sched.c 213.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/stop_machine.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <linux/slab.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

81
#define CREATE_TRACE_POINTS
82
#include <trace/events/sched.h>
83

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123 124
static inline int rt_policy(int policy)
{
125
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 127 128 129 130 131 132 133 134
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
135
/*
I
Ingo Molnar 已提交
136
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
137
 */
I
Ingo Molnar 已提交
138 139 140 141 142
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

143
struct rt_bandwidth {
I
Ingo Molnar 已提交
144
	/* nests inside the rq lock: */
145
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
146 147 148
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

182
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
183

184 185 186 187 188
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

189 190 191
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
192 193 194 195 196 197
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

198
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 200 201 202 203
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

204
	raw_spin_lock(&rt_b->rt_runtime_lock);
205
	for (;;) {
206 207 208
		unsigned long delta;
		ktime_t soft, hard;

209 210 211 212 213
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 215 216 217 218

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219
				HRTIMER_MODE_ABS_PINNED, 0);
220
	}
221
	raw_spin_unlock(&rt_b->rt_runtime_lock);
222 223 224 225 226 227 228 229 230
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

231 232 233 234 235 236
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
237
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
238

239 240
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
241 242
struct cfs_rq;

P
Peter Zijlstra 已提交
243 244
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
245
/* task group related information */
246
struct task_group {
247
	struct cgroup_subsys_state css;
248

249
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
250 251 252 253 254
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
255 256 257 258 259 260
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

261
	struct rt_bandwidth rt_bandwidth;
262
#endif
263

264
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
265
	struct list_head list;
P
Peter Zijlstra 已提交
266 267 268 269

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
270 271
};

272
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
273

274
/* task_group_lock serializes add/remove of task groups and also changes to
275 276
 * a task group's cpu shares.
 */
277
static DEFINE_SPINLOCK(task_group_lock);
278

279 280
#ifdef CONFIG_FAIR_GROUP_SCHED

281 282 283 284 285 286 287
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

288 289
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

290
/*
291 292 293 294
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
295 296 297
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
298
#define MIN_SHARES	2
299
#define MAX_SHARES	(1UL << 18)
300

301 302 303
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
304
/* Default task group.
I
Ingo Molnar 已提交
305
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
306
 */
307
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
308 309

/* return group to which a task belongs */
310
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
311
{
312
	struct task_group *tg;
313

D
Dhaval Giani 已提交
314
#ifdef CONFIG_CGROUP_SCHED
315 316
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
317
#else
I
Ingo Molnar 已提交
318
	tg = &init_task_group;
319
#endif
320
	return tg;
S
Srivatsa Vaddagiri 已提交
321 322 323
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
324
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
325
{
326 327 328 329 330 331 332 333 334
	/*
	 * Strictly speaking this rcu_read_lock() is not needed since the
	 * task_group is tied to the cgroup, which in turn can never go away
	 * as long as there are tasks attached to it.
	 *
	 * However since task_group() uses task_subsys_state() which is an
	 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
	 */
	rcu_read_lock();
335
#ifdef CONFIG_FAIR_GROUP_SCHED
336 337
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
338
#endif
P
Peter Zijlstra 已提交
339

340
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
341 342
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
343
#endif
344
	rcu_read_unlock();
S
Srivatsa Vaddagiri 已提交
345 346 347 348
}

#else

P
Peter Zijlstra 已提交
349
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
350 351 352 353
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
354

D
Dhaval Giani 已提交
355
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
356

I
Ingo Molnar 已提交
357 358 359 360 361 362
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
363
	u64 min_vruntime;
I
Ingo Molnar 已提交
364 365 366

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
367 368 369 370 371 372

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
373 374
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
375
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
376

P
Peter Zijlstra 已提交
377
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
378

379
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
380 381
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
382 383
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
384 385 386 387 388 389
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
390 391
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
392 393 394

#ifdef CONFIG_SMP
	/*
395
	 * the part of load.weight contributed by tasks
396
	 */
397
	unsigned long task_weight;
398

399 400 401 402 403 404 405
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
406

407 408 409 410
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
411 412 413 414 415

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
416
#endif
I
Ingo Molnar 已提交
417 418
#endif
};
L
Linus Torvalds 已提交
419

I
Ingo Molnar 已提交
420 421 422
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
423
	unsigned long rt_nr_running;
424
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
425 426
	struct {
		int curr; /* highest queued rt task prio */
427
#ifdef CONFIG_SMP
428
		int next; /* next highest */
429
#endif
430
	} highest_prio;
P
Peter Zijlstra 已提交
431
#endif
P
Peter Zijlstra 已提交
432
#ifdef CONFIG_SMP
433
	unsigned long rt_nr_migratory;
434
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
435
	int overloaded;
436
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
437
#endif
P
Peter Zijlstra 已提交
438
	int rt_throttled;
P
Peter Zijlstra 已提交
439
	u64 rt_time;
P
Peter Zijlstra 已提交
440
	u64 rt_runtime;
I
Ingo Molnar 已提交
441
	/* Nests inside the rq lock: */
442
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
443

444
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
445 446
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
447 448 449 450
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
451 452
};

G
Gregory Haskins 已提交
453 454 455 456
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
457 458
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
459 460 461 462 463 464
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
465 466
	cpumask_var_t span;
	cpumask_var_t online;
467

I
Ingo Molnar 已提交
468
	/*
469 470 471
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
472
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
473
	atomic_t rto_count;
474 475 476
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
477 478
};

479 480 481 482
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
483 484 485 486
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
487 488 489 490 491 492 493
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
494
struct rq {
495
	/* runqueue lock: */
496
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
497 498 499 500 501 502

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
503 504
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
505
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
506
	u64 nohz_stamp;
507 508
	unsigned char in_nohz_recently;
#endif
509 510
	unsigned int skip_clock_update;

511 512
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
513 514 515 516
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
517 518
	struct rt_rq rt;

I
Ingo Molnar 已提交
519
#ifdef CONFIG_FAIR_GROUP_SCHED
520 521
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
522 523
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
524
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
525 526 527 528 529 530 531 532 533 534
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

535
	struct task_struct *curr, *idle;
536
	unsigned long next_balance;
L
Linus Torvalds 已提交
537
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
538

539
	u64 clock;
I
Ingo Molnar 已提交
540

L
Linus Torvalds 已提交
541 542 543
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
544
	struct root_domain *rd;
L
Linus Torvalds 已提交
545 546
	struct sched_domain *sd;

547 548
	unsigned long cpu_power;

549
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
550
	/* For active balancing */
551
	int post_schedule;
L
Linus Torvalds 已提交
552 553
	int active_balance;
	int push_cpu;
554
	struct cpu_stop_work active_balance_work;
555 556
	/* cpu of this runqueue: */
	int cpu;
557
	int online;
L
Linus Torvalds 已提交
558

559
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
560

561 562
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
563 564
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
565 566
#endif

567 568 569 570
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
571
#ifdef CONFIG_SCHED_HRTICK
572 573 574 575
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
576 577 578
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
579 580 581
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
582 583
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
584 585

	/* sys_sched_yield() stats */
586
	unsigned int yld_count;
L
Linus Torvalds 已提交
587 588

	/* schedule() stats */
589 590 591
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
592 593

	/* try_to_wake_up() stats */
594 595
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
596 597

	/* BKL stats */
598
	unsigned int bkl_count;
L
Linus Torvalds 已提交
599 600 601
#endif
};

602
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
603

P
Peter Zijlstra 已提交
604 605
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
606
{
P
Peter Zijlstra 已提交
607
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
608 609 610 611 612 613 614

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
	if (test_tsk_need_resched(p))
		rq->skip_clock_update = 1;
I
Ingo Molnar 已提交
615 616
}

617 618 619 620 621 622 623 624 625
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

626
#define rcu_dereference_check_sched_domain(p) \
627 628 629 630
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
631 632
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
633
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
634 635 636 637
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
638
#define for_each_domain(cpu, __sd) \
639
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
640 641 642 643 644

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
645
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
646

I
Ingo Molnar 已提交
647
inline void update_rq_clock(struct rq *rq)
648
{
649 650
	if (!rq->skip_clock_update)
		rq->clock = sched_clock_cpu(cpu_of(rq));
651 652
}

I
Ingo Molnar 已提交
653 654 655 656 657 658 659 660 661
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
662 663
/**
 * runqueue_is_locked
664
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
665 666 667 668 669
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
670
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
671
{
672
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
673 674
}

I
Ingo Molnar 已提交
675 676 677
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
678 679 680 681

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
682
enum {
P
Peter Zijlstra 已提交
683
#include "sched_features.h"
I
Ingo Molnar 已提交
684 685
};

P
Peter Zijlstra 已提交
686 687 688 689 690
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
691
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
692 693 694 695 696 697 698 699 700
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

701
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
702 703 704 705 706 707
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
708
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
709 710 711 712
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
713 714 715
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
716
	}
L
Li Zefan 已提交
717
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
718

L
Li Zefan 已提交
719
	return 0;
P
Peter Zijlstra 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
739
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

759
	*ppos += cnt;
P
Peter Zijlstra 已提交
760 761 762 763

	return cnt;
}

L
Li Zefan 已提交
764 765 766 767 768
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

769
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
770 771 772 773 774
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
789

790 791 792 793 794 795
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
796 797
/*
 * ratelimit for updating the group shares.
798
 * default: 0.25ms
P
Peter Zijlstra 已提交
799
 */
800
unsigned int sysctl_sched_shares_ratelimit = 250000;
801
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
802

803 804 805 806 807 808 809
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

810 811 812 813 814 815 816 817
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
818
/*
P
Peter Zijlstra 已提交
819
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
820 821
 * default: 1s
 */
P
Peter Zijlstra 已提交
822
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
823

824 825
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
826 827 828 829 830
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
831

832 833 834 835 836 837 838
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
839
	if (sysctl_sched_rt_runtime < 0)
840 841 842 843
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
844

L
Linus Torvalds 已提交
845
#ifndef prepare_arch_switch
846 847 848 849 850 851
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

852 853 854 855 856
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

857
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
858
static inline int task_running(struct rq *rq, struct task_struct *p)
859
{
860
	return task_current(rq, p);
861 862
}

863
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
864 865 866
{
}

867
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
868
{
869 870 871 872
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
873 874 875 876 877 878 879
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

880
	raw_spin_unlock_irq(&rq->lock);
881 882 883
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
884
static inline int task_running(struct rq *rq, struct task_struct *p)
885 886 887 888
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
889
	return task_current(rq, p);
890 891 892
#endif
}

893
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
894 895 896 897 898 899 900 901 902 903
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
904
	raw_spin_unlock_irq(&rq->lock);
905
#else
906
	raw_spin_unlock(&rq->lock);
907 908 909
#endif
}

910
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
911 912 913 914 915 916 917 918 919 920 921 922
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
923
#endif
924 925
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
926

927
/*
P
Peter Zijlstra 已提交
928 929
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
930 931 932
 */
static inline int task_is_waking(struct task_struct *p)
{
933
	return unlikely(p->state == TASK_WAKING);
934 935
}

936 937 938 939
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
940
static inline struct rq *__task_rq_lock(struct task_struct *p)
941 942
	__acquires(rq->lock)
{
943 944
	struct rq *rq;

945
	for (;;) {
946
		rq = task_rq(p);
947
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
948
		if (likely(rq == task_rq(p)))
949
			return rq;
950
		raw_spin_unlock(&rq->lock);
951 952 953
	}
}

L
Linus Torvalds 已提交
954 955
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
956
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
957 958
 * explicitly disabling preemption.
 */
959
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
960 961
	__acquires(rq->lock)
{
962
	struct rq *rq;
L
Linus Torvalds 已提交
963

964 965 966
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
967
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
968
		if (likely(rq == task_rq(p)))
969
			return rq;
970
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
971 972 973
	}
}

A
Alexey Dobriyan 已提交
974
static void __task_rq_unlock(struct rq *rq)
975 976
	__releases(rq->lock)
{
977
	raw_spin_unlock(&rq->lock);
978 979
}

980
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
981 982
	__releases(rq->lock)
{
983
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
984 985 986
}

/*
987
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
988
 */
A
Alexey Dobriyan 已提交
989
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
990 991
	__acquires(rq->lock)
{
992
	struct rq *rq;
L
Linus Torvalds 已提交
993 994 995

	local_irq_disable();
	rq = this_rq();
996
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
997 998 999 1000

	return rq;
}

P
Peter Zijlstra 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1022
	if (!cpu_active(cpu_of(rq)))
1023
		return 0;
P
Peter Zijlstra 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1043
	raw_spin_lock(&rq->lock);
1044
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1045
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1046
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1047 1048 1049 1050

	return HRTIMER_NORESTART;
}

1051
#ifdef CONFIG_SMP
1052 1053 1054 1055
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1056
{
1057
	struct rq *rq = arg;
1058

1059
	raw_spin_lock(&rq->lock);
1060 1061
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1062
	raw_spin_unlock(&rq->lock);
1063 1064
}

1065 1066 1067 1068 1069 1070
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1071
{
1072 1073
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1074

1075
	hrtimer_set_expires(timer, time);
1076 1077 1078 1079

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1080
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1081 1082
		rq->hrtick_csd_pending = 1;
	}
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1097
		hrtick_clear(cpu_rq(cpu));
1098 1099 1100 1101 1102 1103
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1104
static __init void init_hrtick(void)
1105 1106 1107
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1108 1109 1110 1111 1112 1113 1114 1115
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1116
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1117
			HRTIMER_MODE_REL_PINNED, 0);
1118
}
1119

A
Andrew Morton 已提交
1120
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1121 1122
{
}
1123
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1124

1125
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1126
{
1127 1128
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1129

1130 1131 1132 1133
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1134

1135 1136
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1137
}
A
Andrew Morton 已提交
1138
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1139 1140 1141 1142 1143 1144 1145 1146
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1147 1148 1149
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1150
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1151

I
Ingo Molnar 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1165
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1166 1167 1168
{
	int cpu;

1169
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1170

1171
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1172 1173
		return;

1174
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1191
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1192 1193
		return;
	resched_task(cpu_curr(cpu));
1194
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1195
}
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1230
	set_tsk_need_resched(rq->idle);
1231 1232 1233 1234 1235 1236

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

int nohz_ratelimit(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 diff = rq->clock - rq->nohz_stamp;

	rq->nohz_stamp = rq->clock;

	return diff < (NSEC_PER_SEC / HZ) >> 1;
}

1248
#endif /* CONFIG_NO_HZ */
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1271
#else /* !CONFIG_SMP */
1272
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1273
{
1274
	assert_raw_spin_locked(&task_rq(p)->lock);
1275
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1276
}
1277 1278 1279 1280

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1281
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1282

1283 1284 1285 1286 1287 1288 1289 1290
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1291 1292 1293
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1294
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1295

1296 1297 1298
/*
 * delta *= weight / lw
 */
1299
static unsigned long
1300 1301 1302 1303 1304
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1305 1306 1307 1308 1309 1310 1311
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1312 1313 1314 1315 1316

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1317
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1318
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1319 1320
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1321
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1322

1323
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1324 1325
}

1326
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1327 1328
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1329
	lw->inv_weight = 0;
1330 1331
}

1332
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1333 1334
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1335
	lw->inv_weight = 0;
1336 1337
}

1338 1339 1340 1341
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1342
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1343 1344 1345 1346
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1347 1348
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1358 1359 1360
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1361 1362
 */
static const int prio_to_weight[40] = {
1363 1364 1365 1366 1367 1368 1369 1370
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1371 1372
};

1373 1374 1375 1376 1377 1378 1379
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1380
static const u32 prio_to_wmult[40] = {
1381 1382 1383 1384 1385 1386 1387 1388
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1389
};
1390

1391 1392 1393 1394 1395 1396 1397 1398
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1399 1400
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1401 1402
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1403 1404
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1405 1406
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1407 1408
#endif

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1419
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1420
typedef int (*tg_visitor)(struct task_group *, void *);
1421 1422 1423 1424 1425

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1426
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1427 1428
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1429
	int ret;
1430 1431 1432 1433

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1434 1435 1436
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1437 1438 1439 1440 1441 1442 1443
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1444 1445 1446
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1447 1448 1449 1450 1451

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1452
out_unlock:
1453
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1454 1455

	return ret;
1456 1457
}

P
Peter Zijlstra 已提交
1458 1459 1460
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1461
}
P
Peter Zijlstra 已提交
1462 1463 1464
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1504 1505
static unsigned long power_of(int cpu)
{
1506
	return cpu_rq(cpu)->cpu_power;
1507 1508
}

P
Peter Zijlstra 已提交
1509 1510 1511 1512 1513
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1514
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1515

1516 1517
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1518 1519
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1520 1521 1522 1523 1524

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1525

1526
static __read_mostly unsigned long __percpu *update_shares_data;
1527

1528 1529 1530 1531 1532
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1533 1534 1535
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1536
				    unsigned long *usd_rq_weight)
1537
{
1538
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1539
	int boost = 0;
1540

1541
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1542 1543 1544 1545
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1546

1547
	/*
P
Peter Zijlstra 已提交
1548 1549 1550
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1551
	 */
1552
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1553
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1554

1555 1556 1557 1558
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1559

1560
		raw_spin_lock_irqsave(&rq->lock, flags);
1561
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1562
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1563
		__set_se_shares(tg->se[cpu], shares);
1564
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1565
	}
1566
}
1567 1568

/*
1569 1570 1571
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1572
 */
P
Peter Zijlstra 已提交
1573
static int tg_shares_up(struct task_group *tg, void *data)
1574
{
1575
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1576
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1577
	struct sched_domain *sd = data;
1578
	unsigned long flags;
1579
	int i;
1580

1581 1582 1583 1584
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1585
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1586

1587
	for_each_cpu(i, sched_domain_span(sd)) {
1588
		weight = tg->cfs_rq[i]->load.weight;
1589
		usd_rq_weight[i] = weight;
1590

1591
		rq_weight += weight;
1592 1593 1594 1595 1596 1597 1598 1599
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1600
		sum_weight += weight;
1601
		shares += tg->cfs_rq[i]->shares;
1602 1603
	}

1604 1605 1606
	if (!rq_weight)
		rq_weight = sum_weight;

1607 1608 1609 1610 1611
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1612

1613
	for_each_cpu(i, sched_domain_span(sd))
1614
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1615 1616

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1617 1618

	return 0;
1619 1620 1621
}

/*
1622 1623 1624
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1625
 */
P
Peter Zijlstra 已提交
1626
static int tg_load_down(struct task_group *tg, void *data)
1627
{
1628
	unsigned long load;
P
Peter Zijlstra 已提交
1629
	long cpu = (long)data;
1630

1631 1632 1633 1634 1635 1636 1637
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1638

1639
	tg->cfs_rq[cpu]->h_load = load;
1640

P
Peter Zijlstra 已提交
1641
	return 0;
1642 1643
}

1644
static void update_shares(struct sched_domain *sd)
1645
{
1646 1647 1648 1649 1650 1651 1652 1653
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1654 1655 1656

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1657
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1658
	}
1659 1660
}

P
Peter Zijlstra 已提交
1661
static void update_h_load(long cpu)
1662
{
1663 1664 1665
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1666
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1667 1668 1669 1670
}

#else

1671
static inline void update_shares(struct sched_domain *sd)
1672 1673 1674
{
}

1675 1676
#endif

1677 1678
#ifdef CONFIG_PREEMPT

1679 1680
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1681
/*
1682 1683 1684 1685 1686 1687
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1688
 */
1689 1690 1691 1692 1693
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1694
	raw_spin_unlock(&this_rq->lock);
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1709 1710 1711 1712 1713 1714
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1715
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1716
		if (busiest < this_rq) {
1717 1718 1719 1720
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1721 1722
			ret = 1;
		} else
1723 1724
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1725 1726 1727 1728
	}
	return ret;
}

1729 1730 1731 1732 1733 1734 1735 1736 1737
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1738
		raw_spin_unlock(&this_rq->lock);
1739 1740 1741 1742 1743 1744
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1745 1746 1747
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1748
	raw_spin_unlock(&busiest->lock);
1749 1750
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1794 1795
#endif

V
Vegard Nossum 已提交
1796
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1797 1798
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1799
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1800 1801 1802
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1803
#endif
1804

1805
static void calc_load_account_idle(struct rq *this_rq);
1806
static void update_sysctl(void);
1807
static int get_update_sysctl_factor(void);
1808

P
Peter Zijlstra 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1822

1823
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1824 1825

#define sched_class_highest (&rt_sched_class)
1826 1827
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1828

1829 1830
#include "sched_stats.h"

1831
static void inc_nr_running(struct rq *rq)
1832 1833 1834 1835
{
	rq->nr_running++;
}

1836
static void dec_nr_running(struct rq *rq)
1837 1838 1839 1840
{
	rq->nr_running--;
}

1841 1842 1843
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
1844 1845
		p->se.load.weight = 0;
		p->se.load.inv_weight = WMULT_CONST;
I
Ingo Molnar 已提交
1846 1847
		return;
	}
1848

I
Ingo Molnar 已提交
1849 1850 1851 1852 1853 1854 1855 1856
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1857

I
Ingo Molnar 已提交
1858 1859
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1860 1861
}

1862
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1863
{
1864
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1865
	sched_info_queued(p);
1866
	p->sched_class->enqueue_task(rq, p, flags);
I
Ingo Molnar 已提交
1867
	p->se.on_rq = 1;
1868 1869
}

1870
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1871
{
1872
	update_rq_clock(rq);
1873
	sched_info_dequeued(p);
1874
	p->sched_class->dequeue_task(rq, p, flags);
I
Ingo Molnar 已提交
1875
	p->se.on_rq = 0;
1876 1877
}

1878 1879 1880
/*
 * activate_task - move a task to the runqueue.
 */
1881
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1882 1883 1884 1885
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1886
	enqueue_task(rq, p, flags);
1887 1888 1889 1890 1891 1892
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1893
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1894 1895 1896 1897
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1898
	dequeue_task(rq, p, flags);
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1909
/*
I
Ingo Molnar 已提交
1910
 * __normal_prio - return the priority that is based on the static prio
1911 1912 1913
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1914
	return p->static_prio;
1915 1916
}

1917 1918 1919 1920 1921 1922 1923
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1924
static inline int normal_prio(struct task_struct *p)
1925 1926 1927
{
	int prio;

1928
	if (task_has_rt_policy(p))
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1942
static int effective_prio(struct task_struct *p)
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1955 1956 1957 1958
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1959
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1960 1961 1962 1963
{
	return cpu_curr(task_cpu(p)) == p;
}

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1976
#ifdef CONFIG_SMP
1977 1978 1979
/*
 * Is this task likely cache-hot:
 */
1980
static int
1981 1982 1983 1984
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
1985 1986 1987
	if (p->sched_class != &fair_sched_class)
		return 0;

1988 1989 1990
	/*
	 * Buddy candidates are cache hot:
	 */
1991
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
1992 1993
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1994 1995
		return 1;

1996 1997 1998 1999 2000
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2001 2002 2003 2004 2005
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2006
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2007
{
2008 2009 2010 2011 2012
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2013 2014
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2015 2016
#endif

2017
	trace_sched_migrate_task(p, new_cpu);
2018

2019 2020 2021 2022
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2023 2024

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2025 2026
}

2027
struct migration_arg {
2028
	struct task_struct *task;
L
Linus Torvalds 已提交
2029
	int dest_cpu;
2030
};
L
Linus Torvalds 已提交
2031

2032 2033
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2034 2035 2036 2037
/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2038
static bool migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2039
{
2040
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2041 2042 2043

	/*
	 * If the task is not on a runqueue (and not running), then
2044
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2045
	 */
2046
	return p->se.on_rq || task_running(rq, p);
L
Linus Torvalds 已提交
2047 2048 2049 2050 2051
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2052 2053 2054 2055 2056 2057 2058
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2059 2060 2061 2062 2063 2064
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2065
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2066 2067
{
	unsigned long flags;
I
Ingo Molnar 已提交
2068
	int running, on_rq;
R
Roland McGrath 已提交
2069
	unsigned long ncsw;
2070
	struct rq *rq;
L
Linus Torvalds 已提交
2071

2072 2073 2074 2075 2076 2077 2078 2079
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2080

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2092 2093 2094
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2095
			cpu_relax();
R
Roland McGrath 已提交
2096
		}
2097

2098 2099 2100 2101 2102 2103
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2104
		trace_sched_wait_task(p);
2105 2106
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2107
		ncsw = 0;
2108
		if (!match_state || p->state == match_state)
2109
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2110
		task_rq_unlock(rq, &flags);
2111

R
Roland McGrath 已提交
2112 2113 2114 2115 2116 2117
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2128

2129 2130 2131 2132 2133
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2134
		 * So if it was still runnable (but just not actively
2135 2136 2137 2138 2139 2140 2141
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2142

2143 2144 2145 2146 2147 2148 2149
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2150 2151

	return ncsw;
L
Linus Torvalds 已提交
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2167
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2177
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2178
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2179

T
Thomas Gleixner 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2201
#ifdef CONFIG_SMP
2202 2203 2204
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2221
	if (unlikely(dest_cpu >= nr_cpu_ids)) {
2222
		dest_cpu = cpuset_cpus_allowed_fallback(p);
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2238
/*
2239
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2240
 */
2241
static inline
2242
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2243
{
2244
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2257
		     !cpu_online(cpu)))
2258
		cpu = select_fallback_rq(task_cpu(p), p);
2259 2260

	return cpu;
2261
}
2262 2263 2264 2265 2266 2267

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2268 2269
#endif

L
Linus Torvalds 已提交
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2284 2285
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2286
{
2287
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2288
	unsigned long flags;
2289
	unsigned long en_flags = ENQUEUE_WAKEUP;
2290
	struct rq *rq;
L
Linus Torvalds 已提交
2291

P
Peter Zijlstra 已提交
2292
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2293

2294
	smp_wmb();
2295
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2296
	if (!(p->state & state))
L
Linus Torvalds 已提交
2297 2298
		goto out;

I
Ingo Molnar 已提交
2299
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2300 2301 2302
		goto out_running;

	cpu = task_cpu(p);
2303
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2304 2305 2306 2307 2308

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2309 2310 2311
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2312 2313
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2314
	 */
2315 2316 2317 2318 2319 2320
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2321
	p->state = TASK_WAKING;
2322

2323
	if (p->sched_class->task_waking) {
2324
		p->sched_class->task_waking(rq, p);
2325 2326
		en_flags |= ENQUEUE_WAKING;
	}
2327

2328 2329
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2330
		set_task_cpu(p, cpu);
2331
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2332

2333 2334
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2335

2336 2337 2338 2339 2340 2341 2342
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2343
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2344

2345 2346 2347 2348 2349 2350 2351
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2352
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2353 2354 2355 2356 2357
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2358
#endif /* CONFIG_SCHEDSTATS */
2359

L
Linus Torvalds 已提交
2360 2361
out_activate:
#endif /* CONFIG_SMP */
2362
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2363
	if (wake_flags & WF_SYNC)
2364
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
2365
	if (orig_cpu != cpu)
2366
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2367
	if (cpu == this_cpu)
2368
		schedstat_inc(p, se.statistics.nr_wakeups_local);
2369
	else
2370
		schedstat_inc(p, se.statistics.nr_wakeups_remote);
2371
	activate_task(rq, p, en_flags);
L
Linus Torvalds 已提交
2372 2373 2374
	success = 1;

out_running:
2375
	trace_sched_wakeup(p, success);
P
Peter Zijlstra 已提交
2376
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2377

L
Linus Torvalds 已提交
2378
	p->state = TASK_RUNNING;
2379
#ifdef CONFIG_SMP
2380 2381
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2393
#endif
L
Linus Torvalds 已提交
2394 2395
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2396
	put_cpu();
L
Linus Torvalds 已提交
2397 2398 2399 2400

	return success;
}

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2412
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2413
{
2414
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2415 2416 2417
}
EXPORT_SYMBOL(wake_up_process);

2418
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2419 2420 2421 2422 2423 2424 2425
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2426 2427 2428 2429 2430 2431 2432
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2433
	p->se.prev_sum_exec_runtime	= 0;
2434
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2435 2436

#ifdef CONFIG_SCHEDSTATS
2437
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2438
#endif
N
Nick Piggin 已提交
2439

P
Peter Zijlstra 已提交
2440
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2441
	p->se.on_rq = 0;
2442
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2443

2444 2445 2446
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2457
	/*
2458
	 * We mark the process as running here. This guarantees that
2459 2460 2461
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2462
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2463

2464 2465 2466 2467
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2468
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2469
			p->policy = SCHED_NORMAL;
2470 2471
			p->normal_prio = p->static_prio;
		}
2472

2473 2474
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2475
			p->normal_prio = p->static_prio;
2476 2477 2478
			set_load_weight(p);
		}

2479 2480 2481 2482 2483 2484
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2485

2486 2487 2488 2489 2490
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2491 2492
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2493

P
Peter Zijlstra 已提交
2494 2495 2496
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2497 2498
	set_task_cpu(p, cpu);

2499
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2500
	if (likely(sched_info_on()))
2501
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2502
#endif
2503
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2504 2505
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2506
#ifdef CONFIG_PREEMPT
2507
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2508
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2509
#endif
2510 2511
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2512
	put_cpu();
L
Linus Torvalds 已提交
2513 2514 2515 2516 2517 2518 2519 2520 2521
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2522
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2523 2524
{
	unsigned long flags;
I
Ingo Molnar 已提交
2525
	struct rq *rq;
2526
	int cpu __maybe_unused = get_cpu();
2527 2528

#ifdef CONFIG_SMP
2529 2530 2531
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2532 2533 2534 2535 2536
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2537 2538
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2539
	 */
2540
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2541
	set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2542

2543
	p->state = TASK_RUNNING;
2544 2545 2546 2547
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2548
	activate_task(rq, p, 0);
2549
	trace_sched_wakeup_new(p, 1);
P
Peter Zijlstra 已提交
2550
	check_preempt_curr(rq, p, WF_FORK);
2551
#ifdef CONFIG_SMP
2552 2553
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2554
#endif
I
Ingo Molnar 已提交
2555
	task_rq_unlock(rq, &flags);
2556
	put_cpu();
L
Linus Torvalds 已提交
2557 2558
}

2559 2560 2561
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2562
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2563
 * @notifier: notifier struct to register
2564 2565 2566 2567 2568 2569 2570 2571 2572
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2573
 * @notifier: notifier struct to unregister
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2603
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2615
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2616

2617 2618 2619
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2620
 * @prev: the current task that is being switched out
2621 2622 2623 2624 2625 2626 2627 2628 2629
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2630 2631 2632
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2633
{
2634
	fire_sched_out_preempt_notifiers(prev, next);
2635 2636 2637 2638
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2639 2640
/**
 * finish_task_switch - clean up after a task-switch
2641
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2642 2643
 * @prev: the thread we just switched away from.
 *
2644 2645 2646 2647
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2648 2649
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2650
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2651 2652 2653
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2654
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2655 2656 2657
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2658
	long prev_state;
L
Linus Torvalds 已提交
2659 2660 2661 2662 2663

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2664
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2665 2666
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2667
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2668 2669 2670 2671 2672
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2673
	prev_state = prev->state;
2674
	finish_arch_switch(prev);
2675 2676 2677
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2678
	perf_event_task_sched_in(current);
2679 2680 2681
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2682
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2683

2684
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2685 2686
	if (mm)
		mmdrop(mm);
2687
	if (unlikely(prev_state == TASK_DEAD)) {
2688 2689 2690
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2691
		 */
2692
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2693
		put_task_struct(prev);
2694
	}
L
Linus Torvalds 已提交
2695 2696
}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2712
		raw_spin_lock_irqsave(&rq->lock, flags);
2713 2714
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2715
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2716 2717 2718 2719 2720 2721

		rq->post_schedule = 0;
	}
}

#else
2722

2723 2724 2725 2726 2727 2728
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2729 2730
}

2731 2732
#endif

L
Linus Torvalds 已提交
2733 2734 2735 2736
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2737
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2738 2739
	__releases(rq->lock)
{
2740 2741
	struct rq *rq = this_rq();

2742
	finish_task_switch(rq, prev);
2743

2744 2745 2746 2747 2748
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2749

2750 2751 2752 2753
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2754
	if (current->set_child_tid)
2755
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2756 2757 2758 2759 2760 2761
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2762
static inline void
2763
context_switch(struct rq *rq, struct task_struct *prev,
2764
	       struct task_struct *next)
L
Linus Torvalds 已提交
2765
{
I
Ingo Molnar 已提交
2766
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2767

2768
	prepare_task_switch(rq, prev, next);
2769
	trace_sched_switch(prev, next);
I
Ingo Molnar 已提交
2770 2771
	mm = next->mm;
	oldmm = prev->active_mm;
2772 2773 2774 2775 2776
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2777
	arch_start_context_switch(prev);
2778

2779
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2780 2781 2782 2783 2784 2785
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2786
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2787 2788 2789
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2790 2791 2792 2793 2794 2795 2796
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2797
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2798
#endif
L
Linus Torvalds 已提交
2799 2800 2801 2802

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2803 2804 2805 2806 2807 2808 2809
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2827
}
L
Linus Torvalds 已提交
2828 2829

unsigned long nr_uninterruptible(void)
2830
{
L
Linus Torvalds 已提交
2831
	unsigned long i, sum = 0;
2832

2833
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2834
		sum += cpu_rq(i)->nr_uninterruptible;
2835 2836

	/*
L
Linus Torvalds 已提交
2837 2838
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2839
	 */
L
Linus Torvalds 已提交
2840 2841
	if (unlikely((long)sum < 0))
		sum = 0;
2842

L
Linus Torvalds 已提交
2843
	return sum;
2844 2845
}

L
Linus Torvalds 已提交
2846
unsigned long long nr_context_switches(void)
2847
{
2848 2849
	int i;
	unsigned long long sum = 0;
2850

2851
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2852
		sum += cpu_rq(i)->nr_switches;
2853

L
Linus Torvalds 已提交
2854 2855
	return sum;
}
2856

L
Linus Torvalds 已提交
2857 2858 2859
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2860

2861
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2862
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2863

L
Linus Torvalds 已提交
2864 2865
	return sum;
}
2866

2867 2868 2869 2870 2871
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}
2872

2873 2874 2875 2876 2877
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2878

2879

2880 2881 2882 2883 2884
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2885

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
#endif

2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2954 2955
}

2956 2957
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2958
{
2959 2960 2961 2962
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2963 2964

/*
2965 2966
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2967
 */
2968
void calc_global_load(void)
2969
{
2970 2971
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
2972

2973 2974
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
2975

2976 2977
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2978

2979 2980 2981
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2982

2983 2984
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
2985

2986
/*
2987 2988
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2989 2990 2991
 */
static void calc_load_account_active(struct rq *this_rq)
{
2992
	long delta;
2993

2994 2995
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2996

2997 2998 2999
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3000
		atomic_long_add(delta, &calc_load_tasks);
3001 3002

	this_rq->calc_load_update += LOAD_FREQ;
3003 3004 3005
}

/*
I
Ingo Molnar 已提交
3006 3007
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3008
 */
I
Ingo Molnar 已提交
3009
static void update_cpu_load(struct rq *this_rq)
3010
{
3011
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3012
	int i, scale;
3013

I
Ingo Molnar 已提交
3014
	this_rq->nr_load_updates++;
3015

I
Ingo Molnar 已提交
3016 3017 3018
	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;
3019

I
Ingo Molnar 已提交
3020
		/* scale is effectively 1 << i now, and >> i divides by scale */
3021

I
Ingo Molnar 已提交
3022 3023
		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3024 3025 3026 3027 3028 3029 3030
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3031 3032
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3033

3034
	calc_load_account_active(this_rq);
3035 3036
}

I
Ingo Molnar 已提交
3037
#ifdef CONFIG_SMP
3038

3039
/*
P
Peter Zijlstra 已提交
3040 3041
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3042
 */
P
Peter Zijlstra 已提交
3043
void sched_exec(void)
3044
{
P
Peter Zijlstra 已提交
3045
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3046
	unsigned long flags;
3047
	struct rq *rq;
3048
	int dest_cpu;
3049

L
Linus Torvalds 已提交
3050
	rq = task_rq_lock(p, &flags);
3051 3052 3053
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3054

3055
	/*
P
Peter Zijlstra 已提交
3056
	 * select_task_rq() can race against ->cpus_allowed
3057
	 */
3058
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3059 3060
	    likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
		struct migration_arg arg = { p, dest_cpu };
3061

L
Linus Torvalds 已提交
3062
		task_rq_unlock(rq, &flags);
3063
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3064 3065
		return;
	}
3066
unlock:
L
Linus Torvalds 已提交
3067 3068
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3069

L
Linus Torvalds 已提交
3070 3071 3072 3073 3074 3075 3076
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3077
 * Return any ns on the sched_clock that have not yet been accounted in
3078
 * @p in case that task is currently running.
3079 3080
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3081
 */
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3096
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3097 3098
{
	unsigned long flags;
3099
	struct rq *rq;
3100
	u64 ns = 0;
3101

3102
	rq = task_rq_lock(p, &flags);
3103 3104
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3105

3106 3107
	return ns;
}
3108

3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3126

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3146
	task_rq_unlock(rq, &flags);
3147

L
Linus Torvalds 已提交
3148 3149 3150 3151 3152 3153 3154
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3155
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3156
 */
3157 3158
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3159 3160 3161 3162
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3163
	/* Add user time to process. */
L
Linus Torvalds 已提交
3164
	p->utime = cputime_add(p->utime, cputime);
3165
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3166
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3167 3168 3169 3170 3171 3172 3173

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3174 3175

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3176 3177
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3178 3179
}

3180 3181 3182 3183
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3184
 * @cputime_scaled: cputime scaled by cpu frequency
3185
 */
3186 3187
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3188 3189 3190 3191 3192 3193
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3194
	/* Add guest time to process. */
3195
	p->utime = cputime_add(p->utime, cputime);
3196
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3197
	account_group_user_time(p, cputime);
3198 3199
	p->gtime = cputime_add(p->gtime, cputime);

3200
	/* Add guest time to cpustat. */
3201 3202 3203 3204 3205 3206 3207
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3208 3209
}

L
Linus Torvalds 已提交
3210 3211 3212 3213 3214
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3215
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3216 3217
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3218
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3219 3220 3221 3222
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3223
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3224
		account_guest_time(p, cputime, cputime_scaled);
3225 3226
		return;
	}
3227

3228
	/* Add system time to process. */
L
Linus Torvalds 已提交
3229
	p->stime = cputime_add(p->stime, cputime);
3230
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3231
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3232 3233 3234 3235 3236 3237 3238 3239

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3240 3241
		cpustat->system = cputime64_add(cpustat->system, tmp);

3242 3243
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3244 3245 3246 3247
	/* Account for system time used */
	acct_update_integrals(p);
}

3248
/*
L
Linus Torvalds 已提交
3249 3250
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3251
 */
3252
void account_steal_time(cputime_t cputime)
3253
{
3254 3255 3256 3257
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3258 3259
}

L
Linus Torvalds 已提交
3260
/*
3261 3262
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3263
 */
3264
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3265 3266
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3267
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3268
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3269

3270 3271 3272 3273
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3274 3275
}

3276 3277 3278 3279 3280 3281 3282 3283 3284
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3285
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3286 3287 3288
	struct rq *rq = this_rq();

	if (user_tick)
3289
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3290
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3291
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3292 3293
				    one_jiffy_scaled);
	else
3294
		account_idle_time(cputime_one_jiffy);
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3314 3315
}

3316 3317
#endif

3318 3319 3320 3321
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3322
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3323
{
3324 3325
	*ut = p->utime;
	*st = p->stime;
3326 3327
}

3328
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3329
{
3330 3331 3332 3333 3334 3335
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3336 3337
}
#else
3338 3339

#ifndef nsecs_to_cputime
3340
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3341 3342
#endif

3343
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3344
{
3345
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3346 3347 3348 3349

	/*
	 * Use CFS's precise accounting:
	 */
3350
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3351 3352

	if (total) {
3353 3354 3355
		u64 temp;

		temp = (u64)(rtime * utime);
3356
		do_div(temp, total);
3357 3358 3359
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3360

3361 3362 3363
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3364
	p->prev_utime = max(p->prev_utime, utime);
3365
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3366

3367 3368
	*ut = p->prev_utime;
	*st = p->prev_stime;
3369 3370
}

3371 3372 3373 3374
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3375
{
3376 3377 3378
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3379

3380
	thread_group_cputime(p, &cputime);
3381

3382 3383
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3384

3385 3386
	if (total) {
		u64 temp;
3387

3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3400 3401 3402
}
#endif

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3414
	struct task_struct *curr = rq->curr;
3415 3416

	sched_clock_tick();
I
Ingo Molnar 已提交
3417

3418
	raw_spin_lock(&rq->lock);
3419
	update_rq_clock(rq);
3420
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3421
	curr->sched_class->task_tick(rq, curr, 0);
3422
	raw_spin_unlock(&rq->lock);
3423

3424
	perf_event_task_tick(curr);
3425

3426
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3427 3428
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3429
#endif
L
Linus Torvalds 已提交
3430 3431
}

3432
notrace unsigned long get_parent_ip(unsigned long addr)
3433 3434 3435 3436 3437 3438 3439 3440
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3441

3442 3443 3444
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3445
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3446
{
3447
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3448 3449 3450
	/*
	 * Underflow?
	 */
3451 3452
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3453
#endif
L
Linus Torvalds 已提交
3454
	preempt_count() += val;
3455
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3456 3457 3458
	/*
	 * Spinlock count overflowing soon?
	 */
3459 3460
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3461 3462 3463
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3464 3465 3466
}
EXPORT_SYMBOL(add_preempt_count);

3467
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3468
{
3469
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3470 3471 3472
	/*
	 * Underflow?
	 */
3473
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3474
		return;
L
Linus Torvalds 已提交
3475 3476 3477
	/*
	 * Is the spinlock portion underflowing?
	 */
3478 3479 3480
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3481
#endif
3482

3483 3484
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3485 3486 3487 3488 3489 3490 3491
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3492
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3493
 */
I
Ingo Molnar 已提交
3494
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3495
{
3496 3497
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3498 3499
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3500

I
Ingo Molnar 已提交
3501
	debug_show_held_locks(prev);
3502
	print_modules();
I
Ingo Molnar 已提交
3503 3504
	if (irqs_disabled())
		print_irqtrace_events(prev);
3505 3506 3507 3508 3509

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3510
}
L
Linus Torvalds 已提交
3511

I
Ingo Molnar 已提交
3512 3513 3514 3515 3516
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3517
	/*
I
Ingo Molnar 已提交
3518
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3519 3520 3521
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3522
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3523 3524
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3525 3526
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3527
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3528 3529
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3530 3531
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3532 3533
	}
#endif
I
Ingo Molnar 已提交
3534 3535
}

P
Peter Zijlstra 已提交
3536
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3537
{
3538 3539 3540
	if (prev->se.on_rq)
		update_rq_clock(rq);
	rq->skip_clock_update = 0;
P
Peter Zijlstra 已提交
3541
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3542 3543
}

I
Ingo Molnar 已提交
3544 3545 3546 3547
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3548
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3549
{
3550
	const struct sched_class *class;
I
Ingo Molnar 已提交
3551
	struct task_struct *p;
L
Linus Torvalds 已提交
3552 3553

	/*
I
Ingo Molnar 已提交
3554 3555
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3556
	 */
I
Ingo Molnar 已提交
3557
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3558
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3559 3560
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3561 3562
	}

I
Ingo Molnar 已提交
3563 3564
	class = sched_class_highest;
	for ( ; ; ) {
3565
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3566 3567 3568 3569 3570 3571 3572 3573 3574
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3575

I
Ingo Molnar 已提交
3576 3577 3578
/*
 * schedule() is the main scheduler function.
 */
3579
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3580 3581
{
	struct task_struct *prev, *next;
3582
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3583
	struct rq *rq;
3584
	int cpu;
I
Ingo Molnar 已提交
3585

3586 3587
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3588 3589
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3590
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3591 3592 3593 3594 3595 3596 3597
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3598

3599
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3600
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3601

3602
	raw_spin_lock_irq(&rq->lock);
3603
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3604 3605

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3606
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
3607
			prev->state = TASK_RUNNING;
3608
		else
3609
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
I
Ingo Molnar 已提交
3610
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3611 3612
	}

3613
	pre_schedule(rq, prev);
3614

I
Ingo Molnar 已提交
3615
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3616 3617
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3618
	put_prev_task(rq, prev);
3619
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3620 3621

	if (likely(prev != next)) {
3622
		sched_info_switch(prev, next);
3623
		perf_event_task_sched_out(prev, next);
3624

L
Linus Torvalds 已提交
3625 3626 3627 3628
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3629
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3630 3631 3632 3633 3634 3635
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3636
	} else
3637
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3638

3639
	post_schedule(rq);
L
Linus Torvalds 已提交
3640

3641 3642 3643
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3644
		goto need_resched_nonpreemptible;
3645
	}
P
Peter Zijlstra 已提交
3646

L
Linus Torvalds 已提交
3647
	preempt_enable_no_resched();
3648
	if (need_resched())
L
Linus Torvalds 已提交
3649 3650 3651 3652
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3653
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
3673
		return 0;
3674 3675 3676 3677 3678 3679 3680 3681 3682
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
3683
		return 0;
3684 3685 3686 3687 3688 3689

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
3690
		return 0;
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
3709

3710 3711 3712 3713
	return 1;
}
#endif

L
Linus Torvalds 已提交
3714 3715
#ifdef CONFIG_PREEMPT
/*
3716
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3717
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3718 3719 3720 3721 3722
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
3723

L
Linus Torvalds 已提交
3724 3725
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3726
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3727
	 */
N
Nick Piggin 已提交
3728
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3729 3730
		return;

3731 3732 3733 3734
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3735

3736 3737 3738 3739 3740
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3741
	} while (need_resched());
L
Linus Torvalds 已提交
3742 3743 3744 3745
}
EXPORT_SYMBOL(preempt_schedule);

/*
3746
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3747 3748 3749 3750 3751 3752 3753
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3754

3755
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3756 3757
	BUG_ON(ti->preempt_count || !irqs_disabled());

3758 3759 3760 3761 3762 3763
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3764

3765 3766 3767 3768 3769
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3770
	} while (need_resched());
L
Linus Torvalds 已提交
3771 3772 3773 3774
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3775
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3776
			  void *key)
L
Linus Torvalds 已提交
3777
{
P
Peter Zijlstra 已提交
3778
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3779 3780 3781 3782
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3783 3784
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3785 3786 3787
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3788
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3789 3790
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3791
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3792
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3793
{
3794
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3795

3796
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3797 3798
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3799
		if (curr->func(curr, mode, wake_flags, key) &&
3800
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3810
 * @key: is directly passed to the wakeup function
3811 3812 3813
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3814
 */
3815
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3816
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3829
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3830 3831 3832
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
3833
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3834

3835 3836 3837 3838 3839
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
3840
/**
3841
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3842 3843 3844
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3845
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3846 3847 3848 3849 3850 3851 3852
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3853 3854 3855
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3856
 */
3857 3858
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3859 3860
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3861
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3862 3863 3864 3865 3866

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3867
		wake_flags = 0;
L
Linus Torvalds 已提交
3868 3869

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3870
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3871 3872
	spin_unlock_irqrestore(&q->lock, flags);
}
3873 3874 3875 3876 3877 3878 3879 3880 3881
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3882 3883
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3884 3885 3886 3887 3888 3889 3890 3891
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3892 3893 3894
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3895
 */
3896
void complete(struct completion *x)
L
Linus Torvalds 已提交
3897 3898 3899 3900 3901
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3902
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3903 3904 3905 3906
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3907 3908 3909 3910 3911
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3912 3913 3914
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3915
 */
3916
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3917 3918 3919 3920 3921
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3922
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3923 3924 3925 3926
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3927 3928
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3929 3930 3931 3932
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3933
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3934
		do {
3935
			if (signal_pending_state(state, current)) {
3936 3937
				timeout = -ERESTARTSYS;
				break;
3938 3939
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3940 3941 3942
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3943
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3944
		__remove_wait_queue(&x->wait, &wait);
3945 3946
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3947 3948
	}
	x->done--;
3949
	return timeout ?: 1;
L
Linus Torvalds 已提交
3950 3951
}

3952 3953
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3954 3955 3956 3957
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3958
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3959
	spin_unlock_irq(&x->wait.lock);
3960 3961
	return timeout;
}
L
Linus Torvalds 已提交
3962

3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3973
void __sched wait_for_completion(struct completion *x)
3974 3975
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3976
}
3977
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3978

3979 3980 3981 3982 3983 3984 3985 3986 3987
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
3988
unsigned long __sched
3989
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3990
{
3991
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3992
}
3993
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3994

3995 3996 3997 3998 3999 4000 4001
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4002
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4003
{
4004 4005 4006 4007
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4008
}
4009
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4010

4011 4012 4013 4014 4015 4016 4017 4018
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4019
unsigned long __sched
4020 4021
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4022
{
4023
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4024
}
4025
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4026

4027 4028 4029 4030 4031 4032 4033
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
unsigned long __sched
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4074
	unsigned long flags;
4075 4076
	int ret = 1;

4077
	spin_lock_irqsave(&x->wait.lock, flags);
4078 4079 4080 4081
	if (!x->done)
		ret = 0;
	else
		x->done--;
4082
	spin_unlock_irqrestore(&x->wait.lock, flags);
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4097
	unsigned long flags;
4098 4099
	int ret = 1;

4100
	spin_lock_irqsave(&x->wait.lock, flags);
4101 4102
	if (!x->done)
		ret = 0;
4103
	spin_unlock_irqrestore(&x->wait.lock, flags);
4104 4105 4106 4107
	return ret;
}
EXPORT_SYMBOL(completion_done);

4108 4109
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4110
{
I
Ingo Molnar 已提交
4111 4112 4113 4114
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4115

4116
	__set_current_state(state);
L
Linus Torvalds 已提交
4117

4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4132 4133 4134
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4135
long __sched
I
Ingo Molnar 已提交
4136
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4137
{
4138
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4139 4140 4141
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4142
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4143
{
4144
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4145 4146 4147
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4148
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4149
{
4150
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4151 4152 4153
}
EXPORT_SYMBOL(sleep_on_timeout);

4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4166
void rt_mutex_setprio(struct task_struct *p, int prio)
4167 4168
{
	unsigned long flags;
4169
	int oldprio, on_rq, running;
4170
	struct rq *rq;
4171
	const struct sched_class *prev_class;
4172 4173 4174 4175 4176

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4177
	oldprio = p->prio;
4178
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4179
	on_rq = p->se.on_rq;
4180
	running = task_current(rq, p);
4181
	if (on_rq)
4182
		dequeue_task(rq, p, 0);
4183 4184
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4185 4186 4187 4188 4189 4190

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4191 4192
	p->prio = prio;

4193 4194
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4195
	if (on_rq) {
4196
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4197 4198

		check_class_changed(rq, p, prev_class, oldprio, running);
4199 4200 4201 4202 4203 4204
	}
	task_rq_unlock(rq, &flags);
}

#endif

4205
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4206
{
I
Ingo Molnar 已提交
4207
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4208
	unsigned long flags;
4209
	struct rq *rq;
L
Linus Torvalds 已提交
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4222
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4223
	 */
4224
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4225 4226 4227
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4228
	on_rq = p->se.on_rq;
4229
	if (on_rq)
4230
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4231 4232

	p->static_prio = NICE_TO_PRIO(nice);
4233
	set_load_weight(p);
4234 4235 4236
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4237

I
Ingo Molnar 已提交
4238
	if (on_rq) {
4239
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4240
		/*
4241 4242
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4243
		 */
4244
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4245 4246 4247 4248 4249 4250 4251
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4252 4253 4254 4255 4256
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4257
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4258
{
4259 4260
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4261

4262
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4263 4264 4265
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4266 4267 4268 4269 4270 4271 4272 4273 4274
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4275
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4276
{
4277
	long nice, retval;
L
Linus Torvalds 已提交
4278 4279 4280 4281 4282 4283

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4284 4285
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4286 4287 4288
	if (increment > 40)
		increment = 40;

4289
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4290 4291 4292 4293 4294
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4295 4296 4297
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4316
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4317 4318 4319 4320 4321 4322 4323 4324
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4325
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4326 4327 4328
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4329
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4344
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4345 4346 4347 4348 4349 4350 4351 4352
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4353
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4354
{
4355
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4356 4357 4358
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4359 4360
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4361
{
I
Ingo Molnar 已提交
4362
	BUG_ON(p->se.on_rq);
4363

L
Linus Torvalds 已提交
4364 4365
	p->policy = policy;
	p->rt_priority = prio;
4366 4367 4368
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4369 4370 4371 4372
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4373
	set_load_weight(p);
L
Linus Torvalds 已提交
4374 4375
}

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4392 4393
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4394
{
4395
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4396
	unsigned long flags;
4397
	const struct sched_class *prev_class;
4398
	struct rq *rq;
4399
	int reset_on_fork;
L
Linus Torvalds 已提交
4400

4401 4402
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4403 4404
recheck:
	/* double check policy once rq lock held */
4405 4406
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4407
		policy = oldpolicy = p->policy;
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4418 4419
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4420 4421
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4422 4423
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4424
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4425
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4426
		return -EINVAL;
4427
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4428 4429
		return -EINVAL;

4430 4431 4432
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4433
	if (user && !capable(CAP_SYS_NICE)) {
4434
		if (rt_policy(policy)) {
4435 4436 4437 4438
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
4439
			rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4451 4452 4453 4454 4455 4456
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4457

4458
		/* can't change other user's priorities */
4459
		if (!check_same_owner(p))
4460
			return -EPERM;
4461 4462 4463 4464

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4465
	}
L
Linus Torvalds 已提交
4466

4467
	if (user) {
4468
#ifdef CONFIG_RT_GROUP_SCHED
4469 4470 4471 4472
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
4473 4474
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
4475
			return -EPERM;
4476 4477
#endif

4478 4479 4480 4481 4482
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4483 4484 4485 4486
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4487
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4488 4489 4490 4491
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4492
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4493 4494 4495
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4496
		__task_rq_unlock(rq);
4497
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4498 4499
		goto recheck;
	}
I
Ingo Molnar 已提交
4500
	on_rq = p->se.on_rq;
4501
	running = task_current(rq, p);
4502
	if (on_rq)
4503
		deactivate_task(rq, p, 0);
4504 4505
	if (running)
		p->sched_class->put_prev_task(rq, p);
4506

4507 4508
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4509
	oldprio = p->prio;
4510
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4511
	__setscheduler(rq, p, policy, param->sched_priority);
4512

4513 4514
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4515 4516
	if (on_rq) {
		activate_task(rq, p, 0);
4517 4518

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4519
	}
4520
	__task_rq_unlock(rq);
4521
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4522

4523 4524
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4525 4526
	return 0;
}
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4541 4542
EXPORT_SYMBOL_GPL(sched_setscheduler);

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4560 4561
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4562 4563 4564
{
	struct sched_param lparam;
	struct task_struct *p;
4565
	int retval;
L
Linus Torvalds 已提交
4566 4567 4568 4569 4570

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4571 4572 4573

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4574
	p = find_process_by_pid(pid);
4575 4576 4577
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4578

L
Linus Torvalds 已提交
4579 4580 4581 4582 4583 4584 4585 4586 4587
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4588 4589
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4590
{
4591 4592 4593 4594
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4595 4596 4597 4598 4599 4600 4601 4602
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4603
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4604 4605 4606 4607 4608 4609 4610 4611
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4612
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4613
{
4614
	struct task_struct *p;
4615
	int retval;
L
Linus Torvalds 已提交
4616 4617

	if (pid < 0)
4618
		return -EINVAL;
L
Linus Torvalds 已提交
4619 4620

	retval = -ESRCH;
4621
	rcu_read_lock();
L
Linus Torvalds 已提交
4622 4623 4624 4625
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4626 4627
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4628
	}
4629
	rcu_read_unlock();
L
Linus Torvalds 已提交
4630 4631 4632 4633
	return retval;
}

/**
4634
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4635 4636 4637
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4638
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4639 4640
{
	struct sched_param lp;
4641
	struct task_struct *p;
4642
	int retval;
L
Linus Torvalds 已提交
4643 4644

	if (!param || pid < 0)
4645
		return -EINVAL;
L
Linus Torvalds 已提交
4646

4647
	rcu_read_lock();
L
Linus Torvalds 已提交
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4658
	rcu_read_unlock();
L
Linus Torvalds 已提交
4659 4660 4661 4662 4663 4664 4665 4666 4667

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4668
	rcu_read_unlock();
L
Linus Torvalds 已提交
4669 4670 4671
	return retval;
}

4672
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4673
{
4674
	cpumask_var_t cpus_allowed, new_mask;
4675 4676
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4677

4678
	get_online_cpus();
4679
	rcu_read_lock();
L
Linus Torvalds 已提交
4680 4681 4682

	p = find_process_by_pid(pid);
	if (!p) {
4683
		rcu_read_unlock();
4684
		put_online_cpus();
L
Linus Torvalds 已提交
4685 4686 4687
		return -ESRCH;
	}

4688
	/* Prevent p going away */
L
Linus Torvalds 已提交
4689
	get_task_struct(p);
4690
	rcu_read_unlock();
L
Linus Torvalds 已提交
4691

4692 4693 4694 4695 4696 4697 4698 4699
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4700
	retval = -EPERM;
4701
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4702 4703
		goto out_unlock;

4704 4705 4706 4707
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4708 4709
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4710
 again:
4711
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4712

P
Paul Menage 已提交
4713
	if (!retval) {
4714 4715
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4716 4717 4718 4719 4720
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4721
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4722 4723 4724
			goto again;
		}
	}
L
Linus Torvalds 已提交
4725
out_unlock:
4726 4727 4728 4729
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4730
	put_task_struct(p);
4731
	put_online_cpus();
L
Linus Torvalds 已提交
4732 4733 4734 4735
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4736
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4737
{
4738 4739 4740 4741 4742
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4743 4744 4745 4746 4747 4748 4749 4750 4751
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4752 4753
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4754
{
4755
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4756 4757
	int retval;

4758 4759
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4760

4761 4762 4763 4764 4765
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4766 4767
}

4768
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4769
{
4770
	struct task_struct *p;
4771 4772
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4773 4774
	int retval;

4775
	get_online_cpus();
4776
	rcu_read_lock();
L
Linus Torvalds 已提交
4777 4778 4779 4780 4781 4782

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4783 4784 4785 4786
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4787
	rq = task_rq_lock(p, &flags);
4788
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4789
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4790 4791

out_unlock:
4792
	rcu_read_unlock();
4793
	put_online_cpus();
L
Linus Torvalds 已提交
4794

4795
	return retval;
L
Linus Torvalds 已提交
4796 4797 4798 4799 4800 4801 4802 4803
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4804 4805
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4806 4807
{
	int ret;
4808
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4809

A
Anton Blanchard 已提交
4810
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4811 4812
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4813 4814
		return -EINVAL;

4815 4816
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4817

4818 4819
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4820
		size_t retlen = min_t(size_t, len, cpumask_size());
4821 4822

		if (copy_to_user(user_mask_ptr, mask, retlen))
4823 4824
			ret = -EFAULT;
		else
4825
			ret = retlen;
4826 4827
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4828

4829
	return ret;
L
Linus Torvalds 已提交
4830 4831 4832 4833 4834
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4835 4836
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4837
 */
4838
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4839
{
4840
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4841

4842
	schedstat_inc(rq, yld_count);
4843
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4844 4845 4846 4847 4848 4849

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4850
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4851
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4852 4853 4854 4855 4856 4857 4858
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4859 4860 4861 4862 4863
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4864
static void __cond_resched(void)
L
Linus Torvalds 已提交
4865
{
4866 4867 4868
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4869 4870
}

4871
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4872
{
P
Peter Zijlstra 已提交
4873
	if (should_resched()) {
L
Linus Torvalds 已提交
4874 4875 4876 4877 4878
		__cond_resched();
		return 1;
	}
	return 0;
}
4879
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4880 4881

/*
4882
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4883 4884
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4885
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4886 4887 4888
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4889
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4890
{
P
Peter Zijlstra 已提交
4891
	int resched = should_resched();
J
Jan Kara 已提交
4892 4893
	int ret = 0;

4894 4895
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4896
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4897
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4898
		if (resched)
N
Nick Piggin 已提交
4899 4900 4901
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4902
		ret = 1;
L
Linus Torvalds 已提交
4903 4904
		spin_lock(lock);
	}
J
Jan Kara 已提交
4905
	return ret;
L
Linus Torvalds 已提交
4906
}
4907
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4908

4909
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4910 4911 4912
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4913
	if (should_resched()) {
4914
		local_bh_enable();
L
Linus Torvalds 已提交
4915 4916 4917 4918 4919 4920
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4921
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4922 4923 4924 4925

/**
 * yield - yield the current processor to other threads.
 *
4926
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4937
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4938 4939 4940 4941
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4942
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4943

4944
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4945
	atomic_inc(&rq->nr_iowait);
4946
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4947
	schedule();
4948
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4949
	atomic_dec(&rq->nr_iowait);
4950
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4951 4952 4953 4954 4955
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4956
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4957 4958
	long ret;

4959
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4960
	atomic_inc(&rq->nr_iowait);
4961
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4962
	ret = schedule_timeout(timeout);
4963
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4964
	atomic_dec(&rq->nr_iowait);
4965
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4976
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4977 4978 4979 4980 4981 4982 4983 4984 4985
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4986
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4987
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5001
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5002 5003 5004 5005 5006 5007 5008 5009 5010
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5011
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5012
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5026
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5027
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5028
{
5029
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5030
	unsigned int time_slice;
5031 5032
	unsigned long flags;
	struct rq *rq;
5033
	int retval;
L
Linus Torvalds 已提交
5034 5035 5036
	struct timespec t;

	if (pid < 0)
5037
		return -EINVAL;
L
Linus Torvalds 已提交
5038 5039

	retval = -ESRCH;
5040
	rcu_read_lock();
L
Linus Torvalds 已提交
5041 5042 5043 5044 5045 5046 5047 5048
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5049 5050 5051
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5052

5053
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5054
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5055 5056
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5057

L
Linus Torvalds 已提交
5058
out_unlock:
5059
	rcu_read_unlock();
L
Linus Torvalds 已提交
5060 5061 5062
	return retval;
}

5063
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5064

5065
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5066 5067
{
	unsigned long free = 0;
5068
	unsigned state;
L
Linus Torvalds 已提交
5069 5070

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5071
	printk(KERN_INFO "%-13.13s %c", p->comm,
5072
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5073
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5074
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5075
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5076
	else
P
Peter Zijlstra 已提交
5077
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5078 5079
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5080
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5081
	else
P
Peter Zijlstra 已提交
5082
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5083 5084
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5085
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5086
#endif
P
Peter Zijlstra 已提交
5087
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5088 5089
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5090

5091
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5092 5093
}

I
Ingo Molnar 已提交
5094
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5095
{
5096
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5097

5098
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5099 5100
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5101
#else
P
Peter Zijlstra 已提交
5102 5103
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5104 5105 5106 5107 5108 5109 5110 5111
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5112
		if (!state_filter || (p->state & state_filter))
5113
			sched_show_task(p);
L
Linus Torvalds 已提交
5114 5115
	} while_each_thread(g, p);

5116 5117
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5118 5119 5120
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5121
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5122 5123 5124
	/*
	 * Only show locks if all tasks are dumped:
	 */
5125
	if (!state_filter)
I
Ingo Molnar 已提交
5126
		debug_show_all_locks();
L
Linus Torvalds 已提交
5127 5128
}

I
Ingo Molnar 已提交
5129 5130
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5131
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5132 5133
}

5134 5135 5136 5137 5138 5139 5140 5141
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5142
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5143
{
5144
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5145 5146
	unsigned long flags;

5147
	raw_spin_lock_irqsave(&rq->lock, flags);
5148

I
Ingo Molnar 已提交
5149
	__sched_fork(idle);
5150
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5151 5152
	idle->se.exec_start = sched_clock();

5153
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5154
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5155 5156

	rq->curr = rq->idle = idle;
5157 5158 5159
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5160
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5161 5162

	/* Set the preempt count _outside_ the spinlocks! */
5163 5164 5165
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5166
	task_thread_info(idle)->preempt_count = 0;
5167
#endif
I
Ingo Molnar 已提交
5168 5169 5170 5171
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5172
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5173 5174 5175 5176 5177 5178 5179
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5180
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5181
 */
5182
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5183

I
Ingo Molnar 已提交
5184 5185 5186 5187 5188 5189 5190 5191 5192
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5193
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5194
{
5195
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5210

5211 5212
	return factor;
}
I
Ingo Molnar 已提交
5213

5214 5215 5216
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5217

5218 5219 5220 5221 5222 5223 5224 5225
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5226

5227 5228 5229
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5230 5231
}

L
Linus Torvalds 已提交
5232 5233 5234 5235
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5236 5237 5238 5239 5240 5241
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5242
 *    it and puts it into the right queue.
5243 5244
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5245 5246 5247 5248 5249 5250 5251 5252
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5253
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5254 5255
 * call is not atomic; no spinlocks may be held.
 */
5256
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5257 5258
{
	unsigned long flags;
5259
	struct rq *rq;
5260
	unsigned int dest_cpu;
5261
	int ret = 0;
L
Linus Torvalds 已提交
5262

P
Peter Zijlstra 已提交
5263 5264 5265 5266 5267 5268 5269
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5270
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5271 5272 5273 5274
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5275

5276
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5277 5278 5279 5280
		ret = -EINVAL;
		goto out;
	}

5281
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5282
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5283 5284 5285 5286
		ret = -EINVAL;
		goto out;
	}

5287
	if (p->sched_class->set_cpus_allowed)
5288
		p->sched_class->set_cpus_allowed(p, new_mask);
5289
	else {
5290 5291
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5292 5293
	}

L
Linus Torvalds 已提交
5294
	/* Can the task run on the task's current CPU? If so, we're done */
5295
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5296 5297
		goto out;

5298 5299 5300
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
	if (migrate_task(p, dest_cpu)) {
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5301 5302
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
5303
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5304 5305 5306 5307 5308
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5309

L
Linus Torvalds 已提交
5310 5311
	return ret;
}
5312
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5313 5314

/*
I
Ingo Molnar 已提交
5315
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5316 5317 5318 5319 5320 5321
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5322 5323
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5324
 */
5325
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5326
{
5327
	struct rq *rq_dest, *rq_src;
5328
	int ret = 0;
L
Linus Torvalds 已提交
5329

5330
	if (unlikely(!cpu_active(dest_cpu)))
5331
		return ret;
L
Linus Torvalds 已提交
5332 5333 5334 5335 5336 5337 5338

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5339
		goto done;
L
Linus Torvalds 已提交
5340
	/* Affinity changed (again). */
5341
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5342
		goto fail;
L
Linus Torvalds 已提交
5343

5344 5345 5346 5347 5348
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5349
		deactivate_task(rq_src, p, 0);
5350
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5351
		activate_task(rq_dest, p, 0);
5352
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5353
	}
L
Linus Torvalds 已提交
5354
done:
5355
	ret = 1;
L
Linus Torvalds 已提交
5356
fail:
L
Linus Torvalds 已提交
5357
	double_rq_unlock(rq_src, rq_dest);
5358
	return ret;
L
Linus Torvalds 已提交
5359 5360 5361
}

/*
5362 5363 5364
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5365
 */
5366
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5367
{
5368
	struct migration_arg *arg = data;
5369

5370 5371 5372 5373
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5374
	local_irq_disable();
5375
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5376
	local_irq_enable();
L
Linus Torvalds 已提交
5377
	return 0;
5378 5379
}

L
Linus Torvalds 已提交
5380
#ifdef CONFIG_HOTPLUG_CPU
5381
/*
5382
 * Figure out where task on dead CPU should go, use force if necessary.
5383
 */
5384
void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5385
{
5386 5387 5388
	struct rq *rq = cpu_rq(dead_cpu);
	int needs_cpu, uninitialized_var(dest_cpu);
	unsigned long flags;
5389

5390
	local_irq_save(flags);
5391

5392 5393 5394 5395 5396
	raw_spin_lock(&rq->lock);
	needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
	if (needs_cpu)
		dest_cpu = select_fallback_rq(dead_cpu, p);
	raw_spin_unlock(&rq->lock);
5397 5398 5399 5400
	/*
	 * It can only fail if we race with set_cpus_allowed(),
	 * in the racer should migrate the task anyway.
	 */
5401
	if (needs_cpu)
5402
		__migrate_task(p, dead_cpu, dest_cpu);
5403
	local_irq_restore(flags);
L
Linus Torvalds 已提交
5404 5405 5406 5407 5408 5409 5410 5411 5412
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5413
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5414
{
5415
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5429
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5430

5431
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5432

5433 5434
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5435 5436
			continue;

5437 5438 5439
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5440

5441
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5442 5443
}

I
Ingo Molnar 已提交
5444 5445
/*
 * Schedules idle task to be the next runnable task on current CPU.
5446 5447
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5448 5449 5450
 */
void sched_idle_next(void)
{
5451
	int this_cpu = smp_processor_id();
5452
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5453 5454 5455 5456
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5457
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5458

5459 5460 5461
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5462
	 */
5463
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5464

I
Ingo Molnar 已提交
5465
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5466

5467
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5468

5469
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5470 5471
}

5472 5473
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5487
/* called under rq->lock with disabled interrupts */
5488
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5489
{
5490
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5491 5492

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5493
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5494 5495

	/* Cannot have done final schedule yet: would have vanished. */
5496
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5497

5498
	get_task_struct(p);
L
Linus Torvalds 已提交
5499 5500 5501

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5502
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5503 5504
	 * fine.
	 */
5505
	raw_spin_unlock_irq(&rq->lock);
5506
	move_task_off_dead_cpu(dead_cpu, p);
5507
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5508

5509
	put_task_struct(p);
L
Linus Torvalds 已提交
5510 5511 5512 5513 5514
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5515
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5516
	struct task_struct *next;
5517

I
Ingo Molnar 已提交
5518 5519 5520
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
5521
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5522 5523
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5524
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5525
		migrate_dead(dead_cpu, next);
5526

L
Linus Torvalds 已提交
5527 5528
	}
}
5529 5530 5531 5532 5533 5534 5535

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5536
	rq->calc_load_active = 0;
5537
}
L
Linus Torvalds 已提交
5538 5539
#endif /* CONFIG_HOTPLUG_CPU */

5540 5541 5542
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5543 5544
	{
		.procname	= "sched_domain",
5545
		.mode		= 0555,
5546
	},
5547
	{}
5548 5549 5550
};

static struct ctl_table sd_ctl_root[] = {
5551 5552
	{
		.procname	= "kernel",
5553
		.mode		= 0555,
5554 5555
		.child		= sd_ctl_dir,
	},
5556
	{}
5557 5558 5559 5560 5561
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5562
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5563 5564 5565 5566

	return entry;
}

5567 5568
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5569
	struct ctl_table *entry;
5570

5571 5572 5573
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5574
	 * will always be set. In the lowest directory the names are
5575 5576 5577
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5578 5579
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5580 5581 5582
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5583 5584 5585 5586 5587

	kfree(*tablep);
	*tablep = NULL;
}

5588
static void
5589
set_table_entry(struct ctl_table *entry,
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5603
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5604

5605 5606 5607
	if (table == NULL)
		return NULL;

5608
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5609
		sizeof(long), 0644, proc_doulongvec_minmax);
5610
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5611
		sizeof(long), 0644, proc_doulongvec_minmax);
5612
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5613
		sizeof(int), 0644, proc_dointvec_minmax);
5614
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5615
		sizeof(int), 0644, proc_dointvec_minmax);
5616
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5617
		sizeof(int), 0644, proc_dointvec_minmax);
5618
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5619
		sizeof(int), 0644, proc_dointvec_minmax);
5620
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5621
		sizeof(int), 0644, proc_dointvec_minmax);
5622
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5623
		sizeof(int), 0644, proc_dointvec_minmax);
5624
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5625
		sizeof(int), 0644, proc_dointvec_minmax);
5626
	set_table_entry(&table[9], "cache_nice_tries",
5627 5628
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5629
	set_table_entry(&table[10], "flags", &sd->flags,
5630
		sizeof(int), 0644, proc_dointvec_minmax);
5631 5632 5633
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5634 5635 5636 5637

	return table;
}

5638
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5639 5640 5641 5642 5643 5644 5645 5646 5647
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5648 5649
	if (table == NULL)
		return NULL;
5650 5651 5652 5653 5654

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5655
		entry->mode = 0555;
5656 5657 5658 5659 5660 5661 5662 5663
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5664
static void register_sched_domain_sysctl(void)
5665
{
5666
	int i, cpu_num = num_possible_cpus();
5667 5668 5669
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5670 5671 5672
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5673 5674 5675
	if (entry == NULL)
		return;

5676
	for_each_possible_cpu(i) {
5677 5678
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5679
		entry->mode = 0555;
5680
		entry->child = sd_alloc_ctl_cpu_table(i);
5681
		entry++;
5682
	}
5683 5684

	WARN_ON(sd_sysctl_header);
5685 5686
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5687

5688
/* may be called multiple times per register */
5689 5690
static void unregister_sched_domain_sysctl(void)
{
5691 5692
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5693
	sd_sysctl_header = NULL;
5694 5695
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5696
}
5697
#else
5698 5699 5700 5701
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5702 5703 5704 5705
{
}
#endif

5706 5707 5708 5709 5710
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5711
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5731
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5732 5733 5734 5735
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5736 5737 5738 5739
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5740 5741
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5742
{
5743
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5744
	unsigned long flags;
5745
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5746 5747

	switch (action) {
5748

L
Linus Torvalds 已提交
5749
	case CPU_UP_PREPARE:
5750
	case CPU_UP_PREPARE_FROZEN:
5751
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5752
		break;
5753

L
Linus Torvalds 已提交
5754
	case CPU_ONLINE:
5755
	case CPU_ONLINE_FROZEN:
5756
		/* Update our root-domain */
5757
		raw_spin_lock_irqsave(&rq->lock, flags);
5758
		if (rq->rd) {
5759
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5760 5761

			set_rq_online(rq);
5762
		}
5763
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5764
		break;
5765

L
Linus Torvalds 已提交
5766 5767
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
5768
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5769 5770
		migrate_live_tasks(cpu);
		/* Idle task back to normal (off runqueue, low prio) */
5771
		raw_spin_lock_irq(&rq->lock);
5772
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5773 5774
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5775
		migrate_dead_tasks(cpu);
5776
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5777 5778
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5779
		calc_global_load_remove(rq);
L
Linus Torvalds 已提交
5780
		break;
G
Gregory Haskins 已提交
5781

5782 5783
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5784
		/* Update our root-domain */
5785
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5786
		if (rq->rd) {
5787
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5788
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5789
		}
5790
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5791
		break;
L
Linus Torvalds 已提交
5792 5793 5794 5795 5796
#endif
	}
	return NOTIFY_OK;
}

5797 5798 5799
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5800
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5801
 */
5802
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5803 5804 5805 5806
	.notifier_call = migration_call,
	.priority = 10
};

5807
static int __init migration_init(void)
L
Linus Torvalds 已提交
5808 5809
{
	void *cpu = (void *)(long)smp_processor_id();
5810
	int err;
5811 5812

	/* Start one for the boot CPU: */
5813 5814
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5815 5816
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5817

5818
	return 0;
L
Linus Torvalds 已提交
5819
}
5820
early_initcall(migration_init);
L
Linus Torvalds 已提交
5821 5822 5823
#endif

#ifdef CONFIG_SMP
5824

5825
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5826

5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5837
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5838
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5839
{
I
Ingo Molnar 已提交
5840
	struct sched_group *group = sd->groups;
5841
	char str[256];
L
Linus Torvalds 已提交
5842

R
Rusty Russell 已提交
5843
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5844
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5845 5846 5847 5848

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5849
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5850
		if (sd->parent)
P
Peter Zijlstra 已提交
5851 5852
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5853
		return -1;
N
Nick Piggin 已提交
5854 5855
	}

P
Peter Zijlstra 已提交
5856
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5857

5858
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5859 5860
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5861
	}
5862
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5863 5864
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5865
	}
L
Linus Torvalds 已提交
5866

I
Ingo Molnar 已提交
5867
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5868
	do {
I
Ingo Molnar 已提交
5869
		if (!group) {
P
Peter Zijlstra 已提交
5870 5871
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5872 5873 5874
			break;
		}

5875
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
5876 5877 5878
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5879 5880
			break;
		}
L
Linus Torvalds 已提交
5881

5882
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5883 5884
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5885 5886
			break;
		}
L
Linus Torvalds 已提交
5887

5888
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5889 5890
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5891 5892
			break;
		}
L
Linus Torvalds 已提交
5893

5894
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5895

R
Rusty Russell 已提交
5896
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5897

P
Peter Zijlstra 已提交
5898
		printk(KERN_CONT " %s", str);
5899
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
5900 5901
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
5902
		}
L
Linus Torvalds 已提交
5903

I
Ingo Molnar 已提交
5904 5905
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5906
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5907

5908
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5909
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5910

5911 5912
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5913 5914
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5915 5916
	return 0;
}
L
Linus Torvalds 已提交
5917

I
Ingo Molnar 已提交
5918 5919
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
5920
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
5921
	int level = 0;
L
Linus Torvalds 已提交
5922

5923 5924 5925
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
5926 5927 5928 5929
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5930

I
Ingo Molnar 已提交
5931 5932
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

5933
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
5934 5935 5936 5937
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
5938
	for (;;) {
5939
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
5940
			break;
L
Linus Torvalds 已提交
5941 5942
		level++;
		sd = sd->parent;
5943
		if (!sd)
I
Ingo Molnar 已提交
5944 5945
			break;
	}
5946
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
5947
}
5948
#else /* !CONFIG_SCHED_DEBUG */
5949
# define sched_domain_debug(sd, cpu) do { } while (0)
5950
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5951

5952
static int sd_degenerate(struct sched_domain *sd)
5953
{
5954
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5955 5956 5957 5958 5959 5960
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5961 5962 5963
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5964 5965 5966 5967 5968
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5969
	if (sd->flags & (SD_WAKE_AFFINE))
5970 5971 5972 5973 5974
		return 0;

	return 1;
}

5975 5976
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5977 5978 5979 5980 5981 5982
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5983
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5984 5985 5986 5987 5988 5989 5990
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5991 5992 5993
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5994 5995
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5996 5997 5998 5999 6000 6001 6002
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6003 6004
static void free_rootdomain(struct root_domain *rd)
{
6005 6006
	synchronize_sched();

6007 6008
	cpupri_cleanup(&rd->cpupri);

6009 6010 6011 6012 6013 6014
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6015 6016
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6017
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6018 6019
	unsigned long flags;

6020
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6021 6022

	if (rq->rd) {
I
Ingo Molnar 已提交
6023
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6024

6025
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6026
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6027

6028
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6029

I
Ingo Molnar 已提交
6030 6031 6032 6033 6034 6035 6036
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6037 6038 6039 6040 6041
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6042
	cpumask_set_cpu(rq->cpu, rd->span);
6043
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6044
		set_rq_online(rq);
G
Gregory Haskins 已提交
6045

6046
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6047 6048 6049

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6050 6051
}

L
Li Zefan 已提交
6052
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6053
{
6054 6055
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6056 6057
	memset(rd, 0, sizeof(*rd));

6058 6059
	if (bootmem)
		gfp = GFP_NOWAIT;
6060

6061
	if (!alloc_cpumask_var(&rd->span, gfp))
6062
		goto out;
6063
	if (!alloc_cpumask_var(&rd->online, gfp))
6064
		goto free_span;
6065
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6066
		goto free_online;
6067

P
Pekka Enberg 已提交
6068
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6069
		goto free_rto_mask;
6070
	return 0;
6071

6072 6073
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6074 6075 6076 6077
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6078
out:
6079
	return -ENOMEM;
G
Gregory Haskins 已提交
6080 6081 6082 6083
}

static void init_defrootdomain(void)
{
6084 6085
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6086 6087 6088
	atomic_set(&def_root_domain.refcount, 1);
}

6089
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6090 6091 6092 6093 6094 6095 6096
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6097 6098 6099 6100
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6101 6102 6103 6104

	return rd;
}

L
Linus Torvalds 已提交
6105
/*
I
Ingo Molnar 已提交
6106
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6107 6108
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6109 6110
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6111
{
6112
	struct rq *rq = cpu_rq(cpu);
6113 6114
	struct sched_domain *tmp;

6115 6116 6117
	for (tmp = sd; tmp; tmp = tmp->parent)
		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));

6118
	/* Remove the sched domains which do not contribute to scheduling. */
6119
	for (tmp = sd; tmp; ) {
6120 6121 6122
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6123

6124
		if (sd_parent_degenerate(tmp, parent)) {
6125
			tmp->parent = parent->parent;
6126 6127
			if (parent->parent)
				parent->parent->child = tmp;
6128 6129
		} else
			tmp = tmp->parent;
6130 6131
	}

6132
	if (sd && sd_degenerate(sd)) {
6133
		sd = sd->parent;
6134 6135 6136
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6137 6138 6139

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6140
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6141
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6142 6143 6144
}

/* cpus with isolated domains */
6145
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6146 6147 6148 6149

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6150
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6151
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6152 6153 6154
	return 1;
}

I
Ingo Molnar 已提交
6155
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6156 6157

/*
6158 6159
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6160 6161
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6162 6163 6164 6165 6166
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6167
static void
6168 6169 6170
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6171
					struct sched_group **sg,
6172 6173
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6174 6175 6176 6177
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6178
	cpumask_clear(covered);
6179

6180
	for_each_cpu(i, span) {
6181
		struct sched_group *sg;
6182
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6183 6184
		int j;

6185
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6186 6187
			continue;

6188
		cpumask_clear(sched_group_cpus(sg));
6189
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6190

6191
		for_each_cpu(j, span) {
6192
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6193 6194
				continue;

6195
			cpumask_set_cpu(j, covered);
6196
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6207
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6208

6209
#ifdef CONFIG_NUMA
6210

6211 6212 6213 6214 6215
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6216
 * Find the next node to include in a given scheduling domain. Simply
6217 6218 6219 6220
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6221
static int find_next_best_node(int node, nodemask_t *used_nodes)
6222 6223 6224 6225 6226
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6227
	for (i = 0; i < nr_node_ids; i++) {
6228
		/* Start at @node */
6229
		n = (node + i) % nr_node_ids;
6230 6231 6232 6233 6234

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6235
		if (node_isset(n, *used_nodes))
6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6247
	node_set(best_node, *used_nodes);
6248 6249 6250 6251 6252 6253
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6254
 * @span: resulting cpumask
6255
 *
I
Ingo Molnar 已提交
6256
 * Given a node, construct a good cpumask for its sched_domain to span. It
6257 6258 6259
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6260
static void sched_domain_node_span(int node, struct cpumask *span)
6261
{
6262
	nodemask_t used_nodes;
6263
	int i;
6264

6265
	cpumask_clear(span);
6266
	nodes_clear(used_nodes);
6267

6268
	cpumask_or(span, span, cpumask_of_node(node));
6269
	node_set(node, used_nodes);
6270 6271

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6272
		int next_node = find_next_best_node(node, &used_nodes);
6273

6274
		cpumask_or(span, span, cpumask_of_node(next_node));
6275 6276
	}
}
6277
#endif /* CONFIG_NUMA */
6278

6279
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6280

6281 6282
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6283 6284 6285
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6330
/*
6331
 * SMT sched-domains:
6332
 */
L
Linus Torvalds 已提交
6333
#ifdef CONFIG_SCHED_SMT
6334
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6335
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6336

I
Ingo Molnar 已提交
6337
static int
6338 6339
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6340
{
6341
	if (sg)
6342
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6343 6344
	return cpu;
}
6345
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6346

6347 6348 6349
/*
 * multi-core sched-domains:
 */
6350
#ifdef CONFIG_SCHED_MC
6351 6352
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6353
#endif /* CONFIG_SCHED_MC */
6354 6355

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6356
static int
6357 6358
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6359
{
6360
	int group;
6361

6362
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6363
	group = cpumask_first(mask);
6364
	if (sg)
6365
		*sg = &per_cpu(sched_group_core, group).sg;
6366
	return group;
6367 6368
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6369
static int
6370 6371
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6372
{
6373
	if (sg)
6374
		*sg = &per_cpu(sched_group_core, cpu).sg;
6375 6376 6377 6378
	return cpu;
}
#endif

6379 6380
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6381

I
Ingo Molnar 已提交
6382
static int
6383 6384
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6385
{
6386
	int group;
6387
#ifdef CONFIG_SCHED_MC
6388
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6389
	group = cpumask_first(mask);
6390
#elif defined(CONFIG_SCHED_SMT)
6391
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6392
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6393
#else
6394
	group = cpu;
L
Linus Torvalds 已提交
6395
#endif
6396
	if (sg)
6397
		*sg = &per_cpu(sched_group_phys, group).sg;
6398
	return group;
L
Linus Torvalds 已提交
6399 6400 6401 6402
}

#ifdef CONFIG_NUMA
/*
6403 6404 6405
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6406
 */
6407
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6408
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6409

6410
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6411
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6412

6413 6414 6415
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6416
{
6417 6418
	int group;

6419
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6420
	group = cpumask_first(nodemask);
6421 6422

	if (sg)
6423
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6424
	return group;
L
Linus Torvalds 已提交
6425
}
6426

6427 6428 6429 6430 6431 6432 6433
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6434
	do {
6435
		for_each_cpu(j, sched_group_cpus(sg)) {
6436
			struct sched_domain *sd;
6437

6438
			sd = &per_cpu(phys_domains, j).sd;
6439
			if (j != group_first_cpu(sd->groups)) {
6440 6441 6442 6443 6444 6445
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6446

6447
			sg->cpu_power += sd->groups->cpu_power;
6448 6449 6450
		}
		sg = sg->next;
	} while (sg != group_head);
6451
}
6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6473 6474
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6475 6476 6477 6478 6479 6480 6481 6482 6483
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6484
	sg->cpu_power = 0;
6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6503 6504
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6505 6506
			return -ENOMEM;
		}
6507
		sg->cpu_power = 0;
6508 6509 6510 6511 6512 6513 6514 6515 6516
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6517
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6518

6519
#ifdef CONFIG_NUMA
6520
/* Free memory allocated for various sched_group structures */
6521 6522
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6523
{
6524
	int cpu, i;
6525

6526
	for_each_cpu(cpu, cpu_map) {
6527 6528 6529 6530 6531 6532
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6533
		for (i = 0; i < nr_node_ids; i++) {
6534 6535
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6536
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6537
			if (cpumask_empty(nodemask))
6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6554
#else /* !CONFIG_NUMA */
6555 6556
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6557 6558
{
}
6559
#endif /* CONFIG_NUMA */
6560

6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6575 6576
	long power;
	int weight;
6577 6578 6579

	WARN_ON(!sd || !sd->groups);

6580
	if (cpu != group_first_cpu(sd->groups))
6581 6582 6583 6584
		return;

	child = sd->child;

6585
	sd->groups->cpu_power = 0;
6586

6587 6588 6589 6590 6591
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6592 6593 6594
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6595
		 */
P
Peter Zijlstra 已提交
6596 6597
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6598
			power /= weight;
P
Peter Zijlstra 已提交
6599 6600
			power >>= SCHED_LOAD_SHIFT;
		}
6601
		sd->groups->cpu_power += power;
6602 6603 6604 6605
		return;
	}

	/*
6606
	 * Add cpu_power of each child group to this groups cpu_power.
6607 6608 6609
	 */
	group = child->groups;
	do {
6610
		sd->groups->cpu_power += group->cpu_power;
6611 6612 6613 6614
		group = group->next;
	} while (group != child->groups);
}

6615 6616 6617 6618 6619
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6620 6621 6622 6623 6624 6625
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6626
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6627

6628 6629 6630 6631 6632
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6633
	sd->level = SD_LV_##type;				\
6634
	SD_INIT_NAME(sd, type);					\
6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6649 6650 6651 6652
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6653 6654 6655 6656 6657 6658
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6677
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6678 6679
	} else {
		/* turn on idle balance on this domain */
6680
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6681 6682 6683
	}
}

6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6704
#ifdef CONFIG_NUMA
6705 6706 6707 6708 6709 6710 6711
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6712
#endif
6713 6714 6715 6716
	case sa_none:
		break;
	}
}
6717

6718 6719 6720
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6721
#ifdef CONFIG_NUMA
6722 6723 6724 6725 6726 6727 6728 6729 6730 6731
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6732
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6733
		return sa_notcovered;
6734
	}
6735
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6736
#endif
6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6749
		printk(KERN_WARNING "Cannot alloc root domain\n");
6750
		return sa_tmpmask;
G
Gregory Haskins 已提交
6751
	}
6752 6753
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6754

6755 6756 6757 6758
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6759
#ifdef CONFIG_NUMA
6760
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6761

6762 6763 6764 6765 6766
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6767
		set_domain_attribute(sd, attr);
6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6782
#endif
6783 6784
	return sd;
}
L
Linus Torvalds 已提交
6785

6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6801

6802 6803 6804 6805 6806
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
6807
#ifdef CONFIG_SCHED_MC
6808 6809 6810 6811 6812 6813 6814
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6815
#endif
6816 6817
	return sd;
}
6818

6819 6820 6821 6822 6823
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
6824
#ifdef CONFIG_SCHED_SMT
6825 6826 6827 6828 6829 6830 6831
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
6832
#endif
6833 6834
	return sd;
}
L
Linus Torvalds 已提交
6835

6836 6837 6838 6839
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
6840
#ifdef CONFIG_SCHED_SMT
6841 6842 6843 6844 6845 6846 6847 6848
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6849
#endif
6850
#ifdef CONFIG_SCHED_MC
6851 6852 6853 6854 6855 6856 6857
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
6858
#endif
6859 6860 6861 6862 6863 6864 6865
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6866
#ifdef CONFIG_NUMA
6867 6868 6869 6870 6871
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
6872 6873
	default:
		break;
6874
	}
6875
}
6876

6877 6878 6879 6880 6881 6882 6883 6884 6885
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
6886
	struct sched_domain *sd;
6887
	int i;
6888
#ifdef CONFIG_NUMA
6889
	d.sd_allnodes = 0;
6890
#endif
6891

6892 6893 6894 6895
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
6896

L
Linus Torvalds 已提交
6897
	/*
6898
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6899
	 */
6900
	for_each_cpu(i, cpu_map) {
6901 6902
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
6903

6904
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
6905
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
6906
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
6907
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
6908
	}
6909

6910
	for_each_cpu(i, cpu_map) {
6911
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
6912
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
6913
	}
6914

L
Linus Torvalds 已提交
6915
	/* Set up physical groups */
6916 6917
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
6918

L
Linus Torvalds 已提交
6919 6920
#ifdef CONFIG_NUMA
	/* Set up node groups */
6921 6922
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
6923

6924 6925
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
6926
			goto error;
L
Linus Torvalds 已提交
6927 6928 6929
#endif

	/* Calculate CPU power for physical packages and nodes */
6930
#ifdef CONFIG_SCHED_SMT
6931
	for_each_cpu(i, cpu_map) {
6932
		sd = &per_cpu(cpu_domains, i).sd;
6933
		init_sched_groups_power(i, sd);
6934
	}
L
Linus Torvalds 已提交
6935
#endif
6936
#ifdef CONFIG_SCHED_MC
6937
	for_each_cpu(i, cpu_map) {
6938
		sd = &per_cpu(core_domains, i).sd;
6939
		init_sched_groups_power(i, sd);
6940 6941
	}
#endif
6942

6943
	for_each_cpu(i, cpu_map) {
6944
		sd = &per_cpu(phys_domains, i).sd;
6945
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6946 6947
	}

6948
#ifdef CONFIG_NUMA
6949
	for (i = 0; i < nr_node_ids; i++)
6950
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
6951

6952
	if (d.sd_allnodes) {
6953
		struct sched_group *sg;
6954

6955
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
6956
								d.tmpmask);
6957 6958
		init_numa_sched_groups_power(sg);
	}
6959 6960
#endif

L
Linus Torvalds 已提交
6961
	/* Attach the domains */
6962
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
6963
#ifdef CONFIG_SCHED_SMT
6964
		sd = &per_cpu(cpu_domains, i).sd;
6965
#elif defined(CONFIG_SCHED_MC)
6966
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
6967
#else
6968
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
6969
#endif
6970
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6971
	}
6972

6973 6974 6975
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
6976 6977

error:
6978 6979
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
6980
}
P
Paul Jackson 已提交
6981

6982
static int build_sched_domains(const struct cpumask *cpu_map)
6983 6984 6985 6986
{
	return __build_sched_domains(cpu_map, NULL);
}

6987
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6988
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6989 6990
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6991 6992 6993

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6994 6995
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6996
 */
6997
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6998

6999 7000 7001 7002 7003 7004
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7005
{
7006
	return 0;
7007 7008
}

7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7034
/*
I
Ingo Molnar 已提交
7035
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7036 7037
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7038
 */
7039
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7040
{
7041 7042
	int err;

7043
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7044
	ndoms_cur = 1;
7045
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7046
	if (!doms_cur)
7047 7048
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7049
	dattr_cur = NULL;
7050
	err = build_sched_domains(doms_cur[0]);
7051
	register_sched_domain_sysctl();
7052 7053

	return err;
7054 7055
}

7056 7057
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7058
{
7059
	free_sched_groups(cpu_map, tmpmask);
7060
}
L
Linus Torvalds 已提交
7061

7062 7063 7064 7065
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7066
static void detach_destroy_domains(const struct cpumask *cpu_map)
7067
{
7068 7069
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7070 7071
	int i;

7072
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7073
		cpu_attach_domain(NULL, &def_root_domain, i);
7074
	synchronize_sched();
7075
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7076 7077
}

7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7094 7095
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7096
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7097 7098 7099
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7100
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7101 7102 7103
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7104 7105 7106
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7107 7108 7109 7110 7111 7112
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7113
 *
7114
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7115 7116
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7117
 *
P
Paul Jackson 已提交
7118 7119
 * Call with hotplug lock held
 */
7120
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7121
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7122
{
7123
	int i, j, n;
7124
	int new_topology;
P
Paul Jackson 已提交
7125

7126
	mutex_lock(&sched_domains_mutex);
7127

7128 7129 7130
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7131 7132 7133
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7134
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7135 7136 7137

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7138
		for (j = 0; j < n && !new_topology; j++) {
7139
			if (cpumask_equal(doms_cur[i], doms_new[j])
7140
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7141 7142 7143
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7144
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7145 7146 7147 7148
match1:
		;
	}

7149 7150
	if (doms_new == NULL) {
		ndoms_cur = 0;
7151
		doms_new = &fallback_doms;
7152
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7153
		WARN_ON_ONCE(dattr_new);
7154 7155
	}

P
Paul Jackson 已提交
7156 7157
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7158
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7159
			if (cpumask_equal(doms_new[i], doms_cur[j])
7160
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7161 7162 7163
				goto match2;
		}
		/* no match - add a new doms_new */
7164
		__build_sched_domains(doms_new[i],
7165
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7166 7167 7168 7169 7170
match2:
		;
	}

	/* Remember the new sched domains */
7171 7172
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7173
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7174
	doms_cur = doms_new;
7175
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7176
	ndoms_cur = ndoms_new;
7177 7178

	register_sched_domain_sysctl();
7179

7180
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7181 7182
}

7183
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7184
static void arch_reinit_sched_domains(void)
7185
{
7186
	get_online_cpus();
7187 7188 7189 7190

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7191
	rebuild_sched_domains();
7192
	put_online_cpus();
7193 7194 7195 7196
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7197
	unsigned int level = 0;
7198

7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7210 7211 7212
		return -EINVAL;

	if (smt)
7213
		sched_smt_power_savings = level;
7214
	else
7215
		sched_mc_power_savings = level;
7216

7217
	arch_reinit_sched_domains();
7218

7219
	return count;
7220 7221 7222
}

#ifdef CONFIG_SCHED_MC
7223
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7224
					   struct sysdev_class_attribute *attr,
7225
					   char *page)
7226 7227 7228
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7229
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7230
					    struct sysdev_class_attribute *attr,
7231
					    const char *buf, size_t count)
7232 7233 7234
{
	return sched_power_savings_store(buf, count, 0);
}
7235 7236 7237
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7238 7239 7240
#endif

#ifdef CONFIG_SCHED_SMT
7241
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7242
					    struct sysdev_class_attribute *attr,
7243
					    char *page)
7244 7245 7246
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7247
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7248
					     struct sysdev_class_attribute *attr,
7249
					     const char *buf, size_t count)
7250 7251 7252
{
	return sched_power_savings_store(buf, count, 1);
}
7253 7254
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7255 7256 7257
		   sched_smt_power_savings_store);
#endif

7258
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7274
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7275

7276
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7277
/*
7278 7279
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7280 7281 7282
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7283 7284 7285 7286
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
7287 7288 7289 7290
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
7291
		partition_sched_domains(1, NULL, NULL);
7292 7293 7294 7295 7296 7297 7298 7299 7300 7301
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7302
{
P
Peter Zijlstra 已提交
7303 7304
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7305 7306
	switch (action) {
	case CPU_DOWN_PREPARE:
7307
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7308
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7309 7310 7311
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7312
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7313
	case CPU_ONLINE:
7314
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7315
		enable_runtime(cpu_rq(cpu));
7316 7317
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7318 7319 7320 7321 7322 7323 7324
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7325 7326 7327
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7328
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7329

7330 7331 7332 7333 7334
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7335
	get_online_cpus();
7336
	mutex_lock(&sched_domains_mutex);
7337
	arch_init_sched_domains(cpu_active_mask);
7338 7339 7340
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7341
	mutex_unlock(&sched_domains_mutex);
7342
	put_online_cpus();
7343 7344

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7345 7346
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7347 7348 7349 7350 7351
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7352
	init_hrtick();
7353 7354

	/* Move init over to a non-isolated CPU */
7355
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7356
		BUG();
I
Ingo Molnar 已提交
7357
	sched_init_granularity();
7358
	free_cpumask_var(non_isolated_cpus);
7359

7360
	init_sched_rt_class();
L
Linus Torvalds 已提交
7361 7362 7363 7364
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7365
	sched_init_granularity();
L
Linus Torvalds 已提交
7366 7367 7368
}
#endif /* CONFIG_SMP */

7369 7370
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7371 7372 7373 7374 7375 7376 7377
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7378
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7379 7380
{
	cfs_rq->tasks_timeline = RB_ROOT;
7381
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7382 7383 7384
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7385
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7386 7387
}

P
Peter Zijlstra 已提交
7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7401
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7402
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7403
#ifdef CONFIG_SMP
7404
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7405 7406
#endif
#endif
P
Peter Zijlstra 已提交
7407 7408 7409
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7410
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7411 7412 7413 7414
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7415
	rt_rq->rt_runtime = 0;
7416
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7417

7418
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7419
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7420 7421
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7422 7423
}

P
Peter Zijlstra 已提交
7424
#ifdef CONFIG_FAIR_GROUP_SCHED
7425 7426 7427
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7428
{
7429
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7430 7431 7432 7433 7434 7435 7436
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7437 7438 7439 7440
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7441 7442 7443 7444 7445
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7446 7447
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7448
	se->load.inv_weight = 0;
7449
	se->parent = parent;
P
Peter Zijlstra 已提交
7450
}
7451
#endif
P
Peter Zijlstra 已提交
7452

7453
#ifdef CONFIG_RT_GROUP_SCHED
7454 7455 7456
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7457
{
7458 7459
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7460 7461 7462
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7463
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7464 7465 7466 7467
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7468 7469 7470
	if (!rt_se)
		return;

7471 7472 7473 7474 7475
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7476
	rt_se->my_q = rt_rq;
7477
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7478 7479 7480 7481
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7482 7483
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7484
	int i, j;
7485 7486 7487 7488 7489 7490 7491
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7492
#endif
7493
#ifdef CONFIG_CPUMASK_OFFSTACK
7494
	alloc_size += num_possible_cpus() * cpumask_size();
7495 7496
#endif
	if (alloc_size) {
7497
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7498 7499 7500 7501 7502 7503 7504

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7505

7506
#endif /* CONFIG_FAIR_GROUP_SCHED */
7507 7508 7509 7510 7511
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7512 7513
		ptr += nr_cpu_ids * sizeof(void **);

7514
#endif /* CONFIG_RT_GROUP_SCHED */
7515 7516 7517 7518 7519 7520
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7521
	}
I
Ingo Molnar 已提交
7522

G
Gregory Haskins 已提交
7523 7524 7525 7526
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7527 7528 7529 7530 7531 7532
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7533
#endif /* CONFIG_RT_GROUP_SCHED */
7534

D
Dhaval Giani 已提交
7535
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7536
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7537 7538
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7539
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7540

7541 7542 7543 7544
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7545
	for_each_possible_cpu(i) {
7546
		struct rq *rq;
L
Linus Torvalds 已提交
7547 7548

		rq = cpu_rq(i);
7549
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7550
		rq->nr_running = 0;
7551 7552
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7553
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7554
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7555
#ifdef CONFIG_FAIR_GROUP_SCHED
7556
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7557
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7573
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7574 7575 7576 7577
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7578
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7579
#endif
D
Dhaval Giani 已提交
7580 7581 7582
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7583
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7584
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7585
#ifdef CONFIG_CGROUP_SCHED
7586
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7587
#endif
I
Ingo Molnar 已提交
7588
#endif
L
Linus Torvalds 已提交
7589

I
Ingo Molnar 已提交
7590 7591
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7592
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7593
		rq->sd = NULL;
G
Gregory Haskins 已提交
7594
		rq->rd = NULL;
7595
		rq->cpu_power = SCHED_LOAD_SCALE;
7596
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7597
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7598
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7599
		rq->push_cpu = 0;
7600
		rq->cpu = i;
7601
		rq->online = 0;
7602 7603
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7604
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7605
#endif
P
Peter Zijlstra 已提交
7606
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7607 7608 7609
		atomic_set(&rq->nr_iowait, 0);
	}

7610
	set_load_weight(&init_task);
7611

7612 7613 7614 7615
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7616
#ifdef CONFIG_SMP
7617
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7618 7619
#endif

7620
#ifdef CONFIG_RT_MUTEXES
7621
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7622 7623
#endif

L
Linus Torvalds 已提交
7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7637 7638 7639

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7640 7641 7642 7643
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7644

7645
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7646
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7647
#ifdef CONFIG_SMP
7648
#ifdef CONFIG_NO_HZ
7649
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7650
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7651
#endif
R
Rusty Russell 已提交
7652 7653 7654
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7655
#endif /* SMP */
7656

7657
	perf_event_init();
7658

7659
	scheduler_running = 1;
L
Linus Torvalds 已提交
7660 7661 7662
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7663 7664
static inline int preempt_count_equals(int preempt_offset)
{
7665
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7666 7667 7668 7669

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7670
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7671
{
7672
#ifdef in_atomic
L
Linus Torvalds 已提交
7673 7674
	static unsigned long prev_jiffy;	/* ratelimiting */

7675 7676
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7677 7678 7679 7680 7681
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7682 7683 7684 7685 7686 7687 7688
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7689 7690 7691 7692 7693

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7694 7695 7696 7697 7698 7699
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7700 7701 7702
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7703

7704 7705 7706 7707 7708 7709 7710 7711 7712 7713
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7714 7715
void normalize_rt_tasks(void)
{
7716
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7717
	unsigned long flags;
7718
	struct rq *rq;
L
Linus Torvalds 已提交
7719

7720
	read_lock_irqsave(&tasklist_lock, flags);
7721
	do_each_thread(g, p) {
7722 7723 7724 7725 7726 7727
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7728 7729
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7730 7731 7732
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7733
#endif
I
Ingo Molnar 已提交
7734 7735 7736 7737 7738 7739 7740 7741

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7742
			continue;
I
Ingo Molnar 已提交
7743
		}
L
Linus Torvalds 已提交
7744

7745
		raw_spin_lock(&p->pi_lock);
7746
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7747

7748
		normalize_task(rq, p);
7749

7750
		__task_rq_unlock(rq);
7751
		raw_spin_unlock(&p->pi_lock);
7752 7753
	} while_each_thread(g, p);

7754
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7755 7756 7757
}

#endif /* CONFIG_MAGIC_SYSRQ */
7758

7759
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7760
/*
7761
 * These functions are only useful for the IA64 MCA handling, or kdb.
7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7776
struct task_struct *curr_task(int cpu)
7777 7778 7779 7780
{
	return cpu_curr(cpu);
}

7781 7782 7783
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7784 7785 7786 7787 7788 7789
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7790 7791
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7792 7793 7794 7795 7796 7797 7798
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7799
void set_curr_task(int cpu, struct task_struct *p)
7800 7801 7802 7803 7804
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7805

7806 7807
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7822 7823
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7824 7825
{
	struct cfs_rq *cfs_rq;
7826
	struct sched_entity *se;
7827
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7828 7829
	int i;

7830
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7831 7832
	if (!tg->cfs_rq)
		goto err;
7833
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7834 7835
	if (!tg->se)
		goto err;
7836 7837

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7838 7839

	for_each_possible_cpu(i) {
7840
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7841

7842 7843
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7844 7845 7846
		if (!cfs_rq)
			goto err;

7847 7848
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7849
		if (!se)
7850
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
7851

7852
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7853 7854 7855 7856
	}

	return 1;

7857 7858
 err_free_rq:
	kfree(cfs_rq);
7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
7873
#else /* !CONFG_FAIR_GROUP_SCHED */
7874 7875 7876 7877
static inline void free_fair_sched_group(struct task_group *tg)
{
}

7878 7879
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7891
#endif /* CONFIG_FAIR_GROUP_SCHED */
7892 7893

#ifdef CONFIG_RT_GROUP_SCHED
7894 7895 7896 7897
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

7898 7899
	destroy_rt_bandwidth(&tg->rt_bandwidth);

7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

7911 7912
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7913 7914
{
	struct rt_rq *rt_rq;
7915
	struct sched_rt_entity *rt_se;
7916 7917 7918
	struct rq *rq;
	int i;

7919
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
7920 7921
	if (!tg->rt_rq)
		goto err;
7922
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
7923 7924 7925
	if (!tg->rt_se)
		goto err;

7926 7927
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7928 7929 7930 7931

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

7932 7933
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
7934 7935
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
7936

7937 7938
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
7939
		if (!rt_se)
7940
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
7941

7942
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
7943 7944
	}

7945 7946
	return 1;

7947 7948
 err_free_rq:
	kfree(rt_rq);
7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
7963
#else /* !CONFIG_RT_GROUP_SCHED */
7964 7965 7966 7967
static inline void free_rt_sched_group(struct task_group *tg)
{
}

7968 7969
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
7981
#endif /* CONFIG_RT_GROUP_SCHED */
7982

D
Dhaval Giani 已提交
7983
#ifdef CONFIG_CGROUP_SCHED
7984 7985 7986 7987 7988 7989 7990 7991
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7992
struct task_group *sched_create_group(struct task_group *parent)
7993 7994 7995 7996 7997 7998 7999 8000 8001
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8002
	if (!alloc_fair_sched_group(tg, parent))
8003 8004
		goto err;

8005
	if (!alloc_rt_sched_group(tg, parent))
8006 8007
		goto err;

8008
	spin_lock_irqsave(&task_group_lock, flags);
8009
	for_each_possible_cpu(i) {
8010 8011
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8012
	}
P
Peter Zijlstra 已提交
8013
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8014 8015 8016 8017 8018

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8019
	list_add_rcu(&tg->siblings, &parent->children);
8020
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8021

8022
	return tg;
S
Srivatsa Vaddagiri 已提交
8023 8024

err:
P
Peter Zijlstra 已提交
8025
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8026 8027 8028
	return ERR_PTR(-ENOMEM);
}

8029
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8030
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8031 8032
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8033
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8034 8035
}

8036
/* Destroy runqueue etc associated with a task group */
8037
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8038
{
8039
	unsigned long flags;
8040
	int i;
S
Srivatsa Vaddagiri 已提交
8041

8042
	spin_lock_irqsave(&task_group_lock, flags);
8043
	for_each_possible_cpu(i) {
8044 8045
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8046
	}
P
Peter Zijlstra 已提交
8047
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8048
	list_del_rcu(&tg->siblings);
8049
	spin_unlock_irqrestore(&task_group_lock, flags);
8050 8051

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8052
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8053 8054
}

8055
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8056 8057 8058
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8059 8060
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8061 8062 8063 8064 8065 8066 8067
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8068
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8069 8070
	on_rq = tsk->se.on_rq;

8071
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8072
		dequeue_task(rq, tsk, 0);
8073 8074
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8075

P
Peter Zijlstra 已提交
8076
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8077

P
Peter Zijlstra 已提交
8078 8079
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8080
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8081 8082
#endif

8083 8084 8085
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8086
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8087 8088 8089

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8090
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8091

8092
#ifdef CONFIG_FAIR_GROUP_SCHED
8093
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8094 8095 8096 8097 8098
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8099
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8100 8101 8102
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8103
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8104

8105
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8106
		enqueue_entity(cfs_rq, se, 0);
8107
}
8108

8109 8110 8111 8112 8113 8114
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8115
	raw_spin_lock_irqsave(&rq->lock, flags);
8116
	__set_se_shares(se, shares);
8117
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8118 8119
}

8120 8121
static DEFINE_MUTEX(shares_mutex);

8122
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8123 8124
{
	int i;
8125
	unsigned long flags;
8126

8127 8128 8129 8130 8131 8132
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8133 8134
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8135 8136
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8137

8138
	mutex_lock(&shares_mutex);
8139
	if (tg->shares == shares)
8140
		goto done;
S
Srivatsa Vaddagiri 已提交
8141

8142
	spin_lock_irqsave(&task_group_lock, flags);
8143 8144
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8145
	list_del_rcu(&tg->siblings);
8146
	spin_unlock_irqrestore(&task_group_lock, flags);
8147 8148 8149 8150 8151 8152 8153 8154

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8155
	tg->shares = shares;
8156 8157 8158 8159 8160
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8161
		set_se_shares(tg->se[i], shares);
8162
	}
S
Srivatsa Vaddagiri 已提交
8163

8164 8165 8166 8167
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8168
	spin_lock_irqsave(&task_group_lock, flags);
8169 8170
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8171
	list_add_rcu(&tg->siblings, &tg->parent->children);
8172
	spin_unlock_irqrestore(&task_group_lock, flags);
8173
done:
8174
	mutex_unlock(&shares_mutex);
8175
	return 0;
S
Srivatsa Vaddagiri 已提交
8176 8177
}

8178 8179 8180 8181
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8182
#endif
8183

8184
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8185
/*
P
Peter Zijlstra 已提交
8186
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8187
 */
P
Peter Zijlstra 已提交
8188 8189 8190 8191 8192
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8193
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8194

P
Peter Zijlstra 已提交
8195
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8196 8197
}

P
Peter Zijlstra 已提交
8198 8199
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8200
{
P
Peter Zijlstra 已提交
8201
	struct task_struct *g, *p;
8202

P
Peter Zijlstra 已提交
8203 8204 8205 8206
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8207

P
Peter Zijlstra 已提交
8208 8209
	return 0;
}
8210

P
Peter Zijlstra 已提交
8211 8212 8213 8214 8215
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8216

P
Peter Zijlstra 已提交
8217 8218 8219 8220 8221 8222
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8223

P
Peter Zijlstra 已提交
8224 8225
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8226

P
Peter Zijlstra 已提交
8227 8228 8229
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8230 8231
	}

8232 8233 8234 8235 8236
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8237

8238 8239 8240
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8241 8242
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8243

P
Peter Zijlstra 已提交
8244
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8245

8246 8247 8248 8249 8250
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8251

8252 8253 8254
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8255 8256 8257
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8258

P
Peter Zijlstra 已提交
8259 8260 8261 8262
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8263

P
Peter Zijlstra 已提交
8264
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8265
	}
P
Peter Zijlstra 已提交
8266

P
Peter Zijlstra 已提交
8267 8268 8269 8270
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8271 8272
}

P
Peter Zijlstra 已提交
8273
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8274
{
P
Peter Zijlstra 已提交
8275 8276 8277 8278 8279 8280 8281
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8282 8283
}

8284 8285
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8286
{
P
Peter Zijlstra 已提交
8287
	int i, err = 0;
P
Peter Zijlstra 已提交
8288 8289

	mutex_lock(&rt_constraints_mutex);
8290
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8291 8292
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8293
		goto unlock;
P
Peter Zijlstra 已提交
8294

8295
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8296 8297
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8298 8299 8300 8301

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8302
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8303
		rt_rq->rt_runtime = rt_runtime;
8304
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8305
	}
8306
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8307
 unlock:
8308
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8309 8310 8311
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8312 8313
}

8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8326 8327 8328 8329
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8330
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8331 8332
		return -1;

8333
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8334 8335 8336
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8337 8338 8339 8340 8341 8342 8343 8344

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8345 8346 8347
	if (rt_period == 0)
		return -EINVAL;

8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8362
	u64 runtime, period;
8363 8364
	int ret = 0;

8365 8366 8367
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8368 8369 8370 8371 8372 8373 8374 8375
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8376

8377
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8378
	read_lock(&tasklist_lock);
8379
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8380
	read_unlock(&tasklist_lock);
8381 8382 8383 8384
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8385 8386 8387 8388 8389 8390 8391 8392 8393 8394

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8395
#else /* !CONFIG_RT_GROUP_SCHED */
8396 8397
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8398 8399 8400
	unsigned long flags;
	int i;

8401 8402 8403
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8404 8405 8406 8407 8408 8409 8410
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8411
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8412 8413 8414
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8415
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8416
		rt_rq->rt_runtime = global_rt_runtime();
8417
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8418
	}
8419
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8420

8421 8422
	return 0;
}
8423
#endif /* CONFIG_RT_GROUP_SCHED */
8424 8425

int sched_rt_handler(struct ctl_table *table, int write,
8426
		void __user *buffer, size_t *lenp,
8427 8428 8429 8430 8431 8432 8433 8434 8435 8436
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8437
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8454

8455
#ifdef CONFIG_CGROUP_SCHED
8456 8457

/* return corresponding task_group object of a cgroup */
8458
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8459
{
8460 8461
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8462 8463 8464
}

static struct cgroup_subsys_state *
8465
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8466
{
8467
	struct task_group *tg, *parent;
8468

8469
	if (!cgrp->parent) {
8470 8471 8472 8473
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8474 8475
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8476 8477 8478 8479 8480 8481
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8482 8483
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8484
{
8485
	struct task_group *tg = cgroup_tg(cgrp);
8486 8487 8488 8489

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8490
static int
8491
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8492
{
8493
#ifdef CONFIG_RT_GROUP_SCHED
8494
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8495 8496
		return -EINVAL;
#else
8497 8498 8499
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8500
#endif
8501 8502
	return 0;
}
8503

8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8523 8524 8525 8526
	return 0;
}

static void
8527
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8528 8529
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8530 8531
{
	sched_move_task(tsk);
8532 8533 8534 8535 8536 8537 8538 8539
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8540 8541
}

8542
#ifdef CONFIG_FAIR_GROUP_SCHED
8543
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8544
				u64 shareval)
8545
{
8546
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8547 8548
}

8549
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8550
{
8551
	struct task_group *tg = cgroup_tg(cgrp);
8552 8553 8554

	return (u64) tg->shares;
}
8555
#endif /* CONFIG_FAIR_GROUP_SCHED */
8556

8557
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8558
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8559
				s64 val)
P
Peter Zijlstra 已提交
8560
{
8561
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8562 8563
}

8564
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8565
{
8566
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8567
}
8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8579
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8580

8581
static struct cftype cpu_files[] = {
8582
#ifdef CONFIG_FAIR_GROUP_SCHED
8583 8584
	{
		.name = "shares",
8585 8586
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8587
	},
8588 8589
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8590
	{
P
Peter Zijlstra 已提交
8591
		.name = "rt_runtime_us",
8592 8593
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8594
	},
8595 8596
	{
		.name = "rt_period_us",
8597 8598
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8599
	},
8600
#endif
8601 8602 8603 8604
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8605
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8606 8607 8608
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8609 8610 8611 8612 8613 8614 8615
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8616 8617 8618
	.early_init	= 1,
};

8619
#endif	/* CONFIG_CGROUP_SCHED */
8620 8621 8622 8623 8624 8625 8626 8627 8628 8629

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8630
/* track cpu usage of a group of tasks and its child groups */
8631 8632 8633
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8634
	u64 __percpu *cpuusage;
8635
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8636
	struct cpuacct *parent;
8637 8638 8639 8640 8641
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8642
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8643
{
8644
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8657
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8658 8659
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8660
	int i;
8661 8662

	if (!ca)
8663
		goto out;
8664 8665

	ca->cpuusage = alloc_percpu(u64);
8666 8667 8668 8669 8670 8671
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8672

8673 8674 8675
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8676
	return &ca->css;
8677 8678 8679 8680 8681 8682 8683 8684 8685

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8686 8687 8688
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8689
static void
8690
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8691
{
8692
	struct cpuacct *ca = cgroup_ca(cgrp);
8693
	int i;
8694

8695 8696
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8697 8698 8699 8700
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8701 8702
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8703
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8704 8705 8706 8707 8708 8709
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8710
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8711
	data = *cpuusage;
8712
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8713 8714 8715 8716 8717 8718 8719 8720 8721
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8722
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8723 8724 8725 8726 8727

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8728
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8729
	*cpuusage = val;
8730
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8731 8732 8733 8734 8735
#else
	*cpuusage = val;
#endif
}

8736
/* return total cpu usage (in nanoseconds) of a group */
8737
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8738
{
8739
	struct cpuacct *ca = cgroup_ca(cgrp);
8740 8741 8742
	u64 totalcpuusage = 0;
	int i;

8743 8744
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8745 8746 8747 8748

	return totalcpuusage;
}

8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8761 8762
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8763 8764 8765 8766 8767

out:
	return err;
}

8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8802 8803 8804
static struct cftype files[] = {
	{
		.name = "usage",
8805 8806
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8807
	},
8808 8809 8810 8811
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8812 8813 8814 8815
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8816 8817
};

8818
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8819
{
8820
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8821 8822 8823 8824 8825 8826 8827 8828 8829 8830
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
8831
	int cpu;
8832

L
Li Zefan 已提交
8833
	if (unlikely(!cpuacct_subsys.active))
8834 8835
		return;

8836
	cpu = task_cpu(tsk);
8837 8838 8839

	rcu_read_lock();

8840 8841
	ca = task_ca(tsk);

8842
	for (; ca; ca = ca->parent) {
8843
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8844 8845
		*cpuusage += cputime;
	}
8846 8847

	rcu_read_unlock();
8848 8849
}

8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

8867 8868 8869 8870 8871 8872 8873
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
8874
	int batch = CPUACCT_BATCH;
8875 8876 8877 8878 8879 8880 8881 8882

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
8883
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
8884 8885 8886 8887 8888
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

8889 8890 8891 8892 8893 8894 8895 8896
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8897 8898 8899 8900 8901

#ifndef CONFIG_SMP

void synchronize_sched_expedited(void)
{
8902
	barrier();
8903 8904 8905 8906 8907
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

8908
static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
8909

8910
static int synchronize_sched_expedited_cpu_stop(void *data)
8911
{
8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
8923
	smp_mb(); /* See above comment block. */
8924
	return 0;
8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938
}

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
8939
	int snap, trycount = 0;
8940 8941

	smp_mb();  /* ensure prior mod happens before capturing snap. */
8942
	snap = atomic_read(&synchronize_sched_expedited_count) + 1;
8943
	get_online_cpus();
8944 8945
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
8946
			     NULL) == -EAGAIN) {
8947 8948 8949 8950 8951 8952 8953
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
8954
		if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
8955 8956 8957 8958 8959
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
8960
	atomic_inc(&synchronize_sched_expedited_count);
8961
	smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
8962 8963 8964 8965 8966
	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */