sched.c 218.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/stop_machine.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
P
Peter Zijlstra 已提交
70 71
#include <linux/debugfs.h>
#include <linux/ctype.h>
72
#include <linux/ftrace.h>
73
#include <linux/slab.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
77
#include <asm/mutex.h>
L
Linus Torvalds 已提交
78

79
#include "sched_cpupri.h"
T
Tejun Heo 已提交
80
#include "workqueue_sched.h"
81
#include "sched_autogroup.h"
82

83
#define CREATE_TRACE_POINTS
84
#include <trace/events/sched.h>
85

L
Linus Torvalds 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
105
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
106
 */
107
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
108

I
Ingo Molnar 已提交
109 110 111
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
112 113 114
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
115
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
116 117 118
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
119

120 121 122 123 124
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

125 126
static inline int rt_policy(int policy)
{
127
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
128 129 130 131 132 133 134 135 136
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
137
/*
I
Ingo Molnar 已提交
138
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
139
 */
I
Ingo Molnar 已提交
140 141 142 143 144
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

145
struct rt_bandwidth {
I
Ingo Molnar 已提交
146
	/* nests inside the rq lock: */
147
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
148 149 150
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

184
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
185

186 187 188 189 190
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

191 192 193
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
194 195 196 197 198 199
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

200
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
201 202 203 204 205
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

206
	raw_spin_lock(&rt_b->rt_runtime_lock);
207
	for (;;) {
208 209 210
		unsigned long delta;
		ktime_t soft, hard;

211 212 213 214 215
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216 217 218 219 220

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221
				HRTIMER_MODE_ABS_PINNED, 0);
222
	}
223
	raw_spin_unlock(&rt_b->rt_runtime_lock);
224 225 226 227 228 229 230 231 232
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

233
/*
234
 * sched_domains_mutex serializes calls to init_sched_domains,
235 236 237 238
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
239
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
240

241 242
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
243 244
struct cfs_rq;

P
Peter Zijlstra 已提交
245 246
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
247
/* task group related information */
248
struct task_group {
249
	struct cgroup_subsys_state css;
250

251
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
252 253 254 255 256
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
P
Peter Zijlstra 已提交
257 258

	atomic_t load_weight;
259 260 261 262 263 264
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

265
	struct rt_bandwidth rt_bandwidth;
266
#endif
267

268
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
269
	struct list_head list;
P
Peter Zijlstra 已提交
270 271 272 273

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
274 275 276 277

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif
S
Srivatsa Vaddagiri 已提交
278 279
};

280
/* task_group_lock serializes the addition/removal of task groups */
281
static DEFINE_SPINLOCK(task_group_lock);
282

283 284
#ifdef CONFIG_FAIR_GROUP_SCHED

285
# define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
286

287
/*
288 289 290 291
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
292 293 294
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
295
#define MIN_SHARES	2
296
#define MAX_SHARES	(1UL << (18 + SCHED_LOAD_RESOLUTION))
297

298
static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
299 300
#endif

S
Srivatsa Vaddagiri 已提交
301
/* Default task group.
I
Ingo Molnar 已提交
302
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
303
 */
304
struct task_group root_task_group;
S
Srivatsa Vaddagiri 已提交
305

D
Dhaval Giani 已提交
306
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
307

I
Ingo Molnar 已提交
308 309 310 311 312 313
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
314
	u64 min_vruntime;
315 316 317
#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
#endif
I
Ingo Molnar 已提交
318 319 320

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
321 322 323 324 325 326

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
327 328
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
329
	struct sched_entity *curr, *next, *last, *skip;
P
Peter Zijlstra 已提交
330

331
#ifdef	CONFIG_SCHED_DEBUG
P
Peter Zijlstra 已提交
332
	unsigned int nr_spread_over;
333
#endif
P
Peter Zijlstra 已提交
334

335
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
336 337
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
338 339
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
340 341 342 343 344 345
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
346
	int on_list;
I
Ingo Molnar 已提交
347 348
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
349 350 351

#ifdef CONFIG_SMP
	/*
352
	 * the part of load.weight contributed by tasks
353
	 */
354
	unsigned long task_weight;
355

356 357 358 359 360 361 362
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
363

364
	/*
365 366 367 368 369
	 * Maintaining per-cpu shares distribution for group scheduling
	 *
	 * load_stamp is the last time we updated the load average
	 * load_last is the last time we updated the load average and saw load
	 * load_unacc_exec_time is currently unaccounted execution time
370
	 */
P
Peter Zijlstra 已提交
371 372
	u64 load_avg;
	u64 load_period;
373
	u64 load_stamp, load_last, load_unacc_exec_time;
374

P
Peter Zijlstra 已提交
375
	unsigned long load_contribution;
376
#endif
I
Ingo Molnar 已提交
377 378
#endif
};
L
Linus Torvalds 已提交
379

I
Ingo Molnar 已提交
380 381 382
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
383
	unsigned long rt_nr_running;
384
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
385 386
	struct {
		int curr; /* highest queued rt task prio */
387
#ifdef CONFIG_SMP
388
		int next; /* next highest */
389
#endif
390
	} highest_prio;
P
Peter Zijlstra 已提交
391
#endif
P
Peter Zijlstra 已提交
392
#ifdef CONFIG_SMP
393
	unsigned long rt_nr_migratory;
394
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
395
	int overloaded;
396
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
397
#endif
P
Peter Zijlstra 已提交
398
	int rt_throttled;
P
Peter Zijlstra 已提交
399
	u64 rt_time;
P
Peter Zijlstra 已提交
400
	u64 rt_runtime;
I
Ingo Molnar 已提交
401
	/* Nests inside the rq lock: */
402
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
403

404
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
405 406
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
407 408 409 410
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
411 412
};

G
Gregory Haskins 已提交
413 414 415 416
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
417 418
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
419 420 421 422 423 424
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
425
	struct rcu_head rcu;
426 427
	cpumask_var_t span;
	cpumask_var_t online;
428

I
Ingo Molnar 已提交
429
	/*
430 431 432
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
433
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
434
	atomic_t rto_count;
435
	struct cpupri cpupri;
G
Gregory Haskins 已提交
436 437
};

438 439 440 441
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
442 443
static struct root_domain def_root_domain;

444
#endif /* CONFIG_SMP */
G
Gregory Haskins 已提交
445

L
Linus Torvalds 已提交
446 447 448 449 450 451 452
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
453
struct rq {
454
	/* runqueue lock: */
455
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
456 457 458 459 460 461

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
462 463
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
464
	unsigned long last_load_update_tick;
465
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
466
	u64 nohz_stamp;
467
	unsigned char nohz_balance_kick;
468
#endif
469
	int skip_clock_update;
470

471 472
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
473 474 475 476
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
477 478
	struct rt_rq rt;

I
Ingo Molnar 已提交
479
#ifdef CONFIG_FAIR_GROUP_SCHED
480 481
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
482 483
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
484
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
485 486 487 488 489 490 491 492 493 494
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

495
	struct task_struct *curr, *idle, *stop;
496
	unsigned long next_balance;
L
Linus Torvalds 已提交
497
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
498

499
	u64 clock;
500
	u64 clock_task;
I
Ingo Molnar 已提交
501

L
Linus Torvalds 已提交
502 503 504
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
505
	struct root_domain *rd;
L
Linus Torvalds 已提交
506 507
	struct sched_domain *sd;

508 509
	unsigned long cpu_power;

510
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
511
	/* For active balancing */
512
	int post_schedule;
L
Linus Torvalds 已提交
513 514
	int active_balance;
	int push_cpu;
515
	struct cpu_stop_work active_balance_work;
516 517
	/* cpu of this runqueue: */
	int cpu;
518
	int online;
L
Linus Torvalds 已提交
519

520
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
521

522 523
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
524 525
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
526 527
#endif

528 529 530 531
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64 prev_irq_time;
#endif

532 533 534 535
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
536
#ifdef CONFIG_SCHED_HRTICK
537 538 539 540
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
541 542 543
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
544 545 546
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
547 548
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
549 550

	/* sys_sched_yield() stats */
551
	unsigned int yld_count;
L
Linus Torvalds 已提交
552 553

	/* schedule() stats */
554 555 556
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
557 558

	/* try_to_wake_up() stats */
559 560
	unsigned int ttwu_count;
	unsigned int ttwu_local;
L
Linus Torvalds 已提交
561
#endif
562 563 564 565

#ifdef CONFIG_SMP
	struct task_struct *wake_list;
#endif
L
Linus Torvalds 已提交
566 567
};

568
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
569

570

571
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
I
Ingo Molnar 已提交
572

573 574 575 576 577 578 579 580 581
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

582
#define rcu_dereference_check_sched_domain(p) \
583
	rcu_dereference_check((p), \
584
			      rcu_read_lock_held() || \
585 586
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
587 588
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
590 591 592 593
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
594
#define for_each_domain(cpu, __sd) \
595
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
596 597 598 599 600

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
601
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
602

603 604 605 606 607 608
#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
 * We use task_subsys_state_check() and extend the RCU verification
609
 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
610 611 612 613 614
 * holds that lock for each task it moves into the cgroup. Therefore
 * by holding that lock, we pin the task to the current cgroup.
 */
static inline struct task_group *task_group(struct task_struct *p)
{
615
	struct task_group *tg;
616 617 618
	struct cgroup_subsys_state *css;

	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
619
			lockdep_is_held(&p->pi_lock));
620 621 622
	tg = container_of(css, struct task_group, css);

	return autogroup_task_group(p, tg);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

649
static void update_rq_clock_task(struct rq *rq, s64 delta);
650

651
static void update_rq_clock(struct rq *rq)
652
{
653
	s64 delta;
654

655
	if (rq->skip_clock_update > 0)
656
		return;
657

658 659 660
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
661 662
}

I
Ingo Molnar 已提交
663 664 665 666 667 668 669 670 671
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
672
/**
673
 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
674
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
675 676 677 678
 *
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
679
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
680
{
681
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
682 683
}

I
Ingo Molnar 已提交
684 685 686
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
687 688 689 690

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
691
enum {
P
Peter Zijlstra 已提交
692
#include "sched_features.h"
I
Ingo Molnar 已提交
693 694
};

P
Peter Zijlstra 已提交
695 696 697 698 699
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
700
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
701 702 703 704 705 706 707 708 709
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

710
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
711 712 713 714 715 716
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
717
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
718 719 720 721
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
722 723 724
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
725
	}
L
Li Zefan 已提交
726
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
727

L
Li Zefan 已提交
728
	return 0;
P
Peter Zijlstra 已提交
729 730 731 732 733 734 735
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
736
	char *cmp;
P
Peter Zijlstra 已提交
737 738 739 740 741 742 743 744 745 746
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
747
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
748

H
Hillf Danton 已提交
749
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
750 751 752 753 754
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
755
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
P
Peter Zijlstra 已提交
756 757 758 759 760 761 762 763 764 765 766
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

767
	*ppos += cnt;
P
Peter Zijlstra 已提交
768 769 770 771

	return cnt;
}

L
Li Zefan 已提交
772 773 774 775 776
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

777
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
778 779 780 781 782
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
797

798 799 800 801 802 803
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

804 805 806 807 808 809 810 811
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
812
/*
P
Peter Zijlstra 已提交
813
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
814 815
 * default: 1s
 */
P
Peter Zijlstra 已提交
816
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
817

818 819
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
820 821 822 823 824
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
825

826 827 828 829 830 831 832
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
833
	if (sysctl_sched_rt_runtime < 0)
834 835 836 837
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
838

L
Linus Torvalds 已提交
839
#ifndef prepare_arch_switch
840 841 842 843 844 845
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

846 847 848 849 850
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

851
static inline int task_running(struct rq *rq, struct task_struct *p)
852
{
P
Peter Zijlstra 已提交
853 854 855
#ifdef CONFIG_SMP
	return p->on_cpu;
#else
856
	return task_current(rq, p);
P
Peter Zijlstra 已提交
857
#endif
858 859
}

P
Peter Zijlstra 已提交
860
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
861
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
862
{
P
Peter Zijlstra 已提交
863 864 865 866 867 868 869 870
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->on_cpu = 1;
#endif
871 872
}

873
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
874
{
P
Peter Zijlstra 已提交
875 876 877 878 879 880 881 882 883
#ifdef CONFIG_SMP
	/*
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->on_cpu = 0;
#endif
884 885 886 887
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
888 889 890 891 892 893 894
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

895
	raw_spin_unlock_irq(&rq->lock);
896 897 898
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
899
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
900 901 902 903 904 905 906
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
P
Peter Zijlstra 已提交
907
	next->on_cpu = 1;
908 909
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
910
	raw_spin_unlock_irq(&rq->lock);
911
#else
912
	raw_spin_unlock(&rq->lock);
913 914 915
#endif
}

916
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
917 918 919
{
#ifdef CONFIG_SMP
	/*
P
Peter Zijlstra 已提交
920
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
921 922 923 924
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
P
Peter Zijlstra 已提交
925
	prev->on_cpu = 0;
926 927 928
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
929
#endif
930 931
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
932

933
/*
934
 * __task_rq_lock - lock the rq @p resides on.
935
 */
936
static inline struct rq *__task_rq_lock(struct task_struct *p)
937 938
	__acquires(rq->lock)
{
939 940
	struct rq *rq;

941 942
	lockdep_assert_held(&p->pi_lock);

943
	for (;;) {
944
		rq = task_rq(p);
945
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
946
		if (likely(rq == task_rq(p)))
947
			return rq;
948
		raw_spin_unlock(&rq->lock);
949 950 951
	}
}

L
Linus Torvalds 已提交
952
/*
953
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
954
 */
955
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
956
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
957 958
	__acquires(rq->lock)
{
959
	struct rq *rq;
L
Linus Torvalds 已提交
960

961
	for (;;) {
962
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
963
		rq = task_rq(p);
964
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
965
		if (likely(rq == task_rq(p)))
966
			return rq;
967 968
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
969 970 971
	}
}

A
Alexey Dobriyan 已提交
972
static void __task_rq_unlock(struct rq *rq)
973 974
	__releases(rq->lock)
{
975
	raw_spin_unlock(&rq->lock);
976 977
}

978 979
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
980
	__releases(rq->lock)
981
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
982
{
983 984
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
985 986 987
}

/*
988
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
989
 */
A
Alexey Dobriyan 已提交
990
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
991 992
	__acquires(rq->lock)
{
993
	struct rq *rq;
L
Linus Torvalds 已提交
994 995 996

	local_irq_disable();
	rq = this_rq();
997
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
998 999 1000 1001

	return rq;
}

P
Peter Zijlstra 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1023
	if (!cpu_active(cpu_of(rq)))
1024
		return 0;
P
Peter Zijlstra 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1044
	raw_spin_lock(&rq->lock);
1045
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1046
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1047
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1048 1049 1050 1051

	return HRTIMER_NORESTART;
}

1052
#ifdef CONFIG_SMP
1053 1054 1055 1056
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1057
{
1058
	struct rq *rq = arg;
1059

1060
	raw_spin_lock(&rq->lock);
1061 1062
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1063
	raw_spin_unlock(&rq->lock);
1064 1065
}

1066 1067 1068 1069 1070 1071
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1072
{
1073 1074
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1075

1076
	hrtimer_set_expires(timer, time);
1077 1078 1079 1080

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1081
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1082 1083
		rq->hrtick_csd_pending = 1;
	}
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1098
		hrtick_clear(cpu_rq(cpu));
1099 1100 1101 1102 1103 1104
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1105
static __init void init_hrtick(void)
1106 1107 1108
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1109 1110 1111 1112 1113 1114 1115 1116
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1117
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1118
			HRTIMER_MODE_REL_PINNED, 0);
1119
}
1120

A
Andrew Morton 已提交
1121
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1122 1123
{
}
1124
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1125

1126
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1127
{
1128 1129
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1130

1131 1132 1133 1134
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1135

1136 1137
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1138
}
A
Andrew Morton 已提交
1139
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1140 1141 1142 1143 1144 1145 1146 1147
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1148 1149 1150
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1151
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1152

I
Ingo Molnar 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1166
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1167 1168 1169
{
	int cpu;

1170
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1171

1172
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1173 1174
		return;

1175
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1192
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1193 1194
		return;
	resched_task(cpu_curr(cpu));
1195
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1196
}
1197 1198

#ifdef CONFIG_NO_HZ
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

1213
	rcu_read_lock();
1214
	for_each_domain(cpu, sd) {
1215 1216 1217 1218 1219 1220
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
1221
	}
1222 1223
unlock:
	rcu_read_unlock();
1224 1225
	return cpu;
}
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1258
	set_tsk_need_resched(rq->idle);
1259 1260 1261 1262 1263 1264

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1265

1266
#endif /* CONFIG_NO_HZ */
1267

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
1278 1279 1280 1281 1282 1283
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1295
#else /* !CONFIG_SMP */
1296
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1297
{
1298
	assert_raw_spin_locked(&task_rq(p)->lock);
1299
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1300
}
1301 1302 1303 1304

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1305 1306 1307 1308

static void sched_avg_update(struct rq *rq)
{
}
1309
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1310

1311 1312 1313 1314 1315 1316 1317 1318
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1319 1320 1321
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1322
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1323

1324 1325 1326
/*
 * delta *= weight / lw
 */
1327
static unsigned long
1328 1329 1330 1331 1332
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1333 1334 1335 1336 1337 1338 1339 1340 1341
	/*
	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
	 * 2^SCHED_LOAD_RESOLUTION.
	 */
	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
		tmp = (u64)delta_exec * scale_load_down(weight);
	else
		tmp = (u64)delta_exec;
1342

1343
	if (!lw->inv_weight) {
1344 1345 1346
		unsigned long w = scale_load_down(lw->weight);

		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1347
			lw->inv_weight = 1;
1348 1349
		else if (unlikely(!w))
			lw->inv_weight = WMULT_CONST;
1350
		else
1351
			lw->inv_weight = WMULT_CONST / w;
1352
	}
1353 1354 1355 1356

	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1357
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1358
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1359 1360
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1361
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1362

1363
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1364 1365
}

1366
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1367 1368
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1369
	lw->inv_weight = 0;
1370 1371
}

1372
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1373 1374
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1375
	lw->inv_weight = 0;
1376 1377
}

P
Peter Zijlstra 已提交
1378 1379 1380 1381 1382 1383
static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

1384 1385 1386 1387
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1388
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1389 1390 1391 1392
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1393 1394
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1404 1405 1406
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1407 1408
 */
static const int prio_to_weight[40] = {
1409 1410 1411 1412 1413 1414 1415 1416
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1417 1418
};

1419 1420 1421 1422 1423 1424 1425
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1426
static const u32 prio_to_wmult[40] = {
1427 1428 1429 1430 1431 1432 1433 1434
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1435
};
1436

1437 1438 1439 1440 1441 1442 1443 1444
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1445 1446
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1447 1448
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1449 1450
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1451 1452
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1453 1454
#endif

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1465
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1466
typedef int (*tg_visitor)(struct task_group *, void *);
1467 1468 1469 1470 1471

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1472
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1473 1474
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1475
	int ret;
1476 1477 1478 1479

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1480 1481 1482
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1483 1484 1485 1486 1487 1488 1489
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1490 1491 1492
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1493 1494 1495 1496 1497

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1498
out_unlock:
1499
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1500 1501

	return ret;
1502 1503
}

P
Peter Zijlstra 已提交
1504 1505 1506
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1507
}
P
Peter Zijlstra 已提交
1508 1509 1510
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1550 1551
static unsigned long power_of(int cpu)
{
1552
	return cpu_rq(cpu)->cpu_power;
1553 1554
}

P
Peter Zijlstra 已提交
1555 1556 1557 1558 1559
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1560
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1561

1562 1563
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1564 1565
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1566 1567 1568 1569 1570

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1571 1572

/*
1573 1574 1575
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1576
 */
P
Peter Zijlstra 已提交
1577
static int tg_load_down(struct task_group *tg, void *data)
1578
{
1579
	unsigned long load;
P
Peter Zijlstra 已提交
1580
	long cpu = (long)data;
1581

1582 1583 1584 1585
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
P
Peter Zijlstra 已提交
1586
		load *= tg->se[cpu]->load.weight;
1587 1588
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1589

1590
	tg->cfs_rq[cpu]->h_load = load;
1591

P
Peter Zijlstra 已提交
1592
	return 0;
1593 1594
}

P
Peter Zijlstra 已提交
1595
static void update_h_load(long cpu)
1596
{
P
Peter Zijlstra 已提交
1597
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1598 1599
}

1600 1601
#endif

1602 1603
#ifdef CONFIG_PREEMPT

1604 1605
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1606
/*
1607 1608 1609 1610 1611 1612
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1613
 */
1614 1615 1616 1617 1618
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1619
	raw_spin_unlock(&this_rq->lock);
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1634 1635 1636 1637 1638 1639
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1640
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1641
		if (busiest < this_rq) {
1642 1643 1644 1645
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1646 1647
			ret = 1;
		} else
1648 1649
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1650 1651 1652 1653
	}
	return ret;
}

1654 1655 1656 1657 1658 1659 1660 1661 1662
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1663
		raw_spin_unlock(&this_rq->lock);
1664 1665 1666 1667 1668 1669
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1670 1671 1672
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1673
	raw_spin_unlock(&busiest->lock);
1674 1675
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
#else /* CONFIG_SMP */

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	BUG_ON(rq1 != rq2);
	raw_spin_lock(&rq1->lock);
	__acquire(rq2->lock);	/* Fake it out ;) */
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	BUG_ON(rq1 != rq2);
	raw_spin_unlock(&rq1->lock);
	__release(rq2->lock);
}

1752 1753
#endif

1754
static void calc_load_account_idle(struct rq *this_rq);
1755
static void update_sysctl(void);
1756
static int get_update_sysctl_factor(void);
1757
static void update_cpu_load(struct rq *this_rq);
1758

P
Peter Zijlstra 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1772

1773
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1774

1775
#define sched_class_highest (&stop_sched_class)
1776 1777
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1778

1779 1780
#include "sched_stats.h"

1781
static void inc_nr_running(struct rq *rq)
1782 1783 1784 1785
{
	rq->nr_running++;
}

1786
static void dec_nr_running(struct rq *rq)
1787 1788 1789 1790
{
	rq->nr_running--;
}

1791 1792
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
1793 1794 1795
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
1796 1797 1798 1799
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
1800
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
1801
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
1802 1803
		return;
	}
1804

1805
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
1806
	load->inv_weight = prio_to_wmult[prio];
1807 1808
}

1809
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1810
{
1811
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1812
	sched_info_queued(p);
1813
	p->sched_class->enqueue_task(rq, p, flags);
1814 1815
}

1816
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1817
{
1818
	update_rq_clock(rq);
1819
	sched_info_dequeued(p);
1820
	p->sched_class->dequeue_task(rq, p, flags);
1821 1822
}

1823 1824 1825
/*
 * activate_task - move a task to the runqueue.
 */
1826
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1827 1828 1829 1830
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1831
	enqueue_task(rq, p, flags);
1832 1833 1834 1835 1836 1837
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1838
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1839 1840 1841 1842
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1843
	dequeue_task(rq, p, flags);
1844 1845 1846
	dec_nr_running(rq);
}

1847 1848
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

1849 1850 1851 1852 1853 1854 1855
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
1856 1857 1858
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
1859
 */
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
1914 1915 1916
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
1917
#endif /* CONFIG_64BIT */
1918

1919 1920 1921 1922
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
1923 1924 1925
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
1926
	s64 delta;
1927 1928 1929 1930 1931 1932 1933 1934
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
1935 1936 1937
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

1938
	irq_time_write_begin();
1939 1940 1941 1942 1943 1944 1945
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
1946
		__this_cpu_add(cpu_hardirq_time, delta);
1947
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1948
		__this_cpu_add(cpu_softirq_time, delta);
1949

1950
	irq_time_write_end();
1951 1952
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
1953
EXPORT_SYMBOL_GPL(account_system_vtime);
1954

1955
static void update_rq_clock_task(struct rq *rq, s64 delta)
1956
{
1957 1958
	s64 irq_delta;

1959
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
	rq->clock_task += delta;

	if (irq_delta && sched_feat(NONIRQ_POWER))
		sched_rt_avg_update(rq, irq_delta);
1985 1986
}

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
static int irqtime_account_hi_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

2017
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2018

2019 2020
#define sched_clock_irqtime	(0)

2021
static void update_rq_clock_task(struct rq *rq, s64 delta)
2022
{
2023
	rq->clock_task += delta;
2024 2025
}

2026
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2027

2028 2029 2030
#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
2031
#include "sched_autogroup.c"
2032
#include "sched_stoptask.c"
2033 2034 2035 2036
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

2067
/*
I
Ingo Molnar 已提交
2068
 * __normal_prio - return the priority that is based on the static prio
2069 2070 2071
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
2072
	return p->static_prio;
2073 2074
}

2075 2076 2077 2078 2079 2080 2081
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
2082
static inline int normal_prio(struct task_struct *p)
2083 2084 2085
{
	int prio;

2086
	if (task_has_rt_policy(p))
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
2100
static int effective_prio(struct task_struct *p)
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
2113 2114 2115 2116
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
2117
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
2118 2119 2120 2121
{
	return cpu_curr(task_cpu(p)) == p;
}

2122 2123
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
2124
				       int oldprio)
2125 2126 2127
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
2128 2129 2130 2131
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
2132 2133
}

2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
2155
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2156 2157 2158
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
2159
#ifdef CONFIG_SMP
2160 2161 2162
/*
 * Is this task likely cache-hot:
 */
2163
static int
2164 2165 2166 2167
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2168 2169 2170
	if (p->sched_class != &fair_sched_class)
		return 0;

2171 2172 2173
	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

2174 2175 2176
	/*
	 * Buddy candidates are cache hot:
	 */
2177
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2178 2179
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2180 2181
		return 1;

2182 2183 2184 2185 2186
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2187 2188 2189 2190 2191
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2192
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2193
{
2194 2195 2196 2197 2198
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2199 2200
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2201 2202 2203 2204 2205

#ifdef CONFIG_LOCKDEP
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
2206 2207
#endif

2208
	trace_sched_migrate_task(p, new_cpu);
2209

2210 2211 2212 2213
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2214 2215

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2216 2217
}

2218
struct migration_arg {
2219
	struct task_struct *task;
L
Linus Torvalds 已提交
2220
	int dest_cpu;
2221
};
L
Linus Torvalds 已提交
2222

2223 2224
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2225 2226 2227
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2228 2229 2230 2231 2232 2233 2234
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2235 2236 2237 2238 2239 2240
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2241
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2242 2243
{
	unsigned long flags;
I
Ingo Molnar 已提交
2244
	int running, on_rq;
R
Roland McGrath 已提交
2245
	unsigned long ncsw;
2246
	struct rq *rq;
L
Linus Torvalds 已提交
2247

2248 2249 2250 2251 2252 2253 2254 2255
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2256

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2268 2269 2270
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2271
			cpu_relax();
R
Roland McGrath 已提交
2272
		}
2273

2274 2275 2276 2277 2278 2279
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2280
		trace_sched_wait_task(p);
2281
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
2282
		on_rq = p->on_rq;
R
Roland McGrath 已提交
2283
		ncsw = 0;
2284
		if (!match_state || p->state == match_state)
2285
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2286
		task_rq_unlock(rq, p, &flags);
2287

R
Roland McGrath 已提交
2288 2289 2290 2291 2292 2293
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2304

2305 2306 2307 2308 2309
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2310
		 * So if it was still runnable (but just not actively
2311 2312 2313 2314
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
2315 2316 2317 2318
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2319 2320
			continue;
		}
2321

2322 2323 2324 2325 2326 2327 2328
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2329 2330

	return ncsw;
L
Linus Torvalds 已提交
2331 2332 2333 2334 2335 2336 2337 2338 2339
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
2340
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
2341 2342 2343 2344 2345
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2346
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2356
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2357
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2358

2359
#ifdef CONFIG_SMP
2360
/*
2361
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2362
 */
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2379 2380 2381 2382 2383 2384 2385 2386 2387
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
2388 2389 2390 2391 2392
	}

	return dest_cpu;
}

2393
/*
2394
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2395
 */
2396
static inline
2397
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2398
{
2399
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2412
		     !cpu_online(cpu)))
2413
		cpu = select_fallback_rq(task_cpu(p), p);
2414 2415

	return cpu;
2416
}
2417 2418 2419 2420 2421 2422

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2423 2424
#endif

P
Peter Zijlstra 已提交
2425
static void
2426
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
2427
{
P
Peter Zijlstra 已提交
2428
#ifdef CONFIG_SCHEDSTATS
2429 2430
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
2441
		rcu_read_lock();
P
Peter Zijlstra 已提交
2442 2443 2444 2445 2446 2447
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
2448
		rcu_read_unlock();
P
Peter Zijlstra 已提交
2449 2450 2451 2452
	}
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
2453
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2454 2455

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
2456
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
2457 2458

	if (cpu != task_cpu(p))
T
Tejun Heo 已提交
2459 2460
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
2461 2462 2463 2464 2465
#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
2466
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
2467
	p->on_rq = 1;
2468 2469 2470 2471

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2472 2473
}

2474 2475 2476
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
2477
static void
2478
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
2479
{
2480
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
#ifdef CONFIG_SMP
static void sched_ttwu_pending(void)
{
	struct rq *rq = this_rq();
	struct task_struct *list = xchg(&rq->wake_list, NULL);

	if (!list)
		return;

	raw_spin_lock(&rq->lock);

	while (list) {
		struct task_struct *p = list;
		list = list->wake_entry;
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
	sched_ttwu_pending();
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	struct task_struct *next = rq->wake_list;

	for (;;) {
		struct task_struct *old = next;

		p->wake_entry = next;
		next = cmpxchg(&rq->wake_list, old, p);
		if (next == old)
			break;
	}

	if (!next)
		smp_send_reschedule(cpu);
}
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595

#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_cpu) {
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;

}
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
#endif /* CONFIG_SMP */
2596

2597 2598 2599 2600
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

2601
#if defined(CONFIG_SMP)
2602 2603 2604 2605 2606 2607
	if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

2608 2609 2610
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
2611 2612 2613
}

/**
L
Linus Torvalds 已提交
2614
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2615
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2616
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2617
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2618 2619 2620 2621 2622 2623 2624
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2625 2626
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2627
 */
2628 2629
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
2630 2631
{
	unsigned long flags;
2632
	int cpu, success = 0;
P
Peter Zijlstra 已提交
2633

2634
	smp_wmb();
2635
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
2636
	if (!(p->state & state))
L
Linus Torvalds 已提交
2637 2638
		goto out;

2639
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
2640 2641
	cpu = task_cpu(p);

2642 2643
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2644 2645

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
2646
	/*
2647 2648
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
2649
	 */
2650 2651 2652
	while (p->on_cpu) {
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
		/*
2653 2654 2655 2656 2657
		 * In case the architecture enables interrupts in
		 * context_switch(), we cannot busy wait, since that
		 * would lead to deadlocks when an interrupt hits and
		 * tries to wake up @prev. So bail and do a complete
		 * remote wakeup.
2658
		 */
2659
		if (ttwu_activate_remote(p, wake_flags))
2660
			goto stat;
2661
#else
2662
		cpu_relax();
2663
#endif
2664
	}
2665
	/*
2666
	 * Pairs with the smp_wmb() in finish_lock_switch().
2667
	 */
2668
	smp_rmb();
L
Linus Torvalds 已提交
2669

2670
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2671
	p->state = TASK_WAKING;
2672

2673
	if (p->sched_class->task_waking)
2674
		p->sched_class->task_waking(p);
2675

2676
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2677
	if (task_cpu(p) != cpu)
2678
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2679 2680
#endif /* CONFIG_SMP */

2681 2682
	ttwu_queue(p, cpu);
stat:
2683
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2684
out:
2685
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2686 2687 2688 2689

	return success;
}

T
Tejun Heo 已提交
2690 2691 2692 2693
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
2694
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2695
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2696
 * the current task.
T
Tejun Heo 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

2706 2707 2708 2709 2710 2711
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
2712
	if (!(p->state & TASK_NORMAL))
2713
		goto out;
T
Tejun Heo 已提交
2714

P
Peter Zijlstra 已提交
2715
	if (!p->on_rq)
P
Peter Zijlstra 已提交
2716 2717
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

2718
	ttwu_do_wakeup(rq, p, 0);
2719
	ttwu_stat(p, smp_processor_id(), 0);
2720 2721
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2722 2723
}

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2735
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2736
{
2737
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2738 2739 2740
}
EXPORT_SYMBOL(wake_up_process);

2741
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2742 2743 2744 2745 2746 2747 2748
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2749 2750 2751 2752 2753
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
2754 2755 2756
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2757 2758
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2759
	p->se.prev_sum_exec_runtime	= 0;
2760
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2761
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2762
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2763 2764

#ifdef CONFIG_SCHEDSTATS
2765
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2766
#endif
N
Nick Piggin 已提交
2767

P
Peter Zijlstra 已提交
2768
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
2769

2770 2771 2772
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2773 2774 2775 2776 2777
}

/*
 * fork()/clone()-time setup:
 */
2778
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
2779
{
2780
	unsigned long flags;
I
Ingo Molnar 已提交
2781 2782 2783
	int cpu = get_cpu();

	__sched_fork(p);
2784
	/*
2785
	 * We mark the process as running here. This guarantees that
2786 2787 2788
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2789
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2790

2791 2792 2793 2794
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2795
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2796
			p->policy = SCHED_NORMAL;
2797 2798
			p->normal_prio = p->static_prio;
		}
2799

2800 2801
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2802
			p->normal_prio = p->static_prio;
2803 2804 2805
			set_load_weight(p);
		}

2806 2807 2808 2809 2810 2811
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2812

2813 2814 2815 2816 2817
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2818 2819
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2820

P
Peter Zijlstra 已提交
2821 2822 2823
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2824 2825 2826 2827 2828 2829 2830
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2831
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2832
	set_task_cpu(p, cpu);
2833
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2834

2835
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2836
	if (likely(sched_info_on()))
2837
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2838
#endif
P
Peter Zijlstra 已提交
2839 2840
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2841
#endif
L
Linus Torvalds 已提交
2842
#ifdef CONFIG_PREEMPT
2843
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2844
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2845
#endif
2846
#ifdef CONFIG_SMP
2847
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2848
#endif
2849

N
Nick Piggin 已提交
2850
	put_cpu();
L
Linus Torvalds 已提交
2851 2852 2853 2854 2855 2856 2857 2858 2859
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2860
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2861 2862
{
	unsigned long flags;
I
Ingo Molnar 已提交
2863
	struct rq *rq;
2864

2865
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2866 2867 2868 2869 2870 2871
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2872
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
2873 2874
#endif

2875
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2876
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
2877
	p->on_rq = 1;
2878
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2879
	check_preempt_curr(rq, p, WF_FORK);
2880
#ifdef CONFIG_SMP
2881 2882
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2883
#endif
2884
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2885 2886
}

2887 2888 2889
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2890
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2891
 * @notifier: notifier struct to register
2892 2893 2894 2895 2896 2897 2898 2899 2900
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2901
 * @notifier: notifier struct to unregister
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2931
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2943
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2944

2945 2946 2947
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2948
 * @prev: the current task that is being switched out
2949 2950 2951 2952 2953 2954 2955 2956 2957
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2958 2959 2960
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2961
{
2962 2963
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
2964
	fire_sched_out_preempt_notifiers(prev, next);
2965 2966
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
2967
	trace_sched_switch(prev, next);
2968 2969
}

L
Linus Torvalds 已提交
2970 2971
/**
 * finish_task_switch - clean up after a task-switch
2972
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2973 2974
 * @prev: the thread we just switched away from.
 *
2975 2976 2977 2978
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2979 2980
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2981
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2982 2983 2984
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2985
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2986 2987 2988
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2989
	long prev_state;
L
Linus Torvalds 已提交
2990 2991 2992 2993 2994

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2995
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2996 2997
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2998
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2999 3000 3001 3002 3003
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
3004
	prev_state = prev->state;
3005
	finish_arch_switch(prev);
3006 3007 3008
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3009
	perf_event_task_sched_in(current);
3010 3011 3012
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3013
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
3014

3015
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
3016 3017
	if (mm)
		mmdrop(mm);
3018
	if (unlikely(prev_state == TASK_DEAD)) {
3019 3020 3021
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
3022
		 */
3023
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
3024
		put_task_struct(prev);
3025
	}
L
Linus Torvalds 已提交
3026 3027
}

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

3043
		raw_spin_lock_irqsave(&rq->lock, flags);
3044 3045
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
3046
		raw_spin_unlock_irqrestore(&rq->lock, flags);
3047 3048 3049 3050 3051 3052

		rq->post_schedule = 0;
	}
}

#else
3053

3054 3055 3056 3057 3058 3059
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
3060 3061
}

3062 3063
#endif

L
Linus Torvalds 已提交
3064 3065 3066 3067
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
3068
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
3069 3070
	__releases(rq->lock)
{
3071 3072
	struct rq *rq = this_rq();

3073
	finish_task_switch(rq, prev);
3074

3075 3076 3077 3078 3079
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
3080

3081 3082 3083 3084
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
3085
	if (current->set_child_tid)
3086
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
3087 3088 3089 3090 3091 3092
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
3093
static inline void
3094
context_switch(struct rq *rq, struct task_struct *prev,
3095
	       struct task_struct *next)
L
Linus Torvalds 已提交
3096
{
I
Ingo Molnar 已提交
3097
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
3098

3099
	prepare_task_switch(rq, prev, next);
3100

I
Ingo Molnar 已提交
3101 3102
	mm = next->mm;
	oldmm = prev->active_mm;
3103 3104 3105 3106 3107
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
3108
	arch_start_context_switch(prev);
3109

3110
	if (!mm) {
L
Linus Torvalds 已提交
3111 3112 3113 3114 3115 3116
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

3117
	if (!prev->mm) {
L
Linus Torvalds 已提交
3118 3119 3120
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
3121 3122 3123 3124 3125 3126 3127
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
3128
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3129
#endif
L
Linus Torvalds 已提交
3130 3131 3132 3133

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
3134 3135 3136 3137 3138 3139 3140
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
3158
}
L
Linus Torvalds 已提交
3159 3160

unsigned long nr_uninterruptible(void)
3161
{
L
Linus Torvalds 已提交
3162
	unsigned long i, sum = 0;
3163

3164
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3165
		sum += cpu_rq(i)->nr_uninterruptible;
3166 3167

	/*
L
Linus Torvalds 已提交
3168 3169
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
3170
	 */
L
Linus Torvalds 已提交
3171 3172
	if (unlikely((long)sum < 0))
		sum = 0;
3173

L
Linus Torvalds 已提交
3174
	return sum;
3175 3176
}

L
Linus Torvalds 已提交
3177
unsigned long long nr_context_switches(void)
3178
{
3179 3180
	int i;
	unsigned long long sum = 0;
3181

3182
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3183
		sum += cpu_rq(i)->nr_switches;
3184

L
Linus Torvalds 已提交
3185 3186
	return sum;
}
3187

L
Linus Torvalds 已提交
3188 3189 3190
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
3191

3192
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3193
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
3194

L
Linus Torvalds 已提交
3195 3196
	return sum;
}
3197

3198
unsigned long nr_iowait_cpu(int cpu)
3199
{
3200
	struct rq *this = cpu_rq(cpu);
3201 3202
	return atomic_read(&this->nr_iowait);
}
3203

3204 3205 3206 3207 3208
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
3209

3210

3211 3212 3213 3214 3215
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
3216

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

3232 3233 3234 3235 3236 3237 3238 3239 3240
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
3392 3393 3394 3395 3396 3397 3398 3399 3400
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
3401 3402 3403 3404

static void calc_global_nohz(unsigned long ticks)
{
}
3405 3406
#endif

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3420 3421 3422
}

/*
3423 3424
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3425
 */
3426
void calc_global_load(unsigned long ticks)
3427
{
3428
	long active;
L
Linus Torvalds 已提交
3429

3430 3431 3432
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
3433
		return;
L
Linus Torvalds 已提交
3434

3435 3436
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3437

3438 3439 3440
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3441

3442 3443
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3444

3445
/*
3446 3447
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3448 3449 3450
 */
static void calc_load_account_active(struct rq *this_rq)
{
3451
	long delta;
3452

3453 3454
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3455

3456 3457 3458
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3459
		atomic_long_add(delta, &calc_load_tasks);
3460 3461

	this_rq->calc_load_update += LOAD_FREQ;
3462 3463
}

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

3531
/*
I
Ingo Molnar 已提交
3532
 * Update rq->cpu_load[] statistics. This function is usually called every
3533 3534
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
3535
 */
I
Ingo Molnar 已提交
3536
static void update_cpu_load(struct rq *this_rq)
3537
{
3538
	unsigned long this_load = this_rq->load.weight;
3539 3540
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
3541
	int i, scale;
3542

I
Ingo Molnar 已提交
3543
	this_rq->nr_load_updates++;
3544

3545 3546 3547 3548 3549 3550 3551
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
3552
	/* Update our load: */
3553 3554
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
3555
		unsigned long old_load, new_load;
3556

I
Ingo Molnar 已提交
3557
		/* scale is effectively 1 << i now, and >> i divides by scale */
3558

I
Ingo Molnar 已提交
3559
		old_load = this_rq->cpu_load[i];
3560
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
3561
		new_load = this_load;
I
Ingo Molnar 已提交
3562 3563 3564 3565 3566 3567
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
3568 3569 3570
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
3571
	}
3572 3573

	sched_avg_update(this_rq);
3574 3575 3576 3577 3578
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
3579

3580
	calc_load_account_active(this_rq);
3581 3582
}

I
Ingo Molnar 已提交
3583
#ifdef CONFIG_SMP
3584

3585
/*
P
Peter Zijlstra 已提交
3586 3587
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3588
 */
P
Peter Zijlstra 已提交
3589
void sched_exec(void)
3590
{
P
Peter Zijlstra 已提交
3591
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3592
	unsigned long flags;
3593
	int dest_cpu;
3594

3595
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3596
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3597 3598
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3599

3600
	if (likely(cpu_active(dest_cpu))) {
3601
		struct migration_arg arg = { p, dest_cpu };
3602

3603 3604
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3605 3606
		return;
	}
3607
unlock:
3608
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3609
}
I
Ingo Molnar 已提交
3610

L
Linus Torvalds 已提交
3611 3612 3613 3614 3615 3616 3617
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3618
 * Return any ns on the sched_clock that have not yet been accounted in
3619
 * @p in case that task is currently running.
3620 3621
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3622
 */
3623 3624 3625 3626 3627 3628
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
3629
		ns = rq->clock_task - p->se.exec_start;
3630 3631 3632 3633 3634 3635 3636
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3637
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3638 3639
{
	unsigned long flags;
3640
	struct rq *rq;
3641
	u64 ns = 0;
3642

3643
	rq = task_rq_lock(p, &flags);
3644
	ns = do_task_delta_exec(p, rq);
3645
	task_rq_unlock(rq, p, &flags);
3646

3647 3648
	return ns;
}
3649

3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3663
	task_rq_unlock(rq, p, &flags);
3664 3665 3666

	return ns;
}
3667

3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3687
	task_rq_unlock(rq, p, &flags);
3688

L
Linus Torvalds 已提交
3689 3690 3691 3692 3693 3694 3695
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3696
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3697
 */
3698 3699
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3700 3701 3702 3703
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3704
	/* Add user time to process. */
L
Linus Torvalds 已提交
3705
	p->utime = cputime_add(p->utime, cputime);
3706
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3707
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3708 3709 3710 3711 3712 3713 3714

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3715 3716

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3717 3718
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3719 3720
}

3721 3722 3723 3724
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3725
 * @cputime_scaled: cputime scaled by cpu frequency
3726
 */
3727 3728
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3729 3730 3731 3732 3733 3734
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3735
	/* Add guest time to process. */
3736
	p->utime = cputime_add(p->utime, cputime);
3737
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3738
	account_group_user_time(p, cputime);
3739 3740
	p->gtime = cputime_add(p->gtime, cputime);

3741
	/* Add guest time to cpustat. */
3742 3743 3744 3745 3746 3747 3748
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3749 3750
}

3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
			cputime_t cputime_scaled, cputime64_t *target_cputime64)
{
	cputime64_t tmp = cputime_to_cputime64(cputime);

	/* Add system time to process. */
	p->stime = cputime_add(p->stime, cputime);
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
	*target_cputime64 = cputime64_add(*target_cputime64, tmp);
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
3777 3778 3779 3780 3781
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3782
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3783 3784
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3785
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3786 3787
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3788
	cputime64_t *target_cputime64;
L
Linus Torvalds 已提交
3789

3790
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3791
		account_guest_time(p, cputime, cputime_scaled);
3792 3793
		return;
	}
3794

L
Linus Torvalds 已提交
3795
	if (hardirq_count() - hardirq_offset)
3796
		target_cputime64 = &cpustat->irq;
3797
	else if (in_serving_softirq())
3798
		target_cputime64 = &cpustat->softirq;
L
Linus Torvalds 已提交
3799
	else
3800
		target_cputime64 = &cpustat->system;
3801

3802
	__account_system_time(p, cputime, cputime_scaled, target_cputime64);
L
Linus Torvalds 已提交
3803 3804
}

3805
/*
L
Linus Torvalds 已提交
3806
 * Account for involuntary wait time.
3807
 * @cputime: the cpu time spent in involuntary wait
3808
 */
3809
void account_steal_time(cputime_t cputime)
3810
{
3811 3812 3813 3814
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3815 3816
}

L
Linus Torvalds 已提交
3817
/*
3818 3819
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3820
 */
3821
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3822 3823
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3824
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3825
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3826

3827 3828 3829 3830
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3831 3832
}

3833 3834
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
	cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	if (irqtime_account_hi_update()) {
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	} else if (irqtime_account_si_update()) {
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3868 3869 3870 3871 3872 3873 3874 3875
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->softirq);
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->system);
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
3896
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3897 3898 3899
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
3900
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3901 3902 3903 3904 3905 3906 3907 3908

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3909
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3910 3911
	struct rq *rq = this_rq();

3912 3913 3914 3915 3916
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

3917
	if (user_tick)
3918
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3919
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3920
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3921 3922
				    one_jiffy_scaled);
	else
3923
		account_idle_time(cputime_one_jiffy);
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
3942 3943 3944 3945 3946 3947

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

3948
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3949 3950
}

3951 3952
#endif

3953 3954 3955 3956
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3957
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3958
{
3959 3960
	*ut = p->utime;
	*st = p->stime;
3961 3962
}

3963
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3964
{
3965 3966 3967 3968 3969 3970
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3971 3972
}
#else
3973 3974

#ifndef nsecs_to_cputime
3975
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3976 3977
#endif

3978
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3979
{
3980
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3981 3982 3983 3984

	/*
	 * Use CFS's precise accounting:
	 */
3985
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3986 3987

	if (total) {
3988
		u64 temp = rtime;
3989

3990
		temp *= utime;
3991
		do_div(temp, total);
3992 3993 3994
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3995

3996 3997 3998
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3999
	p->prev_utime = max(p->prev_utime, utime);
4000
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4001

4002 4003
	*ut = p->prev_utime;
	*st = p->prev_stime;
4004 4005
}

4006 4007 4008 4009
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4010
{
4011 4012 4013
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
4014

4015
	thread_group_cputime(p, &cputime);
4016

4017 4018
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4019

4020
	if (total) {
4021
		u64 temp = rtime;
4022

4023
		temp *= cputime.utime;
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
4035 4036 4037
}
#endif

4038 4039 4040 4041 4042 4043 4044 4045
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4046
	struct task_struct *curr = rq->curr;
4047 4048

	sched_clock_tick();
I
Ingo Molnar 已提交
4049

4050
	raw_spin_lock(&rq->lock);
4051
	update_rq_clock(rq);
4052
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
4053
	curr->sched_class->task_tick(rq, curr, 0);
4054
	raw_spin_unlock(&rq->lock);
4055

4056
	perf_event_task_tick();
4057

4058
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4059 4060
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4061
#endif
L
Linus Torvalds 已提交
4062 4063
}

4064
notrace unsigned long get_parent_ip(unsigned long addr)
4065 4066 4067 4068 4069 4070 4071 4072
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4073

4074 4075 4076
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

4077
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4078
{
4079
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4080 4081 4082
	/*
	 * Underflow?
	 */
4083 4084
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4085
#endif
L
Linus Torvalds 已提交
4086
	preempt_count() += val;
4087
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4088 4089 4090
	/*
	 * Spinlock count overflowing soon?
	 */
4091 4092
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4093 4094 4095
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4096 4097 4098
}
EXPORT_SYMBOL(add_preempt_count);

4099
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4100
{
4101
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4102 4103 4104
	/*
	 * Underflow?
	 */
4105
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4106
		return;
L
Linus Torvalds 已提交
4107 4108 4109
	/*
	 * Is the spinlock portion underflowing?
	 */
4110 4111 4112
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4113
#endif
4114

4115 4116
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4117 4118 4119 4120 4121 4122 4123
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4124
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4125
 */
I
Ingo Molnar 已提交
4126
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4127
{
4128 4129
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
4130 4131
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
4132

I
Ingo Molnar 已提交
4133
	debug_show_held_locks(prev);
4134
	print_modules();
I
Ingo Molnar 已提交
4135 4136
	if (irqs_disabled())
		print_irqtrace_events(prev);
4137 4138 4139 4140 4141

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4142
}
L
Linus Torvalds 已提交
4143

I
Ingo Molnar 已提交
4144 4145 4146 4147 4148
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4149
	/*
I
Ingo Molnar 已提交
4150
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4151 4152 4153
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4154
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4155 4156
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4157 4158
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4159
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4160 4161
}

P
Peter Zijlstra 已提交
4162
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
4163
{
4164
	if (prev->on_rq || rq->skip_clock_update < 0)
4165
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
4166
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
4167 4168
}

I
Ingo Molnar 已提交
4169 4170 4171 4172
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4173
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
4174
{
4175
	const struct sched_class *class;
I
Ingo Molnar 已提交
4176
	struct task_struct *p;
L
Linus Torvalds 已提交
4177 4178

	/*
I
Ingo Molnar 已提交
4179 4180
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4181
	 */
I
Ingo Molnar 已提交
4182
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4183
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4184 4185
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4186 4187
	}

4188
	for_each_class(class) {
4189
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4190 4191 4192
		if (p)
			return p;
	}
4193 4194

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
4195
}
L
Linus Torvalds 已提交
4196

I
Ingo Molnar 已提交
4197 4198 4199
/*
 * schedule() is the main scheduler function.
 */
4200
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
4201 4202
{
	struct task_struct *prev, *next;
4203
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4204
	struct rq *rq;
4205
	int cpu;
I
Ingo Molnar 已提交
4206

4207 4208
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
4209 4210
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
4211
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
4212 4213 4214
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
4215

4216
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4217
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4218

4219
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
4220

4221
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
4222
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
4223
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
4224
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
4225
		} else {
4226 4227 4228
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
4229
			/*
4230 4231 4232
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
4233 4234 4235 4236 4237 4238 4239 4240
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
P
Peter Zijlstra 已提交
4241

4242
			/*
4243 4244
			 * If we are going to sleep and we have plugged IO
			 * queued, make sure to submit it to avoid deadlocks.
4245 4246 4247
			 */
			if (blk_needs_flush_plug(prev)) {
				raw_spin_unlock(&rq->lock);
4248
				blk_schedule_flush_plug(prev);
4249 4250
				raw_spin_lock(&rq->lock);
			}
T
Tejun Heo 已提交
4251
		}
I
Ingo Molnar 已提交
4252
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4253 4254
	}

4255
	pre_schedule(rq, prev);
4256

I
Ingo Molnar 已提交
4257
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4258 4259
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
4260
	put_prev_task(rq, prev);
4261
	next = pick_next_task(rq);
4262 4263
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
4264 4265 4266 4267 4268 4269

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4270
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4271
		/*
4272 4273 4274 4275
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
4276 4277 4278
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4279
	} else
4280
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
4281

4282
	post_schedule(rq);
L
Linus Torvalds 已提交
4283 4284

	preempt_enable_no_resched();
4285
	if (need_resched())
L
Linus Torvalds 已提交
4286 4287 4288 4289
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

4290
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4291

4292 4293 4294
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	bool ret = false;
4295

4296 4297 4298
	rcu_read_lock();
	if (lock->owner != owner)
		goto fail;
4299 4300

	/*
4301 4302 4303 4304
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
4305
	 */
4306
	barrier();
4307

4308 4309 4310
	ret = owner->on_cpu;
fail:
	rcu_read_unlock();
4311

4312 4313
	return ret;
}
4314

4315 4316 4317 4318 4319 4320 4321 4322
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
4323

4324 4325
	while (owner_running(lock, owner)) {
		if (need_resched())
4326 4327
			return 0;

4328
		arch_mutex_cpu_relax();
4329
	}
4330

4331 4332 4333 4334 4335 4336 4337
	/*
	 * If the owner changed to another task there is likely
	 * heavy contention, stop spinning.
	 */
	if (lock->owner)
		return 0;

4338 4339 4340 4341
	return 1;
}
#endif

L
Linus Torvalds 已提交
4342 4343
#ifdef CONFIG_PREEMPT
/*
4344
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4345
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4346 4347
 * occur there and call schedule directly.
 */
4348
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
4349 4350
{
	struct thread_info *ti = current_thread_info();
4351

L
Linus Torvalds 已提交
4352 4353
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4354
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4355
	 */
N
Nick Piggin 已提交
4356
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4357 4358
		return;

4359
	do {
4360
		add_preempt_count_notrace(PREEMPT_ACTIVE);
4361
		schedule();
4362
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4363

4364 4365 4366 4367 4368
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4369
	} while (need_resched());
L
Linus Torvalds 已提交
4370 4371 4372 4373
}
EXPORT_SYMBOL(preempt_schedule);

/*
4374
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4375 4376 4377 4378 4379 4380 4381
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4382

4383
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4384 4385
	BUG_ON(ti->preempt_count || !irqs_disabled());

4386 4387 4388 4389 4390 4391
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4392

4393 4394 4395 4396 4397
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4398
	} while (need_resched());
L
Linus Torvalds 已提交
4399 4400 4401 4402
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
4403
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
4404
			  void *key)
L
Linus Torvalds 已提交
4405
{
P
Peter Zijlstra 已提交
4406
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
4407 4408 4409 4410
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4411 4412
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4413 4414 4415
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4416
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4417 4418
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4419
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
4420
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
4421
{
4422
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4423

4424
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4425 4426
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
4427
		if (curr->func(curr, mode, wake_flags, key) &&
4428
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4429 4430 4431 4432 4433 4434 4435 4436 4437
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4438
 * @key: is directly passed to the wakeup function
4439 4440 4441
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4442
 */
4443
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4444
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4457
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4458 4459 4460
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
4461
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
4462

4463 4464 4465 4466
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
4467
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4468

L
Linus Torvalds 已提交
4469
/**
4470
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4471 4472 4473
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4474
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
4475 4476 4477 4478 4479 4480 4481
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
4482 4483 4484
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4485
 */
4486 4487
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4488 4489
{
	unsigned long flags;
P
Peter Zijlstra 已提交
4490
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
4491 4492 4493 4494 4495

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
4496
		wake_flags = 0;
L
Linus Torvalds 已提交
4497 4498

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
4499
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
4500 4501
	spin_unlock_irqrestore(&q->lock, flags);
}
4502 4503 4504 4505 4506 4507 4508 4509 4510
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4511 4512
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4513 4514 4515 4516 4517 4518 4519 4520
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4521 4522 4523
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4524
 */
4525
void complete(struct completion *x)
L
Linus Torvalds 已提交
4526 4527 4528 4529 4530
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4531
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4532 4533 4534 4535
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4536 4537 4538 4539 4540
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4541 4542 4543
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4544
 */
4545
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4546 4547 4548 4549 4550
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4551
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4552 4553 4554 4555
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4556 4557
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4558 4559 4560 4561
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
4562
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
4563
		do {
4564
			if (signal_pending_state(state, current)) {
4565 4566
				timeout = -ERESTARTSYS;
				break;
4567 4568
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4569 4570 4571
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4572
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4573
		__remove_wait_queue(&x->wait, &wait);
4574 4575
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4576 4577
	}
	x->done--;
4578
	return timeout ?: 1;
L
Linus Torvalds 已提交
4579 4580
}

4581 4582
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4583 4584 4585 4586
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4587
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4588
	spin_unlock_irq(&x->wait.lock);
4589 4590
	return timeout;
}
L
Linus Torvalds 已提交
4591

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4602
void __sched wait_for_completion(struct completion *x)
4603 4604
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4605
}
4606
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4607

4608 4609 4610 4611 4612 4613 4614 4615 4616
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4617
unsigned long __sched
4618
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4619
{
4620
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4621
}
4622
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4623

4624 4625 4626 4627 4628 4629 4630
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4631
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4632
{
4633 4634 4635 4636
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4637
}
4638
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4639

4640 4641 4642 4643 4644 4645 4646 4647
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4648
long __sched
4649 4650
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4651
{
4652
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4653
}
4654
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4655

4656 4657 4658 4659 4660 4661 4662
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4663 4664 4665 4666 4667 4668 4669 4670 4671
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4672 4673 4674 4675 4676 4677 4678 4679 4680
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
4681
long __sched
4682 4683 4684 4685 4686 4687 4688
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4703
	unsigned long flags;
4704 4705
	int ret = 1;

4706
	spin_lock_irqsave(&x->wait.lock, flags);
4707 4708 4709 4710
	if (!x->done)
		ret = 0;
	else
		x->done--;
4711
	spin_unlock_irqrestore(&x->wait.lock, flags);
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4726
	unsigned long flags;
4727 4728
	int ret = 1;

4729
	spin_lock_irqsave(&x->wait.lock, flags);
4730 4731
	if (!x->done)
		ret = 0;
4732
	spin_unlock_irqrestore(&x->wait.lock, flags);
4733 4734 4735 4736
	return ret;
}
EXPORT_SYMBOL(completion_done);

4737 4738
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4739
{
I
Ingo Molnar 已提交
4740 4741 4742 4743
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4744

4745
	__set_current_state(state);
L
Linus Torvalds 已提交
4746

4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4761 4762 4763
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4764
long __sched
I
Ingo Molnar 已提交
4765
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4766
{
4767
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4768 4769 4770
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4771
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4772
{
4773
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4774 4775 4776
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4777
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4778
{
4779
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4780 4781 4782
}
EXPORT_SYMBOL(sleep_on_timeout);

4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4795
void rt_mutex_setprio(struct task_struct *p, int prio)
4796
{
4797
	int oldprio, on_rq, running;
4798
	struct rq *rq;
4799
	const struct sched_class *prev_class;
4800 4801 4802

	BUG_ON(prio < 0 || prio > MAX_PRIO);

4803
	rq = __task_rq_lock(p);
4804

4805
	trace_sched_pi_setprio(p, prio);
4806
	oldprio = p->prio;
4807
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
4808
	on_rq = p->on_rq;
4809
	running = task_current(rq, p);
4810
	if (on_rq)
4811
		dequeue_task(rq, p, 0);
4812 4813
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4814 4815 4816 4817 4818 4819

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4820 4821
	p->prio = prio;

4822 4823
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4824
	if (on_rq)
4825
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4826

P
Peter Zijlstra 已提交
4827
	check_class_changed(rq, p, prev_class, oldprio);
4828
	__task_rq_unlock(rq);
4829 4830 4831 4832
}

#endif

4833
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4834
{
I
Ingo Molnar 已提交
4835
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4836
	unsigned long flags;
4837
	struct rq *rq;
L
Linus Torvalds 已提交
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4850
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4851
	 */
4852
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4853 4854 4855
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
4856
	on_rq = p->on_rq;
4857
	if (on_rq)
4858
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4859 4860

	p->static_prio = NICE_TO_PRIO(nice);
4861
	set_load_weight(p);
4862 4863 4864
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4865

I
Ingo Molnar 已提交
4866
	if (on_rq) {
4867
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4868
		/*
4869 4870
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4871
		 */
4872
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4873 4874 4875
			resched_task(rq->curr);
	}
out_unlock:
4876
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
4877 4878 4879
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4880 4881 4882 4883 4884
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4885
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4886
{
4887 4888
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4889

4890
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4891 4892 4893
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4894 4895 4896 4897 4898 4899 4900 4901 4902
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4903
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4904
{
4905
	long nice, retval;
L
Linus Torvalds 已提交
4906 4907 4908 4909 4910 4911

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4912 4913
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4914 4915 4916
	if (increment > 40)
		increment = 40;

4917
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4918 4919 4920 4921 4922
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4923 4924 4925
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4944
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4945 4946 4947 4948 4949 4950 4951 4952
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4953
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4954 4955 4956
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4957
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4972
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4973 4974 4975 4976 4977 4978 4979 4980
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4981
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4982
{
4983
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4984 4985 4986
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4987 4988
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4989 4990 4991
{
	p->policy = policy;
	p->rt_priority = prio;
4992 4993 4994
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4995 4996 4997 4998
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4999
	set_load_weight(p);
L
Linus Torvalds 已提交
5000 5001
}

5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
5012 5013 5014 5015 5016
	if (cred->user->user_ns == pcred->user->user_ns)
		match = (cred->euid == pcred->euid ||
			 cred->euid == pcred->uid);
	else
		match = false;
5017 5018 5019 5020
	rcu_read_unlock();
	return match;
}

5021
static int __sched_setscheduler(struct task_struct *p, int policy,
5022
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5023
{
5024
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5025
	unsigned long flags;
5026
	const struct sched_class *prev_class;
5027
	struct rq *rq;
5028
	int reset_on_fork;
L
Linus Torvalds 已提交
5029

5030 5031
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5032 5033
recheck:
	/* double check policy once rq lock held */
5034 5035
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
5036
		policy = oldpolicy = p->policy;
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
5047 5048
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5049 5050
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5051 5052
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5053
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5054
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5055
		return -EINVAL;
5056
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5057 5058
		return -EINVAL;

5059 5060 5061
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5062
	if (user && !capable(CAP_SYS_NICE)) {
5063
		if (rt_policy(policy)) {
5064 5065
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
5076

I
Ingo Molnar 已提交
5077
		/*
5078 5079
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
5080
		 */
5081 5082 5083 5084
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
5085

5086
		/* can't change other user's priorities */
5087
		if (!check_same_owner(p))
5088
			return -EPERM;
5089 5090 5091 5092

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
5093
	}
L
Linus Torvalds 已提交
5094

5095
	if (user) {
5096
		retval = security_task_setscheduler(p);
5097 5098 5099 5100
		if (retval)
			return retval;
	}

5101 5102 5103
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
5104
	 *
L
Lucas De Marchi 已提交
5105
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
5106 5107
	 * runqueue lock must be held.
	 */
5108
	rq = task_rq_lock(p, &flags);
5109

5110 5111 5112 5113
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
5114
		task_rq_unlock(rq, p, &flags);
5115 5116 5117
		return -EINVAL;
	}

5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {

		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return 0;
	}

5129 5130 5131 5132 5133 5134 5135
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5136 5137
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
5138
			task_rq_unlock(rq, p, &flags);
5139 5140 5141 5142 5143
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
5144 5145 5146
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5147
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
5148 5149
		goto recheck;
	}
P
Peter Zijlstra 已提交
5150
	on_rq = p->on_rq;
5151
	running = task_current(rq, p);
5152
	if (on_rq)
5153
		deactivate_task(rq, p, 0);
5154 5155
	if (running)
		p->sched_class->put_prev_task(rq, p);
5156

5157 5158
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
5159
	oldprio = p->prio;
5160
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
5161
	__setscheduler(rq, p, policy, param->sched_priority);
5162

5163 5164
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
5165
	if (on_rq)
I
Ingo Molnar 已提交
5166
		activate_task(rq, p, 0);
5167

P
Peter Zijlstra 已提交
5168
	check_class_changed(rq, p, prev_class, oldprio);
5169
	task_rq_unlock(rq, p, &flags);
5170

5171 5172
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5173 5174
	return 0;
}
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
5185
		       const struct sched_param *param)
5186 5187 5188
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5189 5190
EXPORT_SYMBOL_GPL(sched_setscheduler);

5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5203
			       const struct sched_param *param)
5204 5205 5206 5207
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5208 5209
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5210 5211 5212
{
	struct sched_param lparam;
	struct task_struct *p;
5213
	int retval;
L
Linus Torvalds 已提交
5214 5215 5216 5217 5218

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5219 5220 5221

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5222
	p = find_process_by_pid(pid);
5223 5224 5225
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5226

L
Linus Torvalds 已提交
5227 5228 5229 5230 5231 5232 5233 5234 5235
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5236 5237
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5238
{
5239 5240 5241 5242
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5243 5244 5245 5246 5247 5248 5249 5250
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5251
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5252 5253 5254 5255 5256 5257 5258 5259
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5260
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5261
{
5262
	struct task_struct *p;
5263
	int retval;
L
Linus Torvalds 已提交
5264 5265

	if (pid < 0)
5266
		return -EINVAL;
L
Linus Torvalds 已提交
5267 5268

	retval = -ESRCH;
5269
	rcu_read_lock();
L
Linus Torvalds 已提交
5270 5271 5272 5273
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
5274 5275
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
5276
	}
5277
	rcu_read_unlock();
L
Linus Torvalds 已提交
5278 5279 5280 5281
	return retval;
}

/**
5282
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
5283 5284 5285
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5286
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5287 5288
{
	struct sched_param lp;
5289
	struct task_struct *p;
5290
	int retval;
L
Linus Torvalds 已提交
5291 5292

	if (!param || pid < 0)
5293
		return -EINVAL;
L
Linus Torvalds 已提交
5294

5295
	rcu_read_lock();
L
Linus Torvalds 已提交
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
5306
	rcu_read_unlock();
L
Linus Torvalds 已提交
5307 5308 5309 5310 5311 5312 5313 5314 5315

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
5316
	rcu_read_unlock();
L
Linus Torvalds 已提交
5317 5318 5319
	return retval;
}

5320
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5321
{
5322
	cpumask_var_t cpus_allowed, new_mask;
5323 5324
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5325

5326
	get_online_cpus();
5327
	rcu_read_lock();
L
Linus Torvalds 已提交
5328 5329 5330

	p = find_process_by_pid(pid);
	if (!p) {
5331
		rcu_read_unlock();
5332
		put_online_cpus();
L
Linus Torvalds 已提交
5333 5334 5335
		return -ESRCH;
	}

5336
	/* Prevent p going away */
L
Linus Torvalds 已提交
5337
	get_task_struct(p);
5338
	rcu_read_unlock();
L
Linus Torvalds 已提交
5339

5340 5341 5342 5343 5344 5345 5346 5347
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5348
	retval = -EPERM;
5349
	if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
L
Linus Torvalds 已提交
5350 5351
		goto out_unlock;

5352
	retval = security_task_setscheduler(p);
5353 5354 5355
	if (retval)
		goto out_unlock;

5356 5357
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
5358
again:
5359
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5360

P
Paul Menage 已提交
5361
	if (!retval) {
5362 5363
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5364 5365 5366 5367 5368
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5369
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5370 5371 5372
			goto again;
		}
	}
L
Linus Torvalds 已提交
5373
out_unlock:
5374 5375 5376 5377
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5378
	put_task_struct(p);
5379
	put_online_cpus();
L
Linus Torvalds 已提交
5380 5381 5382 5383
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5384
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5385
{
5386 5387 5388 5389 5390
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5391 5392 5393 5394 5395 5396 5397 5398 5399
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5400 5401
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5402
{
5403
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5404 5405
	int retval;

5406 5407
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5408

5409 5410 5411 5412 5413
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5414 5415
}

5416
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5417
{
5418
	struct task_struct *p;
5419
	unsigned long flags;
L
Linus Torvalds 已提交
5420 5421
	int retval;

5422
	get_online_cpus();
5423
	rcu_read_lock();
L
Linus Torvalds 已提交
5424 5425 5426 5427 5428 5429

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5430 5431 5432 5433
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5434
	raw_spin_lock_irqsave(&p->pi_lock, flags);
5435
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5436
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5437 5438

out_unlock:
5439
	rcu_read_unlock();
5440
	put_online_cpus();
L
Linus Torvalds 已提交
5441

5442
	return retval;
L
Linus Torvalds 已提交
5443 5444 5445 5446 5447 5448 5449 5450
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5451 5452
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5453 5454
{
	int ret;
5455
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5456

A
Anton Blanchard 已提交
5457
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5458 5459
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
5460 5461
		return -EINVAL;

5462 5463
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5464

5465 5466
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
5467
		size_t retlen = min_t(size_t, len, cpumask_size());
5468 5469

		if (copy_to_user(user_mask_ptr, mask, retlen))
5470 5471
			ret = -EFAULT;
		else
5472
			ret = retlen;
5473 5474
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5475

5476
	return ret;
L
Linus Torvalds 已提交
5477 5478 5479 5480 5481
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5482 5483
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5484
 */
5485
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5486
{
5487
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5488

5489
	schedstat_inc(rq, yld_count);
5490
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5491 5492 5493 5494 5495 5496

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5497
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5498
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
5499 5500 5501 5502 5503 5504 5505
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
5506 5507 5508 5509 5510
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
5511
static void __cond_resched(void)
L
Linus Torvalds 已提交
5512
{
5513 5514 5515
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5516 5517
}

5518
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5519
{
P
Peter Zijlstra 已提交
5520
	if (should_resched()) {
L
Linus Torvalds 已提交
5521 5522 5523 5524 5525
		__cond_resched();
		return 1;
	}
	return 0;
}
5526
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5527 5528

/*
5529
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5530 5531
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5532
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5533 5534 5535
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5536
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5537
{
P
Peter Zijlstra 已提交
5538
	int resched = should_resched();
J
Jan Kara 已提交
5539 5540
	int ret = 0;

5541 5542
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5543
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5544
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5545
		if (resched)
N
Nick Piggin 已提交
5546 5547 5548
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5549
		ret = 1;
L
Linus Torvalds 已提交
5550 5551
		spin_lock(lock);
	}
J
Jan Kara 已提交
5552
	return ret;
L
Linus Torvalds 已提交
5553
}
5554
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5555

5556
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5557 5558 5559
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5560
	if (should_resched()) {
5561
		local_bh_enable();
L
Linus Torvalds 已提交
5562 5563 5564 5565 5566 5567
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5568
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5569 5570 5571 5572

/**
 * yield - yield the current processor to other threads.
 *
5573
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5574 5575 5576 5577 5578 5579 5580 5581 5582
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

5583 5584 5585 5586
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
5587 5588
 * @p: target task
 * @preempt: whether task preemption is allowed or not
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5623
	if (yielded) {
5624
		schedstat_inc(rq, yld_count);
5625 5626 5627 5628 5629 5630 5631
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
5644
/*
I
Ingo Molnar 已提交
5645
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5646 5647 5648 5649
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5650
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5651

5652
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5653
	atomic_inc(&rq->nr_iowait);
5654
	blk_flush_plug(current);
5655
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5656
	schedule();
5657
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5658
	atomic_dec(&rq->nr_iowait);
5659
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5660 5661 5662 5663 5664
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5665
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5666 5667
	long ret;

5668
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5669
	atomic_inc(&rq->nr_iowait);
5670
	blk_flush_plug(current);
5671
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5672
	ret = schedule_timeout(timeout);
5673
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5674
	atomic_dec(&rq->nr_iowait);
5675
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5686
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5687 5688 5689 5690 5691 5692 5693 5694 5695
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5696
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5697
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5711
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5712 5713 5714 5715 5716 5717 5718 5719 5720
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5721
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5722
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5736
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5737
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5738
{
5739
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5740
	unsigned int time_slice;
5741 5742
	unsigned long flags;
	struct rq *rq;
5743
	int retval;
L
Linus Torvalds 已提交
5744 5745 5746
	struct timespec t;

	if (pid < 0)
5747
		return -EINVAL;
L
Linus Torvalds 已提交
5748 5749

	retval = -ESRCH;
5750
	rcu_read_lock();
L
Linus Torvalds 已提交
5751 5752 5753 5754 5755 5756 5757 5758
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5759 5760
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
5761
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
5762

5763
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5764
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5765 5766
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5767

L
Linus Torvalds 已提交
5768
out_unlock:
5769
	rcu_read_unlock();
L
Linus Torvalds 已提交
5770 5771 5772
	return retval;
}

5773
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5774

5775
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5776 5777
{
	unsigned long free = 0;
5778
	unsigned state;
L
Linus Torvalds 已提交
5779 5780

	state = p->state ? __ffs(p->state) + 1 : 0;
5781
	printk(KERN_INFO "%-15.15s %c", p->comm,
5782
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5783
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5784
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5785
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5786
	else
P
Peter Zijlstra 已提交
5787
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5788 5789
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5790
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5791
	else
P
Peter Zijlstra 已提交
5792
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5793 5794
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5795
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5796
#endif
P
Peter Zijlstra 已提交
5797
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5798 5799
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5800

5801
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5802 5803
}

I
Ingo Molnar 已提交
5804
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5805
{
5806
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5807

5808
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5809 5810
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5811
#else
P
Peter Zijlstra 已提交
5812 5813
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5814 5815 5816 5817 5818
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5819
		 * console might take a lot of time:
L
Linus Torvalds 已提交
5820 5821
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5822
		if (!state_filter || (p->state & state_filter))
5823
			sched_show_task(p);
L
Linus Torvalds 已提交
5824 5825
	} while_each_thread(g, p);

5826 5827
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5828 5829 5830
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5831
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5832 5833 5834
	/*
	 * Only show locks if all tasks are dumped:
	 */
5835
	if (!state_filter)
I
Ingo Molnar 已提交
5836
		debug_show_all_locks();
L
Linus Torvalds 已提交
5837 5838
}

I
Ingo Molnar 已提交
5839 5840
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5841
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5842 5843
}

5844 5845 5846 5847 5848 5849 5850 5851
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5852
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5853
{
5854
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5855 5856
	unsigned long flags;

5857
	raw_spin_lock_irqsave(&rq->lock, flags);
5858

I
Ingo Molnar 已提交
5859
	__sched_fork(idle);
5860
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5861 5862
	idle->se.exec_start = sched_clock();

5863
	do_set_cpus_allowed(idle, cpumask_of(cpu));
5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5875
	__set_task_cpu(idle, cpu);
5876
	rcu_read_unlock();
L
Linus Torvalds 已提交
5877 5878

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
5879 5880
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
5881
#endif
5882
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5883 5884

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5885
	task_thread_info(idle)->preempt_count = 0;
J
Jonathan Corbet 已提交
5886

I
Ingo Molnar 已提交
5887 5888 5889 5890
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5891
	ftrace_graph_init_idle_task(idle, cpu);
L
Linus Torvalds 已提交
5892 5893 5894 5895 5896 5897 5898
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5899
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5900
 */
5901
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5902

I
Ingo Molnar 已提交
5903 5904 5905 5906 5907 5908 5909 5910 5911
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5912
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5913
{
5914
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5929

5930 5931
	return factor;
}
I
Ingo Molnar 已提交
5932

5933 5934 5935
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5936

5937 5938 5939 5940 5941 5942 5943
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}
5944

5945 5946 5947
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5948 5949
}

L
Linus Torvalds 已提交
5950
#ifdef CONFIG_SMP
5951 5952 5953 5954 5955 5956 5957 5958 5959 5960
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
	else {
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
	}
}

L
Linus Torvalds 已提交
5961 5962 5963
/*
 * This is how migration works:
 *
5964 5965 5966 5967 5968 5969
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5970
 *    it and puts it into the right queue.
5971 5972
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5973 5974 5975 5976 5977 5978 5979 5980
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5981
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5982 5983
 * call is not atomic; no spinlocks may be held.
 */
5984
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5985 5986
{
	unsigned long flags;
5987
	struct rq *rq;
5988
	unsigned int dest_cpu;
5989
	int ret = 0;
L
Linus Torvalds 已提交
5990 5991

	rq = task_rq_lock(p, &flags);
5992

5993 5994 5995
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

5996
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5997 5998 5999 6000
		ret = -EINVAL;
		goto out;
	}

6001
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6002 6003 6004 6005
		ret = -EINVAL;
		goto out;
	}

6006
	do_set_cpus_allowed(p, new_mask);
6007

L
Linus Torvalds 已提交
6008
	/* Can the task run on the task's current CPU? If so, we're done */
6009
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6010 6011
		goto out;

6012
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6013
	if (p->on_rq) {
6014
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
6015
		/* Need help from migration thread: drop lock and wait. */
6016
		task_rq_unlock(rq, p, &flags);
6017
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
6018 6019 6020 6021
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
6022
	task_rq_unlock(rq, p, &flags);
6023

L
Linus Torvalds 已提交
6024 6025
	return ret;
}
6026
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6027 6028

/*
I
Ingo Molnar 已提交
6029
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6030 6031 6032 6033 6034 6035
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6036 6037
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6038
 */
6039
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6040
{
6041
	struct rq *rq_dest, *rq_src;
6042
	int ret = 0;
L
Linus Torvalds 已提交
6043

6044
	if (unlikely(!cpu_active(dest_cpu)))
6045
		return ret;
L
Linus Torvalds 已提交
6046 6047 6048 6049

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

6050
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
6051 6052 6053
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6054
		goto done;
L
Linus Torvalds 已提交
6055
	/* Affinity changed (again). */
6056
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6057
		goto fail;
L
Linus Torvalds 已提交
6058

6059 6060 6061 6062
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
6063
	if (p->on_rq) {
6064
		deactivate_task(rq_src, p, 0);
6065
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6066
		activate_task(rq_dest, p, 0);
6067
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6068
	}
L
Linus Torvalds 已提交
6069
done:
6070
	ret = 1;
L
Linus Torvalds 已提交
6071
fail:
L
Linus Torvalds 已提交
6072
	double_rq_unlock(rq_src, rq_dest);
6073
	raw_spin_unlock(&p->pi_lock);
6074
	return ret;
L
Linus Torvalds 已提交
6075 6076 6077
}

/*
6078 6079 6080
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
6081
 */
6082
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
6083
{
6084
	struct migration_arg *arg = data;
6085

6086 6087 6088 6089
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
6090
	local_irq_disable();
6091
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6092
	local_irq_enable();
L
Linus Torvalds 已提交
6093
	return 0;
6094 6095
}

L
Linus Torvalds 已提交
6096
#ifdef CONFIG_HOTPLUG_CPU
6097

6098
/*
6099 6100
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
6101
 */
6102
void idle_task_exit(void)
L
Linus Torvalds 已提交
6103
{
6104
	struct mm_struct *mm = current->active_mm;
6105

6106
	BUG_ON(cpu_online(smp_processor_id()));
6107

6108 6109 6110
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
6111 6112 6113 6114 6115 6116 6117 6118 6119
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6120
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6121
{
6122
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
6123 6124 6125 6126 6127

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
6128
/*
6129
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
6130
 */
6131
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
6132
{
6133 6134
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
6135 6136
}

6137
/*
6138 6139 6140 6141 6142 6143
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
6144
 */
6145
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
6146
{
6147
	struct rq *rq = cpu_rq(dead_cpu);
6148 6149
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
6150 6151

	/*
6152 6153 6154 6155 6156 6157 6158
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
6159
	 */
6160
	rq->stop = NULL;
6161

I
Ingo Molnar 已提交
6162
	for ( ; ; ) {
6163 6164 6165 6166 6167
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
6168
			break;
6169

6170
		next = pick_next_task(rq);
6171
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
6172
		next->sched_class->put_prev_task(rq, next);
6173

6174 6175 6176 6177 6178 6179 6180
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
6181
	}
6182

6183
	rq->stop = stop;
6184
}
6185

L
Linus Torvalds 已提交
6186 6187
#endif /* CONFIG_HOTPLUG_CPU */

6188 6189 6190
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6191 6192
	{
		.procname	= "sched_domain",
6193
		.mode		= 0555,
6194
	},
6195
	{}
6196 6197 6198
};

static struct ctl_table sd_ctl_root[] = {
6199 6200
	{
		.procname	= "kernel",
6201
		.mode		= 0555,
6202 6203
		.child		= sd_ctl_dir,
	},
6204
	{}
6205 6206 6207 6208 6209
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6210
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6211 6212 6213 6214

	return entry;
}

6215 6216
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6217
	struct ctl_table *entry;
6218

6219 6220 6221
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6222
	 * will always be set. In the lowest directory the names are
6223 6224 6225
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6226 6227
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6228 6229 6230
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6231 6232 6233 6234 6235

	kfree(*tablep);
	*tablep = NULL;
}

6236
static void
6237
set_table_entry(struct ctl_table *entry,
6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6251
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6252

6253 6254 6255
	if (table == NULL)
		return NULL;

6256
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6257
		sizeof(long), 0644, proc_doulongvec_minmax);
6258
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6259
		sizeof(long), 0644, proc_doulongvec_minmax);
6260
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6261
		sizeof(int), 0644, proc_dointvec_minmax);
6262
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6263
		sizeof(int), 0644, proc_dointvec_minmax);
6264
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6265
		sizeof(int), 0644, proc_dointvec_minmax);
6266
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6267
		sizeof(int), 0644, proc_dointvec_minmax);
6268
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6269
		sizeof(int), 0644, proc_dointvec_minmax);
6270
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6271
		sizeof(int), 0644, proc_dointvec_minmax);
6272
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6273
		sizeof(int), 0644, proc_dointvec_minmax);
6274
	set_table_entry(&table[9], "cache_nice_tries",
6275 6276
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6277
	set_table_entry(&table[10], "flags", &sd->flags,
6278
		sizeof(int), 0644, proc_dointvec_minmax);
6279 6280 6281
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6282 6283 6284 6285

	return table;
}

6286
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6287 6288 6289 6290 6291 6292 6293 6294 6295
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6296 6297
	if (table == NULL)
		return NULL;
6298 6299 6300 6301 6302

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6303
		entry->mode = 0555;
6304 6305 6306 6307 6308 6309 6310 6311
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6312
static void register_sched_domain_sysctl(void)
6313
{
6314
	int i, cpu_num = num_possible_cpus();
6315 6316 6317
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6318 6319 6320
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6321 6322 6323
	if (entry == NULL)
		return;

6324
	for_each_possible_cpu(i) {
6325 6326
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6327
		entry->mode = 0555;
6328
		entry->child = sd_alloc_ctl_cpu_table(i);
6329
		entry++;
6330
	}
6331 6332

	WARN_ON(sd_sysctl_header);
6333 6334
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6335

6336
/* may be called multiple times per register */
6337 6338
static void unregister_sched_domain_sysctl(void)
{
6339 6340
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6341
	sd_sysctl_header = NULL;
6342 6343
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6344
}
6345
#else
6346 6347 6348 6349
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6350 6351 6352 6353
{
}
#endif

6354 6355 6356 6357 6358
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6359
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6379
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6380 6381 6382 6383
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6384 6385 6386 6387
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6388 6389
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6390
{
6391
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6392
	unsigned long flags;
6393
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6394

6395
	switch (action & ~CPU_TASKS_FROZEN) {
6396

L
Linus Torvalds 已提交
6397
	case CPU_UP_PREPARE:
6398
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
6399
		break;
6400

L
Linus Torvalds 已提交
6401
	case CPU_ONLINE:
6402
		/* Update our root-domain */
6403
		raw_spin_lock_irqsave(&rq->lock, flags);
6404
		if (rq->rd) {
6405
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6406 6407

			set_rq_online(rq);
6408
		}
6409
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6410
		break;
6411

L
Linus Torvalds 已提交
6412
#ifdef CONFIG_HOTPLUG_CPU
6413
	case CPU_DYING:
6414
		sched_ttwu_pending();
G
Gregory Haskins 已提交
6415
		/* Update our root-domain */
6416
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6417
		if (rq->rd) {
6418
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6419
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6420
		}
6421 6422
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
6423
		raw_spin_unlock_irqrestore(&rq->lock, flags);
6424 6425 6426

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
6427
		break;
L
Linus Torvalds 已提交
6428 6429
#endif
	}
6430 6431 6432

	update_max_interval();

L
Linus Torvalds 已提交
6433 6434 6435
	return NOTIFY_OK;
}

6436 6437 6438
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
6439
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
6440
 */
6441
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6442
	.notifier_call = migration_call,
6443
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
6444 6445
};

6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

6471
static int __init migration_init(void)
L
Linus Torvalds 已提交
6472 6473
{
	void *cpu = (void *)(long)smp_processor_id();
6474
	int err;
6475

6476
	/* Initialize migration for the boot CPU */
6477 6478
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6479 6480
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6481

6482 6483 6484 6485
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

6486
	return 0;
L
Linus Torvalds 已提交
6487
}
6488
early_initcall(migration_init);
L
Linus Torvalds 已提交
6489 6490 6491
#endif

#ifdef CONFIG_SMP
6492

6493 6494
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

6495
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6496

6497 6498 6499 6500 6501 6502 6503 6504 6505 6506
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6507
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6508
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6509
{
I
Ingo Molnar 已提交
6510
	struct sched_group *group = sd->groups;
6511
	char str[256];
L
Linus Torvalds 已提交
6512

R
Rusty Russell 已提交
6513
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6514
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6515 6516 6517 6518

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6519
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6520
		if (sd->parent)
P
Peter Zijlstra 已提交
6521 6522
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6523
		return -1;
N
Nick Piggin 已提交
6524 6525
	}

P
Peter Zijlstra 已提交
6526
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6527

6528
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6529 6530
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6531
	}
6532
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6533 6534
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6535
	}
L
Linus Torvalds 已提交
6536

I
Ingo Molnar 已提交
6537
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6538
	do {
I
Ingo Molnar 已提交
6539
		if (!group) {
P
Peter Zijlstra 已提交
6540 6541
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6542 6543 6544
			break;
		}

6545
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6546 6547 6548
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6549 6550
			break;
		}
L
Linus Torvalds 已提交
6551

6552
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6553 6554
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6555 6556
			break;
		}
L
Linus Torvalds 已提交
6557

6558
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6559 6560
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6561 6562
			break;
		}
L
Linus Torvalds 已提交
6563

6564
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6565

R
Rusty Russell 已提交
6566
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6567

P
Peter Zijlstra 已提交
6568
		printk(KERN_CONT " %s", str);
6569
		if (group->cpu_power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
6570 6571
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6572
		}
L
Linus Torvalds 已提交
6573

I
Ingo Molnar 已提交
6574 6575
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6576
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6577

6578
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6579
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6580

6581 6582
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6583 6584
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6585 6586
	return 0;
}
L
Linus Torvalds 已提交
6587

I
Ingo Molnar 已提交
6588 6589 6590
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
6591

6592 6593 6594
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6595 6596 6597 6598
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6599

I
Ingo Molnar 已提交
6600 6601 6602
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
6603
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
6604
			break;
L
Linus Torvalds 已提交
6605 6606
		level++;
		sd = sd->parent;
6607
		if (!sd)
I
Ingo Molnar 已提交
6608 6609
			break;
	}
L
Linus Torvalds 已提交
6610
}
6611
#else /* !CONFIG_SCHED_DEBUG */
6612
# define sched_domain_debug(sd, cpu) do { } while (0)
6613
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6614

6615
static int sd_degenerate(struct sched_domain *sd)
6616
{
6617
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6618 6619 6620 6621 6622 6623
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6624 6625 6626
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6627 6628 6629 6630 6631
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6632
	if (sd->flags & (SD_WAKE_AFFINE))
6633 6634 6635 6636 6637
		return 0;

	return 1;
}

6638 6639
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6640 6641 6642 6643 6644 6645
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6646
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6647 6648 6649 6650 6651 6652 6653
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6654 6655 6656
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6657 6658
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6659 6660 6661 6662 6663 6664 6665
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6666
static void free_rootdomain(struct rcu_head *rcu)
6667
{
6668
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6669

6670
	cpupri_cleanup(&rd->cpupri);
6671 6672 6673 6674 6675 6676
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6677 6678
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6679
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6680 6681
	unsigned long flags;

6682
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6683 6684

	if (rq->rd) {
I
Ingo Molnar 已提交
6685
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6686

6687
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6688
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6689

6690
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6691

I
Ingo Molnar 已提交
6692 6693 6694 6695 6696 6697 6698
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6699 6700 6701 6702 6703
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6704
	cpumask_set_cpu(rq->cpu, rd->span);
6705
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6706
		set_rq_online(rq);
G
Gregory Haskins 已提交
6707

6708
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6709 6710

	if (old_rd)
6711
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
6712 6713
}

6714
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6715 6716 6717
{
	memset(rd, 0, sizeof(*rd));

6718
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6719
		goto out;
6720
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6721
		goto free_span;
6722
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6723
		goto free_online;
6724

6725
	if (cpupri_init(&rd->cpupri) != 0)
6726
		goto free_rto_mask;
6727
	return 0;
6728

6729 6730
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6731 6732 6733 6734
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6735
out:
6736
	return -ENOMEM;
G
Gregory Haskins 已提交
6737 6738 6739 6740
}

static void init_defrootdomain(void)
{
6741
	init_rootdomain(&def_root_domain);
6742

G
Gregory Haskins 已提交
6743 6744 6745
	atomic_set(&def_root_domain.refcount, 1);
}

6746
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6747 6748 6749 6750 6751 6752 6753
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6754
	if (init_rootdomain(rd) != 0) {
6755 6756 6757
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6758 6759 6760 6761

	return rd;
}

6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
	if (atomic_dec_and_test(&sd->groups->ref))
		kfree(sd->groups);
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

L
Linus Torvalds 已提交
6781
/*
I
Ingo Molnar 已提交
6782
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6783 6784
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6785 6786
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6787
{
6788
	struct rq *rq = cpu_rq(cpu);
6789 6790 6791
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6792
	for (tmp = sd; tmp; ) {
6793 6794 6795
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6796

6797
		if (sd_parent_degenerate(tmp, parent)) {
6798
			tmp->parent = parent->parent;
6799 6800
			if (parent->parent)
				parent->parent->child = tmp;
6801
			destroy_sched_domain(parent, cpu);
6802 6803
		} else
			tmp = tmp->parent;
6804 6805
	}

6806
	if (sd && sd_degenerate(sd)) {
6807
		tmp = sd;
6808
		sd = sd->parent;
6809
		destroy_sched_domain(tmp, cpu);
6810 6811 6812
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6813

6814
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
6815

G
Gregory Haskins 已提交
6816
	rq_attach_root(rq, rd);
6817
	tmp = rq->sd;
N
Nick Piggin 已提交
6818
	rcu_assign_pointer(rq->sd, sd);
6819
	destroy_sched_domains(tmp, cpu);
L
Linus Torvalds 已提交
6820 6821 6822
}

/* cpus with isolated domains */
6823
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6824 6825 6826 6827

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6828
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6829
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6830 6831 6832
	return 1;
}

I
Ingo Molnar 已提交
6833
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6834

6835
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6836

6837
#ifdef CONFIG_NUMA
6838

6839 6840 6841 6842 6843
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6844
 * Find the next node to include in a given scheduling domain. Simply
6845 6846 6847 6848
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6849
static int find_next_best_node(int node, nodemask_t *used_nodes)
6850
{
6851
	int i, n, val, min_val, best_node = -1;
6852 6853 6854

	min_val = INT_MAX;

6855
	for (i = 0; i < nr_node_ids; i++) {
6856
		/* Start at @node */
6857
		n = (node + i) % nr_node_ids;
6858 6859 6860 6861 6862

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6863
		if (node_isset(n, *used_nodes))
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6875 6876
	if (best_node != -1)
		node_set(best_node, *used_nodes);
6877 6878 6879 6880 6881 6882
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6883
 * @span: resulting cpumask
6884
 *
I
Ingo Molnar 已提交
6885
 * Given a node, construct a good cpumask for its sched_domain to span. It
6886 6887 6888
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6889
static void sched_domain_node_span(int node, struct cpumask *span)
6890
{
6891
	nodemask_t used_nodes;
6892
	int i;
6893

6894
	cpumask_clear(span);
6895
	nodes_clear(used_nodes);
6896

6897
	cpumask_or(span, span, cpumask_of_node(node));
6898
	node_set(node, used_nodes);
6899 6900

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6901
		int next_node = find_next_best_node(node, &used_nodes);
6902 6903
		if (next_node < 0)
			break;
6904
		cpumask_or(span, span, cpumask_of_node(next_node));
6905 6906
	}
}
6907 6908 6909 6910 6911 6912 6913 6914 6915

static const struct cpumask *cpu_node_mask(int cpu)
{
	lockdep_assert_held(&sched_domains_mutex);

	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);

	return sched_domains_tmpmask;
}
6916 6917 6918 6919 6920

static const struct cpumask *cpu_allnodes_mask(int cpu)
{
	return cpu_possible_mask;
}
6921
#endif /* CONFIG_NUMA */
6922

6923 6924 6925 6926 6927
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

6928
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6929

6930 6931 6932 6933 6934
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
};

6935
struct s_data {
6936
	struct sched_domain ** __percpu sd;
6937 6938 6939
	struct root_domain	*rd;
};

6940 6941
enum s_alloc {
	sa_rootdomain,
6942
	sa_sd,
6943
	sa_sd_storage,
6944 6945 6946
	sa_none,
};

6947 6948 6949
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6950 6951 6952
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

struct sched_domain_topology_level {
6953 6954
	sched_domain_init_f init;
	sched_domain_mask_f mask;
6955
	struct sd_data      data;
6956 6957
};

6958
/*
6959
 * Assumes the sched_domain tree is fully constructed
6960
 */
6961
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6962
{
6963 6964
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6965

6966 6967
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6968

6969
	if (sg)
6970 6971 6972
		*sg = *per_cpu_ptr(sdd->sg, cpu);

	return cpu;
6973 6974
}

6975
/*
6976 6977 6978 6979 6980 6981 6982 6983
 * build_sched_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
 *
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
6984
 */
6985
static void
6986
build_sched_groups(struct sched_domain *sd)
L
Linus Torvalds 已提交
6987
{
6988 6989 6990
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6991
	struct cpumask *covered;
6992
	int i;
6993

6994 6995 6996
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6997
	cpumask_clear(covered);
6998

6999 7000 7001 7002
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
7003

7004 7005
		if (cpumask_test_cpu(i, covered))
			continue;
7006

7007 7008
		cpumask_clear(sched_group_cpus(sg));
		sg->cpu_power = 0;
7009

7010 7011 7012
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
7013

7014 7015 7016
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
7017

7018 7019 7020 7021 7022 7023 7024
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
7025
}
7026

7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	WARN_ON(!sd || !sd->groups);

7041
	if (cpu != group_first_cpu(sd->groups))
7042 7043
		return;

7044 7045
	sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));

7046
	update_group_power(sd, cpu);
7047 7048
}

7049 7050 7051 7052 7053
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7054 7055 7056 7057 7058 7059
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7060 7061 7062 7063 7064 7065 7066 7067 7068
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
7082 7083 7084
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
7085

7086
static int default_relax_domain_level = -1;
7087
int sched_domain_level_max;
7088 7089 7090

static int __init setup_relax_domain_level(char *str)
{
7091 7092 7093
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
7094
	if (val < sched_domain_level_max)
7095 7096
		default_relax_domain_level = val;

7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
7115
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7116 7117
	} else {
		/* turn on idle balance on this domain */
7118
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7119 7120 7121
	}
}

7122 7123 7124
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

7125 7126 7127 7128 7129
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
7130 7131
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
7132 7133
	case sa_sd:
		free_percpu(d->sd); /* fall through */
7134
	case sa_sd_storage:
7135
		__sdt_free(cpu_map); /* fall through */
7136 7137 7138 7139
	case sa_none:
		break;
	}
}
7140

7141 7142 7143
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
7144 7145
	memset(d, 0, sizeof(*d));

7146 7147
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
7148 7149 7150
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
7151
	d->rd = alloc_rootdomain();
7152
	if (!d->rd)
7153
		return sa_sd;
7154 7155
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
7156

7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;
	struct sched_group *sg = sd->groups;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

	if (cpu == cpumask_first(sched_group_cpus(sg))) {
		WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
	}
}

7176 7177
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
7178
{
7179
	return topology_thread_cpumask(cpu);
7180
}
7181
#endif
7182

7183 7184 7185
/*
 * Topology list, bottom-up.
 */
7186
static struct sched_domain_topology_level default_topology[] = {
7187 7188
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
7189
#endif
7190
#ifdef CONFIG_SCHED_MC
7191
	{ sd_init_MC, cpu_coregroup_mask, },
7192
#endif
7193 7194 7195 7196 7197 7198 7199
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
#ifdef CONFIG_NUMA
	{ sd_init_NODE, cpu_node_mask, },
	{ sd_init_ALLNODES, cpu_allnodes_mask, },
L
Linus Torvalds 已提交
7200
#endif
7201 7202 7203 7204 7205
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sg, j) = sg;
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
			kfree(*per_cpu_ptr(sdd->sd, j));
			kfree(*per_cpu_ptr(sdd->sg, j));
		}
		free_percpu(sdd->sd);
		free_percpu(sdd->sg);
	}
}

7262 7263
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
7264
		struct sched_domain_attr *attr, struct sched_domain *child,
7265 7266
		int cpu)
{
7267
	struct sched_domain *sd = tl->init(tl, cpu);
7268
	if (!sd)
7269
		return child;
7270 7271 7272

	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7273 7274 7275
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
7276
		child->parent = sd;
7277
	}
7278
	sd->child = child;
7279 7280 7281 7282

	return sd;
}

7283 7284 7285 7286
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
7287 7288
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
7289 7290
{
	enum s_alloc alloc_state = sa_none;
7291
	struct sched_domain *sd;
7292
	struct s_data d;
7293
	int i, ret = -ENOMEM;
7294

7295 7296 7297
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
7298

7299
	/* Set up domains for cpus specified by the cpu_map. */
7300
	for_each_cpu(i, cpu_map) {
7301 7302
		struct sched_domain_topology_level *tl;

7303
		sd = NULL;
7304 7305
		for (tl = sched_domain_topology; tl->init; tl++)
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7306

7307 7308 7309
		while (sd->child)
			sd = sd->child;

7310
		*per_cpu_ptr(d.sd, i) = sd;
7311 7312 7313 7314 7315 7316 7317 7318
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
			get_group(i, sd->private, &sd->groups);
			atomic_inc(&sd->groups->ref);
7319

7320 7321 7322
			if (i != cpumask_first(sched_domain_span(sd)))
				continue;

7323
			build_sched_groups(sd);
7324
		}
7325
	}
7326

L
Linus Torvalds 已提交
7327
	/* Calculate CPU power for physical packages and nodes */
7328 7329 7330
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
7331

7332 7333
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
7334
			init_sched_groups_power(i, sd);
7335
		}
7336
	}
7337

L
Linus Torvalds 已提交
7338
	/* Attach the domains */
7339
	rcu_read_lock();
7340
	for_each_cpu(i, cpu_map) {
7341
		sd = *per_cpu_ptr(d.sd, i);
7342
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7343
	}
7344
	rcu_read_unlock();
7345

7346
	ret = 0;
7347
error:
7348
	__free_domain_allocs(&d, alloc_state, cpu_map);
7349
	return ret;
L
Linus Torvalds 已提交
7350
}
P
Paul Jackson 已提交
7351

7352
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7353
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7354 7355
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7356 7357 7358

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7359 7360
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7361
 */
7362
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7363

7364 7365 7366 7367 7368 7369
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7370
{
7371
	return 0;
7372 7373
}

7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7399
/*
I
Ingo Molnar 已提交
7400
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7401 7402
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7403
 */
7404
static int init_sched_domains(const struct cpumask *cpu_map)
7405
{
7406 7407
	int err;

7408
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7409
	ndoms_cur = 1;
7410
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7411
	if (!doms_cur)
7412 7413
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7414
	dattr_cur = NULL;
7415
	err = build_sched_domains(doms_cur[0], NULL);
7416
	register_sched_domain_sysctl();
7417 7418

	return err;
7419 7420 7421 7422 7423 7424
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7425
static void detach_destroy_domains(const struct cpumask *cpu_map)
7426 7427 7428
{
	int i;

7429
	rcu_read_lock();
7430
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7431
		cpu_attach_domain(NULL, &def_root_domain, i);
7432
	rcu_read_unlock();
7433 7434
}

7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7451 7452
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7453
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7454 7455 7456
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7457
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7458 7459 7460
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7461 7462 7463
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7464 7465 7466 7467 7468 7469
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7470
 *
7471
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7472 7473
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7474
 *
P
Paul Jackson 已提交
7475 7476
 * Call with hotplug lock held
 */
7477
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7478
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7479
{
7480
	int i, j, n;
7481
	int new_topology;
P
Paul Jackson 已提交
7482

7483
	mutex_lock(&sched_domains_mutex);
7484

7485 7486 7487
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7488 7489 7490
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7491
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7492 7493 7494

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7495
		for (j = 0; j < n && !new_topology; j++) {
7496
			if (cpumask_equal(doms_cur[i], doms_new[j])
7497
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7498 7499 7500
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7501
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7502 7503 7504 7505
match1:
		;
	}

7506 7507
	if (doms_new == NULL) {
		ndoms_cur = 0;
7508
		doms_new = &fallback_doms;
7509
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7510
		WARN_ON_ONCE(dattr_new);
7511 7512
	}

P
Paul Jackson 已提交
7513 7514
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7515
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7516
			if (cpumask_equal(doms_new[i], doms_cur[j])
7517
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7518 7519 7520
				goto match2;
		}
		/* no match - add a new doms_new */
7521
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7522 7523 7524 7525 7526
match2:
		;
	}

	/* Remember the new sched domains */
7527 7528
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7529
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7530
	doms_cur = doms_new;
7531
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7532
	ndoms_cur = ndoms_new;
7533 7534

	register_sched_domain_sysctl();
7535

7536
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7537 7538
}

7539
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7540
static void reinit_sched_domains(void)
7541
{
7542
	get_online_cpus();
7543 7544 7545 7546

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7547
	rebuild_sched_domains();
7548
	put_online_cpus();
7549 7550 7551 7552
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7553
	unsigned int level = 0;
7554

7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7566 7567 7568
		return -EINVAL;

	if (smt)
7569
		sched_smt_power_savings = level;
7570
	else
7571
		sched_mc_power_savings = level;
7572

7573
	reinit_sched_domains();
7574

7575
	return count;
7576 7577 7578
}

#ifdef CONFIG_SCHED_MC
7579
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7580
					   struct sysdev_class_attribute *attr,
7581
					   char *page)
7582 7583 7584
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7585
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7586
					    struct sysdev_class_attribute *attr,
7587
					    const char *buf, size_t count)
7588 7589 7590
{
	return sched_power_savings_store(buf, count, 0);
}
7591 7592 7593
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7594 7595 7596
#endif

#ifdef CONFIG_SCHED_SMT
7597
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7598
					    struct sysdev_class_attribute *attr,
7599
					    char *page)
7600 7601 7602
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7603
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7604
					     struct sysdev_class_attribute *attr,
7605
					     const char *buf, size_t count)
7606 7607 7608
{
	return sched_power_savings_store(buf, count, 1);
}
7609 7610
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7611 7612 7613
		   sched_smt_power_savings_store);
#endif

7614
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7630
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7631

L
Linus Torvalds 已提交
7632
/*
7633 7634 7635
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7636
 */
7637 7638
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7639
{
7640
	switch (action & ~CPU_TASKS_FROZEN) {
7641
	case CPU_ONLINE:
7642
	case CPU_DOWN_FAILED:
7643
		cpuset_update_active_cpus();
7644
		return NOTIFY_OK;
7645 7646 7647 7648
	default:
		return NOTIFY_DONE;
	}
}
7649

7650 7651
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7652 7653 7654 7655 7656
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
7657 7658 7659 7660 7661 7662 7663
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7664
{
P
Peter Zijlstra 已提交
7665 7666
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7667 7668
	switch (action) {
	case CPU_DOWN_PREPARE:
7669
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7670
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7671 7672 7673
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7674
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7675
	case CPU_ONLINE:
7676
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7677
		enable_runtime(cpu_rq(cpu));
7678 7679
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7680 7681 7682 7683 7684 7685 7686
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7687 7688 7689
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7690
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7691

7692
	get_online_cpus();
7693
	mutex_lock(&sched_domains_mutex);
7694
	init_sched_domains(cpu_active_mask);
7695 7696 7697
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7698
	mutex_unlock(&sched_domains_mutex);
7699
	put_online_cpus();
7700

7701 7702
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7703 7704 7705 7706

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7707
	init_hrtick();
7708 7709

	/* Move init over to a non-isolated CPU */
7710
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7711
		BUG();
I
Ingo Molnar 已提交
7712
	sched_init_granularity();
7713
	free_cpumask_var(non_isolated_cpus);
7714

7715
	init_sched_rt_class();
L
Linus Torvalds 已提交
7716 7717 7718 7719
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7720
	sched_init_granularity();
L
Linus Torvalds 已提交
7721 7722 7723
}
#endif /* CONFIG_SMP */

7724 7725
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7726 7727 7728 7729 7730 7731 7732
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7733
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7734 7735
{
	cfs_rq->tasks_timeline = RB_ROOT;
7736
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7737 7738
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
7739
	/* allow initial update_cfs_load() to truncate */
7740
#ifdef CONFIG_SMP
7741
	cfs_rq->load_stamp = 1;
7742
#endif
I
Ingo Molnar 已提交
7743
#endif
P
Peter Zijlstra 已提交
7744
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7745 7746
}

P
Peter Zijlstra 已提交
7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7760
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7761
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7762
#ifdef CONFIG_SMP
7763
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7764 7765
#endif
#endif
P
Peter Zijlstra 已提交
7766 7767 7768
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7769
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7770 7771 7772 7773
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7774
	rt_rq->rt_runtime = 0;
7775
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7776

7777
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7778
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7779 7780
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7781 7782
}

P
Peter Zijlstra 已提交
7783
#ifdef CONFIG_FAIR_GROUP_SCHED
7784
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7785
				struct sched_entity *se, int cpu,
7786
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7787
{
7788
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7789 7790 7791 7792 7793
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;

	tg->se[cpu] = se;
7794
	/* se could be NULL for root_task_group */
D
Dhaval Giani 已提交
7795 7796 7797
	if (!se)
		return;

7798 7799 7800 7801 7802
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7803
	se->my_q = cfs_rq;
7804
	update_load_set(&se->load, 0);
7805
	se->parent = parent;
P
Peter Zijlstra 已提交
7806
}
7807
#endif
P
Peter Zijlstra 已提交
7808

7809
#ifdef CONFIG_RT_GROUP_SCHED
7810
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7811
		struct sched_rt_entity *rt_se, int cpu,
7812
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7813
{
7814 7815
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7816 7817 7818
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7819
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7820 7821

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7822 7823 7824
	if (!rt_se)
		return;

7825 7826 7827 7828 7829
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7830
	rt_se->my_q = rt_rq;
7831
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7832 7833 7834 7835
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7836 7837
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7838
	int i, j;
7839 7840 7841 7842 7843 7844 7845
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7846
#endif
7847
#ifdef CONFIG_CPUMASK_OFFSTACK
7848
	alloc_size += num_possible_cpus() * cpumask_size();
7849 7850
#endif
	if (alloc_size) {
7851
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7852 7853

#ifdef CONFIG_FAIR_GROUP_SCHED
7854
		root_task_group.se = (struct sched_entity **)ptr;
7855 7856
		ptr += nr_cpu_ids * sizeof(void **);

7857
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7858
		ptr += nr_cpu_ids * sizeof(void **);
7859

7860
#endif /* CONFIG_FAIR_GROUP_SCHED */
7861
#ifdef CONFIG_RT_GROUP_SCHED
7862
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7863 7864
		ptr += nr_cpu_ids * sizeof(void **);

7865
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7866 7867
		ptr += nr_cpu_ids * sizeof(void **);

7868
#endif /* CONFIG_RT_GROUP_SCHED */
7869 7870 7871 7872 7873 7874
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7875
	}
I
Ingo Molnar 已提交
7876

G
Gregory Haskins 已提交
7877 7878 7879 7880
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7881 7882 7883 7884
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
7885
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7886
			global_rt_period(), global_rt_runtime());
7887
#endif /* CONFIG_RT_GROUP_SCHED */
7888

D
Dhaval Giani 已提交
7889
#ifdef CONFIG_CGROUP_SCHED
7890 7891
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7892
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
7893
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7894

7895
	for_each_possible_cpu(i) {
7896
		struct rq *rq;
L
Linus Torvalds 已提交
7897 7898

		rq = cpu_rq(i);
7899
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7900
		rq->nr_running = 0;
7901 7902
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7903
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7904
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7905
#ifdef CONFIG_FAIR_GROUP_SCHED
7906
		root_task_group.shares = root_task_group_load;
P
Peter Zijlstra 已提交
7907
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7908
		/*
7909
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7910 7911 7912 7913
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7914
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7915 7916 7917
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7918
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7919 7920 7921
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7922
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7923
		 *
7924 7925
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7926
		 */
7927
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7928 7929 7930
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7931
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7932
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7933
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7934
#endif
L
Linus Torvalds 已提交
7935

I
Ingo Molnar 已提交
7936 7937
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7938 7939 7940

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7941
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7942
		rq->sd = NULL;
G
Gregory Haskins 已提交
7943
		rq->rd = NULL;
7944
		rq->cpu_power = SCHED_POWER_SCALE;
7945
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7946
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7947
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7948
		rq->push_cpu = 0;
7949
		rq->cpu = i;
7950
		rq->online = 0;
7951 7952
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7953
		rq_attach_root(rq, &def_root_domain);
7954 7955 7956 7957
#ifdef CONFIG_NO_HZ
		rq->nohz_balance_kick = 0;
		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
#endif
L
Linus Torvalds 已提交
7958
#endif
P
Peter Zijlstra 已提交
7959
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7960 7961 7962
		atomic_set(&rq->nr_iowait, 0);
	}

7963
	set_load_weight(&init_task);
7964

7965 7966 7967 7968
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7969
#ifdef CONFIG_SMP
7970
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7971 7972
#endif

7973
#ifdef CONFIG_RT_MUTEXES
7974
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7975 7976
#endif

L
Linus Torvalds 已提交
7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7990 7991 7992

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7993 7994 7995 7996
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7997

7998
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7999
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8000
#ifdef CONFIG_SMP
8001
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8002
#ifdef CONFIG_NO_HZ
8003 8004 8005 8006 8007
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
	atomic_set(&nohz.load_balancer, nr_cpu_ids);
	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8008
#endif
R
Rusty Russell 已提交
8009 8010 8011
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8012
#endif /* SMP */
8013

8014
	scheduler_running = 1;
L
Linus Torvalds 已提交
8015 8016 8017
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8018 8019
static inline int preempt_count_equals(int preempt_offset)
{
8020
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8021

A
Arnd Bergmann 已提交
8022
	return (nested == preempt_offset);
8023 8024
}

8025
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
8026
{
8027
#ifdef in_atomic
L
Linus Torvalds 已提交
8028 8029
	static unsigned long prev_jiffy;	/* ratelimiting */

8030 8031
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
8032 8033 8034 8035 8036
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
8037 8038 8039 8040 8041 8042 8043
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
8044 8045 8046 8047 8048

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8049 8050 8051 8052 8053 8054
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8055 8056
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
8057 8058
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
8059
	int on_rq;
8060

P
Peter Zijlstra 已提交
8061
	on_rq = p->on_rq;
8062 8063 8064 8065 8066 8067 8068
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
8069 8070

	check_class_changed(rq, p, prev_class, old_prio);
8071 8072
}

L
Linus Torvalds 已提交
8073 8074
void normalize_rt_tasks(void)
{
8075
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8076
	unsigned long flags;
8077
	struct rq *rq;
L
Linus Torvalds 已提交
8078

8079
	read_lock_irqsave(&tasklist_lock, flags);
8080
	do_each_thread(g, p) {
8081 8082 8083 8084 8085 8086
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8087 8088
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
8089 8090 8091
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
8092
#endif
I
Ingo Molnar 已提交
8093 8094 8095 8096 8097 8098 8099 8100

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8101
			continue;
I
Ingo Molnar 已提交
8102
		}
L
Linus Torvalds 已提交
8103

8104
		raw_spin_lock(&p->pi_lock);
8105
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8106

8107
		normalize_task(rq, p);
8108

8109
		__task_rq_unlock(rq);
8110
		raw_spin_unlock(&p->pi_lock);
8111 8112
	} while_each_thread(g, p);

8113
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8114 8115 8116
}

#endif /* CONFIG_MAGIC_SYSRQ */
8117

8118
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8119
/*
8120
 * These functions are only useful for the IA64 MCA handling, or kdb.
8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8135
struct task_struct *curr_task(int cpu)
8136 8137 8138 8139
{
	return cpu_curr(cpu);
}

8140 8141 8142
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
8143 8144 8145 8146 8147 8148
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8149 8150
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8151 8152 8153 8154 8155 8156 8157
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8158
void set_curr_task(int cpu, struct task_struct *p)
8159 8160 8161 8162 8163
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8164

8165 8166
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8181 8182
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8183 8184
{
	struct cfs_rq *cfs_rq;
8185
	struct sched_entity *se;
S
Srivatsa Vaddagiri 已提交
8186 8187
	int i;

8188
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8189 8190
	if (!tg->cfs_rq)
		goto err;
8191
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8192 8193
	if (!tg->se)
		goto err;
8194 8195

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8196 8197

	for_each_possible_cpu(i) {
8198 8199
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8200 8201 8202
		if (!cfs_rq)
			goto err;

8203 8204
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8205
		if (!se)
8206
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8207

8208
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8209 8210 8211 8212
	}

	return 1;

P
Peter Zijlstra 已提交
8213
err_free_rq:
8214
	kfree(cfs_rq);
P
Peter Zijlstra 已提交
8215
err:
8216 8217 8218 8219 8220
	return 0;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
8232
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8233
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8234
}
8235
#else /* !CONFG_FAIR_GROUP_SCHED */
8236 8237 8238 8239
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8240 8241
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8242 8243 8244 8245 8246 8247 8248
{
	return 1;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8249
#endif /* CONFIG_FAIR_GROUP_SCHED */
8250 8251

#ifdef CONFIG_RT_GROUP_SCHED
8252 8253 8254 8255
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8256 8257
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8269 8270
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8271 8272
{
	struct rt_rq *rt_rq;
8273
	struct sched_rt_entity *rt_se;
8274 8275
	int i;

8276
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8277 8278
	if (!tg->rt_rq)
		goto err;
8279
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8280 8281 8282
	if (!tg->rt_se)
		goto err;

8283 8284
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8285 8286

	for_each_possible_cpu(i) {
8287 8288
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8289 8290
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8291

8292 8293
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8294
		if (!rt_se)
8295
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8296

8297
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8298 8299
	}

8300 8301
	return 1;

P
Peter Zijlstra 已提交
8302
err_free_rq:
8303
	kfree(rt_rq);
P
Peter Zijlstra 已提交
8304
err:
8305 8306
	return 0;
}
8307
#else /* !CONFIG_RT_GROUP_SCHED */
8308 8309 8310 8311
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8312 8313
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8314 8315 8316
{
	return 1;
}
8317
#endif /* CONFIG_RT_GROUP_SCHED */
8318

D
Dhaval Giani 已提交
8319
#ifdef CONFIG_CGROUP_SCHED
8320 8321 8322 8323
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
8324
	autogroup_free(tg);
8325 8326 8327 8328
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8329
struct task_group *sched_create_group(struct task_group *parent)
8330 8331 8332 8333 8334 8335 8336 8337
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8338
	if (!alloc_fair_sched_group(tg, parent))
8339 8340
		goto err;

8341
	if (!alloc_rt_sched_group(tg, parent))
8342 8343
		goto err;

8344
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8345
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8346 8347 8348 8349 8350

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8351
	list_add_rcu(&tg->siblings, &parent->children);
8352
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8353

8354
	return tg;
S
Srivatsa Vaddagiri 已提交
8355 8356

err:
P
Peter Zijlstra 已提交
8357
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8358 8359 8360
	return ERR_PTR(-ENOMEM);
}

8361
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8362
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8363 8364
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8365
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8366 8367
}

8368
/* Destroy runqueue etc associated with a task group */
8369
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8370
{
8371
	unsigned long flags;
8372
	int i;
S
Srivatsa Vaddagiri 已提交
8373

8374 8375
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
8376
		unregister_fair_sched_group(tg, i);
8377 8378

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8379
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8380
	list_del_rcu(&tg->siblings);
8381
	spin_unlock_irqrestore(&task_group_lock, flags);
8382 8383

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8384
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8385 8386
}

8387
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8388 8389 8390
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8391 8392
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8393 8394 8395 8396 8397 8398 8399
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8400
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
8401
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
8402

8403
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8404
		dequeue_task(rq, tsk, 0);
8405 8406
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8407

P
Peter Zijlstra 已提交
8408
#ifdef CONFIG_FAIR_GROUP_SCHED
8409 8410 8411
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
8412
#endif
8413
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
8414

8415 8416 8417
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8418
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8419

8420
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
8421
}
D
Dhaval Giani 已提交
8422
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8423

8424
#ifdef CONFIG_FAIR_GROUP_SCHED
8425 8426
static DEFINE_MUTEX(shares_mutex);

8427
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8428 8429
{
	int i;
8430
	unsigned long flags;
8431

8432 8433 8434 8435 8436 8437
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8438 8439
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8440 8441
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8442

8443
	mutex_lock(&shares_mutex);
8444
	if (tg->shares == shares)
8445
		goto done;
S
Srivatsa Vaddagiri 已提交
8446

8447
	tg->shares = shares;
8448
	for_each_possible_cpu(i) {
8449 8450 8451 8452 8453 8454 8455
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
8456
			update_cfs_shares(group_cfs_rq(se));
8457
		raw_spin_unlock_irqrestore(&rq->lock, flags);
8458
	}
S
Srivatsa Vaddagiri 已提交
8459

8460
done:
8461
	mutex_unlock(&shares_mutex);
8462
	return 0;
S
Srivatsa Vaddagiri 已提交
8463 8464
}

8465 8466 8467 8468
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8469
#endif
8470

8471
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8472
/*
P
Peter Zijlstra 已提交
8473
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8474
 */
P
Peter Zijlstra 已提交
8475 8476 8477 8478 8479
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8480
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8481

P
Peter Zijlstra 已提交
8482
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8483 8484
}

P
Peter Zijlstra 已提交
8485 8486
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8487
{
P
Peter Zijlstra 已提交
8488
	struct task_struct *g, *p;
8489

P
Peter Zijlstra 已提交
8490 8491 8492 8493
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8494

P
Peter Zijlstra 已提交
8495 8496
	return 0;
}
8497

P
Peter Zijlstra 已提交
8498 8499 8500 8501 8502
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8503

P
Peter Zijlstra 已提交
8504 8505 8506 8507 8508 8509
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8510

P
Peter Zijlstra 已提交
8511 8512
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8513

P
Peter Zijlstra 已提交
8514 8515 8516
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8517 8518
	}

8519 8520 8521 8522 8523
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8524

8525 8526 8527
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8528 8529
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8530

P
Peter Zijlstra 已提交
8531
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8532

8533 8534 8535 8536 8537
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8538

8539 8540 8541
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8542 8543 8544
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8545

P
Peter Zijlstra 已提交
8546 8547 8548 8549
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8550

P
Peter Zijlstra 已提交
8551
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8552
	}
P
Peter Zijlstra 已提交
8553

P
Peter Zijlstra 已提交
8554 8555 8556 8557
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8558 8559
}

P
Peter Zijlstra 已提交
8560
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8561
{
P
Peter Zijlstra 已提交
8562 8563 8564 8565 8566 8567 8568
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8569 8570
}

8571 8572
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8573
{
P
Peter Zijlstra 已提交
8574
	int i, err = 0;
P
Peter Zijlstra 已提交
8575 8576

	mutex_lock(&rt_constraints_mutex);
8577
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8578 8579
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8580
		goto unlock;
P
Peter Zijlstra 已提交
8581

8582
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8583 8584
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8585 8586 8587 8588

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8589
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8590
		rt_rq->rt_runtime = rt_runtime;
8591
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8592
	}
8593
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8594
unlock:
8595
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8596 8597 8598
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8599 8600
}

8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8613 8614 8615 8616
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8617
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8618 8619
		return -1;

8620
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8621 8622 8623
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8624 8625 8626 8627 8628 8629 8630 8631

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8632 8633 8634
	if (rt_period == 0)
		return -EINVAL;

8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8649
	u64 runtime, period;
8650 8651
	int ret = 0;

8652 8653 8654
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8655 8656 8657 8658 8659 8660 8661 8662
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8663

8664
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8665
	read_lock(&tasklist_lock);
8666
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8667
	read_unlock(&tasklist_lock);
8668 8669 8670 8671
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8672 8673 8674 8675 8676 8677 8678 8679 8680 8681

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8682
#else /* !CONFIG_RT_GROUP_SCHED */
8683 8684
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8685 8686 8687
	unsigned long flags;
	int i;

8688 8689 8690
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8691 8692 8693 8694 8695 8696 8697
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8698
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8699 8700 8701
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8702
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8703
		rt_rq->rt_runtime = global_rt_runtime();
8704
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8705
	}
8706
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8707

8708 8709
	return 0;
}
8710
#endif /* CONFIG_RT_GROUP_SCHED */
8711 8712

int sched_rt_handler(struct ctl_table *table, int write,
8713
		void __user *buffer, size_t *lenp,
8714 8715 8716 8717 8718 8719 8720 8721 8722 8723
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8724
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8741

8742
#ifdef CONFIG_CGROUP_SCHED
8743 8744

/* return corresponding task_group object of a cgroup */
8745
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8746
{
8747 8748
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8749 8750 8751
}

static struct cgroup_subsys_state *
8752
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8753
{
8754
	struct task_group *tg, *parent;
8755

8756
	if (!cgrp->parent) {
8757
		/* This is early initialization for the top cgroup */
8758
		return &root_task_group.css;
8759 8760
	}

8761 8762
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8763 8764 8765 8766 8767 8768
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8769 8770
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8771
{
8772
	struct task_group *tg = cgroup_tg(cgrp);
8773 8774 8775 8776

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8777
static int
8778
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8779
{
8780
#ifdef CONFIG_RT_GROUP_SCHED
8781
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8782 8783
		return -EINVAL;
#else
8784 8785 8786
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8787
#endif
8788 8789
	return 0;
}
8790 8791

static void
8792
cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8793 8794 8795 8796
{
	sched_move_task(tsk);
}

8797
static void
8798 8799
cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

8812
#ifdef CONFIG_FAIR_GROUP_SCHED
8813
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8814
				u64 shareval)
8815
{
8816
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
8817 8818
}

8819
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8820
{
8821
	struct task_group *tg = cgroup_tg(cgrp);
8822

8823
	return (u64) scale_load_down(tg->shares);
8824
}
8825
#endif /* CONFIG_FAIR_GROUP_SCHED */
8826

8827
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8828
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8829
				s64 val)
P
Peter Zijlstra 已提交
8830
{
8831
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8832 8833
}

8834
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8835
{
8836
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8837
}
8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8849
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8850

8851
static struct cftype cpu_files[] = {
8852
#ifdef CONFIG_FAIR_GROUP_SCHED
8853 8854
	{
		.name = "shares",
8855 8856
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8857
	},
8858 8859
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8860
	{
P
Peter Zijlstra 已提交
8861
		.name = "rt_runtime_us",
8862 8863
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8864
	},
8865 8866
	{
		.name = "rt_period_us",
8867 8868
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8869
	},
8870
#endif
8871 8872 8873 8874
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8875
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8876 8877 8878
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8879 8880 8881
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
8882 8883
	.can_attach_task = cpu_cgroup_can_attach_task,
	.attach_task	= cpu_cgroup_attach_task,
8884
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
8885 8886
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8887 8888 8889
	.early_init	= 1,
};

8890
#endif	/* CONFIG_CGROUP_SCHED */
8891 8892 8893 8894 8895 8896 8897 8898 8899 8900

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8901
/* track cpu usage of a group of tasks and its child groups */
8902 8903 8904
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8905
	u64 __percpu *cpuusage;
8906
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8907
	struct cpuacct *parent;
8908 8909 8910 8911 8912
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8913
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8914
{
8915
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8928
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8929 8930
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8931
	int i;
8932 8933

	if (!ca)
8934
		goto out;
8935 8936

	ca->cpuusage = alloc_percpu(u64);
8937 8938 8939 8940 8941 8942
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8943

8944 8945 8946
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8947
	return &ca->css;
8948 8949 8950 8951 8952 8953 8954 8955 8956

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8957 8958 8959
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8960
static void
8961
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8962
{
8963
	struct cpuacct *ca = cgroup_ca(cgrp);
8964
	int i;
8965

8966 8967
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8968 8969 8970 8971
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8972 8973
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8974
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8975 8976 8977 8978 8979 8980
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8981
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8982
	data = *cpuusage;
8983
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8984 8985 8986 8987 8988 8989 8990 8991 8992
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8993
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8994 8995 8996 8997 8998

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8999
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9000
	*cpuusage = val;
9001
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9002 9003 9004 9005 9006
#else
	*cpuusage = val;
#endif
}

9007
/* return total cpu usage (in nanoseconds) of a group */
9008
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9009
{
9010
	struct cpuacct *ca = cgroup_ca(cgrp);
9011 9012 9013
	u64 totalcpuusage = 0;
	int i;

9014 9015
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9016 9017 9018 9019

	return totalcpuusage;
}

9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9032 9033
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9034 9035 9036 9037 9038

out:
	return err;
}

9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

9073 9074 9075
static struct cftype files[] = {
	{
		.name = "usage",
9076 9077
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9078
	},
9079 9080 9081 9082
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9083 9084 9085 9086
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9087 9088
};

9089
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9090
{
9091
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9092 9093 9094 9095 9096 9097 9098 9099 9100 9101
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9102
	int cpu;
9103

L
Li Zefan 已提交
9104
	if (unlikely(!cpuacct_subsys.active))
9105 9106
		return;

9107
	cpu = task_cpu(tsk);
9108 9109 9110

	rcu_read_lock();

9111 9112
	ca = task_ca(tsk);

9113
	for (; ca; ca = ca->parent) {
9114
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9115 9116
		*cpuusage += cputime;
	}
9117 9118

	rcu_read_unlock();
9119 9120
}

9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9138 9139 9140 9141 9142 9143 9144
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9145
	int batch = CPUACCT_BATCH;
9146 9147 9148 9149 9150 9151 9152 9153

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9154
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9155 9156 9157 9158 9159
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9160 9161 9162 9163 9164 9165 9166 9167
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9168