3742 3743
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
3744
	/* Update our load: */
3745 3746
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
3747
		unsigned long old_load, new_load;
3748

I
Ingo Molnar 已提交
3749
		/* scale is effectively 1 << i now, and >> i divides by scale */
3750

I
Ingo Molnar 已提交
3751
		old_load = this_rq->cpu_load[i];
3752
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
3753
		new_load = this_load;
I
Ingo Molnar 已提交
3754 3755 3756 3757 3758 3759
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
3760 3761 3762
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
3763
	}
3764 3765

	sched_avg_update(this_rq);
3766 3767 3768 3769 3770
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
3771

3772
	calc_load_account_active(this_rq);
3773 3774
}

I
Ingo Molnar 已提交
3775
#ifdef CONFIG_SMP
3776

3777
/*
P
Peter Zijlstra 已提交
3778 3779
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3780
 */
P
Peter Zijlstra 已提交
3781
void sched_exec(void)
3782
{
P
Peter Zijlstra 已提交
3783
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3784
	unsigned long flags;
3785
	int dest_cpu;
3786

3787
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3788
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3789 3790
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3791

3792
	if (likely(cpu_active(dest_cpu))) {
3793
		struct migration_arg arg = { p, dest_cpu };
3794

3795 3796
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3797 3798
		return;
	}
3799
unlock:
3800
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3801
}
I
Ingo Molnar 已提交
3802

L
Linus Torvalds 已提交
3803 3804 3805 3806 3807 3808 3809
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3810
 * Return any ns on the sched_clock that have not yet been accounted in
3811
 * @p in case that task is currently running.
3812 3813
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3814
 */
3815 3816 3817 3818 3819 3820
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
3821
		ns = rq->clock_task - p->se.exec_start;
3822 3823 3824 3825 3826 3827 3828
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3829
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3830 3831
{
	unsigned long flags;
3832
	struct rq *rq;
3833
	u64 ns = 0;
3834

3835
	rq = task_rq_lock(p, &flags);
3836
	ns = do_task_delta_exec(p, rq);
3837
	task_rq_unlock(rq, p, &flags);
3838

3839 3840
	return ns;
}
3841

3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3855
	task_rq_unlock(rq, p, &flags);
3856 3857 3858

	return ns;
}
3859

L
Linus Torvalds 已提交
3860 3861 3862 3863
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3864
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3865
 */
3866 3867
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3868 3869 3870 3871
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3872
	/* Add user time to process. */
L
Linus Torvalds 已提交
3873
	p->utime = cputime_add(p->utime, cputime);
3874
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3875
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3876 3877 3878 3879 3880 3881 3882

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3883 3884

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3885 3886
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3887 3888
}

3889 3890 3891 3892
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3893
 * @cputime_scaled: cputime scaled by cpu frequency
3894
 */
3895 3896
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3897 3898 3899 3900 3901 3902
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3903
	/* Add guest time to process. */
3904
	p->utime = cputime_add(p->utime, cputime);
3905
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3906
	account_group_user_time(p, cputime);
3907 3908
	p->gtime = cputime_add(p->gtime, cputime);

3909
	/* Add guest time to cpustat. */
3910 3911 3912 3913 3914 3915 3916
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3917 3918
}

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
			cputime_t cputime_scaled, cputime64_t *target_cputime64)
{
	cputime64_t tmp = cputime_to_cputime64(cputime);

	/* Add system time to process. */
	p->stime = cputime_add(p->stime, cputime);
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
	*target_cputime64 = cputime64_add(*target_cputime64, tmp);
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
3945 3946 3947 3948 3949
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3950
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3951 3952
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3953
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3954 3955
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3956
	cputime64_t *target_cputime64;
L
Linus Torvalds 已提交
3957

3958
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3959
		account_guest_time(p, cputime, cputime_scaled);
3960 3961
		return;
	}
3962

L
Linus Torvalds 已提交
3963
	if (hardirq_count() - hardirq_offset)
3964
		target_cputime64 = &cpustat->irq;
3965
	else if (in_serving_softirq())
3966
		target_cputime64 = &cpustat->softirq;
L
Linus Torvalds 已提交
3967
	else
3968
		target_cputime64 = &cpustat->system;
3969

3970
	__account_system_time(p, cputime, cputime_scaled, target_cputime64);
L
Linus Torvalds 已提交
3971 3972
}

3973
/*
L
Linus Torvalds 已提交
3974
 * Account for involuntary wait time.
3975
 * @cputime: the cpu time spent in involuntary wait
3976
 */
3977
void account_steal_time(cputime_t cputime)
3978
{
3979 3980 3981 3982
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3983 3984
}

L
Linus Torvalds 已提交
3985
/*
3986 3987
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3988
 */
3989
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3990 3991
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3992
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3993
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3994

3995 3996 3997 3998
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3999 4000
}

G
Glauber Costa 已提交
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
static __always_inline bool steal_account_process_tick(void)
{
#ifdef CONFIG_PARAVIRT
	if (static_branch(&paravirt_steal_enabled)) {
		u64 steal, st = 0;

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

		st = steal_ticks(steal);
		this_rq()->prev_steal_time += st * TICK_NSEC;

		account_steal_time(st);
		return st;
	}
#endif
	return false;
}

4020 4021
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
	cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

G
Glauber Costa 已提交
4051 4052 4053
	if (steal_account_process_tick())
		return;

4054 4055 4056 4057
	if (irqtime_account_hi_update()) {
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	} else if (irqtime_account_si_update()) {
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4058 4059 4060 4061 4062 4063 4064 4065
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->softirq);
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->system);
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
4086
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
4087 4088 4089
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
4090
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
4091 4092 4093 4094 4095 4096 4097 4098

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
4099
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4100 4101
	struct rq *rq = this_rq();

4102 4103 4104 4105 4106
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

G
Glauber Costa 已提交
4107 4108 4109
	if (steal_account_process_tick())
		return;

4110
	if (user_tick)
4111
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4112
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4113
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
4114 4115
				    one_jiffy_scaled);
	else
4116
		account_idle_time(cputime_one_jiffy);
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
4135 4136 4137 4138 4139 4140

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

4141
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
4142 4143
}

4144 4145
#endif

4146 4147 4148 4149
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4150
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4151
{
4152 4153
	*ut = p->utime;
	*st = p->stime;
4154 4155
}

4156
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4157
{
4158 4159 4160 4161 4162 4163
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
4164 4165
}
#else
4166 4167

#ifndef nsecs_to_cputime
4168
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
4169 4170
#endif

4171
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4172
{
4173
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
4174 4175 4176 4177

	/*
	 * Use CFS's precise accounting:
	 */
4178
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
4179 4180

	if (total) {
4181
		u64 temp = rtime;
4182

4183
		temp *= utime;
4184
		do_div(temp, total);
4185 4186 4187
		utime = (cputime_t)temp;
	} else
		utime = rtime;
4188

4189 4190 4191
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
4192
	p->prev_utime = max(p->prev_utime, utime);
4193
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4194

4195 4196
	*ut = p->prev_utime;
	*st = p->prev_stime;
4197 4198
}

4199 4200 4201 4202
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4203
{
4204 4205 4206
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
4207

4208
	thread_group_cputime(p, &cputime);
4209

4210 4211
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4212

4213
	if (total) {
4214
		u64 temp = rtime;
4215

4216
		temp *= cputime.utime;
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
4228 4229 4230
}
#endif

4231 4232 4233 4234 4235 4236 4237 4238
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4239
	struct task_struct *curr = rq->curr;
4240 4241

	sched_clock_tick();
I
Ingo Molnar 已提交
4242

4243
	raw_spin_lock(&rq->lock);
4244
	update_rq_clock(rq);
4245
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
4246
	curr->sched_class->task_tick(rq, curr, 0);
4247
	raw_spin_unlock(&rq->lock);
4248

4249
	perf_event_task_tick();
4250

4251
#ifdef CONFIG_SMP
4252
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
4253
	trigger_load_balance(rq, cpu);
4254
#endif
L
Linus Torvalds 已提交
4255 4256
}

4257
notrace unsigned long get_parent_ip(unsigned long addr)
4258 4259 4260 4261 4262 4263 4264 4265
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4266

4267 4268 4269
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

4270
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4271
{
4272
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4273 4274 4275
	/*
	 * Underflow?
	 */
4276 4277
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4278
#endif
L
Linus Torvalds 已提交
4279
	preempt_count() += val;
4280
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4281 4282 4283
	/*
	 * Spinlock count overflowing soon?
	 */
4284 4285
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4286 4287 4288
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4289 4290 4291
}
EXPORT_SYMBOL(add_preempt_count);

4292
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4293
{
4294
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4295 4296 4297
	/*
	 * Underflow?
	 */
4298
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4299
		return;
L
Linus Torvalds 已提交
4300 4301 4302
	/*
	 * Is the spinlock portion underflowing?
	 */
4303 4304 4305
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4306
#endif
4307

4308 4309
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4310 4311 4312 4313 4314 4315 4316
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4317
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4318
 */
I
Ingo Molnar 已提交
4319
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4320
{
4321 4322
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
4323 4324
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
4325

I
Ingo Molnar 已提交
4326
	debug_show_held_locks(prev);
4327
	print_modules();
I
Ingo Molnar 已提交
4328 4329
	if (irqs_disabled())
		print_irqtrace_events(prev);
4330 4331 4332 4333 4334

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4335
}
L
Linus Torvalds 已提交
4336

I
Ingo Molnar 已提交
4337 4338 4339 4340 4341
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4342
	/*
I
Ingo Molnar 已提交
4343
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4344 4345 4346
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4347
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4348 4349
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4350 4351
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4352
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4353 4354
}

P
Peter Zijlstra 已提交
4355
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
4356
{
4357
	if (prev->on_rq || rq->skip_clock_update < 0)
4358
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
4359
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
4360 4361
}

I
Ingo Molnar 已提交
4362 4363 4364 4365
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4366
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
4367
{
4368
	const struct sched_class *class;
I
Ingo Molnar 已提交
4369
	struct task_struct *p;
L
Linus Torvalds 已提交
4370 4371

	/*
I
Ingo Molnar 已提交
4372 4373
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4374
	 */
4375
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
4376
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4377 4378
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4379 4380
	}

4381
	for_each_class(class) {
4382
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4383 4384 4385
		if (p)
			return p;
	}
4386 4387

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
4388
}
L
Linus Torvalds 已提交
4389

I
Ingo Molnar 已提交
4390
/*
4391
 * __schedule() is the main scheduler function.
I
Ingo Molnar 已提交
4392
 */
4393
static void __sched __schedule(void)
I
Ingo Molnar 已提交
4394 4395
{
	struct task_struct *prev, *next;
4396
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4397
	struct rq *rq;
4398
	int cpu;
I
Ingo Molnar 已提交
4399

4400 4401
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
4402 4403
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
4404
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
4405 4406 4407
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
4408

4409
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4410
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4411

4412
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
4413

4414
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
4415
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
4416
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
4417
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
4418
		} else {
4419 4420 4421
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
4422
			/*
4423 4424 4425
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
4426 4427 4428 4429 4430 4431 4432 4433 4434
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
4435
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4436 4437
	}

4438
	pre_schedule(rq, prev);
4439

I
Ingo Molnar 已提交
4440
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4441 4442
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
4443
	put_prev_task(rq, prev);
4444
	next = pick_next_task(rq);
4445 4446
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
4447 4448 4449 4450 4451 4452

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4453
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4454
		/*
4455 4456 4457 4458
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
4459 4460 4461
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4462
	} else
4463
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
4464

4465
	post_schedule(rq);
L
Linus Torvalds 已提交
4466 4467

	preempt_enable_no_resched();
4468
	if (need_resched())
L
Linus Torvalds 已提交
4469 4470
		goto need_resched;
}
4471

4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
static inline void sched_submit_work(struct task_struct *tsk)
{
	if (!tsk->state)
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
4484
asmlinkage void __sched schedule(void)
4485
{
4486 4487 4488
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
4489 4490
	__schedule();
}
L
Linus Torvalds 已提交
4491 4492
EXPORT_SYMBOL(schedule);

4493
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4494

4495 4496 4497
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
4498
		return false;
4499 4500

	/*
4501 4502 4503 4504
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
4505
	 */
4506
	barrier();
4507

4508
	return owner->on_cpu;
4509
}
4510

4511 4512 4513 4514 4515 4516 4517 4518
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
4519

4520
	rcu_read_lock();
4521 4522
	while (owner_running(lock, owner)) {
		if (need_resched())
4523
			break;
4524

4525
		arch_mutex_cpu_relax();
4526
	}
4527
	rcu_read_unlock();
4528

4529
	/*
4530 4531 4532
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
4533
	 */
4534
	return lock->owner == NULL;
4535 4536 4537
}
#endif

L
Linus Torvalds 已提交
4538 4539
#ifdef CONFIG_PREEMPT
/*
4540
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4541
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4542 4543
 * occur there and call schedule directly.
 */
4544
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
4545 4546
{
	struct thread_info *ti = current_thread_info();
4547

L
Linus Torvalds 已提交
4548 4549
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4550
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4551
	 */
N
Nick Piggin 已提交
4552
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4553 4554
		return;

4555
	do {
4556
		add_preempt_count_notrace(PREEMPT_ACTIVE);
4557
		__schedule();
4558
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4559

4560 4561 4562 4563 4564
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4565
	} while (need_resched());
L
Linus Torvalds 已提交
4566 4567 4568 4569
}
EXPORT_SYMBOL(preempt_schedule);

/*
4570
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4571 4572 4573 4574 4575 4576 4577
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4578

4579
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4580 4581
	BUG_ON(ti->preempt_count || !irqs_disabled());

4582 4583 4584
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
4585
		__schedule();
4586 4587
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4588

4589 4590 4591 4592 4593
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4594
	} while (need_resched());
L
Linus Torvalds 已提交
4595 4596 4597 4598
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
4599
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
4600
			  void *key)
L
Linus Torvalds 已提交
4601
{
P
Peter Zijlstra 已提交
4602
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
4603 4604 4605 4606
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4607 4608
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4609 4610 4611
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4612
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4613 4614
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4615
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
4616
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
4617
{
4618
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4619

4620
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4621 4622
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
4623
		if (curr->func(curr, mode, wake_flags, key) &&
4624
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4625 4626 4627 4628 4629 4630 4631 4632 4633
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4634
 * @key: is directly passed to the wakeup function
4635 4636 4637
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4638
 */
4639
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4640
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4653
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4654 4655 4656
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
4657
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
4658

4659 4660 4661 4662
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
4663
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4664

L
Linus Torvalds 已提交
4665
/**
4666
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4667 4668 4669
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4670
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
4671 4672 4673 4674 4675 4676 4677
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
4678 4679 4680
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4681
 */
4682 4683
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4684 4685
{
	unsigned long flags;
P
Peter Zijlstra 已提交
4686
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
4687 4688 4689 4690 4691

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
4692
		wake_flags = 0;
L
Linus Torvalds 已提交
4693 4694

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
4695
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
4696 4697
	spin_unlock_irqrestore(&q->lock, flags);
}
4698 4699 4700 4701 4702 4703 4704 4705 4706
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4707 4708
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4709 4710 4711 4712 4713 4714 4715 4716
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4717 4718 4719
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4720
 */
4721
void complete(struct completion *x)
L
Linus Torvalds 已提交
4722 4723 4724 4725 4726
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4727
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4728 4729 4730 4731
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4732 4733 4734 4735 4736
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4737 4738 4739
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4740
 */
4741
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4742 4743 4744 4745 4746
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4747
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4748 4749 4750 4751
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4752 4753
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4754 4755 4756 4757
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
4758
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
4759
		do {
4760
			if (signal_pending_state(state, current)) {
4761 4762
				timeout = -ERESTARTSYS;
				break;
4763 4764
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4765 4766 4767
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4768
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4769
		__remove_wait_queue(&x->wait, &wait);
4770 4771
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4772 4773
	}
	x->done--;
4774
	return timeout ?: 1;
L
Linus Torvalds 已提交
4775 4776
}

4777 4778
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4779 4780 4781 4782
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4783
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4784
	spin_unlock_irq(&x->wait.lock);
4785 4786
	return timeout;
}
L
Linus Torvalds 已提交
4787

4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4798
void __sched wait_for_completion(struct completion *x)
4799 4800
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4801
}
4802
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4803

4804 4805 4806 4807 4808 4809 4810 4811 4812
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4813
unsigned long __sched
4814
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4815
{
4816
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4817
}
4818
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4819

4820 4821 4822 4823 4824 4825 4826
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4827
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4828
{
4829 4830 4831 4832
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4833
}
4834
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4835

4836 4837 4838 4839 4840 4841 4842 4843
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4844
long __sched
4845 4846
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4847
{
4848
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4849
}
4850
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4851

4852 4853 4854 4855 4856 4857 4858
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4859 4860 4861 4862 4863 4864 4865 4866 4867
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4868 4869 4870 4871 4872 4873 4874 4875 4876
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
4877
long __sched
4878 4879 4880 4881 4882 4883 4884
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4899
	unsigned long flags;
4900 4901
	int ret = 1;

4902
	spin_lock_irqsave(&x->wait.lock, flags);
4903 4904 4905 4906
	if (!x->done)
		ret = 0;
	else
		x->done--;
4907
	spin_unlock_irqrestore(&x->wait.lock, flags);
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4922
	unsigned long flags;
4923 4924
	int ret = 1;

4925
	spin_lock_irqsave(&x->wait.lock, flags);
4926 4927
	if (!x->done)
		ret = 0;
4928
	spin_unlock_irqrestore(&x->wait.lock, flags);
4929 4930 4931 4932
	return ret;
}
EXPORT_SYMBOL(completion_done);

4933 4934
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4935
{
I
Ingo Molnar 已提交
4936 4937 4938 4939
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4940

4941
	__set_current_state(state);
L
Linus Torvalds 已提交
4942

4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4957 4958 4959
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4960
long __sched
I
Ingo Molnar 已提交
4961
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4962
{
4963
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4964 4965 4966
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4967
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4968
{
4969
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4970 4971 4972
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4973
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4974
{
4975
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4976 4977 4978
}
EXPORT_SYMBOL(sleep_on_timeout);

4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4991
void rt_mutex_setprio(struct task_struct *p, int prio)
4992
{
4993
	int oldprio, on_rq, running;
4994
	struct rq *rq;
4995
	const struct sched_class *prev_class;
4996 4997 4998

	BUG_ON(prio < 0 || prio > MAX_PRIO);

4999
	rq = __task_rq_lock(p);
5000

5001
	trace_sched_pi_setprio(p, prio);
5002
	oldprio = p->prio;
5003
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
5004
	on_rq = p->on_rq;
5005
	running = task_current(rq, p);
5006
	if (on_rq)
5007
		dequeue_task(rq, p, 0);
5008 5009
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5010 5011 5012 5013 5014 5015

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5016 5017
	p->prio = prio;

5018 5019
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
5020
	if (on_rq)
5021
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
5022

P
Peter Zijlstra 已提交
5023
	check_class_changed(rq, p, prev_class, oldprio);
5024
	__task_rq_unlock(rq);
5025 5026 5027 5028
}

#endif

5029
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5030
{
I
Ingo Molnar 已提交
5031
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5032
	unsigned long flags;
5033
	struct rq *rq;
L
Linus Torvalds 已提交
5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5046
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5047
	 */
5048
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5049 5050 5051
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
5052
	on_rq = p->on_rq;
5053
	if (on_rq)
5054
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5055 5056

	p->static_prio = NICE_TO_PRIO(nice);
5057
	set_load_weight(p);
5058 5059 5060
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5061

I
Ingo Molnar 已提交
5062
	if (on_rq) {
5063
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5064
		/*
5065 5066
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5067
		 */
5068
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5069 5070 5071
			resched_task(rq->curr);
	}
out_unlock:
5072
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
5073 5074 5075
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5076 5077 5078 5079 5080
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5081
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5082
{
5083 5084
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5085

5086
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
5087 5088 5089
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5090 5091 5092 5093 5094 5095 5096 5097 5098
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5099
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5100
{
5101
	long nice, retval;
L
Linus Torvalds 已提交
5102 5103 5104 5105 5106 5107

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5108 5109
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5110 5111 5112
	if (increment > 40)
		increment = 40;

5113
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
5114 5115 5116 5117 5118
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5119 5120 5121
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5140
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5141 5142 5143 5144 5145 5146 5147 5148
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5149
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5150 5151 5152
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5153
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5154 5155 5156 5157 5158 5159 5160

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
5175 5176 5177 5178 5179 5180
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5181
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5182 5183 5184 5185 5186 5187 5188 5189
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5190
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5191
{
5192
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5193 5194 5195
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5196 5197
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5198 5199 5200
{
	p->policy = policy;
	p->rt_priority = prio;
5201 5202 5203
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5204 5205 5206 5207
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
5208
	set_load_weight(p);
L
Linus Torvalds 已提交
5209 5210
}

5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
5221 5222 5223 5224 5225
	if (cred->user->user_ns == pcred->user->user_ns)
		match = (cred->euid == pcred->euid ||
			 cred->euid == pcred->uid);
	else
		match = false;
5226 5227 5228 5229
	rcu_read_unlock();
	return match;
}

5230
static int __sched_setscheduler(struct task_struct *p, int policy,
5231
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5232
{
5233
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5234
	unsigned long flags;
5235
	const struct sched_class *prev_class;
5236
	struct rq *rq;
5237
	int reset_on_fork;
L
Linus Torvalds 已提交
5238

5239 5240
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5241 5242
recheck:
	/* double check policy once rq lock held */
5243 5244
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
5245
		policy = oldpolicy = p->policy;
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
5256 5257
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5258 5259
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5260 5261
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5262
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5263
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5264
		return -EINVAL;
5265
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5266 5267
		return -EINVAL;

5268 5269 5270
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5271
	if (user && !capable(CAP_SYS_NICE)) {
5272
		if (rt_policy(policy)) {
5273 5274
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
5275 5276 5277 5278 5279 5280 5281 5282 5283 5284

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
5285

I
Ingo Molnar 已提交
5286
		/*
5287 5288
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
5289
		 */
5290 5291 5292 5293
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
5294

5295
		/* can't change other user's priorities */
5296
		if (!check_same_owner(p))
5297
			return -EPERM;
5298 5299 5300 5301

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
5302
	}
L
Linus Torvalds 已提交
5303

5304
	if (user) {
5305
		retval = security_task_setscheduler(p);
5306 5307 5308 5309
		if (retval)
			return retval;
	}

5310 5311 5312
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
5313
	 *
L
Lucas De Marchi 已提交
5314
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
5315 5316
	 * runqueue lock must be held.
	 */
5317
	rq = task_rq_lock(p, &flags);
5318

5319 5320 5321 5322
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
5323
		task_rq_unlock(rq, p, &flags);
5324 5325 5326
		return -EINVAL;
	}

5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {

		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return 0;
	}

5338 5339 5340 5341 5342 5343 5344
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5345 5346
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
5347
			task_rq_unlock(rq, p, &flags);
5348 5349 5350 5351 5352
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
5353 5354 5355
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5356
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
5357 5358
		goto recheck;
	}
P
Peter Zijlstra 已提交
5359
	on_rq = p->on_rq;
5360
	running = task_current(rq, p);
5361
	if (on_rq)
5362
		deactivate_task(rq, p, 0);
5363 5364
	if (running)
		p->sched_class->put_prev_task(rq, p);
5365

5366 5367
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
5368
	oldprio = p->prio;
5369
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
5370
	__setscheduler(rq, p, policy, param->sched_priority);
5371

5372 5373
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
5374
	if (on_rq)
I
Ingo Molnar 已提交
5375
		activate_task(rq, p, 0);
5376

P
Peter Zijlstra 已提交
5377
	check_class_changed(rq, p, prev_class, oldprio);
5378
	task_rq_unlock(rq, p, &flags);
5379

5380 5381
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5382 5383
	return 0;
}
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
5394
		       const struct sched_param *param)
5395 5396 5397
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5398 5399
EXPORT_SYMBOL_GPL(sched_setscheduler);

5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5412
			       const struct sched_param *param)
5413 5414 5415 5416
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5417 5418
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5419 5420 5421
{
	struct sched_param lparam;
	struct task_struct *p;
5422
	int retval;
L
Linus Torvalds 已提交
5423 5424 5425 5426 5427

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5428 5429 5430

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5431
	p = find_process_by_pid(pid);
5432 5433 5434
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5435

L
Linus Torvalds 已提交
5436 5437 5438 5439 5440 5441 5442 5443 5444
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5445 5446
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5447
{
5448 5449 5450 5451
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5452 5453 5454 5455 5456 5457 5458 5459
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5460
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5461 5462 5463 5464 5465 5466 5467 5468
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5469
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5470
{
5471
	struct task_struct *p;
5472
	int retval;
L
Linus Torvalds 已提交
5473 5474

	if (pid < 0)
5475
		return -EINVAL;
L
Linus Torvalds 已提交
5476 5477

	retval = -ESRCH;
5478
	rcu_read_lock();
L
Linus Torvalds 已提交
5479 5480 5481 5482
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
5483 5484
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
5485
	}
5486
	rcu_read_unlock();
L
Linus Torvalds 已提交
5487 5488 5489 5490
	return retval;
}

/**
5491
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
5492 5493 5494
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5495
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5496 5497
{
	struct sched_param lp;
5498
	struct task_struct *p;
5499
	int retval;
L
Linus Torvalds 已提交
5500 5501

	if (!param || pid < 0)
5502
		return -EINVAL;
L
Linus Torvalds 已提交
5503

5504
	rcu_read_lock();
L
Linus Torvalds 已提交
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
5515
	rcu_read_unlock();
L
Linus Torvalds 已提交
5516 5517 5518 5519 5520 5521 5522 5523 5524

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
5525
	rcu_read_unlock();
L
Linus Torvalds 已提交
5526 5527 5528
	return retval;
}

5529
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5530
{
5531
	cpumask_var_t cpus_allowed, new_mask;
5532 5533
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5534

5535
	get_online_cpus();
5536
	rcu_read_lock();
L
Linus Torvalds 已提交
5537 5538 5539

	p = find_process_by_pid(pid);
	if (!p) {
5540
		rcu_read_unlock();
5541
		put_online_cpus();
L
Linus Torvalds 已提交
5542 5543 5544
		return -ESRCH;
	}

5545
	/* Prevent p going away */
L
Linus Torvalds 已提交
5546
	get_task_struct(p);
5547
	rcu_read_unlock();
L
Linus Torvalds 已提交
5548

5549 5550 5551 5552 5553 5554 5555 5556
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5557
	retval = -EPERM;
5558
	if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
L
Linus Torvalds 已提交
5559 5560
		goto out_unlock;

5561
	retval = security_task_setscheduler(p);
5562 5563 5564
	if (retval)
		goto out_unlock;

5565 5566
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
5567
again:
5568
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5569

P
Paul Menage 已提交
5570
	if (!retval) {
5571 5572
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5573 5574 5575 5576 5577
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5578
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5579 5580 5581
			goto again;
		}
	}
L
Linus Torvalds 已提交
5582
out_unlock:
5583 5584 5585 5586
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5587
	put_task_struct(p);
5588
	put_online_cpus();
L
Linus Torvalds 已提交
5589 5590 5591 5592
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5593
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5594
{
5595 5596 5597 5598 5599
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5600 5601 5602 5603 5604 5605 5606 5607 5608
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5609 5610
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5611
{
5612
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5613 5614
	int retval;

5615 5616
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5617

5618 5619 5620 5621 5622
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5623 5624
}

5625
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5626
{
5627
	struct task_struct *p;
5628
	unsigned long flags;
L
Linus Torvalds 已提交
5629 5630
	int retval;

5631
	get_online_cpus();
5632
	rcu_read_lock();
L
Linus Torvalds 已提交
5633 5634 5635 5636 5637 5638

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5639 5640 5641 5642
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5643
	raw_spin_lock_irqsave(&p->pi_lock, flags);
5644
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5645
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5646 5647

out_unlock:
5648
	rcu_read_unlock();
5649
	put_online_cpus();
L
Linus Torvalds 已提交
5650

5651
	return retval;
L
Linus Torvalds 已提交
5652 5653 5654 5655 5656 5657 5658 5659
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5660 5661
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5662 5663
{
	int ret;
5664
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5665

A
Anton Blanchard 已提交
5666
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5667 5668
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
5669 5670
		return -EINVAL;

5671 5672
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5673

5674 5675
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
5676
		size_t retlen = min_t(size_t, len, cpumask_size());
5677 5678

		if (copy_to_user(user_mask_ptr, mask, retlen))
5679 5680
			ret = -EFAULT;
		else
5681
			ret = retlen;
5682 5683
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5684

5685
	return ret;
L
Linus Torvalds 已提交
5686 5687 5688 5689 5690
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5691 5692
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5693
 */
5694
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5695
{
5696
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5697

5698
	schedstat_inc(rq, yld_count);
5699
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5700 5701 5702 5703 5704 5705

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5706
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5707
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
5708 5709 5710 5711 5712 5713 5714
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
5715 5716 5717 5718 5719
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
5720
static void __cond_resched(void)
L
Linus Torvalds 已提交
5721
{
5722
	add_preempt_count(PREEMPT_ACTIVE);
5723
	__schedule();
5724
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5725 5726
}

5727
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5728
{
P
Peter Zijlstra 已提交
5729
	if (should_resched()) {
L
Linus Torvalds 已提交
5730 5731 5732 5733 5734
		__cond_resched();
		return 1;
	}
	return 0;
}
5735
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5736 5737

/*
5738
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5739 5740
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5741
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5742 5743 5744
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5745
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5746
{
P
Peter Zijlstra 已提交
5747
	int resched = should_resched();
J
Jan Kara 已提交
5748 5749
	int ret = 0;

5750 5751
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5752
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5753
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5754
		if (resched)
N
Nick Piggin 已提交
5755 5756 5757
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5758
		ret = 1;
L
Linus Torvalds 已提交
5759 5760
		spin_lock(lock);
	}
J
Jan Kara 已提交
5761
	return ret;
L
Linus Torvalds 已提交
5762
}
5763
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5764

5765
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5766 5767 5768
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5769
	if (should_resched()) {
5770
		local_bh_enable();
L
Linus Torvalds 已提交
5771 5772 5773 5774 5775 5776
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5777
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5778 5779 5780 5781

/**
 * yield - yield the current processor to other threads.
 *
5782
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5783 5784 5785 5786 5787 5788 5789 5790 5791
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

5792 5793 5794 5795
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
5796 5797
 * @p: target task
 * @preempt: whether task preemption is allowed or not
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5832
	if (yielded) {
5833
		schedstat_inc(rq, yld_count);
5834 5835 5836 5837 5838 5839 5840
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
5853
/*
I
Ingo Molnar 已提交
5854
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5855 5856 5857 5858
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5859
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5860

5861
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5862
	atomic_inc(&rq->nr_iowait);
5863
	blk_flush_plug(current);
5864
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5865
	schedule();
5866
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5867
	atomic_dec(&rq->nr_iowait);
5868
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5869 5870 5871 5872 5873
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5874
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5875 5876
	long ret;

5877
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5878
	atomic_inc(&rq->nr_iowait);
5879
	blk_flush_plug(current);
5880
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5881
	ret = schedule_timeout(timeout);
5882
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5883
	atomic_dec(&rq->nr_iowait);
5884
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5895
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5896 5897 5898 5899 5900 5901 5902 5903 5904
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5905
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5906
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5920
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5921 5922 5923 5924 5925 5926 5927 5928 5929
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5930
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5931
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5945
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5946
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5947
{
5948
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5949
	unsigned int time_slice;
5950 5951
	unsigned long flags;
	struct rq *rq;
5952
	int retval;
L
Linus Torvalds 已提交
5953 5954 5955
	struct timespec t;

	if (pid < 0)
5956
		return -EINVAL;
L
Linus Torvalds 已提交
5957 5958

	retval = -ESRCH;
5959
	rcu_read_lock();
L
Linus Torvalds 已提交
5960 5961 5962 5963 5964 5965 5966 5967
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5968 5969
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
5970
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
5971

5972
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5973
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5974 5975
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5976

L
Linus Torvalds 已提交
5977
out_unlock:
5978
	rcu_read_unlock();
L
Linus Torvalds 已提交
5979 5980 5981
	return retval;
}

5982
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5983

5984
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5985 5986
{
	unsigned long free = 0;
5987
	unsigned state;
L
Linus Torvalds 已提交
5988 5989

	state = p->state ? __ffs(p->state) + 1 : 0;
5990
	printk(KERN_INFO "%-15.15s %c", p->comm,
5991
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5992
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5993
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5994
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5995
	else
P
Peter Zijlstra 已提交
5996
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5997 5998
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5999
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6000
	else
P
Peter Zijlstra 已提交
6001
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6002 6003
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6004
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6005
#endif
P
Peter Zijlstra 已提交
6006
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6007 6008
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6009

6010
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6011 6012
}

I
Ingo Molnar 已提交
6013
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6014
{
6015
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6016

6017
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
6018 6019
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6020
#else
P
Peter Zijlstra 已提交
6021 6022
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6023 6024 6025 6026 6027
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
6028
		 * console might take a lot of time:
L
Linus Torvalds 已提交
6029 6030
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6031
		if (!state_filter || (p->state & state_filter))
6032
			sched_show_task(p);
L
Linus Torvalds 已提交
6033 6034
	} while_each_thread(g, p);

6035 6036
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6037 6038 6039
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6040
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6041 6042 6043
	/*
	 * Only show locks if all tasks are dumped:
	 */
6044
	if (!state_filter)
I
Ingo Molnar 已提交
6045
		debug_show_all_locks();
L
Linus Torvalds 已提交
6046 6047
}

I
Ingo Molnar 已提交
6048 6049
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6050
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6051 6052
}

6053 6054 6055 6056 6057 6058 6059 6060
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6061
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6062
{
6063
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6064 6065
	unsigned long flags;

6066
	raw_spin_lock_irqsave(&rq->lock, flags);
6067

I
Ingo Molnar 已提交
6068
	__sched_fork(idle);
6069
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
6070 6071
	idle->se.exec_start = sched_clock();

6072
	do_set_cpus_allowed(idle, cpumask_of(cpu));
6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
6084
	__set_task_cpu(idle, cpu);
6085
	rcu_read_unlock();
L
Linus Torvalds 已提交
6086 6087

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
6088 6089
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
6090
#endif
6091
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6092 6093

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
6094
	task_thread_info(idle)->preempt_count = 0;
J
Jonathan Corbet 已提交
6095

I
Ingo Molnar 已提交
6096 6097 6098 6099
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6100
	ftrace_graph_init_idle_task(idle, cpu);
L
Linus Torvalds 已提交
6101 6102 6103 6104 6105 6106 6107
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6108
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6109
 */
6110
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6111

I
Ingo Molnar 已提交
6112 6113 6114 6115 6116 6117 6118 6119 6120
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
6121
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
6122
{
6123
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
6138

6139 6140
	return factor;
}
I
Ingo Molnar 已提交
6141

6142 6143 6144
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
6145

6146 6147 6148 6149 6150 6151 6152
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}
6153

6154 6155 6156
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
6157 6158
}

L
Linus Torvalds 已提交
6159
#ifdef CONFIG_SMP
6160 6161 6162 6163
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
6164 6165 6166

	cpumask_copy(&p->cpus_allowed, new_mask);
	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6167 6168
}

L
Linus Torvalds 已提交
6169 6170 6171
/*
 * This is how migration works:
 *
6172 6173 6174 6175 6176 6177
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
6178
 *    it and puts it into the right queue.
6179 6180
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
6181 6182 6183 6184 6185 6186 6187 6188
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6189
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6190 6191
 * call is not atomic; no spinlocks may be held.
 */
6192
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6193 6194
{
	unsigned long flags;
6195
	struct rq *rq;
6196
	unsigned int dest_cpu;
6197
	int ret = 0;
L
Linus Torvalds 已提交
6198 6199

	rq = task_rq_lock(p, &flags);
6200

6201 6202 6203
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

6204
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
6205 6206 6207 6208
		ret = -EINVAL;
		goto out;
	}

6209
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6210 6211 6212 6213
		ret = -EINVAL;
		goto out;
	}

6214
	do_set_cpus_allowed(p, new_mask);
6215

L
Linus Torvalds 已提交
6216
	/* Can the task run on the task's current CPU? If so, we're done */
6217
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6218 6219
		goto out;

6220
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6221
	if (p->on_rq) {
6222
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
6223
		/* Need help from migration thread: drop lock and wait. */
6224
		task_rq_unlock(rq, p, &flags);
6225
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
6226 6227 6228 6229
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
6230
	task_rq_unlock(rq, p, &flags);
6231

L
Linus Torvalds 已提交
6232 6233
	return ret;
}
6234
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6235 6236

/*
I
Ingo Molnar 已提交
6237
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6238 6239 6240 6241 6242 6243
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6244 6245
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6246
 */
6247
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6248
{
6249
	struct rq *rq_dest, *rq_src;
6250
	int ret = 0;
L
Linus Torvalds 已提交
6251

6252
	if (unlikely(!cpu_active(dest_cpu)))
6253
		return ret;
L
Linus Torvalds 已提交
6254 6255 6256 6257

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

6258
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
6259 6260 6261
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6262
		goto done;
L
Linus Torvalds 已提交
6263
	/* Affinity changed (again). */
6264
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
6265
		goto fail;
L
Linus Torvalds 已提交
6266

6267 6268 6269 6270
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
6271
	if (p->on_rq) {
6272
		deactivate_task(rq_src, p, 0);
6273
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6274
		activate_task(rq_dest, p, 0);
6275
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6276
	}
L
Linus Torvalds 已提交
6277
done:
6278
	ret = 1;
L
Linus Torvalds 已提交
6279
fail:
L
Linus Torvalds 已提交
6280
	double_rq_unlock(rq_src, rq_dest);
6281
	raw_spin_unlock(&p->pi_lock);
6282
	return ret;
L
Linus Torvalds 已提交
6283 6284 6285
}

/*
6286 6287 6288
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
6289
 */
6290
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
6291
{
6292
	struct migration_arg *arg = data;
6293

6294 6295 6296 6297
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
6298
	local_irq_disable();
6299
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6300
	local_irq_enable();
L
Linus Torvalds 已提交
6301
	return 0;
6302 6303
}

L
Linus Torvalds 已提交
6304
#ifdef CONFIG_HOTPLUG_CPU
6305

6306
/*
6307 6308
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
6309
 */
6310
void idle_task_exit(void)
L
Linus Torvalds 已提交
6311
{
6312
	struct mm_struct *mm = current->active_mm;
6313

6314
	BUG_ON(cpu_online(smp_processor_id()));
6315

6316 6317 6318
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
6319 6320 6321 6322 6323 6324 6325 6326 6327
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6328
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6329
{
6330
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
6331 6332 6333 6334 6335

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
6336
/*
6337
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
6338
 */
6339
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
6340
{
6341 6342
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
6343 6344
}

6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
#ifdef CONFIG_CFS_BANDWIDTH
static void unthrottle_offline_cfs_rqs(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}
#else
static void unthrottle_offline_cfs_rqs(struct rq *rq) {}
#endif

6369
/*
6370 6371 6372 6373 6374 6375
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
6376
 */
6377
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
6378
{
6379
	struct rq *rq = cpu_rq(dead_cpu);
6380 6381
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
6382 6383

	/*
6384 6385 6386 6387 6388 6389 6390
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
6391
	 */
6392
	rq->stop = NULL;
6393

6394 6395 6396
	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);

I
Ingo Molnar 已提交
6397
	for ( ; ; ) {
6398 6399 6400 6401 6402
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
6403
			break;
6404

6405
		next = pick_next_task(rq);
6406
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
6407
		next->sched_class->put_prev_task(rq, next);
6408

6409 6410 6411 6412 6413 6414 6415
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
6416
	}
6417

6418
	rq->stop = stop;
6419
}
6420

L
Linus Torvalds 已提交
6421 6422
#endif /* CONFIG_HOTPLUG_CPU */

6423 6424 6425
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6426 6427
	{
		.procname	= "sched_domain",
6428
		.mode		= 0555,
6429
	},
6430
	{}
6431 6432 6433
};

static struct ctl_table sd_ctl_root[] = {
6434 6435
	{
		.procname	= "kernel",
6436
		.mode		= 0555,
6437 6438
		.child		= sd_ctl_dir,
	},
6439
	{}
6440 6441 6442 6443 6444
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6445
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6446 6447 6448 6449

	return entry;
}

6450 6451
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6452
	struct ctl_table *entry;
6453

6454 6455 6456
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6457
	 * will always be set. In the lowest directory the names are
6458 6459 6460
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6461 6462
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6463 6464 6465
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6466 6467 6468 6469 6470

	kfree(*tablep);
	*tablep = NULL;
}

6471
static void
6472
set_table_entry(struct ctl_table *entry,
6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6486
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6487

6488 6489 6490
	if (table == NULL)
		return NULL;

6491
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6492
		sizeof(long), 0644, proc_doulongvec_minmax);
6493
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6494
		sizeof(long), 0644, proc_doulongvec_minmax);
6495
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6496
		sizeof(int), 0644, proc_dointvec_minmax);
6497
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6498
		sizeof(int), 0644, proc_dointvec_minmax);
6499
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6500
		sizeof(int), 0644, proc_dointvec_minmax);
6501
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6502
		sizeof(int), 0644, proc_dointvec_minmax);
6503
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6504
		sizeof(int), 0644, proc_dointvec_minmax);
6505
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6506
		sizeof(int), 0644, proc_dointvec_minmax);
6507
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6508
		sizeof(int), 0644, proc_dointvec_minmax);
6509
	set_table_entry(&table[9], "cache_nice_tries",
6510 6511
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6512
	set_table_entry(&table[10], "flags", &sd->flags,
6513
		sizeof(int), 0644, proc_dointvec_minmax);
6514 6515 6516
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6517 6518 6519 6520

	return table;
}

6521
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6522 6523 6524 6525 6526 6527 6528 6529 6530
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6531 6532
	if (table == NULL)
		return NULL;
6533 6534 6535 6536 6537

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6538
		entry->mode = 0555;
6539 6540 6541 6542 6543 6544 6545 6546
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6547
static void register_sched_domain_sysctl(void)
6548
{
6549
	int i, cpu_num = num_possible_cpus();
6550 6551 6552
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6553 6554 6555
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6556 6557 6558
	if (entry == NULL)
		return;

6559
	for_each_possible_cpu(i) {
6560 6561
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6562
		entry->mode = 0555;
6563
		entry->child = sd_alloc_ctl_cpu_table(i);
6564
		entry++;
6565
	}
6566 6567

	WARN_ON(sd_sysctl_header);
6568 6569
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6570

6571
/* may be called multiple times per register */
6572 6573
static void unregister_sched_domain_sysctl(void)
{
6574 6575
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6576
	sd_sysctl_header = NULL;
6577 6578
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6579
}
6580
#else
6581 6582 6583 6584
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6585 6586 6587 6588
{
}
#endif

6589 6590 6591 6592 6593
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6594
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6614
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6615 6616 6617 6618
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6619 6620 6621 6622
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6623 6624
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6625
{
6626
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6627
	unsigned long flags;
6628
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6629

6630
	switch (action & ~CPU_TASKS_FROZEN) {
6631

L
Linus Torvalds 已提交
6632
	case CPU_UP_PREPARE:
6633
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
6634
		break;
6635

L
Linus Torvalds 已提交
6636
	case CPU_ONLINE:
6637
		/* Update our root-domain */
6638
		raw_spin_lock_irqsave(&rq->lock, flags);
6639
		if (rq->rd) {
6640
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6641 6642

			set_rq_online(rq);
6643
		}
6644
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6645
		break;
6646

L
Linus Torvalds 已提交
6647
#ifdef CONFIG_HOTPLUG_CPU
6648
	case CPU_DYING:
6649
		sched_ttwu_pending();
G
Gregory Haskins 已提交
6650
		/* Update our root-domain */
6651
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6652
		if (rq->rd) {
6653
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6654
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6655
		}
6656 6657
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
6658
		raw_spin_unlock_irqrestore(&rq->lock, flags);
6659 6660 6661

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
6662
		break;
L
Linus Torvalds 已提交
6663 6664
#endif
	}
6665 6666 6667

	update_max_interval();

L
Linus Torvalds 已提交
6668 6669 6670
	return NOTIFY_OK;
}

6671 6672 6673
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
6674
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
6675
 */
6676
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6677
	.notifier_call = migration_call,
6678
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
6679 6680
};

6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

6706
static int __init migration_init(void)
L
Linus Torvalds 已提交
6707 6708
{
	void *cpu = (void *)(long)smp_processor_id();
6709
	int err;
6710

6711
	/* Initialize migration for the boot CPU */
6712 6713
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6714 6715
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6716

6717 6718 6719 6720
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

6721
	return 0;
L
Linus Torvalds 已提交
6722
}
6723
early_initcall(migration_init);
L
Linus Torvalds 已提交
6724 6725 6726
#endif

#ifdef CONFIG_SMP
6727

6728 6729
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

6730
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6731

6732 6733 6734 6735 6736 6737 6738 6739 6740 6741
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6742
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6743
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6744
{
I
Ingo Molnar 已提交
6745
	struct sched_group *group = sd->groups;
6746
	char str[256];
L
Linus Torvalds 已提交
6747

R
Rusty Russell 已提交
6748
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6749
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6750 6751 6752 6753

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6754
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6755
		if (sd->parent)
P
Peter Zijlstra 已提交
6756 6757
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6758
		return -1;
N
Nick Piggin 已提交
6759 6760
	}

P
Peter Zijlstra 已提交
6761
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6762

6763
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6764 6765
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6766
	}
6767
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6768 6769
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6770
	}
L
Linus Torvalds 已提交
6771

I
Ingo Molnar 已提交
6772
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6773
	do {
I
Ingo Molnar 已提交
6774
		if (!group) {
P
Peter Zijlstra 已提交
6775 6776
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6777 6778 6779
			break;
		}

6780
		if (!group->sgp->power) {
P
Peter Zijlstra 已提交
6781 6782 6783
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6784 6785
			break;
		}
L
Linus Torvalds 已提交
6786

6787
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6788 6789
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6790 6791
			break;
		}
L
Linus Torvalds 已提交
6792

6793
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6794 6795
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6796 6797
			break;
		}
L
Linus Torvalds 已提交
6798

6799
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6800

R
Rusty Russell 已提交
6801
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6802

P
Peter Zijlstra 已提交
6803
		printk(KERN_CONT " %s", str);
6804
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
6805
			printk(KERN_CONT " (cpu_power = %d)",
6806
				group->sgp->power);
6807
		}
L
Linus Torvalds 已提交
6808

I
Ingo Molnar 已提交
6809 6810
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6811
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6812

6813
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6814
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6815

6816 6817
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6818 6819
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6820 6821
	return 0;
}
L
Linus Torvalds 已提交
6822

I
Ingo Molnar 已提交
6823 6824 6825
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
6826

6827 6828 6829
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6830 6831 6832 6833
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6834

I
Ingo Molnar 已提交
6835 6836 6837
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
6838
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
6839
			break;
L
Linus Torvalds 已提交
6840 6841
		level++;
		sd = sd->parent;
6842
		if (!sd)
I
Ingo Molnar 已提交
6843 6844
			break;
	}
L
Linus Torvalds 已提交
6845
}
6846
#else /* !CONFIG_SCHED_DEBUG */
6847
# define sched_domain_debug(sd, cpu) do { } while (0)
6848
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6849

6850
static int sd_degenerate(struct sched_domain *sd)
6851
{
6852
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6853 6854 6855 6856 6857 6858
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6859 6860 6861
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6862 6863 6864 6865 6866
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6867
	if (sd->flags & (SD_WAKE_AFFINE))
6868 6869 6870 6871 6872
		return 0;

	return 1;
}

6873 6874
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6875 6876 6877 6878 6879 6880
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6881
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6882 6883 6884 6885 6886 6887 6888
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6889 6890 6891
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6892 6893
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6894 6895 6896 6897 6898 6899 6900
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6901
static void free_rootdomain(struct rcu_head *rcu)
6902
{
6903
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6904

6905
	cpupri_cleanup(&rd->cpupri);
6906 6907 6908 6909 6910 6911
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6912 6913
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6914
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6915 6916
	unsigned long flags;

6917
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6918 6919

	if (rq->rd) {
I
Ingo Molnar 已提交
6920
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6921

6922
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6923
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6924

6925
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6926

I
Ingo Molnar 已提交
6927 6928 6929 6930 6931 6932 6933
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6934 6935 6936 6937 6938
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6939
	cpumask_set_cpu(rq->cpu, rd->span);
6940
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6941
		set_rq_online(rq);
G
Gregory Haskins 已提交
6942

6943
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6944 6945

	if (old_rd)
6946
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
6947 6948
}

6949
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6950 6951 6952
{
	memset(rd, 0, sizeof(*rd));

6953
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6954
		goto out;
6955
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6956
		goto free_span;
6957
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6958
		goto free_online;
6959

6960
	if (cpupri_init(&rd->cpupri) != 0)
6961
		goto free_rto_mask;
6962
	return 0;
6963

6964 6965
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6966 6967 6968 6969
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6970
out:
6971
	return -ENOMEM;
G
Gregory Haskins 已提交
6972 6973 6974 6975
}

static void init_defrootdomain(void)
{
6976
	init_rootdomain(&def_root_domain);
6977

G
Gregory Haskins 已提交
6978 6979 6980
	atomic_set(&def_root_domain.refcount, 1);
}

6981
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6982 6983 6984 6985 6986 6987 6988
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6989
	if (init_rootdomain(rd) != 0) {
6990 6991 6992
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6993 6994 6995 6996

	return rd;
}

6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

7016 7017 7018
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
7019 7020 7021 7022 7023 7024 7025 7026

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
7027
		kfree(sd->groups->sgp);
7028
		kfree(sd->groups);
7029
	}
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

L
Linus Torvalds 已提交
7044
/*
I
Ingo Molnar 已提交
7045
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7046 7047
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7048 7049
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7050
{
7051
	struct rq *rq = cpu_rq(cpu);
7052 7053 7054
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7055
	for (tmp = sd; tmp; ) {
7056 7057 7058
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7059

7060
		if (sd_parent_degenerate(tmp, parent)) {
7061
			tmp->parent = parent->parent;
7062 7063
			if (parent->parent)
				parent->parent->child = tmp;
7064
			destroy_sched_domain(parent, cpu);
7065 7066
		} else
			tmp = tmp->parent;
7067 7068
	}

7069
	if (sd && sd_degenerate(sd)) {
7070
		tmp = sd;
7071
		sd = sd->parent;
7072
		destroy_sched_domain(tmp, cpu);
7073 7074 7075
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7076

7077
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
7078

G
Gregory Haskins 已提交
7079
	rq_attach_root(rq, rd);
7080
	tmp = rq->sd;
N
Nick Piggin 已提交
7081
	rcu_assign_pointer(rq->sd, sd);
7082
	destroy_sched_domains(tmp, cpu);
L
Linus Torvalds 已提交
7083 7084 7085
}

/* cpus with isolated domains */
7086
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7087 7088 7089 7090

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7091
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
7092
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7093 7094 7095
	return 1;
}

I
Ingo Molnar 已提交
7096
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7097

7098
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7099

7100
#ifdef CONFIG_NUMA
7101

7102 7103 7104 7105 7106
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7107
 * Find the next node to include in a given scheduling domain. Simply
7108 7109 7110 7111
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7112
static int find_next_best_node(int node, nodemask_t *used_nodes)
7113
{
7114
	int i, n, val, min_val, best_node = -1;
7115 7116 7117

	min_val = INT_MAX;

7118
	for (i = 0; i < nr_node_ids; i++) {
7119
		/* Start at @node */
7120
		n = (node + i) % nr_node_ids;
7121 7122 7123 7124 7125

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7126
		if (node_isset(n, *used_nodes))
7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7138 7139
	if (best_node != -1)
		node_set(best_node, *used_nodes);
7140 7141 7142 7143 7144 7145
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7146
 * @span: resulting cpumask
7147
 *
I
Ingo Molnar 已提交
7148
 * Given a node, construct a good cpumask for its sched_domain to span. It
7149 7150 7151
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7152
static void sched_domain_node_span(int node, struct cpumask *span)
7153
{
7154
	nodemask_t used_nodes;
7155
	int i;
7156

7157
	cpumask_clear(span);
7158
	nodes_clear(used_nodes);
7159

7160
	cpumask_or(span, span, cpumask_of_node(node));
7161
	node_set(node, used_nodes);
7162 7163

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7164
		int next_node = find_next_best_node(node, &used_nodes);
7165 7166
		if (next_node < 0)
			break;
7167
		cpumask_or(span, span, cpumask_of_node(next_node));
7168 7169
	}
}
7170 7171 7172 7173 7174 7175 7176 7177 7178

static const struct cpumask *cpu_node_mask(int cpu)
{
	lockdep_assert_held(&sched_domains_mutex);

	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);

	return sched_domains_tmpmask;
}
7179 7180 7181 7182 7183

static const struct cpumask *cpu_allnodes_mask(int cpu)
{
	return cpu_possible_mask;
}
7184
#endif /* CONFIG_NUMA */
7185

7186 7187 7188 7189 7190
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

7191
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7192

7193 7194 7195
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
7196
	struct sched_group_power **__percpu sgp;
7197 7198
};

7199
struct s_data {
7200
	struct sched_domain ** __percpu sd;
7201 7202 7203
	struct root_domain	*rd;
};

7204 7205
enum s_alloc {
	sa_rootdomain,
7206
	sa_sd,
7207
	sa_sd_storage,
7208 7209 7210
	sa_none,
};

7211 7212 7213
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
7214 7215
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

7216 7217
#define SDTL_OVERLAP	0x01

7218
struct sched_domain_topology_level {
7219 7220
	sched_domain_init_f init;
	sched_domain_mask_f mask;
7221
	int		    flags;
7222
	struct sd_data      data;
7223 7224
};

7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
				GFP_KERNEL, cpu_to_node(i));

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);

		child = *per_cpu_ptr(sdd->sd, i);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
		atomic_inc(&sg->sgp->ref);

		if (cpumask_test_cpu(cpu, sg_span))
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

7283
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
7284
{
7285 7286
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
7287

7288 7289
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
7290

7291
	if (sg) {
7292
		*sg = *per_cpu_ptr(sdd->sg, cpu);
7293
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7294
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
7295
	}
7296 7297

	return cpu;
7298 7299
}

7300
/*
7301 7302 7303
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
7304 7305
 *
 * Assumes the sched_domain tree is fully constructed
7306
 */
7307 7308
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
7309
{
7310 7311 7312
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
7313
	struct cpumask *covered;
7314
	int i;
7315

7316 7317 7318 7319 7320 7321
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

7322 7323 7324
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

7325
	cpumask_clear(covered);
7326

7327 7328 7329 7330
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
7331

7332 7333
		if (cpumask_test_cpu(i, covered))
			continue;
7334

7335
		cpumask_clear(sched_group_cpus(sg));
7336
		sg->sgp->power = 0;
7337

7338 7339 7340
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
7341

7342 7343 7344
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
7345

7346 7347 7348 7349 7350 7351 7352
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
7353 7354

	return 0;
7355
}
7356

7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
7369
	struct sched_group *sg = sd->groups;
7370

7371 7372 7373 7374 7375 7376
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
7377

7378 7379
	if (cpu != group_first_cpu(sg))
		return;
7380

7381
	update_group_power(sd, cpu);
7382 7383
}

7384 7385 7386 7387 7388
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7389 7390 7391 7392 7393 7394
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7395 7396 7397 7398 7399 7400 7401 7402 7403
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
7417 7418 7419
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
7420

7421
static int default_relax_domain_level = -1;
7422
int sched_domain_level_max;
7423 7424 7425

static int __init setup_relax_domain_level(char *str)
{
7426 7427 7428
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
7429
	if (val < sched_domain_level_max)
7430 7431
		default_relax_domain_level = val;

7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
7450
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7451 7452
	} else {
		/* turn on idle balance on this domain */
7453
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7454 7455 7456
	}
}

7457 7458 7459
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

7460 7461 7462 7463 7464
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
7465 7466
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
7467 7468
	case sa_sd:
		free_percpu(d->sd); /* fall through */
7469
	case sa_sd_storage:
7470
		__sdt_free(cpu_map); /* fall through */
7471 7472 7473 7474
	case sa_none:
		break;
	}
}
7475

7476 7477 7478
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
7479 7480
	memset(d, 0, sizeof(*d));

7481 7482
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
7483 7484 7485
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
7486
	d->rd = alloc_rootdomain();
7487
	if (!d->rd)
7488
		return sa_sd;
7489 7490
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
7491

7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

7504
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7505
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
7506 7507

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7508
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
7509 7510
}

7511 7512
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
7513
{
7514
	return topology_thread_cpumask(cpu);
7515
}
7516
#endif
7517

7518 7519 7520
/*
 * Topology list, bottom-up.
 */
7521
static struct sched_domain_topology_level default_topology[] = {
7522 7523
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
7524
#endif
7525
#ifdef CONFIG_SCHED_MC
7526
	{ sd_init_MC, cpu_coregroup_mask, },
7527
#endif
7528 7529 7530 7531 7532
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
#ifdef CONFIG_NUMA
7533
	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7534
	{ sd_init_ALLNODES, cpu_allnodes_mask, },
L
Linus Torvalds 已提交
7535
#endif
7536 7537 7538 7539 7540
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

7557 7558 7559 7560
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

7561 7562 7563
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
7564
			struct sched_group_power *sgp;
7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sg, j) = sg;
7579 7580 7581 7582 7583 7584 7585

			sgp = kzalloc_node(sizeof(struct sched_group_power),
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
7601 7602 7603
			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
			if (sd && (sd->flags & SD_OVERLAP))
				free_sched_groups(sd->groups, 0);
7604
			kfree(*per_cpu_ptr(sdd->sd, j));
7605
			kfree(*per_cpu_ptr(sdd->sg, j));
7606
			kfree(*per_cpu_ptr(sdd->sgp, j));
7607 7608 7609
		}
		free_percpu(sdd->sd);
		free_percpu(sdd->sg);
7610
		free_percpu(sdd->sgp);
7611 7612 7613
	}
}

7614 7615
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
7616
		struct sched_domain_attr *attr, struct sched_domain *child,
7617 7618
		int cpu)
{
7619
	struct sched_domain *sd = tl->init(tl, cpu);
7620
	if (!sd)
7621
		return child;
7622 7623 7624

	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7625 7626 7627
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
7628
		child->parent = sd;
7629
	}
7630
	sd->child = child;
7631 7632 7633 7634

	return sd;
}

7635 7636 7637 7638
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
7639 7640
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
7641 7642
{
	enum s_alloc alloc_state = sa_none;
7643
	struct sched_domain *sd;
7644
	struct s_data d;
7645
	int i, ret = -ENOMEM;
7646

7647 7648 7649
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
7650

7651
	/* Set up domains for cpus specified by the cpu_map. */
7652
	for_each_cpu(i, cpu_map) {
7653 7654
		struct sched_domain_topology_level *tl;

7655
		sd = NULL;
7656
		for (tl = sched_domain_topology; tl->init; tl++) {
7657
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7658 7659
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
7660 7661
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
7662
		}
7663

7664 7665 7666
		while (sd->child)
			sd = sd->child;

7667
		*per_cpu_ptr(d.sd, i) = sd;
7668 7669 7670 7671 7672 7673
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
7674 7675 7676 7677 7678 7679 7680
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
7681
		}
7682
	}
7683

L
Linus Torvalds 已提交
7684
	/* Calculate CPU power for physical packages and nodes */
7685 7686 7687
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
7688

7689 7690
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
7691
			init_sched_groups_power(i, sd);
7692
		}
7693
	}
7694

L
Linus Torvalds 已提交
7695
	/* Attach the domains */
7696
	rcu_read_lock();
7697
	for_each_cpu(i, cpu_map) {
7698
		sd = *per_cpu_ptr(d.sd, i);
7699
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7700
	}
7701
	rcu_read_unlock();
7702

7703
	ret = 0;
7704
error:
7705
	__free_domain_allocs(&d, alloc_state, cpu_map);
7706
	return ret;
L
Linus Torvalds 已提交
7707
}
P
Paul Jackson 已提交
7708

7709
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7710
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7711 7712
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7713 7714 7715

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7716 7717
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7718
 */
7719
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7720

7721 7722 7723 7724 7725 7726
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7727
{
7728
	return 0;
7729 7730
}

7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7756
/*
I
Ingo Molnar 已提交
7757
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7758 7759
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7760
 */
7761
static int init_sched_domains(const struct cpumask *cpu_map)
7762
{
7763 7764
	int err;

7765
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7766
	ndoms_cur = 1;
7767
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7768
	if (!doms_cur)
7769 7770
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7771
	dattr_cur = NULL;
7772
	err = build_sched_domains(doms_cur[0], NULL);
7773
	register_sched_domain_sysctl();
7774 7775

	return err;
7776 7777 7778 7779 7780 7781
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7782
static void detach_destroy_domains(const struct cpumask *cpu_map)
7783 7784 7785
{
	int i;

7786
	rcu_read_lock();
7787
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7788
		cpu_attach_domain(NULL, &def_root_domain, i);
7789
	rcu_read_unlock();
7790 7791
}

7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7808 7809
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7810
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7811 7812 7813
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7814
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7815 7816 7817
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7818 7819 7820
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7821 7822 7823 7824 7825 7826
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7827
 *
7828
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7829 7830
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7831
 *
P
Paul Jackson 已提交
7832 7833
 * Call with hotplug lock held
 */
7834
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7835
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7836
{
7837
	int i, j, n;
7838
	int new_topology;
P
Paul Jackson 已提交
7839

7840
	mutex_lock(&sched_domains_mutex);
7841

7842 7843 7844
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7845 7846 7847
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7848
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7849 7850 7851

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7852
		for (j = 0; j < n && !new_topology; j++) {
7853
			if (cpumask_equal(doms_cur[i], doms_new[j])
7854
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7855 7856 7857
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7858
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7859 7860 7861 7862
match1:
		;
	}

7863 7864
	if (doms_new == NULL) {
		ndoms_cur = 0;
7865
		doms_new = &fallback_doms;
7866
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7867
		WARN_ON_ONCE(dattr_new);
7868 7869
	}

P
Paul Jackson 已提交
7870 7871
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7872
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7873
			if (cpumask_equal(doms_new[i], doms_cur[j])
7874
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7875 7876 7877
				goto match2;
		}
		/* no match - add a new doms_new */
7878
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7879 7880 7881 7882 7883
match2:
		;
	}

	/* Remember the new sched domains */
7884 7885
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7886
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7887
	doms_cur = doms_new;
7888
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7889
	ndoms_cur = ndoms_new;
7890 7891

	register_sched_domain_sysctl();
7892

7893
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7894 7895
}

7896
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7897
static void reinit_sched_domains(void)
7898
{
7899
	get_online_cpus();
7900 7901 7902 7903

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7904
	rebuild_sched_domains();
7905
	put_online_cpus();
7906 7907 7908 7909
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7910
	unsigned int level = 0;
7911

7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7923 7924 7925
		return -EINVAL;

	if (smt)
7926
		sched_smt_power_savings = level;
7927
	else
7928
		sched_mc_power_savings = level;
7929

7930
	reinit_sched_domains();
7931

7932
	return count;
7933 7934 7935
}

#ifdef CONFIG_SCHED_MC
7936
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7937
					   struct sysdev_class_attribute *attr,
7938
					   char *page)
7939 7940 7941
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7942
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7943
					    struct sysdev_class_attribute *attr,
7944
					    const char *buf, size_t count)
7945 7946 7947
{
	return sched_power_savings_store(buf, count, 0);
}
7948 7949 7950
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7951 7952 7953
#endif

#ifdef CONFIG_SCHED_SMT
7954
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7955
					    struct sysdev_class_attribute *attr,
7956
					    char *page)
7957 7958 7959
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7960
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7961
					     struct sysdev_class_attribute *attr,
7962
					     const char *buf, size_t count)
7963 7964 7965
{
	return sched_power_savings_store(buf, count, 1);
}
7966 7967
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7968 7969 7970
		   sched_smt_power_savings_store);
#endif

7971
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7987
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7988

L
Linus Torvalds 已提交
7989
/*
7990 7991 7992
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7993
 */
7994 7995
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7996
{
7997
	switch (action & ~CPU_TASKS_FROZEN) {
7998
	case CPU_ONLINE:
7999
	case CPU_DOWN_FAILED:
8000
		cpuset_update_active_cpus();
8001
		return NOTIFY_OK;
8002 8003 8004 8005
	default:
		return NOTIFY_DONE;
	}
}
8006

8007 8008
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
8009 8010 8011 8012 8013
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
8014 8015 8016 8017 8018 8019 8020
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8021
{
P
Peter Zijlstra 已提交
8022 8023
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8024 8025
	switch (action) {
	case CPU_DOWN_PREPARE:
8026
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8027
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8028 8029 8030
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8031
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8032
	case CPU_ONLINE:
8033
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8034
		enable_runtime(cpu_rq(cpu));
8035 8036
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8037 8038 8039 8040 8041 8042 8043
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8044 8045 8046
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8047
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8048

8049
	get_online_cpus();
8050
	mutex_lock(&sched_domains_mutex);
8051
	init_sched_domains(cpu_active_mask);
8052 8053 8054
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8055
	mutex_unlock(&sched_domains_mutex);
8056
	put_online_cpus();
8057

8058 8059
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
8060 8061 8062 8063

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8064
	init_hrtick();
8065 8066

	/* Move init over to a non-isolated CPU */
8067
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8068
		BUG();
I
Ingo Molnar 已提交
8069
	sched_init_granularity();
8070
	free_cpumask_var(non_isolated_cpus);
8071

8072
	init_sched_rt_class();
L
Linus Torvalds 已提交
8073 8074 8075 8076
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8077
	sched_init_granularity();
L
Linus Torvalds 已提交
8078 8079 8080
}
#endif /* CONFIG_SMP */

8081 8082
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
8083 8084 8085 8086 8087 8088 8089
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

8090
static void init_cfs_rq(struct cfs_rq *cfs_rq)
I
Ingo Molnar 已提交
8091 8092
{
	cfs_rq->tasks_timeline = RB_ROOT;
8093
	INIT_LIST_HEAD(&cfs_rq->tasks);
P
Peter Zijlstra 已提交
8094
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
P
Peter Zijlstra 已提交
8095 8096 8097
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
I
Ingo Molnar 已提交
8098 8099
}

P
Peter Zijlstra 已提交
8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8113
#if defined CONFIG_SMP
8114 8115
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
8116 8117
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
8118
	plist_head_init(&rt_rq->pushable_tasks);
P
Peter Zijlstra 已提交
8119 8120 8121 8122
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8123
	rt_rq->rt_runtime = 0;
8124
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8125 8126
}

P
Peter Zijlstra 已提交
8127
#ifdef CONFIG_FAIR_GROUP_SCHED
8128
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8129
				struct sched_entity *se, int cpu,
8130
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8131
{
8132
	struct rq *rq = cpu_rq(cpu);
8133

P
Peter Zijlstra 已提交
8134
	cfs_rq->tg = tg;
8135 8136 8137 8138 8139
	cfs_rq->rq = rq;
#ifdef CONFIG_SMP
	/* allow initial update_cfs_load() to truncate */
	cfs_rq->load_stamp = 1;
#endif
8140
	init_cfs_rq_runtime(cfs_rq);
P
Peter Zijlstra 已提交
8141

8142
	tg->cfs_rq[cpu] = cfs_rq;
P
Peter Zijlstra 已提交
8143
	tg->se[cpu] = se;
8144

8145
	/* se could be NULL for root_task_group */
D
Dhaval Giani 已提交
8146 8147 8148
	if (!se)
		return;

8149 8150 8151 8152 8153
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8154
	se->my_q = cfs_rq;
8155
	update_load_set(&se->load, 0);
8156
	se->parent = parent;
P
Peter Zijlstra 已提交
8157
}
8158
#endif
P
Peter Zijlstra 已提交
8159

8160
#ifdef CONFIG_RT_GROUP_SCHED
8161
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8162
		struct sched_rt_entity *rt_se, int cpu,
8163
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8164
{
8165 8166
	struct rq *rq = cpu_rq(cpu);

8167 8168 8169
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->rt_nr_boosted = 0;
	rt_rq->rq = rq;
P
Peter Zijlstra 已提交
8170 8171
	rt_rq->tg = tg;

8172
	tg->rt_rq[cpu] = rt_rq;
P
Peter Zijlstra 已提交
8173
	tg->rt_se[cpu] = rt_se;
8174

D
Dhaval Giani 已提交
8175 8176 8177
	if (!rt_se)
		return;

8178 8179 8180 8181 8182
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8183
	rt_se->my_q = rt_rq;
8184
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8185 8186 8187 8188
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8189 8190
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8191
	int i, j;
8192 8193 8194 8195 8196 8197 8198
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8199
#endif
8200
#ifdef CONFIG_CPUMASK_OFFSTACK
8201
	alloc_size += num_possible_cpus() * cpumask_size();
8202 8203
#endif
	if (alloc_size) {
8204
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8205 8206

#ifdef CONFIG_FAIR_GROUP_SCHED
8207
		root_task_group.se = (struct sched_entity **)ptr;
8208 8209
		ptr += nr_cpu_ids * sizeof(void **);

8210
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8211
		ptr += nr_cpu_ids * sizeof(void **);
8212

8213
#endif /* CONFIG_FAIR_GROUP_SCHED */
8214
#ifdef CONFIG_RT_GROUP_SCHED
8215
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8216 8217
		ptr += nr_cpu_ids * sizeof(void **);

8218
		root_task_group.rt_rq = (struct rt_rq **)ptr;
8219 8220
		ptr += nr_cpu_ids * sizeof(void **);

8221
#endif /* CONFIG_RT_GROUP_SCHED */
8222 8223 8224 8225 8226 8227
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
8228
	}
I
Ingo Molnar 已提交
8229

G
Gregory Haskins 已提交
8230 8231 8232 8233
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8234 8235 8236 8237
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
8238
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8239
			global_rt_period(), global_rt_runtime());
8240
#endif /* CONFIG_RT_GROUP_SCHED */
8241

D
Dhaval Giani 已提交
8242
#ifdef CONFIG_CGROUP_SCHED
8243 8244
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
8245
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
8246
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
8247

8248
	for_each_possible_cpu(i) {
8249
		struct rq *rq;
L
Linus Torvalds 已提交
8250 8251

		rq = cpu_rq(i);
8252
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8253
		rq->nr_running = 0;
8254 8255
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
8256
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
8257
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8258
#ifdef CONFIG_FAIR_GROUP_SCHED
8259
		root_task_group.shares = root_task_group_load;
P
Peter Zijlstra 已提交
8260
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8261
		/*
8262
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
8263 8264 8265 8266
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
8267
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
8268 8269 8270
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
8271
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
8272 8273 8274
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
8275
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
8276
		 *
8277 8278
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
8279
		 */
8280
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8281
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
8282 8283 8284
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8285
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8286
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8287
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
8288
#endif
L
Linus Torvalds 已提交
8289

I
Ingo Molnar 已提交
8290 8291
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
8292 8293 8294

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
8295
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8296
		rq->sd = NULL;
G
Gregory Haskins 已提交
8297
		rq->rd = NULL;
8298
		rq->cpu_power = SCHED_POWER_SCALE;
8299
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
8300
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8301
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8302
		rq->push_cpu = 0;
8303
		rq->cpu = i;
8304
		rq->online = 0;
8305 8306
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
8307
		rq_attach_root(rq, &def_root_domain);
8308 8309 8310
#ifdef CONFIG_NO_HZ
		rq->nohz_balance_kick = 0;
#endif
L
Linus Torvalds 已提交
8311
#endif
P
Peter Zijlstra 已提交
8312
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8313 8314 8315
		atomic_set(&rq->nr_iowait, 0);
	}

8316
	set_load_weight(&init_task);
8317

8318 8319 8320 8321
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8322
#ifdef CONFIG_SMP
8323
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8324 8325
#endif

8326
#ifdef CONFIG_RT_MUTEXES
8327
	plist_head_init(&init_task.pi_waiters);
8328 8329
#endif

L
Linus Torvalds 已提交
8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
8343 8344 8345

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
8346 8347 8348 8349
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8350

8351
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8352
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8353
#ifdef CONFIG_SMP
8354
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8355
#ifdef CONFIG_NO_HZ
8356 8357 8358 8359 8360
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
	atomic_set(&nohz.load_balancer, nr_cpu_ids);
	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8361
#endif
R
Rusty Russell 已提交
8362 8363 8364
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8365
#endif /* SMP */
8366

8367
	scheduler_running = 1;
L
Linus Torvalds 已提交
8368 8369
}

8370
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8371 8372
static inline int preempt_count_equals(int preempt_offset)
{
8373
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8374

A
Arnd Bergmann 已提交
8375
	return (nested == preempt_offset);
8376 8377
}

8378
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
8379 8380 8381
{
	static unsigned long prev_jiffy;	/* ratelimiting */

8382 8383
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
8384 8385 8386 8387 8388
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
8389 8390 8391 8392 8393 8394 8395
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
8396 8397 8398 8399 8400

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8401 8402 8403 8404 8405
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8406 8407
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
8408 8409
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
8410
	int on_rq;
8411

P
Peter Zijlstra 已提交
8412
	on_rq = p->on_rq;
8413 8414 8415 8416 8417 8418 8419
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
8420 8421

	check_class_changed(rq, p, prev_class, old_prio);
8422 8423
}

L
Linus Torvalds 已提交
8424 8425
void normalize_rt_tasks(void)
{
8426
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8427
	unsigned long flags;
8428
	struct rq *rq;
L
Linus Torvalds 已提交
8429

8430
	read_lock_irqsave(&tasklist_lock, flags);
8431
	do_each_thread(g, p) {
8432 8433 8434 8435 8436 8437
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8438 8439
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
8440 8441 8442
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
8443
#endif
I
Ingo Molnar 已提交
8444 8445 8446 8447 8448 8449 8450 8451

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8452
			continue;
I
Ingo Molnar 已提交
8453
		}
L
Linus Torvalds 已提交
8454

8455
		raw_spin_lock(&p->pi_lock);
8456
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8457

8458
		normalize_task(rq, p);
8459

8460
		__task_rq_unlock(rq);
8461
		raw_spin_unlock(&p->pi_lock);
8462 8463
	} while_each_thread(g, p);

8464
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8465 8466 8467
}

#endif /* CONFIG_MAGIC_SYSRQ */
8468

8469
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8470
/*
8471
 * These functions are only useful for the IA64 MCA handling, or kdb.
8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8486
struct task_struct *curr_task(int cpu)
8487 8488 8489 8490
{
	return cpu_curr(cpu);
}

8491 8492 8493
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
8494 8495 8496 8497 8498 8499
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8500 8501
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8502 8503 8504 8505 8506 8507 8508
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8509
void set_curr_task(int cpu, struct task_struct *p)
8510 8511 8512 8513 8514
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8515

8516 8517
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8518 8519 8520
{
	int i;

8521 8522
	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

P
Peter Zijlstra 已提交
8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533
	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8534 8535
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8536 8537
{
	struct cfs_rq *cfs_rq;
8538
	struct sched_entity *se;
S
Srivatsa Vaddagiri 已提交
8539 8540
	int i;

8541
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8542 8543
	if (!tg->cfs_rq)
		goto err;
8544
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8545 8546
	if (!tg->se)
		goto err;
8547 8548

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8549

8550 8551
	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

S
Srivatsa Vaddagiri 已提交
8552
	for_each_possible_cpu(i) {
8553 8554
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8555 8556 8557
		if (!cfs_rq)
			goto err;

8558 8559
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8560
		if (!se)
8561
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8562

8563
		init_cfs_rq(cfs_rq);
8564
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8565 8566 8567 8568
	}

	return 1;

P
Peter Zijlstra 已提交
8569
err_free_rq:
8570
	kfree(cfs_rq);
P
Peter Zijlstra 已提交
8571
err:
8572 8573 8574 8575 8576
	return 0;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
8588
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8589
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8590
}
8591
#else /* !CONFIG_FAIR_GROUP_SCHED */
8592 8593 8594 8595
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8596 8597
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8598 8599 8600 8601 8602 8603 8604
{
	return 1;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8605
#endif /* CONFIG_FAIR_GROUP_SCHED */
8606 8607

#ifdef CONFIG_RT_GROUP_SCHED
8608 8609 8610 8611
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8612 8613
	if (tg->rt_se)
		destroy_rt_bandwidth(&tg->rt_bandwidth);
8614

8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8626 8627
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8628 8629
{
	struct rt_rq *rt_rq;
8630
	struct sched_rt_entity *rt_se;
8631 8632
	int i;

8633
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8634 8635
	if (!tg->rt_rq)
		goto err;
8636
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8637 8638 8639
	if (!tg->rt_se)
		goto err;

8640 8641
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8642 8643

	for_each_possible_cpu(i) {
8644 8645
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8646 8647
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8648

8649 8650
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8651
		if (!rt_se)
8652
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8653

8654 8655
		init_rt_rq(rt_rq, cpu_rq(i));
		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8656
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8657 8658
	}

8659 8660
	return 1;

P
Peter Zijlstra 已提交
8661
err_free_rq:
8662
	kfree(rt_rq);
P
Peter Zijlstra 已提交
8663
err:
8664 8665
	return 0;
}
8666
#else /* !CONFIG_RT_GROUP_SCHED */
8667 8668 8669 8670
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8671 8672
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8673 8674 8675
{
	return 1;
}
8676
#endif /* CONFIG_RT_GROUP_SCHED */
8677

D
Dhaval Giani 已提交
8678
#ifdef CONFIG_CGROUP_SCHED
8679 8680 8681 8682
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
8683
	autogroup_free(tg);
8684 8685 8686 8687
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8688
struct task_group *sched_create_group(struct task_group *parent)
8689 8690 8691 8692 8693 8694 8695 8696
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8697
	if (!alloc_fair_sched_group(tg, parent))
8698 8699
		goto err;

8700
	if (!alloc_rt_sched_group(tg, parent))
8701 8702
		goto err;

8703
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8704
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8705 8706 8707 8708 8709

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8710
	list_add_rcu(&tg->siblings, &parent->children);
8711
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8712

8713
	return tg;
S
Srivatsa Vaddagiri 已提交
8714 8715

err:
P
Peter Zijlstra 已提交
8716
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8717 8718 8719
	return ERR_PTR(-ENOMEM);
}

8720
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8721
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8722 8723
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8724
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8725 8726
}

8727
/* Destroy runqueue etc associated with a task group */
8728
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8729
{
8730
	unsigned long flags;
8731
	int i;
S
Srivatsa Vaddagiri 已提交
8732

8733 8734
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
8735
		unregister_fair_sched_group(tg, i);
8736 8737

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8738
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8739
	list_del_rcu(&tg->siblings);
8740
	spin_unlock_irqrestore(&task_group_lock, flags);
8741 8742

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8743
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8744 8745
}

8746
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8747 8748 8749
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8750 8751
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8752 8753 8754 8755 8756 8757 8758
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8759
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
8760
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
8761

8762
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8763
		dequeue_task(rq, tsk, 0);
8764 8765
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8766

P
Peter Zijlstra 已提交
8767
#ifdef CONFIG_FAIR_GROUP_SCHED
8768 8769 8770
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
8771
#endif
8772
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
8773

8774 8775 8776
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8777
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8778

8779
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
8780
}
D
Dhaval Giani 已提交
8781
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8782

8783
#ifdef CONFIG_FAIR_GROUP_SCHED
8784 8785
static DEFINE_MUTEX(shares_mutex);

8786
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8787 8788
{
	int i;
8789
	unsigned long flags;
8790

8791 8792 8793 8794 8795 8796
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8797
	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8798

8799
	mutex_lock(&shares_mutex);
8800
	if (tg->shares == shares)
8801
		goto done;
S
Srivatsa Vaddagiri 已提交
8802

8803
	tg->shares = shares;
8804
	for_each_possible_cpu(i) {
8805 8806 8807 8808 8809 8810 8811
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
8812
			update_cfs_shares(group_cfs_rq(se));
8813
		raw_spin_unlock_irqrestore(&rq->lock, flags);
8814
	}
S
Srivatsa Vaddagiri 已提交
8815

8816
done:
8817
	mutex_unlock(&shares_mutex);
8818
	return 0;
S
Srivatsa Vaddagiri 已提交
8819 8820
}

8821 8822 8823 8824
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8825
#endif
8826

8827
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
8828 8829 8830
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8831
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8832

P
Peter Zijlstra 已提交
8833
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8834
}
8835 8836 8837 8838 8839 8840 8841
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
8842

P
Peter Zijlstra 已提交
8843 8844
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8845
{
P
Peter Zijlstra 已提交
8846
	struct task_struct *g, *p;
8847

P
Peter Zijlstra 已提交
8848 8849 8850 8851
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8852

P
Peter Zijlstra 已提交
8853 8854
	return 0;
}
8855

P
Peter Zijlstra 已提交
8856 8857 8858 8859 8860
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8861

8862
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
8863 8864 8865 8866 8867
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8868

P
Peter Zijlstra 已提交
8869 8870
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8871

P
Peter Zijlstra 已提交
8872 8873 8874
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8875 8876
	}

8877 8878 8879 8880 8881
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8882

8883 8884 8885
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8886 8887
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8888

P
Peter Zijlstra 已提交
8889
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8890

8891 8892 8893 8894 8895
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8896

8897 8898 8899
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8900 8901 8902
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8903

P
Peter Zijlstra 已提交
8904 8905 8906 8907
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8908

P
Peter Zijlstra 已提交
8909
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8910
	}
P
Peter Zijlstra 已提交
8911

P
Peter Zijlstra 已提交
8912 8913 8914 8915
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8916 8917
}

P
Peter Zijlstra 已提交
8918
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8919
{
8920 8921
	int ret;

P
Peter Zijlstra 已提交
8922 8923 8924 8925 8926 8927
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

8928 8929 8930 8931 8932
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8933 8934
}

8935
static int tg_set_rt_bandwidth(struct task_group *tg,
8936
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8937
{
P
Peter Zijlstra 已提交
8938
	int i, err = 0;
P
Peter Zijlstra 已提交
8939 8940

	mutex_lock(&rt_constraints_mutex);
8941
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8942 8943
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8944
		goto unlock;
P
Peter Zijlstra 已提交
8945

8946
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8947 8948
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8949 8950 8951 8952

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8953
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8954
		rt_rq->rt_runtime = rt_runtime;
8955
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8956
	}
8957
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8958
unlock:
8959
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8960 8961 8962
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8963 8964
}

8965 8966 8967 8968 8969 8970 8971 8972 8973
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

8974
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8975 8976
}

P
Peter Zijlstra 已提交
8977 8978 8979 8980
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8981
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8982 8983
		return -1;

8984
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8985 8986 8987
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8988 8989 8990 8991 8992 8993 8994 8995

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8996 8997 8998
	if (rt_period == 0)
		return -EINVAL;

8999
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9013
	u64 runtime, period;
9014 9015
	int ret = 0;

9016 9017 9018
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9019 9020 9021 9022 9023 9024 9025 9026
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9027

9028
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9029
	read_lock(&tasklist_lock);
9030
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9031
	read_unlock(&tasklist_lock);
9032 9033 9034 9035
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9036 9037 9038 9039 9040 9041 9042 9043 9044 9045

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

9046
#else /* !CONFIG_RT_GROUP_SCHED */
9047 9048
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9049 9050 9051
	unsigned long flags;
	int i;

9052 9053 9054
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9055 9056 9057 9058 9059 9060 9061
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

9062
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
9063 9064 9065
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

9066
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9067
		rt_rq->rt_runtime = global_rt_runtime();
9068
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9069
	}
9070
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
9071

9072 9073
	return 0;
}
9074
#endif /* CONFIG_RT_GROUP_SCHED */
9075 9076

int sched_rt_handler(struct ctl_table *table, int write,
9077
		void __user *buffer, size_t *lenp,
9078 9079 9080 9081 9082 9083 9084 9085 9086 9087
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

9088
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9105

9106
#ifdef CONFIG_CGROUP_SCHED
9107 9108

/* return corresponding task_group object of a cgroup */
9109
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9110
{
9111 9112
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9113 9114 9115
}

static struct cgroup_subsys_state *
9116
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9117
{
9118
	struct task_group *tg, *parent;
9119

9120
	if (!cgrp->parent) {
9121
		/* This is early initialization for the top cgroup */
9122
		return &root_task_group.css;
9123 9124
	}

9125 9126
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9127 9128 9129 9130 9131 9132
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9133 9134
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9135
{
9136
	struct task_group *tg = cgroup_tg(cgrp);
9137 9138 9139 9140

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9141
static int
9142
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9143
{
9144
#ifdef CONFIG_RT_GROUP_SCHED
9145
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9146 9147
		return -EINVAL;
#else
9148 9149 9150
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9151
#endif
9152 9153
	return 0;
}
9154 9155

static void
9156
cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9157 9158 9159 9160
{
	sched_move_task(tsk);
}

9161
static void
9162 9163
cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

9176
#ifdef CONFIG_FAIR_GROUP_SCHED
9177
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9178
				u64 shareval)
9179
{
9180
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
9181 9182
}

9183
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9184
{
9185
	struct task_group *tg = cgroup_tg(cgrp);
9186

9187
	return (u64) scale_load_down(tg->shares);
9188
}
9189 9190

#ifdef CONFIG_CFS_BANDWIDTH
9191 9192
static DEFINE_MUTEX(cfs_constraints_mutex);

9193 9194 9195
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

9196 9197
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

9198 9199
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
9200
	int i, ret = 0, runtime_enabled;
9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

9222 9223 9224 9225 9226
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

9227
	runtime_enabled = quota != RUNTIME_INF;
9228 9229 9230
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
9231

P
Paul Turner 已提交
9232
	__refill_cfs_bandwidth_runtime(cfs_b);
9233 9234 9235 9236 9237 9238
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
9239 9240 9241 9242 9243 9244 9245
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock_irq(&rq->lock);
9246
		cfs_rq->runtime_enabled = runtime_enabled;
9247
		cfs_rq->runtime_remaining = 0;
9248 9249 9250

		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
9251 9252
		raw_spin_unlock_irq(&rq->lock);
	}
9253 9254
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
9255

9256
	return ret;
9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

	period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

	if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
		return -1;

	quota_us = tg_cfs_bandwidth(tg)->quota;
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
	quota = tg_cfs_bandwidth(tg)->quota;

	if (period <= 0)
		return -EINVAL;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

	cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
		struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
9389
	int ret;
9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

9401 9402 9403 9404 9405
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
9406
}
9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
9420
#endif /* CONFIG_CFS_BANDWIDTH */
9421
#endif /* CONFIG_FAIR_GROUP_SCHED */
9422

9423
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9424
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9425
				s64 val)
P
Peter Zijlstra 已提交
9426
{
9427
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9428 9429
}

9430
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9431
{
9432
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9433
}
9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9445
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9446

9447
static struct cftype cpu_files[] = {
9448
#ifdef CONFIG_FAIR_GROUP_SCHED
9449 9450
	{
		.name = "shares",
9451 9452
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9453
	},
9454
#endif
9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
9466 9467 9468 9469
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
9470
#endif
9471
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9472
	{
P
Peter Zijlstra 已提交
9473
		.name = "rt_runtime_us",
9474 9475
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9476
	},
9477 9478
	{
		.name = "rt_period_us",
9479 9480
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9481
	},
9482
#endif
9483 9484 9485 9486
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9487
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9488 9489 9490
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9491 9492 9493
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
9494 9495
	.can_attach_task = cpu_cgroup_can_attach_task,
	.attach_task	= cpu_cgroup_attach_task,
9496
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
9497 9498
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9499 9500 9501
	.early_init	= 1,
};

9502
#endif	/* CONFIG_CGROUP_SCHED */
9503 9504 9505 9506 9507 9508 9509 9510 9511 9512

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9513
/* track cpu usage of a group of tasks and its child groups */
9514 9515 9516
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
9517
	u64 __percpu *cpuusage;
9518
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9519
	struct cpuacct *parent;
9520 9521 9522 9523 9524
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9525
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9526
{
9527
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9540
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9541 9542
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9543
	int i;
9544 9545

	if (!ca)
9546
		goto out;
9547 9548

	ca->cpuusage = alloc_percpu(u64);
9549 9550 9551 9552 9553 9554
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
9555

9556 9557 9558
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9559
	return &ca->css;
9560 9561 9562 9563 9564 9565 9566 9567 9568

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
9569 9570 9571
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9572
static void
9573
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9574
{
9575
	struct cpuacct *ca = cgroup_ca(cgrp);
9576
	int i;
9577

9578 9579
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
9580 9581 9582 9583
	free_percpu(ca->cpuusage);
	kfree(ca);
}

9584 9585
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
9586
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9587 9588 9589 9590 9591 9592
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
9593
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9594
	data = *cpuusage;
9595
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9596 9597 9598 9599 9600 9601 9602 9603 9604
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
9605
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9606 9607 9608 9609 9610

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
9611
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9612
	*cpuusage = val;
9613
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9614 9615 9616 9617 9618
#else
	*cpuusage = val;
#endif
}

9619
/* return total cpu usage (in nanoseconds) of a group */
9620
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9621
{
9622
	struct cpuacct *ca = cgroup_ca(cgrp);
9623 9624 9625
	u64 totalcpuusage = 0;
	int i;

9626 9627
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9628 9629 9630 9631

	return totalcpuusage;
}

9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9644 9645
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9646 9647 9648 9649 9650

out:
	return err;
}

9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

9685 9686 9687
static struct cftype files[] = {
	{
		.name = "usage",
9688 9689
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9690
	},
9691 9692 9693 9694
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9695 9696 9697 9698
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9699 9700
};

9701
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9702
{
9703
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9704 9705 9706 9707 9708 9709 9710 9711 9712 9713
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9714
	int cpu;
9715

L
Li Zefan 已提交
9716
	if (unlikely(!cpuacct_subsys.active))
9717 9718
		return;

9719
	cpu = task_cpu(tsk);
9720 9721 9722

	rcu_read_lock();

9723 9724
	ca = task_ca(tsk);

9725
	for (; ca; ca = ca->parent) {
9726
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9727 9728
		*cpuusage += cputime;
	}
9729 9730

	rcu_read_unlock();
9731 9732
}

9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9750 9751 9752 9753 9754 9755 9756
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9757
	int batch = CPUACCT_BATCH;
9758 9759 9760 9761 9762 9763 9764 9765

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9766
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9767 9768 9769 9770 9771
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9772 9773 9774 9775 9776 9777 9778 9779
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */