sched.c 218.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/stop_machine.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
P
Peter Zijlstra 已提交
70 71
#include <linux/debugfs.h>
#include <linux/ctype.h>
72
#include <linux/ftrace.h>
73
#include <linux/slab.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
77
#include <asm/mutex.h>
L
Linus Torvalds 已提交
78

79
#include "sched_cpupri.h"
T
Tejun Heo 已提交
80
#include "workqueue_sched.h"
81
#include "sched_autogroup.h"
82

83
#define CREATE_TRACE_POINTS
84
#include <trace/events/sched.h>
85

L
Linus Torvalds 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
105
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
106
 */
107
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
108

I
Ingo Molnar 已提交
109 110 111
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
112 113 114
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
115
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
116 117 118
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
119

120 121 122 123 124
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

125 126
static inline int rt_policy(int policy)
{
127
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
128 129 130 131 132 133 134 135 136
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
137
/*
I
Ingo Molnar 已提交
138
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
139
 */
I
Ingo Molnar 已提交
140 141 142 143 144
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

145
struct rt_bandwidth {
I
Ingo Molnar 已提交
146
	/* nests inside the rq lock: */
147
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
148 149 150
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

184
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
185

186 187 188 189 190
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

191 192 193
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
194 195 196 197 198 199
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

200
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
201 202 203 204 205
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

206
	raw_spin_lock(&rt_b->rt_runtime_lock);
207
	for (;;) {
208 209 210
		unsigned long delta;
		ktime_t soft, hard;

211 212 213 214 215
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216 217 218 219 220

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221
				HRTIMER_MODE_ABS_PINNED, 0);
222
	}
223
	raw_spin_unlock(&rt_b->rt_runtime_lock);
224 225 226 227 228 229 230 231 232
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

233
/*
234
 * sched_domains_mutex serializes calls to init_sched_domains,
235 236 237 238
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
239
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
240

241 242
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
243 244
struct cfs_rq;

P
Peter Zijlstra 已提交
245 246
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
247
/* task group related information */
248
struct task_group {
249
	struct cgroup_subsys_state css;
250

251
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
252 253 254 255 256
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
P
Peter Zijlstra 已提交
257 258

	atomic_t load_weight;
259 260 261 262 263 264
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

265
	struct rt_bandwidth rt_bandwidth;
266
#endif
267

268
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
269
	struct list_head list;
P
Peter Zijlstra 已提交
270 271 272 273

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
274 275 276 277

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif
S
Srivatsa Vaddagiri 已提交
278 279
};

280
/* task_group_lock serializes the addition/removal of task groups */
281
static DEFINE_SPINLOCK(task_group_lock);
282

283 284
#ifdef CONFIG_FAIR_GROUP_SCHED

285
# define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
286

287
/*
288 289 290 291
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
292 293 294
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
295
#define MIN_SHARES	2
296
#define MAX_SHARES	(1UL << 18)
297

298
static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
299 300
#endif

S
Srivatsa Vaddagiri 已提交
301
/* Default task group.
I
Ingo Molnar 已提交
302
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
303
 */
304
struct task_group root_task_group;
S
Srivatsa Vaddagiri 已提交
305

D
Dhaval Giani 已提交
306
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
307

I
Ingo Molnar 已提交
308 309 310 311 312 313
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
314
	u64 min_vruntime;
I
Ingo Molnar 已提交
315 316 317

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
318 319 320 321 322 323

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
324 325
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
326
	struct sched_entity *curr, *next, *last, *skip;
P
Peter Zijlstra 已提交
327

P
Peter Zijlstra 已提交
328
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
329

330
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
331 332
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
333 334
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
335 336 337 338 339 340
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
341
	int on_list;
I
Ingo Molnar 已提交
342 343
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
344 345 346

#ifdef CONFIG_SMP
	/*
347
	 * the part of load.weight contributed by tasks
348
	 */
349
	unsigned long task_weight;
350

351 352 353 354 355 356 357
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
358

359
	/*
360 361 362 363 364
	 * Maintaining per-cpu shares distribution for group scheduling
	 *
	 * load_stamp is the last time we updated the load average
	 * load_last is the last time we updated the load average and saw load
	 * load_unacc_exec_time is currently unaccounted execution time
365
	 */
P
Peter Zijlstra 已提交
366 367
	u64 load_avg;
	u64 load_period;
368
	u64 load_stamp, load_last, load_unacc_exec_time;
369

P
Peter Zijlstra 已提交
370
	unsigned long load_contribution;
371
#endif
I
Ingo Molnar 已提交
372 373
#endif
};
L
Linus Torvalds 已提交
374

I
Ingo Molnar 已提交
375 376 377
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
378
	unsigned long rt_nr_running;
379
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 381
	struct {
		int curr; /* highest queued rt task prio */
382
#ifdef CONFIG_SMP
383
		int next; /* next highest */
384
#endif
385
	} highest_prio;
P
Peter Zijlstra 已提交
386
#endif
P
Peter Zijlstra 已提交
387
#ifdef CONFIG_SMP
388
	unsigned long rt_nr_migratory;
389
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
390
	int overloaded;
391
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
392
#endif
P
Peter Zijlstra 已提交
393
	int rt_throttled;
P
Peter Zijlstra 已提交
394
	u64 rt_time;
P
Peter Zijlstra 已提交
395
	u64 rt_runtime;
I
Ingo Molnar 已提交
396
	/* Nests inside the rq lock: */
397
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
398

399
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
400 401
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
402 403 404 405
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
406 407
};

G
Gregory Haskins 已提交
408 409 410 411
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
412 413
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
414 415 416 417 418 419
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
420
	struct rcu_head rcu;
421 422
	cpumask_var_t span;
	cpumask_var_t online;
423

I
Ingo Molnar 已提交
424
	/*
425 426 427
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
428
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
429
	atomic_t rto_count;
430
	struct cpupri cpupri;
G
Gregory Haskins 已提交
431 432
};

433 434 435 436
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
437 438
static struct root_domain def_root_domain;

439
#endif /* CONFIG_SMP */
G
Gregory Haskins 已提交
440

L
Linus Torvalds 已提交
441 442 443 444 445 446 447
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
448
struct rq {
449
	/* runqueue lock: */
450
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
451 452 453 454 455 456

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
457 458
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
459
	unsigned long last_load_update_tick;
460
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
461
	u64 nohz_stamp;
462
	unsigned char nohz_balance_kick;
463
#endif
464 465
	unsigned int skip_clock_update;

466 467
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
468 469 470 471
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
472 473
	struct rt_rq rt;

I
Ingo Molnar 已提交
474
#ifdef CONFIG_FAIR_GROUP_SCHED
475 476
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
477 478
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
479
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
480 481 482 483 484 485 486 487 488 489
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

490
	struct task_struct *curr, *idle, *stop;
491
	unsigned long next_balance;
L
Linus Torvalds 已提交
492
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
493

494
	u64 clock;
495
	u64 clock_task;
I
Ingo Molnar 已提交
496

L
Linus Torvalds 已提交
497 498 499
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
500
	struct root_domain *rd;
L
Linus Torvalds 已提交
501 502
	struct sched_domain *sd;

503 504
	unsigned long cpu_power;

505
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
506
	/* For active balancing */
507
	int post_schedule;
L
Linus Torvalds 已提交
508 509
	int active_balance;
	int push_cpu;
510
	struct cpu_stop_work active_balance_work;
511 512
	/* cpu of this runqueue: */
	int cpu;
513
	int online;
L
Linus Torvalds 已提交
514

515
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
516

517 518
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
519 520
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
521 522
#endif

523 524 525 526
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64 prev_irq_time;
#endif

527 528 529 530
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
531
#ifdef CONFIG_SCHED_HRTICK
532 533 534 535
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
536 537 538
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
539 540 541
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
542 543
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
544 545

	/* sys_sched_yield() stats */
546
	unsigned int yld_count;
L
Linus Torvalds 已提交
547 548

	/* schedule() stats */
549 550 551
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
552 553

	/* try_to_wake_up() stats */
554 555
	unsigned int ttwu_count;
	unsigned int ttwu_local;
L
Linus Torvalds 已提交
556 557 558
#endif
};

559
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
560

561

562
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
I
Ingo Molnar 已提交
563

564 565 566 567 568 569 570 571 572
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

573
#define rcu_dereference_check_sched_domain(p) \
574
	rcu_dereference_check((p), \
575
			      rcu_read_lock_held() || \
576 577
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
578 579
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
580
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
581 582 583 584
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
585
#define for_each_domain(cpu, __sd) \
586
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
587 588 589 590 591

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
592
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
593

594 595 596 597 598 599 600 601 602 603 604 605
#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
 * We use task_subsys_state_check() and extend the RCU verification
 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
 * holds that lock for each task it moves into the cgroup. Therefore
 * by holding that lock, we pin the task to the current cgroup.
 */
static inline struct task_group *task_group(struct task_struct *p)
{
606
	struct task_group *tg;
607 608 609 610
	struct cgroup_subsys_state *css;

	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
			lockdep_is_held(&task_rq(p)->lock));
611 612 613
	tg = container_of(css, struct task_group, css);

	return autogroup_task_group(p, tg);
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

640
static void update_rq_clock_task(struct rq *rq, s64 delta);
641

642
static void update_rq_clock(struct rq *rq)
643
{
644
	s64 delta;
645

646 647
	if (rq->skip_clock_update)
		return;
648

649 650 651
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
652 653
}

I
Ingo Molnar 已提交
654 655 656 657 658 659 660 661 662
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
663
/**
664
 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
665
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
666 667 668 669
 *
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
670
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
671
{
672
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
673 674
}

I
Ingo Molnar 已提交
675 676 677
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
678 679 680 681

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
682
enum {
P
Peter Zijlstra 已提交
683
#include "sched_features.h"
I
Ingo Molnar 已提交
684 685
};

P
Peter Zijlstra 已提交
686 687 688 689 690
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
691
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
692 693 694 695 696 697 698 699 700
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

701
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
702 703 704 705 706 707
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
708
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
709 710 711 712
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
713 714 715
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
716
	}
L
Li Zefan 已提交
717
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
718

L
Li Zefan 已提交
719
	return 0;
P
Peter Zijlstra 已提交
720 721 722 723 724 725 726
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
727
	char *cmp;
P
Peter Zijlstra 已提交
728 729 730 731 732 733 734 735 736 737
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
738
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
739

H
Hillf Danton 已提交
740
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
741 742 743 744 745
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
746
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
P
Peter Zijlstra 已提交
747 748 749 750 751 752 753 754 755 756 757
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

758
	*ppos += cnt;
P
Peter Zijlstra 已提交
759 760 761 762

	return cnt;
}

L
Li Zefan 已提交
763 764 765 766 767
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

768
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
769 770 771 772 773
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
788

789 790 791 792 793 794
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

795 796 797 798 799 800 801 802
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
803
/*
P
Peter Zijlstra 已提交
804
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
805 806
 * default: 1s
 */
P
Peter Zijlstra 已提交
807
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
808

809 810
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
811 812 813 814 815
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
816

817 818 819 820 821 822 823
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
824
	if (sysctl_sched_rt_runtime < 0)
825 826 827 828
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
829

L
Linus Torvalds 已提交
830
#ifndef prepare_arch_switch
831 832 833 834 835 836
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

837 838 839 840 841
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

842
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
843
static inline int task_running(struct rq *rq, struct task_struct *p)
844
{
845
	return task_current(rq, p);
846 847
}

848
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
849 850 851
{
}

852
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
853
{
854 855 856 857
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
858 859 860 861 862 863 864
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

865
	raw_spin_unlock_irq(&rq->lock);
866 867 868
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
869
static inline int task_running(struct rq *rq, struct task_struct *p)
870 871 872 873
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
874
	return task_current(rq, p);
875 876 877
#endif
}

878
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
879 880 881 882 883 884 885 886 887 888
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
889
	raw_spin_unlock_irq(&rq->lock);
890
#else
891
	raw_spin_unlock(&rq->lock);
892 893 894
#endif
}

895
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
896 897 898 899 900 901 902 903 904 905 906 907
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
908
#endif
909 910
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
911

912
/*
P
Peter Zijlstra 已提交
913 914
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
915 916 917
 */
static inline int task_is_waking(struct task_struct *p)
{
918
	return unlikely(p->state == TASK_WAKING);
919 920
}

921 922 923 924
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
925
static inline struct rq *__task_rq_lock(struct task_struct *p)
926 927
	__acquires(rq->lock)
{
928 929
	struct rq *rq;

930
	for (;;) {
931
		rq = task_rq(p);
932
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
933
		if (likely(rq == task_rq(p)))
934
			return rq;
935
		raw_spin_unlock(&rq->lock);
936 937 938
	}
}

L
Linus Torvalds 已提交
939 940
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
941
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
942 943
 * explicitly disabling preemption.
 */
944
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
945 946
	__acquires(rq->lock)
{
947
	struct rq *rq;
L
Linus Torvalds 已提交
948

949 950 951
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
952
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
953
		if (likely(rq == task_rq(p)))
954
			return rq;
955
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
956 957 958
	}
}

A
Alexey Dobriyan 已提交
959
static void __task_rq_unlock(struct rq *rq)
960 961
	__releases(rq->lock)
{
962
	raw_spin_unlock(&rq->lock);
963 964
}

965
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
966 967
	__releases(rq->lock)
{
968
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
969 970 971
}

/*
972
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
973
 */
A
Alexey Dobriyan 已提交
974
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
975 976
	__acquires(rq->lock)
{
977
	struct rq *rq;
L
Linus Torvalds 已提交
978 979 980

	local_irq_disable();
	rq = this_rq();
981
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
982 983 984 985

	return rq;
}

P
Peter Zijlstra 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1007
	if (!cpu_active(cpu_of(rq)))
1008
		return 0;
P
Peter Zijlstra 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1028
	raw_spin_lock(&rq->lock);
1029
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1030
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1031
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1032 1033 1034 1035

	return HRTIMER_NORESTART;
}

1036
#ifdef CONFIG_SMP
1037 1038 1039 1040
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1041
{
1042
	struct rq *rq = arg;
1043

1044
	raw_spin_lock(&rq->lock);
1045 1046
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1047
	raw_spin_unlock(&rq->lock);
1048 1049
}

1050 1051 1052 1053 1054 1055
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1056
{
1057 1058
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1059

1060
	hrtimer_set_expires(timer, time);
1061 1062 1063 1064

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1065
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1066 1067
		rq->hrtick_csd_pending = 1;
	}
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1082
		hrtick_clear(cpu_rq(cpu));
1083 1084 1085 1086 1087 1088
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1089
static __init void init_hrtick(void)
1090 1091 1092
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1093 1094 1095 1096 1097 1098 1099 1100
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1101
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1102
			HRTIMER_MODE_REL_PINNED, 0);
1103
}
1104

A
Andrew Morton 已提交
1105
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1106 1107
{
}
1108
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1109

1110
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1111
{
1112 1113
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1114

1115 1116 1117 1118
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1119

1120 1121
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1122
}
A
Andrew Morton 已提交
1123
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1124 1125 1126 1127 1128 1129 1130 1131
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1132 1133 1134
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1135
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1136

I
Ingo Molnar 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1150
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1151 1152 1153
{
	int cpu;

1154
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1155

1156
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1157 1158
		return;

1159
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1176
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1177 1178
		return;
	resched_task(cpu_curr(cpu));
1179
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1180
}
1181 1182

#ifdef CONFIG_NO_HZ
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		for_each_cpu(i, sched_domain_span(sd))
			if (!idle_cpu(i))
				return i;
	}
	return cpu;
}
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1236
	set_tsk_need_resched(rq->idle);
1237 1238 1239 1240 1241 1242

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1243

1244
#endif /* CONFIG_NO_HZ */
1245

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
1256 1257 1258 1259 1260 1261
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1273
#else /* !CONFIG_SMP */
1274
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1275
{
1276
	assert_raw_spin_locked(&task_rq(p)->lock);
1277
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1278
}
1279 1280 1281 1282

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1283 1284 1285 1286

static void sched_avg_update(struct rq *rq)
{
}
1287
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1288

1289 1290 1291 1292 1293 1294 1295 1296
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1297 1298 1299
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1300
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1301

1302 1303 1304
/*
 * delta *= weight / lw
 */
1305
static unsigned long
1306 1307 1308 1309 1310
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1311 1312 1313 1314 1315 1316 1317
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1318 1319 1320 1321 1322

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1323
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1324
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1325 1326
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1327
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1328

1329
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1330 1331
}

1332
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1333 1334
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1335
	lw->inv_weight = 0;
1336 1337
}

1338
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1339 1340
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1341
	lw->inv_weight = 0;
1342 1343
}

P
Peter Zijlstra 已提交
1344 1345 1346 1347 1348 1349
static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

1350 1351 1352 1353
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1354
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1355 1356 1357 1358
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1359 1360
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1370 1371 1372
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1373 1374
 */
static const int prio_to_weight[40] = {
1375 1376 1377 1378 1379 1380 1381 1382
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1383 1384
};

1385 1386 1387 1388 1389 1390 1391
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1392
static const u32 prio_to_wmult[40] = {
1393 1394 1395 1396 1397 1398 1399 1400
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1401
};
1402

1403 1404 1405 1406 1407 1408 1409 1410
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1411 1412
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1413 1414
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1415 1416
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1417 1418
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1419 1420
#endif

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1431
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1432
typedef int (*tg_visitor)(struct task_group *, void *);
1433 1434 1435 1436 1437

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1438
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1439 1440
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1441
	int ret;
1442 1443 1444 1445

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1446 1447 1448
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1449 1450 1451 1452 1453 1454 1455
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1456 1457 1458
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1459 1460 1461 1462 1463

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1464
out_unlock:
1465
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1466 1467

	return ret;
1468 1469
}

P
Peter Zijlstra 已提交
1470 1471 1472
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1473
}
P
Peter Zijlstra 已提交
1474 1475 1476
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1516 1517
static unsigned long power_of(int cpu)
{
1518
	return cpu_rq(cpu)->cpu_power;
1519 1520
}

P
Peter Zijlstra 已提交
1521 1522 1523 1524 1525
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1526
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1527

1528 1529
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1530 1531
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1532 1533 1534 1535 1536

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1537 1538

/*
1539 1540 1541
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1542
 */
P
Peter Zijlstra 已提交
1543
static int tg_load_down(struct task_group *tg, void *data)
1544
{
1545
	unsigned long load;
P
Peter Zijlstra 已提交
1546
	long cpu = (long)data;
1547

1548 1549 1550 1551
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
P
Peter Zijlstra 已提交
1552
		load *= tg->se[cpu]->load.weight;
1553 1554
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1555

1556
	tg->cfs_rq[cpu]->h_load = load;
1557

P
Peter Zijlstra 已提交
1558
	return 0;
1559 1560
}

P
Peter Zijlstra 已提交
1561
static void update_h_load(long cpu)
1562
{
P
Peter Zijlstra 已提交
1563
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1564 1565
}

1566 1567
#endif

1568 1569
#ifdef CONFIG_PREEMPT

1570 1571
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1572
/*
1573 1574 1575 1576 1577 1578
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1579
 */
1580 1581 1582 1583 1584
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1585
	raw_spin_unlock(&this_rq->lock);
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1600 1601 1602 1603 1604 1605
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1606
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1607
		if (busiest < this_rq) {
1608 1609 1610 1611
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1612 1613
			ret = 1;
		} else
1614 1615
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1616 1617 1618 1619
	}
	return ret;
}

1620 1621 1622 1623 1624 1625 1626 1627 1628
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1629
		raw_spin_unlock(&this_rq->lock);
1630 1631 1632 1633 1634 1635
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1636 1637 1638
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1639
	raw_spin_unlock(&busiest->lock);
1640 1641
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
#else /* CONFIG_SMP */

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	BUG_ON(rq1 != rq2);
	raw_spin_lock(&rq1->lock);
	__acquire(rq2->lock);	/* Fake it out ;) */
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	BUG_ON(rq1 != rq2);
	raw_spin_unlock(&rq1->lock);
	__release(rq2->lock);
}

1718 1719
#endif

1720
static void calc_load_account_idle(struct rq *this_rq);
1721
static void update_sysctl(void);
1722
static int get_update_sysctl_factor(void);
1723
static void update_cpu_load(struct rq *this_rq);
1724

P
Peter Zijlstra 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1738

1739
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1740

1741
#define sched_class_highest (&stop_sched_class)
1742 1743
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1744

1745 1746
#include "sched_stats.h"

1747
static void inc_nr_running(struct rq *rq)
1748 1749 1750 1751
{
	rq->nr_running++;
}

1752
static void dec_nr_running(struct rq *rq)
1753 1754 1755 1756
{
	rq->nr_running--;
}

1757 1758
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
1759 1760 1761 1762 1763 1764 1765 1766
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1767

I
Ingo Molnar 已提交
1768 1769
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1770 1771
}

1772
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1773
{
1774
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1775
	sched_info_queued(p);
1776
	p->sched_class->enqueue_task(rq, p, flags);
I
Ingo Molnar 已提交
1777
	p->se.on_rq = 1;
1778 1779
}

1780
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1781
{
1782
	update_rq_clock(rq);
1783
	sched_info_dequeued(p);
1784
	p->sched_class->dequeue_task(rq, p, flags);
I
Ingo Molnar 已提交
1785
	p->se.on_rq = 0;
1786 1787
}

1788 1789 1790
/*
 * activate_task - move a task to the runqueue.
 */
1791
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1792 1793 1794 1795
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1796
	enqueue_task(rq, p, flags);
1797 1798 1799 1800 1801 1802
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1803
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1804 1805 1806 1807
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1808
	dequeue_task(rq, p, flags);
1809 1810 1811
	dec_nr_running(rq);
}

1812 1813
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

1814 1815 1816 1817 1818 1819 1820
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
1821 1822 1823
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
1824
 */
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
1879 1880 1881
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
1882
#endif /* CONFIG_64BIT */
1883

1884 1885 1886 1887
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
1888 1889 1890
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
1891
	s64 delta;
1892 1893 1894 1895 1896 1897 1898 1899
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
1900 1901 1902
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

1903
	irq_time_write_begin();
1904 1905 1906 1907 1908 1909 1910
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
1911
		__this_cpu_add(cpu_hardirq_time, delta);
1912
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1913
		__this_cpu_add(cpu_softirq_time, delta);
1914

1915
	irq_time_write_end();
1916 1917
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
1918
EXPORT_SYMBOL_GPL(account_system_vtime);
1919

1920
static void update_rq_clock_task(struct rq *rq, s64 delta)
1921
{
1922 1923
	s64 irq_delta;

1924
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
	rq->clock_task += delta;

	if (irq_delta && sched_feat(NONIRQ_POWER))
		sched_rt_avg_update(rq, irq_delta);
1950 1951
}

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
static int irqtime_account_hi_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

1982
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
1983

1984 1985
#define sched_clock_irqtime	(0)

1986
static void update_rq_clock_task(struct rq *rq, s64 delta)
1987
{
1988
	rq->clock_task += delta;
1989 1990
}

1991
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1992

1993 1994 1995
#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
1996
#include "sched_autogroup.c"
1997
#include "sched_stoptask.c"
1998 1999 2000 2001
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

2032
/*
I
Ingo Molnar 已提交
2033
 * __normal_prio - return the priority that is based on the static prio
2034 2035 2036
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
2037
	return p->static_prio;
2038 2039
}

2040 2041 2042 2043 2044 2045 2046
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
2047
static inline int normal_prio(struct task_struct *p)
2048 2049 2050
{
	int prio;

2051
	if (task_has_rt_policy(p))
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
2065
static int effective_prio(struct task_struct *p)
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
2078 2079 2080 2081
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
2082
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
2083 2084 2085 2086
{
	return cpu_curr(task_cpu(p)) == p;
}

2087 2088
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
2089
				       int oldprio)
2090 2091 2092
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
2093 2094 2095 2096
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
2097 2098
}

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
2120
	if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2121 2122 2123
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
2124
#ifdef CONFIG_SMP
2125 2126 2127
/*
 * Is this task likely cache-hot:
 */
2128
static int
2129 2130 2131 2132
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2133 2134 2135
	if (p->sched_class != &fair_sched_class)
		return 0;

2136 2137 2138
	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

2139 2140 2141
	/*
	 * Buddy candidates are cache hot:
	 */
2142
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2143 2144
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2145 2146
		return 1;

2147 2148 2149 2150 2151
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2152 2153 2154 2155 2156
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2157
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2158
{
2159 2160 2161 2162 2163
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2164 2165
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2166 2167
#endif

2168
	trace_sched_migrate_task(p, new_cpu);
2169

2170 2171 2172 2173
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2174 2175

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2176 2177
}

2178
struct migration_arg {
2179
	struct task_struct *task;
L
Linus Torvalds 已提交
2180
	int dest_cpu;
2181
};
L
Linus Torvalds 已提交
2182

2183 2184
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2185 2186 2187 2188
/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2189
static bool migrate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
2190 2191 2192
{
	/*
	 * If the task is not on a runqueue (and not running), then
2193
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2194
	 */
2195
	return p->se.on_rq || task_running(rq, p);
L
Linus Torvalds 已提交
2196 2197 2198 2199 2200
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2201 2202 2203 2204 2205 2206 2207
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2208 2209 2210 2211 2212 2213
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2214
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2215 2216
{
	unsigned long flags;
I
Ingo Molnar 已提交
2217
	int running, on_rq;
R
Roland McGrath 已提交
2218
	unsigned long ncsw;
2219
	struct rq *rq;
L
Linus Torvalds 已提交
2220

2221 2222 2223 2224 2225 2226 2227 2228
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2229

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2241 2242 2243
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2244
			cpu_relax();
R
Roland McGrath 已提交
2245
		}
2246

2247 2248 2249 2250 2251 2252
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2253
		trace_sched_wait_task(p);
2254 2255
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2256
		ncsw = 0;
2257
		if (!match_state || p->state == match_state)
2258
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2259
		task_rq_unlock(rq, &flags);
2260

R
Roland McGrath 已提交
2261 2262 2263 2264 2265 2266
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2277

2278 2279 2280 2281 2282
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2283
		 * So if it was still runnable (but just not actively
2284 2285 2286 2287
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
2288 2289 2290 2291
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2292 2293
			continue;
		}
2294

2295 2296 2297 2298 2299 2300 2301
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2302 2303

	return ncsw;
L
Linus Torvalds 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
2313
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
2314 2315 2316 2317 2318
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2319
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2329
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2330
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2331

2332
#ifdef CONFIG_SMP
2333 2334 2335
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2352 2353 2354 2355 2356 2357 2358 2359 2360
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
2361 2362 2363 2364 2365
	}

	return dest_cpu;
}

2366
/*
2367
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2368
 */
2369
static inline
2370
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2371
{
2372
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2385
		     !cpu_online(cpu)))
2386
		cpu = select_fallback_rq(task_cpu(p), p);
2387 2388

	return cpu;
2389
}
2390 2391 2392 2393 2394 2395

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2396 2397
#endif

T
Tejun Heo 已提交
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
				 bool is_sync, bool is_migrate, bool is_local,
				 unsigned long en_flags)
{
	schedstat_inc(p, se.statistics.nr_wakeups);
	if (is_sync)
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
	if (is_migrate)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
	if (is_local)
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	else
		schedstat_inc(p, se.statistics.nr_wakeups_remote);

	activate_task(rq, p, en_flags);
}

static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
					int wake_flags, bool success)
{
	trace_sched_wakeup(p, success);
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
T
Tejun Heo 已提交
2437 2438 2439
	/* if a worker is waking up, notify workqueue */
	if ((p->flags & PF_WQ_WORKER) && success)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2440 2441 2442
}

/**
L
Linus Torvalds 已提交
2443
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2444
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2445
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2446
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2447 2448 2449 2450 2451 2452 2453
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2454 2455
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2456
 */
P
Peter Zijlstra 已提交
2457 2458
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2459
{
2460
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2461
	unsigned long flags;
2462
	unsigned long en_flags = ENQUEUE_WAKEUP;
2463
	struct rq *rq;
L
Linus Torvalds 已提交
2464

P
Peter Zijlstra 已提交
2465
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2466

2467
	smp_wmb();
2468
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2469
	if (!(p->state & state))
L
Linus Torvalds 已提交
2470 2471
		goto out;

I
Ingo Molnar 已提交
2472
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2473 2474 2475
		goto out_running;

	cpu = task_cpu(p);
2476
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2477 2478 2479 2480 2481

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2482 2483 2484
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2485 2486
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2487
	 */
2488 2489 2490 2491 2492 2493
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2494
	p->state = TASK_WAKING;
2495

2496
	if (p->sched_class->task_waking) {
2497
		p->sched_class->task_waking(rq, p);
2498 2499
		en_flags |= ENQUEUE_WAKING;
	}
2500

2501 2502
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2503
		set_task_cpu(p, cpu);
2504
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2505

2506 2507
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2508

2509 2510 2511 2512 2513 2514 2515
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2516
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2517

2518 2519 2520 2521 2522 2523 2524
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2525
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2526 2527 2528 2529 2530
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2531
#endif /* CONFIG_SCHEDSTATS */
2532

L
Linus Torvalds 已提交
2533 2534
out_activate:
#endif /* CONFIG_SMP */
T
Tejun Heo 已提交
2535 2536
	ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
		      cpu == this_cpu, en_flags);
L
Linus Torvalds 已提交
2537 2538
	success = 1;
out_running:
T
Tejun Heo 已提交
2539
	ttwu_post_activation(p, rq, wake_flags, success);
L
Linus Torvalds 已提交
2540 2541
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2542
	put_cpu();
L
Linus Torvalds 已提交
2543 2544 2545 2546

	return success;
}

T
Tejun Heo 已提交
2547 2548 2549 2550
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
2551
 * Put @p on the run-queue if it's not already there.  The caller must
T
Tejun Heo 已提交
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
 * the current task.  this_rq() stays locked over invocation.
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);
	bool success = false;

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

	if (!(p->state & TASK_NORMAL))
		return;

	if (!p->se.on_rq) {
		if (likely(!task_running(rq, p))) {
			schedstat_inc(rq, ttwu_count);
			schedstat_inc(rq, ttwu_local);
		}
		ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
		success = true;
	}
	ttwu_post_activation(p, rq, 0, success);
}

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2589
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2590
{
2591
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2592 2593 2594
}
EXPORT_SYMBOL(wake_up_process);

2595
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2596 2597 2598 2599 2600 2601 2602
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2603 2604 2605 2606 2607 2608 2609
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2610
	p->se.prev_sum_exec_runtime	= 0;
2611
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2612
	p->se.vruntime			= 0;
I
Ingo Molnar 已提交
2613 2614

#ifdef CONFIG_SCHEDSTATS
2615
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2616
#endif
N
Nick Piggin 已提交
2617

P
Peter Zijlstra 已提交
2618
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2619
	p->se.on_rq = 0;
2620
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2621

2622 2623 2624
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2635
	/*
2636
	 * We mark the process as running here. This guarantees that
2637 2638 2639
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2640
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2641

2642 2643 2644 2645
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2646
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2647
			p->policy = SCHED_NORMAL;
2648 2649
			p->normal_prio = p->static_prio;
		}
2650

2651 2652
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2653
			p->normal_prio = p->static_prio;
2654 2655 2656
			set_load_weight(p);
		}

2657 2658 2659 2660 2661 2662
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2663

2664 2665 2666 2667 2668
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2669 2670
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2671

P
Peter Zijlstra 已提交
2672 2673 2674
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2675 2676 2677 2678 2679 2680 2681 2682
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
	rcu_read_lock();
2683
	set_task_cpu(p, cpu);
2684
	rcu_read_unlock();
2685

2686
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2687
	if (likely(sched_info_on()))
2688
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2689
#endif
2690
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2691 2692
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2693
#ifdef CONFIG_PREEMPT
2694
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2695
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2696
#endif
2697
#ifdef CONFIG_SMP
2698
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2699
#endif
2700

N
Nick Piggin 已提交
2701
	put_cpu();
L
Linus Torvalds 已提交
2702 2703 2704 2705 2706 2707 2708 2709 2710
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2711
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2712 2713
{
	unsigned long flags;
I
Ingo Molnar 已提交
2714
	struct rq *rq;
2715
	int cpu __maybe_unused = get_cpu();
2716 2717

#ifdef CONFIG_SMP
2718 2719 2720
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2721 2722 2723 2724 2725
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2726 2727
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2728
	 */
2729
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2730
	set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2731

2732
	p->state = TASK_RUNNING;
2733 2734 2735 2736
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2737
	activate_task(rq, p, 0);
2738
	trace_sched_wakeup_new(p, 1);
P
Peter Zijlstra 已提交
2739
	check_preempt_curr(rq, p, WF_FORK);
2740
#ifdef CONFIG_SMP
2741 2742
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2743
#endif
I
Ingo Molnar 已提交
2744
	task_rq_unlock(rq, &flags);
2745
	put_cpu();
L
Linus Torvalds 已提交
2746 2747
}

2748 2749 2750
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2751
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2752
 * @notifier: notifier struct to register
2753 2754 2755 2756 2757 2758 2759 2760 2761
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2762
 * @notifier: notifier struct to unregister
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2792
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2804
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2805

2806 2807 2808
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2809
 * @prev: the current task that is being switched out
2810 2811 2812 2813 2814 2815 2816 2817 2818
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2819 2820 2821
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2822
{
2823 2824
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
2825
	fire_sched_out_preempt_notifiers(prev, next);
2826 2827
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
2828
	trace_sched_switch(prev, next);
2829 2830
}

L
Linus Torvalds 已提交
2831 2832
/**
 * finish_task_switch - clean up after a task-switch
2833
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2834 2835
 * @prev: the thread we just switched away from.
 *
2836 2837 2838 2839
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2840 2841
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2842
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2843 2844 2845
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2846
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2847 2848 2849
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2850
	long prev_state;
L
Linus Torvalds 已提交
2851 2852 2853 2854 2855

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2856
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2857 2858
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2859
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2860 2861 2862 2863 2864
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2865
	prev_state = prev->state;
2866
	finish_arch_switch(prev);
2867 2868 2869
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2870
	perf_event_task_sched_in(current);
2871 2872 2873
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2874
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2875

2876
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2877 2878
	if (mm)
		mmdrop(mm);
2879
	if (unlikely(prev_state == TASK_DEAD)) {
2880 2881 2882
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2883
		 */
2884
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2885
		put_task_struct(prev);
2886
	}
L
Linus Torvalds 已提交
2887 2888
}

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2904
		raw_spin_lock_irqsave(&rq->lock, flags);
2905 2906
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2907
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2908 2909 2910 2911 2912 2913

		rq->post_schedule = 0;
	}
}

#else
2914

2915 2916 2917 2918 2919 2920
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2921 2922
}

2923 2924
#endif

L
Linus Torvalds 已提交
2925 2926 2927 2928
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2929
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2930 2931
	__releases(rq->lock)
{
2932 2933
	struct rq *rq = this_rq();

2934
	finish_task_switch(rq, prev);
2935

2936 2937 2938 2939 2940
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2941

2942 2943 2944 2945
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2946
	if (current->set_child_tid)
2947
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2948 2949 2950 2951 2952 2953
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2954
static inline void
2955
context_switch(struct rq *rq, struct task_struct *prev,
2956
	       struct task_struct *next)
L
Linus Torvalds 已提交
2957
{
I
Ingo Molnar 已提交
2958
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2959

2960
	prepare_task_switch(rq, prev, next);
2961

I
Ingo Molnar 已提交
2962 2963
	mm = next->mm;
	oldmm = prev->active_mm;
2964 2965 2966 2967 2968
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2969
	arch_start_context_switch(prev);
2970

2971
	if (!mm) {
L
Linus Torvalds 已提交
2972 2973 2974 2975 2976 2977
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2978
	if (!prev->mm) {
L
Linus Torvalds 已提交
2979 2980 2981
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2982 2983 2984 2985 2986 2987 2988
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2989
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2990
#endif
L
Linus Torvalds 已提交
2991 2992 2993 2994

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2995 2996 2997 2998 2999 3000 3001
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
3019
}
L
Linus Torvalds 已提交
3020 3021

unsigned long nr_uninterruptible(void)
3022
{
L
Linus Torvalds 已提交
3023
	unsigned long i, sum = 0;
3024

3025
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3026
		sum += cpu_rq(i)->nr_uninterruptible;
3027 3028

	/*
L
Linus Torvalds 已提交
3029 3030
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
3031
	 */
L
Linus Torvalds 已提交
3032 3033
	if (unlikely((long)sum < 0))
		sum = 0;
3034

L
Linus Torvalds 已提交
3035
	return sum;
3036 3037
}

L
Linus Torvalds 已提交
3038
unsigned long long nr_context_switches(void)
3039
{
3040 3041
	int i;
	unsigned long long sum = 0;
3042

3043
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3044
		sum += cpu_rq(i)->nr_switches;
3045

L
Linus Torvalds 已提交
3046 3047
	return sum;
}
3048

L
Linus Torvalds 已提交
3049 3050 3051
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
3052

3053
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3054
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
3055

L
Linus Torvalds 已提交
3056 3057
	return sum;
}
3058

3059
unsigned long nr_iowait_cpu(int cpu)
3060
{
3061
	struct rq *this = cpu_rq(cpu);
3062 3063
	return atomic_read(&this->nr_iowait);
}
3064

3065 3066 3067 3068 3069
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
3070

3071

3072 3073 3074 3075 3076
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
3077

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

3093 3094 3095 3096 3097 3098 3099 3100 3101
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
3253 3254 3255 3256 3257 3258 3259 3260 3261
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
3262 3263 3264 3265

static void calc_global_nohz(unsigned long ticks)
{
}
3266 3267
#endif

3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3281 3282 3283
}

/*
3284 3285
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3286
 */
3287
void calc_global_load(unsigned long ticks)
3288
{
3289
	long active;
L
Linus Torvalds 已提交
3290

3291 3292 3293
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
3294
		return;
L
Linus Torvalds 已提交
3295

3296 3297
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3298

3299 3300 3301
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3302

3303 3304
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3305

3306
/*
3307 3308
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3309 3310 3311
 */
static void calc_load_account_active(struct rq *this_rq)
{
3312
	long delta;
3313

3314 3315
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3316

3317 3318 3319
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3320
		atomic_long_add(delta, &calc_load_tasks);
3321 3322

	this_rq->calc_load_update += LOAD_FREQ;
3323 3324
}

3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

3392
/*
I
Ingo Molnar 已提交
3393
 * Update rq->cpu_load[] statistics. This function is usually called every
3394 3395
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
3396
 */
I
Ingo Molnar 已提交
3397
static void update_cpu_load(struct rq *this_rq)
3398
{
3399
	unsigned long this_load = this_rq->load.weight;
3400 3401
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
3402
	int i, scale;
3403

I
Ingo Molnar 已提交
3404
	this_rq->nr_load_updates++;
3405

3406 3407 3408 3409 3410 3411 3412
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
3413
	/* Update our load: */
3414 3415
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
3416
		unsigned long old_load, new_load;
3417

I
Ingo Molnar 已提交
3418
		/* scale is effectively 1 << i now, and >> i divides by scale */
3419

I
Ingo Molnar 已提交
3420
		old_load = this_rq->cpu_load[i];
3421
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
3422
		new_load = this_load;
I
Ingo Molnar 已提交
3423 3424 3425 3426 3427 3428
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
3429 3430 3431
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
3432
	}
3433 3434

	sched_avg_update(this_rq);
3435 3436 3437 3438 3439
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
3440

3441
	calc_load_account_active(this_rq);
3442 3443
}

I
Ingo Molnar 已提交
3444
#ifdef CONFIG_SMP
3445

3446
/*
P
Peter Zijlstra 已提交
3447 3448
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3449
 */
P
Peter Zijlstra 已提交
3450
void sched_exec(void)
3451
{
P
Peter Zijlstra 已提交
3452
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3453
	unsigned long flags;
3454
	struct rq *rq;
3455
	int dest_cpu;
3456

L
Linus Torvalds 已提交
3457
	rq = task_rq_lock(p, &flags);
3458 3459 3460
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3461

3462
	/*
P
Peter Zijlstra 已提交
3463
	 * select_task_rq() can race against ->cpus_allowed
3464
	 */
3465
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3466
	    likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3467
		struct migration_arg arg = { p, dest_cpu };
3468

L
Linus Torvalds 已提交
3469
		task_rq_unlock(rq, &flags);
3470
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3471 3472
		return;
	}
3473
unlock:
L
Linus Torvalds 已提交
3474 3475
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3476

L
Linus Torvalds 已提交
3477 3478 3479 3480 3481 3482 3483
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3484
 * Return any ns on the sched_clock that have not yet been accounted in
3485
 * @p in case that task is currently running.
3486 3487
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3488
 */
3489 3490 3491 3492 3493 3494
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
3495
		ns = rq->clock_task - p->se.exec_start;
3496 3497 3498 3499 3500 3501 3502
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3503
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3504 3505
{
	unsigned long flags;
3506
	struct rq *rq;
3507
	u64 ns = 0;
3508

3509
	rq = task_rq_lock(p, &flags);
3510 3511
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3512

3513 3514
	return ns;
}
3515

3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3533

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3553
	task_rq_unlock(rq, &flags);
3554

L
Linus Torvalds 已提交
3555 3556 3557 3558 3559 3560 3561
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3562
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3563
 */
3564 3565
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3566 3567 3568 3569
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3570
	/* Add user time to process. */
L
Linus Torvalds 已提交
3571
	p->utime = cputime_add(p->utime, cputime);
3572
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3573
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3574 3575 3576 3577 3578 3579 3580

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3581 3582

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3583 3584
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3585 3586
}

3587 3588 3589 3590
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3591
 * @cputime_scaled: cputime scaled by cpu frequency
3592
 */
3593 3594
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3595 3596 3597 3598 3599 3600
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3601
	/* Add guest time to process. */
3602
	p->utime = cputime_add(p->utime, cputime);
3603
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3604
	account_group_user_time(p, cputime);
3605 3606
	p->gtime = cputime_add(p->gtime, cputime);

3607
	/* Add guest time to cpustat. */
3608 3609 3610 3611 3612 3613 3614
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3615 3616
}

3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
			cputime_t cputime_scaled, cputime64_t *target_cputime64)
{
	cputime64_t tmp = cputime_to_cputime64(cputime);

	/* Add system time to process. */
	p->stime = cputime_add(p->stime, cputime);
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
	*target_cputime64 = cputime64_add(*target_cputime64, tmp);
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
3643 3644 3645 3646 3647
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3648
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3649 3650
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3651
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3652 3653
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3654
	cputime64_t *target_cputime64;
L
Linus Torvalds 已提交
3655

3656
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3657
		account_guest_time(p, cputime, cputime_scaled);
3658 3659
		return;
	}
3660

L
Linus Torvalds 已提交
3661
	if (hardirq_count() - hardirq_offset)
3662
		target_cputime64 = &cpustat->irq;
3663
	else if (in_serving_softirq())
3664
		target_cputime64 = &cpustat->softirq;
L
Linus Torvalds 已提交
3665
	else
3666
		target_cputime64 = &cpustat->system;
3667

3668
	__account_system_time(p, cputime, cputime_scaled, target_cputime64);
L
Linus Torvalds 已提交
3669 3670
}

3671
/*
L
Linus Torvalds 已提交
3672
 * Account for involuntary wait time.
3673
 * @cputime: the cpu time spent in involuntary wait
3674
 */
3675
void account_steal_time(cputime_t cputime)
3676
{
3677 3678 3679 3680
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3681 3682
}

L
Linus Torvalds 已提交
3683
/*
3684 3685
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3686
 */
3687
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3688 3689
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3690
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3691
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3692

3693 3694 3695 3696
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3697 3698
}

3699 3700
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
	cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	if (irqtime_account_hi_update()) {
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	} else if (irqtime_account_si_update()) {
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3734 3735 3736 3737 3738 3739 3740 3741
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->softirq);
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->system);
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
3762
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3763 3764 3765
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
3766
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3767 3768 3769 3770 3771 3772 3773 3774

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3775
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3776 3777
	struct rq *rq = this_rq();

3778 3779 3780 3781 3782
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

3783
	if (user_tick)
3784
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3785
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3786
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3787 3788
				    one_jiffy_scaled);
	else
3789
		account_idle_time(cputime_one_jiffy);
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
3808 3809 3810 3811 3812 3813

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

3814
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3815 3816
}

3817 3818
#endif

3819 3820 3821 3822
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3823
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3824
{
3825 3826
	*ut = p->utime;
	*st = p->stime;
3827 3828
}

3829
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3830
{
3831 3832 3833 3834 3835 3836
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3837 3838
}
#else
3839 3840

#ifndef nsecs_to_cputime
3841
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3842 3843
#endif

3844
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3845
{
3846
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3847 3848 3849 3850

	/*
	 * Use CFS's precise accounting:
	 */
3851
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3852 3853

	if (total) {
3854
		u64 temp = rtime;
3855

3856
		temp *= utime;
3857
		do_div(temp, total);
3858 3859 3860
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3861

3862 3863 3864
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3865
	p->prev_utime = max(p->prev_utime, utime);
3866
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3867

3868 3869
	*ut = p->prev_utime;
	*st = p->prev_stime;
3870 3871
}

3872 3873 3874 3875
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3876
{
3877 3878 3879
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3880

3881
	thread_group_cputime(p, &cputime);
3882

3883 3884
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3885

3886
	if (total) {
3887
		u64 temp = rtime;
3888

3889
		temp *= cputime.utime;
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3901 3902 3903
}
#endif

3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3915
	struct task_struct *curr = rq->curr;
3916 3917

	sched_clock_tick();
I
Ingo Molnar 已提交
3918

3919
	raw_spin_lock(&rq->lock);
3920
	update_rq_clock(rq);
3921
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3922
	curr->sched_class->task_tick(rq, curr, 0);
3923
	raw_spin_unlock(&rq->lock);
3924

3925
	perf_event_task_tick();
3926

3927
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3928 3929
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3930
#endif
L
Linus Torvalds 已提交
3931 3932
}

3933
notrace unsigned long get_parent_ip(unsigned long addr)
3934 3935 3936 3937 3938 3939 3940 3941
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3942

3943 3944 3945
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3946
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3947
{
3948
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3949 3950 3951
	/*
	 * Underflow?
	 */
3952 3953
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3954
#endif
L
Linus Torvalds 已提交
3955
	preempt_count() += val;
3956
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3957 3958 3959
	/*
	 * Spinlock count overflowing soon?
	 */
3960 3961
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3962 3963 3964
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3965 3966 3967
}
EXPORT_SYMBOL(add_preempt_count);

3968
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3969
{
3970
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3971 3972 3973
	/*
	 * Underflow?
	 */
3974
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3975
		return;
L
Linus Torvalds 已提交
3976 3977 3978
	/*
	 * Is the spinlock portion underflowing?
	 */
3979 3980 3981
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3982
#endif
3983

3984 3985
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3986 3987 3988 3989 3990 3991 3992
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3993
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3994
 */
I
Ingo Molnar 已提交
3995
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3996
{
3997 3998
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3999 4000
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
4001

I
Ingo Molnar 已提交
4002
	debug_show_held_locks(prev);
4003
	print_modules();
I
Ingo Molnar 已提交
4004 4005
	if (irqs_disabled())
		print_irqtrace_events(prev);
4006 4007 4008 4009 4010

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4011
}
L
Linus Torvalds 已提交
4012

I
Ingo Molnar 已提交
4013 4014 4015 4016 4017
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4018
	/*
I
Ingo Molnar 已提交
4019
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4020 4021 4022
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4023
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4024 4025
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4026 4027
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4028
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4029 4030
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4031
		schedstat_inc(this_rq(), rq_sched_info.bkl_count);
4032
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4033 4034
	}
#endif
I
Ingo Molnar 已提交
4035 4036
}

P
Peter Zijlstra 已提交
4037
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
4038
{
4039 4040
	if (prev->se.on_rq)
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
4041
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
4042 4043
}

I
Ingo Molnar 已提交
4044 4045 4046 4047
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4048
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
4049
{
4050
	const struct sched_class *class;
I
Ingo Molnar 已提交
4051
	struct task_struct *p;
L
Linus Torvalds 已提交
4052 4053

	/*
I
Ingo Molnar 已提交
4054 4055
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4056
	 */
I
Ingo Molnar 已提交
4057
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4058
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4059 4060
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4061 4062
	}

4063
	for_each_class(class) {
4064
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4065 4066 4067
		if (p)
			return p;
	}
4068 4069

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
4070
}
L
Linus Torvalds 已提交
4071

I
Ingo Molnar 已提交
4072 4073 4074
/*
 * schedule() is the main scheduler function.
 */
4075
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
4076 4077
{
	struct task_struct *prev, *next;
4078
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4079
	struct rq *rq;
4080
	int cpu;
I
Ingo Molnar 已提交
4081

4082 4083
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
4084 4085
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
4086
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
4087 4088 4089
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
4090

4091
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4092
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4093

4094
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
4095

4096
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
4097
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
4098
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
4099
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
		} else {
			/*
			 * If a worker is going to sleep, notify and
			 * ask workqueue whether it wants to wake up a
			 * task to maintain concurrency.  If so, wake
			 * up the task.
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
4114
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
T
Tejun Heo 已提交
4115
		}
I
Ingo Molnar 已提交
4116
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4117 4118
	}

4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
	/*
	 * If we are going to sleep and we have plugged IO queued, make
	 * sure to submit it to avoid deadlocks.
	 */
	if (prev->state != TASK_RUNNING && blk_needs_flush_plug(prev)) {
		raw_spin_unlock(&rq->lock);
		blk_flush_plug(prev);
		raw_spin_lock(&rq->lock);
	}

4129
	pre_schedule(rq, prev);
4130

I
Ingo Molnar 已提交
4131
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4132 4133
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
4134
	put_prev_task(rq, prev);
4135
	next = pick_next_task(rq);
4136 4137
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
4138 4139 4140 4141 4142 4143

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4144
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4145
		/*
4146 4147 4148 4149
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
4150 4151 4152
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4153
	} else
4154
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
4155

4156
	post_schedule(rq);
L
Linus Torvalds 已提交
4157 4158

	preempt_enable_no_resched();
4159
	if (need_resched())
L
Linus Torvalds 已提交
4160 4161 4162 4163
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

4164
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
4184
		return 0;
4185 4186 4187 4188 4189 4190 4191 4192 4193
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
4194
		return 0;
4195 4196 4197 4198 4199 4200

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
4201
		return 0;
4202 4203 4204 4205 4206 4207 4208

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
4209 4210 4211 4212 4213 4214 4215 4216
		if (lock->owner != owner) {
			/*
			 * If the lock has switched to a different owner,
			 * we likely have heavy contention. Return 0 to quit
			 * optimistic spinning and not contend further:
			 */
			if (lock->owner)
				return 0;
4217
			break;
4218
		}
4219 4220 4221 4222 4223 4224 4225

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

4226
		arch_mutex_cpu_relax();
4227
	}
4228

4229 4230 4231 4232
	return 1;
}
#endif

L
Linus Torvalds 已提交
4233 4234
#ifdef CONFIG_PREEMPT
/*
4235
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4236
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4237 4238
 * occur there and call schedule directly.
 */
4239
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
4240 4241
{
	struct thread_info *ti = current_thread_info();
4242

L
Linus Torvalds 已提交
4243 4244
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4245
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4246
	 */
N
Nick Piggin 已提交
4247
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4248 4249
		return;

4250
	do {
4251
		add_preempt_count_notrace(PREEMPT_ACTIVE);
4252
		schedule();
4253
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4254

4255 4256 4257 4258 4259
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4260
	} while (need_resched());
L
Linus Torvalds 已提交
4261 4262 4263 4264
}
EXPORT_SYMBOL(preempt_schedule);

/*
4265
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4266 4267 4268 4269 4270 4271 4272
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4273

4274
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4275 4276
	BUG_ON(ti->preempt_count || !irqs_disabled());

4277 4278 4279 4280 4281 4282
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4283

4284 4285 4286 4287 4288
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4289
	} while (need_resched());
L
Linus Torvalds 已提交
4290 4291 4292 4293
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
4294
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
4295
			  void *key)
L
Linus Torvalds 已提交
4296
{
P
Peter Zijlstra 已提交
4297
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
4298 4299 4300 4301
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4302 4303
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4304 4305 4306
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4307
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4308 4309
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4310
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
4311
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
4312
{
4313
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4314

4315
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4316 4317
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
4318
		if (curr->func(curr, mode, wake_flags, key) &&
4319
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4320 4321 4322 4323 4324 4325 4326 4327 4328
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4329
 * @key: is directly passed to the wakeup function
4330 4331 4332
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4333
 */
4334
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4335
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4348
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4349 4350 4351
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
4352
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
4353

4354 4355 4356 4357
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
4358
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4359

L
Linus Torvalds 已提交
4360
/**
4361
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4362 4363 4364
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4365
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
4366 4367 4368 4369 4370 4371 4372
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
4373 4374 4375
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4376
 */
4377 4378
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4379 4380
{
	unsigned long flags;
P
Peter Zijlstra 已提交
4381
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
4382 4383 4384 4385 4386

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
4387
		wake_flags = 0;
L
Linus Torvalds 已提交
4388 4389

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
4390
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
4391 4392
	spin_unlock_irqrestore(&q->lock, flags);
}
4393 4394 4395 4396 4397 4398 4399 4400 4401
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4402 4403
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4404 4405 4406 4407 4408 4409 4410 4411
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4412 4413 4414
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4415
 */
4416
void complete(struct completion *x)
L
Linus Torvalds 已提交
4417 4418 4419 4420 4421
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4422
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4423 4424 4425 4426
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4427 4428 4429 4430 4431
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4432 4433 4434
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4435
 */
4436
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4437 4438 4439 4440 4441
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4442
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4443 4444 4445 4446
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4447 4448
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4449 4450 4451 4452
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
4453
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
4454
		do {
4455
			if (signal_pending_state(state, current)) {
4456 4457
				timeout = -ERESTARTSYS;
				break;
4458 4459
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4460 4461 4462
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4463
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4464
		__remove_wait_queue(&x->wait, &wait);
4465 4466
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4467 4468
	}
	x->done--;
4469
	return timeout ?: 1;
L
Linus Torvalds 已提交
4470 4471
}

4472 4473
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4474 4475 4476 4477
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4478
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4479
	spin_unlock_irq(&x->wait.lock);
4480 4481
	return timeout;
}
L
Linus Torvalds 已提交
4482

4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4493
void __sched wait_for_completion(struct completion *x)
4494 4495
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4496
}
4497
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4498

4499 4500 4501 4502 4503 4504 4505 4506 4507
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4508
unsigned long __sched
4509
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4510
{
4511
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4512
}
4513
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4514

4515 4516 4517 4518 4519 4520 4521
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4522
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4523
{
4524 4525 4526 4527
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4528
}
4529
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4530

4531 4532 4533 4534 4535 4536 4537 4538
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4539
long __sched
4540 4541
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4542
{
4543
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4544
}
4545
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4546

4547 4548 4549 4550 4551 4552 4553
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4554 4555 4556 4557 4558 4559 4560 4561 4562
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4563 4564 4565 4566 4567 4568 4569 4570 4571
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
4572
long __sched
4573 4574 4575 4576 4577 4578 4579
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4594
	unsigned long flags;
4595 4596
	int ret = 1;

4597
	spin_lock_irqsave(&x->wait.lock, flags);
4598 4599 4600 4601
	if (!x->done)
		ret = 0;
	else
		x->done--;
4602
	spin_unlock_irqrestore(&x->wait.lock, flags);
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4617
	unsigned long flags;
4618 4619
	int ret = 1;

4620
	spin_lock_irqsave(&x->wait.lock, flags);
4621 4622
	if (!x->done)
		ret = 0;
4623
	spin_unlock_irqrestore(&x->wait.lock, flags);
4624 4625 4626 4627
	return ret;
}
EXPORT_SYMBOL(completion_done);

4628 4629
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4630
{
I
Ingo Molnar 已提交
4631 4632 4633 4634
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4635

4636
	__set_current_state(state);
L
Linus Torvalds 已提交
4637

4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4652 4653 4654
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4655
long __sched
I
Ingo Molnar 已提交
4656
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4657
{
4658
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4659 4660 4661
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4662
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4663
{
4664
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4665 4666 4667
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4668
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4669
{
4670
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4671 4672 4673
}
EXPORT_SYMBOL(sleep_on_timeout);

4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4686
void rt_mutex_setprio(struct task_struct *p, int prio)
4687 4688
{
	unsigned long flags;
4689
	int oldprio, on_rq, running;
4690
	struct rq *rq;
4691
	const struct sched_class *prev_class;
4692 4693 4694 4695 4696

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4697
	trace_sched_pi_setprio(p, prio);
4698
	oldprio = p->prio;
4699
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4700
	on_rq = p->se.on_rq;
4701
	running = task_current(rq, p);
4702
	if (on_rq)
4703
		dequeue_task(rq, p, 0);
4704 4705
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4706 4707 4708 4709 4710 4711

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4712 4713
	p->prio = prio;

4714 4715
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4716
	if (on_rq)
4717
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4718

P
Peter Zijlstra 已提交
4719
	check_class_changed(rq, p, prev_class, oldprio);
4720 4721 4722 4723 4724
	task_rq_unlock(rq, &flags);
}

#endif

4725
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4726
{
I
Ingo Molnar 已提交
4727
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4728
	unsigned long flags;
4729
	struct rq *rq;
L
Linus Torvalds 已提交
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4742
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4743
	 */
4744
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4745 4746 4747
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4748
	on_rq = p->se.on_rq;
4749
	if (on_rq)
4750
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4751 4752

	p->static_prio = NICE_TO_PRIO(nice);
4753
	set_load_weight(p);
4754 4755 4756
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4757

I
Ingo Molnar 已提交
4758
	if (on_rq) {
4759
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4760
		/*
4761 4762
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4763
		 */
4764
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4765 4766 4767 4768 4769 4770 4771
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4772 4773 4774 4775 4776
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4777
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4778
{
4779 4780
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4781

4782
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4783 4784 4785
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4786 4787 4788 4789 4790 4791 4792 4793 4794
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4795
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4796
{
4797
	long nice, retval;
L
Linus Torvalds 已提交
4798 4799 4800 4801 4802 4803

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4804 4805
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4806 4807 4808
	if (increment > 40)
		increment = 40;

4809
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4810 4811 4812 4813 4814
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4815 4816 4817
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4836
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4837 4838 4839 4840 4841 4842 4843 4844
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4845
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4846 4847 4848
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4849
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4864
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4865 4866 4867 4868 4869 4870 4871 4872
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4873
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4874
{
4875
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4876 4877 4878
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4879 4880
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4881
{
I
Ingo Molnar 已提交
4882
	BUG_ON(p->se.on_rq);
4883

L
Linus Torvalds 已提交
4884 4885
	p->policy = policy;
	p->rt_priority = prio;
4886 4887 4888
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4889 4890 4891 4892
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4893
	set_load_weight(p);
L
Linus Torvalds 已提交
4894 4895
}

4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4906 4907 4908 4909 4910
	if (cred->user->user_ns == pcred->user->user_ns)
		match = (cred->euid == pcred->euid ||
			 cred->euid == pcred->uid);
	else
		match = false;
4911 4912 4913 4914
	rcu_read_unlock();
	return match;
}

4915
static int __sched_setscheduler(struct task_struct *p, int policy,
4916
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4917
{
4918
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4919
	unsigned long flags;
4920
	const struct sched_class *prev_class;
4921
	struct rq *rq;
4922
	int reset_on_fork;
L
Linus Torvalds 已提交
4923

4924 4925
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4926 4927
recheck:
	/* double check policy once rq lock held */
4928 4929
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4930
		policy = oldpolicy = p->policy;
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4941 4942
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4943 4944
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4945 4946
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4947
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4948
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4949
		return -EINVAL;
4950
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4951 4952
		return -EINVAL;

4953 4954 4955
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4956
	if (user && !capable(CAP_SYS_NICE)) {
4957
		if (rt_policy(policy)) {
4958 4959
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4970

I
Ingo Molnar 已提交
4971
		/*
4972 4973
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4974
		 */
4975 4976 4977 4978
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
4979

4980
		/* can't change other user's priorities */
4981
		if (!check_same_owner(p))
4982
			return -EPERM;
4983 4984 4985 4986

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4987
	}
L
Linus Torvalds 已提交
4988

4989
	if (user) {
4990
		retval = security_task_setscheduler(p);
4991 4992 4993 4994
		if (retval)
			return retval;
	}

4995 4996 4997 4998
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4999
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5000
	/*
L
Lucas De Marchi 已提交
5001
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
5002 5003
	 * runqueue lock must be held.
	 */
5004
	rq = __task_rq_lock(p);
5005

5006 5007 5008 5009 5010 5011 5012 5013 5014
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return -EINVAL;
	}

5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {

		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return 0;
	}

5026 5027 5028 5029 5030 5031 5032
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5033 5034
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
5035 5036 5037 5038 5039 5040 5041
			__task_rq_unlock(rq);
			raw_spin_unlock_irqrestore(&p->pi_lock, flags);
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
5042 5043 5044
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5045
		__task_rq_unlock(rq);
5046
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5047 5048
		goto recheck;
	}
I
Ingo Molnar 已提交
5049
	on_rq = p->se.on_rq;
5050
	running = task_current(rq, p);
5051
	if (on_rq)
5052
		deactivate_task(rq, p, 0);
5053 5054
	if (running)
		p->sched_class->put_prev_task(rq, p);
5055

5056 5057
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
5058
	oldprio = p->prio;
5059
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
5060
	__setscheduler(rq, p, policy, param->sched_priority);
5061

5062 5063
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
5064
	if (on_rq)
I
Ingo Molnar 已提交
5065
		activate_task(rq, p, 0);
5066

P
Peter Zijlstra 已提交
5067
	check_class_changed(rq, p, prev_class, oldprio);
5068
	__task_rq_unlock(rq);
5069
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5070

5071 5072
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5073 5074
	return 0;
}
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
5085
		       const struct sched_param *param)
5086 5087 5088
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5089 5090
EXPORT_SYMBOL_GPL(sched_setscheduler);

5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5103
			       const struct sched_param *param)
5104 5105 5106 5107
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5108 5109
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5110 5111 5112
{
	struct sched_param lparam;
	struct task_struct *p;
5113
	int retval;
L
Linus Torvalds 已提交
5114 5115 5116 5117 5118

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5119 5120 5121

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5122
	p = find_process_by_pid(pid);
5123 5124 5125
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5126

L
Linus Torvalds 已提交
5127 5128 5129 5130 5131 5132 5133 5134 5135
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5136 5137
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5138
{
5139 5140 5141 5142
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5143 5144 5145 5146 5147 5148 5149 5150
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5151
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5152 5153 5154 5155 5156 5157 5158 5159
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5160
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5161
{
5162
	struct task_struct *p;
5163
	int retval;
L
Linus Torvalds 已提交
5164 5165

	if (pid < 0)
5166
		return -EINVAL;
L
Linus Torvalds 已提交
5167 5168

	retval = -ESRCH;
5169
	rcu_read_lock();
L
Linus Torvalds 已提交
5170 5171 5172 5173
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
5174 5175
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
5176
	}
5177
	rcu_read_unlock();
L
Linus Torvalds 已提交
5178 5179 5180 5181
	return retval;
}

/**
5182
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
5183 5184 5185
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5186
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5187 5188
{
	struct sched_param lp;
5189
	struct task_struct *p;
5190
	int retval;
L
Linus Torvalds 已提交
5191 5192

	if (!param || pid < 0)
5193
		return -EINVAL;
L
Linus Torvalds 已提交
5194

5195
	rcu_read_lock();
L
Linus Torvalds 已提交
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
5206
	rcu_read_unlock();
L
Linus Torvalds 已提交
5207 5208 5209 5210 5211 5212 5213 5214 5215

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
5216
	rcu_read_unlock();
L
Linus Torvalds 已提交
5217 5218 5219
	return retval;
}

5220
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5221
{
5222
	cpumask_var_t cpus_allowed, new_mask;
5223 5224
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5225

5226
	get_online_cpus();
5227
	rcu_read_lock();
L
Linus Torvalds 已提交
5228 5229 5230

	p = find_process_by_pid(pid);
	if (!p) {
5231
		rcu_read_unlock();
5232
		put_online_cpus();
L
Linus Torvalds 已提交
5233 5234 5235
		return -ESRCH;
	}

5236
	/* Prevent p going away */
L
Linus Torvalds 已提交
5237
	get_task_struct(p);
5238
	rcu_read_unlock();
L
Linus Torvalds 已提交
5239

5240 5241 5242 5243 5244 5245 5246 5247
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5248
	retval = -EPERM;
5249
	if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
L
Linus Torvalds 已提交
5250 5251
		goto out_unlock;

5252
	retval = security_task_setscheduler(p);
5253 5254 5255
	if (retval)
		goto out_unlock;

5256 5257
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
5258
again:
5259
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5260

P
Paul Menage 已提交
5261
	if (!retval) {
5262 5263
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5264 5265 5266 5267 5268
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5269
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5270 5271 5272
			goto again;
		}
	}
L
Linus Torvalds 已提交
5273
out_unlock:
5274 5275 5276 5277
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5278
	put_task_struct(p);
5279
	put_online_cpus();
L
Linus Torvalds 已提交
5280 5281 5282 5283
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5284
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5285
{
5286 5287 5288 5289 5290
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5291 5292 5293 5294 5295 5296 5297 5298 5299
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5300 5301
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5302
{
5303
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5304 5305
	int retval;

5306 5307
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5308

5309 5310 5311 5312 5313
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5314 5315
}

5316
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5317
{
5318
	struct task_struct *p;
5319 5320
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
5321 5322
	int retval;

5323
	get_online_cpus();
5324
	rcu_read_lock();
L
Linus Torvalds 已提交
5325 5326 5327 5328 5329 5330

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5331 5332 5333 5334
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5335
	rq = task_rq_lock(p, &flags);
5336
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5337
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5338 5339

out_unlock:
5340
	rcu_read_unlock();
5341
	put_online_cpus();
L
Linus Torvalds 已提交
5342

5343
	return retval;
L
Linus Torvalds 已提交
5344 5345 5346 5347 5348 5349 5350 5351
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5352 5353
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5354 5355
{
	int ret;
5356
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5357

A
Anton Blanchard 已提交
5358
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5359 5360
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
5361 5362
		return -EINVAL;

5363 5364
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5365

5366 5367
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
5368
		size_t retlen = min_t(size_t, len, cpumask_size());
5369 5370

		if (copy_to_user(user_mask_ptr, mask, retlen))
5371 5372
			ret = -EFAULT;
		else
5373
			ret = retlen;
5374 5375
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5376

5377
	return ret;
L
Linus Torvalds 已提交
5378 5379 5380 5381 5382
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5383 5384
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5385
 */
5386
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5387
{
5388
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5389

5390
	schedstat_inc(rq, yld_count);
5391
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5392 5393 5394 5395 5396 5397

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5398
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5399
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
5400 5401 5402 5403 5404 5405 5406
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
5407 5408 5409 5410 5411
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
5412
static void __cond_resched(void)
L
Linus Torvalds 已提交
5413
{
5414 5415 5416
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5417 5418
}

5419
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5420
{
P
Peter Zijlstra 已提交
5421
	if (should_resched()) {
L
Linus Torvalds 已提交
5422 5423 5424 5425 5426
		__cond_resched();
		return 1;
	}
	return 0;
}
5427
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5428 5429

/*
5430
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5431 5432
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5433
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5434 5435 5436
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5437
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5438
{
P
Peter Zijlstra 已提交
5439
	int resched = should_resched();
J
Jan Kara 已提交
5440 5441
	int ret = 0;

5442 5443
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5444
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5445
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5446
		if (resched)
N
Nick Piggin 已提交
5447 5448 5449
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5450
		ret = 1;
L
Linus Torvalds 已提交
5451 5452
		spin_lock(lock);
	}
J
Jan Kara 已提交
5453
	return ret;
L
Linus Torvalds 已提交
5454
}
5455
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5456

5457
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5458 5459 5460
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5461
	if (should_resched()) {
5462
		local_bh_enable();
L
Linus Torvalds 已提交
5463 5464 5465 5466 5467 5468
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5469
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5470 5471 5472 5473

/**
 * yield - yield the current processor to other threads.
 *
5474
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5475 5476 5477 5478 5479 5480 5481 5482 5483
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

5484 5485 5486 5487
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
5488 5489
 * @p: target task
 * @preempt: whether task preemption is allowed or not
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5524
	if (yielded) {
5525
		schedstat_inc(rq, yld_count);
5526 5527 5528 5529 5530 5531 5532
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
5545
/*
I
Ingo Molnar 已提交
5546
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5547 5548 5549 5550
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5551
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5552

5553
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5554
	atomic_inc(&rq->nr_iowait);
5555
	blk_flush_plug(current);
5556
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5557
	schedule();
5558
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5559
	atomic_dec(&rq->nr_iowait);
5560
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5561 5562 5563 5564 5565
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5566
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5567 5568
	long ret;

5569
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5570
	atomic_inc(&rq->nr_iowait);
5571
	blk_flush_plug(current);
5572
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5573
	ret = schedule_timeout(timeout);
5574
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5575
	atomic_dec(&rq->nr_iowait);
5576
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5587
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5588 5589 5590 5591 5592 5593 5594 5595 5596
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5597
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5598
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5612
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5613 5614 5615 5616 5617 5618 5619 5620 5621
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5622
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5623
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5637
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5638
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5639
{
5640
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5641
	unsigned int time_slice;
5642 5643
	unsigned long flags;
	struct rq *rq;
5644
	int retval;
L
Linus Torvalds 已提交
5645 5646 5647
	struct timespec t;

	if (pid < 0)
5648
		return -EINVAL;
L
Linus Torvalds 已提交
5649 5650

	retval = -ESRCH;
5651
	rcu_read_lock();
L
Linus Torvalds 已提交
5652 5653 5654 5655 5656 5657 5658 5659
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5660 5661 5662
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5663

5664
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5665
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5666 5667
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5668

L
Linus Torvalds 已提交
5669
out_unlock:
5670
	rcu_read_unlock();
L
Linus Torvalds 已提交
5671 5672 5673
	return retval;
}

5674
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5675

5676
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5677 5678
{
	unsigned long free = 0;
5679
	unsigned state;
L
Linus Torvalds 已提交
5680 5681

	state = p->state ? __ffs(p->state) + 1 : 0;
5682
	printk(KERN_INFO "%-15.15s %c", p->comm,
5683
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5684
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5685
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5686
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5687
	else
P
Peter Zijlstra 已提交
5688
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5689 5690
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5691
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5692
	else
P
Peter Zijlstra 已提交
5693
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5694 5695
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5696
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5697
#endif
P
Peter Zijlstra 已提交
5698
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5699 5700
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5701

5702
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5703 5704
}

I
Ingo Molnar 已提交
5705
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5706
{
5707
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5708

5709
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5710 5711
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5712
#else
P
Peter Zijlstra 已提交
5713 5714
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5715 5716 5717 5718 5719
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5720
		 * console might take a lot of time:
L
Linus Torvalds 已提交
5721 5722
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5723
		if (!state_filter || (p->state & state_filter))
5724
			sched_show_task(p);
L
Linus Torvalds 已提交
5725 5726
	} while_each_thread(g, p);

5727 5728
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5729 5730 5731
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5732
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5733 5734 5735
	/*
	 * Only show locks if all tasks are dumped:
	 */
5736
	if (!state_filter)
I
Ingo Molnar 已提交
5737
		debug_show_all_locks();
L
Linus Torvalds 已提交
5738 5739
}

I
Ingo Molnar 已提交
5740 5741
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5742
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5743 5744
}

5745 5746 5747 5748 5749 5750 5751 5752
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5753
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5754
{
5755
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5756 5757
	unsigned long flags;

5758
	raw_spin_lock_irqsave(&rq->lock, flags);
5759

I
Ingo Molnar 已提交
5760
	__sched_fork(idle);
5761
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5762 5763
	idle->se.exec_start = sched_clock();

5764
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5776
	__set_task_cpu(idle, cpu);
5777
	rcu_read_unlock();
L
Linus Torvalds 已提交
5778 5779

	rq->curr = rq->idle = idle;
5780 5781 5782
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5783
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5784 5785

	/* Set the preempt count _outside_ the spinlocks! */
5786 5787 5788
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5789
	task_thread_info(idle)->preempt_count = 0;
5790
#endif
I
Ingo Molnar 已提交
5791 5792 5793 5794
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5795
	ftrace_graph_init_idle_task(idle, cpu);
L
Linus Torvalds 已提交
5796 5797 5798 5799 5800 5801 5802
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5803
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5804
 */
5805
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5806

I
Ingo Molnar 已提交
5807 5808 5809 5810 5811 5812 5813 5814 5815
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5816
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5817
{
5818
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5833

5834 5835
	return factor;
}
I
Ingo Molnar 已提交
5836

5837 5838 5839
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5840

5841 5842 5843 5844 5845 5846 5847
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}
5848

5849 5850 5851
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5852 5853
}

L
Linus Torvalds 已提交
5854 5855 5856 5857
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5858 5859 5860 5861 5862 5863
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5864
 *    it and puts it into the right queue.
5865 5866
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5867 5868 5869 5870 5871 5872 5873 5874
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5875
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5876 5877
 * call is not atomic; no spinlocks may be held.
 */
5878
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5879 5880
{
	unsigned long flags;
5881
	struct rq *rq;
5882
	unsigned int dest_cpu;
5883
	int ret = 0;
L
Linus Torvalds 已提交
5884

P
Peter Zijlstra 已提交
5885 5886 5887 5888 5889 5890 5891
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5892
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5893 5894 5895 5896
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5897

5898
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5899 5900 5901 5902
		ret = -EINVAL;
		goto out;
	}

5903
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5904
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5905 5906 5907 5908
		ret = -EINVAL;
		goto out;
	}

5909
	if (p->sched_class->set_cpus_allowed)
5910
		p->sched_class->set_cpus_allowed(p, new_mask);
5911
	else {
5912 5913
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5914 5915
	}

L
Linus Torvalds 已提交
5916
	/* Can the task run on the task's current CPU? If so, we're done */
5917
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5918 5919
		goto out;

5920
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5921
	if (migrate_task(p, rq)) {
5922
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5923 5924
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
5925
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5926 5927 5928 5929 5930
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5931

L
Linus Torvalds 已提交
5932 5933
	return ret;
}
5934
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5935 5936

/*
I
Ingo Molnar 已提交
5937
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5938 5939 5940 5941 5942 5943
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5944 5945
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5946
 */
5947
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5948
{
5949
	struct rq *rq_dest, *rq_src;
5950
	int ret = 0;
L
Linus Torvalds 已提交
5951

5952
	if (unlikely(!cpu_active(dest_cpu)))
5953
		return ret;
L
Linus Torvalds 已提交
5954 5955 5956 5957 5958 5959 5960

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5961
		goto done;
L
Linus Torvalds 已提交
5962
	/* Affinity changed (again). */
5963
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5964
		goto fail;
L
Linus Torvalds 已提交
5965

5966 5967 5968 5969 5970
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5971
		deactivate_task(rq_src, p, 0);
5972
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5973
		activate_task(rq_dest, p, 0);
5974
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5975
	}
L
Linus Torvalds 已提交
5976
done:
5977
	ret = 1;
L
Linus Torvalds 已提交
5978
fail:
L
Linus Torvalds 已提交
5979
	double_rq_unlock(rq_src, rq_dest);
5980
	return ret;
L
Linus Torvalds 已提交
5981 5982 5983
}

/*
5984 5985 5986
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5987
 */
5988
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5989
{
5990
	struct migration_arg *arg = data;
5991

5992 5993 5994 5995
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5996
	local_irq_disable();
5997
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5998
	local_irq_enable();
L
Linus Torvalds 已提交
5999
	return 0;
6000 6001
}

L
Linus Torvalds 已提交
6002
#ifdef CONFIG_HOTPLUG_CPU
6003

6004
/*
6005 6006
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
6007
 */
6008
void idle_task_exit(void)
L
Linus Torvalds 已提交
6009
{
6010
	struct mm_struct *mm = current->active_mm;
6011

6012
	BUG_ON(cpu_online(smp_processor_id()));
6013

6014 6015 6016
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
6017 6018 6019 6020 6021 6022 6023 6024 6025
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6026
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6027
{
6028
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
6029 6030 6031 6032 6033

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
6034
/*
6035
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
6036
 */
6037
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
6038
{
6039 6040
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
6041 6042
}

6043
/*
6044 6045 6046 6047 6048 6049
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
6050
 */
6051
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
6052
{
6053
	struct rq *rq = cpu_rq(dead_cpu);
6054 6055
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
6056 6057

	/*
6058 6059 6060 6061 6062 6063 6064
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
6065
	 */
6066
	rq->stop = NULL;
6067

I
Ingo Molnar 已提交
6068
	for ( ; ; ) {
6069 6070 6071 6072 6073
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
6074
			break;
6075

6076
		next = pick_next_task(rq);
6077
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
6078
		next->sched_class->put_prev_task(rq, next);
6079

6080 6081 6082 6083 6084 6085 6086
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
6087
	}
6088

6089
	rq->stop = stop;
6090
}
6091

L
Linus Torvalds 已提交
6092 6093
#endif /* CONFIG_HOTPLUG_CPU */

6094 6095 6096
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6097 6098
	{
		.procname	= "sched_domain",
6099
		.mode		= 0555,
6100
	},
6101
	{}
6102 6103 6104
};

static struct ctl_table sd_ctl_root[] = {
6105 6106
	{
		.procname	= "kernel",
6107
		.mode		= 0555,
6108 6109
		.child		= sd_ctl_dir,
	},
6110
	{}
6111 6112 6113 6114 6115
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6116
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6117 6118 6119 6120

	return entry;
}

6121 6122
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6123
	struct ctl_table *entry;
6124

6125 6126 6127
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6128
	 * will always be set. In the lowest directory the names are
6129 6130 6131
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6132 6133
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6134 6135 6136
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6137 6138 6139 6140 6141

	kfree(*tablep);
	*tablep = NULL;
}

6142
static void
6143
set_table_entry(struct ctl_table *entry,
6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6157
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6158

6159 6160 6161
	if (table == NULL)
		return NULL;

6162
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6163
		sizeof(long), 0644, proc_doulongvec_minmax);
6164
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6165
		sizeof(long), 0644, proc_doulongvec_minmax);
6166
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6167
		sizeof(int), 0644, proc_dointvec_minmax);
6168
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6169
		sizeof(int), 0644, proc_dointvec_minmax);
6170
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6171
		sizeof(int), 0644, proc_dointvec_minmax);
6172
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6173
		sizeof(int), 0644, proc_dointvec_minmax);
6174
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6175
		sizeof(int), 0644, proc_dointvec_minmax);
6176
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6177
		sizeof(int), 0644, proc_dointvec_minmax);
6178
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6179
		sizeof(int), 0644, proc_dointvec_minmax);
6180
	set_table_entry(&table[9], "cache_nice_tries",
6181 6182
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6183
	set_table_entry(&table[10], "flags", &sd->flags,
6184
		sizeof(int), 0644, proc_dointvec_minmax);
6185 6186 6187
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6188 6189 6190 6191

	return table;
}

6192
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6193 6194 6195 6196 6197 6198 6199 6200 6201
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6202 6203
	if (table == NULL)
		return NULL;
6204 6205 6206 6207 6208

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6209
		entry->mode = 0555;
6210 6211 6212 6213 6214 6215 6216 6217
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6218
static void register_sched_domain_sysctl(void)
6219
{
6220
	int i, cpu_num = num_possible_cpus();
6221 6222 6223
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6224 6225 6226
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6227 6228 6229
	if (entry == NULL)
		return;

6230
	for_each_possible_cpu(i) {
6231 6232
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6233
		entry->mode = 0555;
6234
		entry->child = sd_alloc_ctl_cpu_table(i);
6235
		entry++;
6236
	}
6237 6238

	WARN_ON(sd_sysctl_header);
6239 6240
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6241

6242
/* may be called multiple times per register */
6243 6244
static void unregister_sched_domain_sysctl(void)
{
6245 6246
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6247
	sd_sysctl_header = NULL;
6248 6249
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6250
}
6251
#else
6252 6253 6254 6255
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6256 6257 6258 6259
{
}
#endif

6260 6261 6262 6263 6264
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6265
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6285
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6286 6287 6288 6289
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6290 6291 6292 6293
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6294 6295
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6296
{
6297
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6298
	unsigned long flags;
6299
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6300

6301
	switch (action & ~CPU_TASKS_FROZEN) {
6302

L
Linus Torvalds 已提交
6303
	case CPU_UP_PREPARE:
6304
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
6305
		break;
6306

L
Linus Torvalds 已提交
6307
	case CPU_ONLINE:
6308
		/* Update our root-domain */
6309
		raw_spin_lock_irqsave(&rq->lock, flags);
6310
		if (rq->rd) {
6311
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6312 6313

			set_rq_online(rq);
6314
		}
6315
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6316
		break;
6317

L
Linus Torvalds 已提交
6318
#ifdef CONFIG_HOTPLUG_CPU
6319
	case CPU_DYING:
G
Gregory Haskins 已提交
6320
		/* Update our root-domain */
6321
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6322
		if (rq->rd) {
6323
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6324
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6325
		}
6326 6327
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
6328
		raw_spin_unlock_irqrestore(&rq->lock, flags);
6329 6330 6331

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
6332
		break;
L
Linus Torvalds 已提交
6333 6334
#endif
	}
6335 6336 6337

	update_max_interval();

L
Linus Torvalds 已提交
6338 6339 6340
	return NOTIFY_OK;
}

6341 6342 6343
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
6344
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
6345
 */
6346
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6347
	.notifier_call = migration_call,
6348
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
6349 6350
};

6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

6376
static int __init migration_init(void)
L
Linus Torvalds 已提交
6377 6378
{
	void *cpu = (void *)(long)smp_processor_id();
6379
	int err;
6380

6381
	/* Initialize migration for the boot CPU */
6382 6383
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6384 6385
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6386

6387 6388 6389 6390
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

6391
	return 0;
L
Linus Torvalds 已提交
6392
}
6393
early_initcall(migration_init);
L
Linus Torvalds 已提交
6394 6395 6396
#endif

#ifdef CONFIG_SMP
6397

6398
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6399

6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6410
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6411
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6412
{
I
Ingo Molnar 已提交
6413
	struct sched_group *group = sd->groups;
6414
	char str[256];
L
Linus Torvalds 已提交
6415

R
Rusty Russell 已提交
6416
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6417
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6418 6419 6420 6421

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6422
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6423
		if (sd->parent)
P
Peter Zijlstra 已提交
6424 6425
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6426
		return -1;
N
Nick Piggin 已提交
6427 6428
	}

P
Peter Zijlstra 已提交
6429
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6430

6431
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6432 6433
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6434
	}
6435
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6436 6437
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6438
	}
L
Linus Torvalds 已提交
6439

I
Ingo Molnar 已提交
6440
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6441
	do {
I
Ingo Molnar 已提交
6442
		if (!group) {
P
Peter Zijlstra 已提交
6443 6444
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6445 6446 6447
			break;
		}

6448
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6449 6450 6451
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6452 6453
			break;
		}
L
Linus Torvalds 已提交
6454

6455
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6456 6457
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6458 6459
			break;
		}
L
Linus Torvalds 已提交
6460

6461
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6462 6463
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6464 6465
			break;
		}
L
Linus Torvalds 已提交
6466

6467
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6468

R
Rusty Russell 已提交
6469
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6470

P
Peter Zijlstra 已提交
6471
		printk(KERN_CONT " %s", str);
6472
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6473 6474
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6475
		}
L
Linus Torvalds 已提交
6476

I
Ingo Molnar 已提交
6477 6478
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6479
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6480

6481
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6482
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6483

6484 6485
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6486 6487
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6488 6489
	return 0;
}
L
Linus Torvalds 已提交
6490

I
Ingo Molnar 已提交
6491 6492
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6493
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6494
	int level = 0;
L
Linus Torvalds 已提交
6495

6496 6497 6498
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6499 6500 6501 6502
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6503

I
Ingo Molnar 已提交
6504 6505
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6506
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6507 6508 6509 6510
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6511
	for (;;) {
6512
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6513
			break;
L
Linus Torvalds 已提交
6514 6515
		level++;
		sd = sd->parent;
6516
		if (!sd)
I
Ingo Molnar 已提交
6517 6518
			break;
	}
6519
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6520
}
6521
#else /* !CONFIG_SCHED_DEBUG */
6522
# define sched_domain_debug(sd, cpu) do { } while (0)
6523
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6524

6525
static int sd_degenerate(struct sched_domain *sd)
6526
{
6527
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6528 6529 6530 6531 6532 6533
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6534 6535 6536
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6537 6538 6539 6540 6541
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6542
	if (sd->flags & (SD_WAKE_AFFINE))
6543 6544 6545 6546 6547
		return 0;

	return 1;
}

6548 6549
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6550 6551 6552 6553 6554 6555
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6556
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6557 6558 6559 6560 6561 6562 6563
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6564 6565 6566
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6567 6568
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6569 6570 6571 6572 6573 6574 6575
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6576
static void free_rootdomain(struct rcu_head *rcu)
6577
{
6578
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6579

6580
	cpupri_cleanup(&rd->cpupri);
6581 6582 6583 6584 6585 6586
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6587 6588
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6589
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6590 6591
	unsigned long flags;

6592
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6593 6594

	if (rq->rd) {
I
Ingo Molnar 已提交
6595
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6596

6597
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6598
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6599

6600
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6601

I
Ingo Molnar 已提交
6602 6603 6604 6605 6606 6607 6608
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6609 6610 6611 6612 6613
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6614
	cpumask_set_cpu(rq->cpu, rd->span);
6615
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6616
		set_rq_online(rq);
G
Gregory Haskins 已提交
6617

6618
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6619 6620

	if (old_rd)
6621
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
6622 6623
}

6624
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6625 6626 6627
{
	memset(rd, 0, sizeof(*rd));

6628
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6629
		goto out;
6630
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6631
		goto free_span;
6632
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6633
		goto free_online;
6634

6635
	if (cpupri_init(&rd->cpupri) != 0)
6636
		goto free_rto_mask;
6637
	return 0;
6638

6639 6640
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6641 6642 6643 6644
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6645
out:
6646
	return -ENOMEM;
G
Gregory Haskins 已提交
6647 6648 6649 6650
}

static void init_defrootdomain(void)
{
6651
	init_rootdomain(&def_root_domain);
6652

G
Gregory Haskins 已提交
6653 6654 6655
	atomic_set(&def_root_domain.refcount, 1);
}

6656
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6657 6658 6659 6660 6661 6662 6663
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6664
	if (init_rootdomain(rd) != 0) {
6665 6666 6667
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6668 6669 6670 6671

	return rd;
}

6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
	if (atomic_dec_and_test(&sd->groups->ref))
		kfree(sd->groups);
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

L
Linus Torvalds 已提交
6691
/*
I
Ingo Molnar 已提交
6692
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6693 6694
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6695 6696
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6697
{
6698
	struct rq *rq = cpu_rq(cpu);
6699 6700 6701
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6702
	for (tmp = sd; tmp; ) {
6703 6704 6705
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6706

6707
		if (sd_parent_degenerate(tmp, parent)) {
6708
			tmp->parent = parent->parent;
6709 6710
			if (parent->parent)
				parent->parent->child = tmp;
6711
			destroy_sched_domain(parent, cpu);
6712 6713
		} else
			tmp = tmp->parent;
6714 6715
	}

6716
	if (sd && sd_degenerate(sd)) {
6717
		tmp = sd;
6718
		sd = sd->parent;
6719
		destroy_sched_domain(tmp, cpu);
6720 6721 6722
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6723

6724
	/* sched_domain_debug(sd, cpu); */
L
Linus Torvalds 已提交
6725

G
Gregory Haskins 已提交
6726
	rq_attach_root(rq, rd);
6727
	tmp = rq->sd;
N
Nick Piggin 已提交
6728
	rcu_assign_pointer(rq->sd, sd);
6729
	destroy_sched_domains(tmp, cpu);
L
Linus Torvalds 已提交
6730 6731 6732
}

/* cpus with isolated domains */
6733
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6734 6735 6736 6737

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6738
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6739
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6740 6741 6742
	return 1;
}

I
Ingo Molnar 已提交
6743
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6744

6745
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6746

6747
#ifdef CONFIG_NUMA
6748

6749 6750 6751 6752 6753
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6754
 * Find the next node to include in a given scheduling domain. Simply
6755 6756 6757 6758
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6759
static int find_next_best_node(int node, nodemask_t *used_nodes)
6760 6761 6762 6763 6764
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6765
	for (i = 0; i < nr_node_ids; i++) {
6766
		/* Start at @node */
6767
		n = (node + i) % nr_node_ids;
6768 6769 6770 6771 6772

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6773
		if (node_isset(n, *used_nodes))
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6785
	node_set(best_node, *used_nodes);
6786 6787 6788 6789 6790 6791
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6792
 * @span: resulting cpumask
6793
 *
I
Ingo Molnar 已提交
6794
 * Given a node, construct a good cpumask for its sched_domain to span. It
6795 6796 6797
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6798
static void sched_domain_node_span(int node, struct cpumask *span)
6799
{
6800
	nodemask_t used_nodes;
6801
	int i;
6802

6803
	cpumask_clear(span);
6804
	nodes_clear(used_nodes);
6805

6806
	cpumask_or(span, span, cpumask_of_node(node));
6807
	node_set(node, used_nodes);
6808 6809

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6810
		int next_node = find_next_best_node(node, &used_nodes);
6811

6812
		cpumask_or(span, span, cpumask_of_node(next_node));
6813 6814
	}
}
6815
#endif /* CONFIG_NUMA */
6816

6817
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6818

6819 6820 6821 6822 6823
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
};

6824
struct s_data {
6825
	struct sched_domain ** __percpu sd;
6826
	struct sd_data 		sdd[SD_LV_MAX];
6827 6828 6829
	struct root_domain	*rd;
};

6830 6831
enum s_alloc {
	sa_rootdomain,
6832
	sa_sd,
6833
	sa_sd_storage,
6834 6835 6836
	sa_none,
};

6837
/*
6838
 * Assumes the sched_domain tree is fully constructed
6839
 */
6840
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6841
{
6842 6843
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6844

6845 6846
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6847

6848
	if (sg)
6849 6850 6851
		*sg = *per_cpu_ptr(sdd->sg, cpu);

	return cpu;
6852 6853
}

6854 6855
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

6856
/*
6857 6858 6859 6860 6861 6862 6863 6864
 * build_sched_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
 *
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
6865
 */
6866
static void
6867
build_sched_groups(struct sched_domain *sd)
L
Linus Torvalds 已提交
6868
{
6869 6870 6871
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6872
	struct cpumask *covered;
6873
	int i;
6874

6875 6876 6877
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6878
	cpumask_clear(covered);
6879

6880 6881 6882 6883
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
6884

6885 6886
		if (cpumask_test_cpu(i, covered))
			continue;
6887

6888 6889
		cpumask_clear(sched_group_cpus(sg));
		sg->cpu_power = 0;
6890

6891 6892 6893
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6894

6895 6896 6897
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6898

6899 6900 6901 6902 6903 6904 6905
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6906
}
6907

6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	WARN_ON(!sd || !sd->groups);

6922
	if (cpu != group_first_cpu(sd->groups))
6923 6924
		return;

6925 6926
	sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));

6927
	update_group_power(sd, cpu);
6928 6929
}

6930 6931 6932 6933 6934
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6935 6936 6937 6938 6939 6940
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6941 6942 6943 6944 6945 6946 6947 6948 6949
#define SD_INIT_FUNC(type)						       \
static noinline struct sched_domain *sd_init_##type(struct s_data *d, int cpu) \
{									       \
	struct sched_domain *sd = *per_cpu_ptr(d->sdd[SD_LV_##type].sd, cpu);  \
	*sd = SD_##type##_INIT;						       \
	sd->level = SD_LV_##type;					       \
	SD_INIT_NAME(sd, type);						       \
	sd->private = &d->sdd[SD_LV_##type];				       \
	return sd;							       \
6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
6963 6964 6965
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6966

6967 6968 6969 6970
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6971 6972 6973 6974 6975 6976
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6995
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6996 6997
	} else {
		/* turn on idle balance on this domain */
6998
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6999 7000 7001
	}
}

7002 7003 7004
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
7005 7006
	int i, j;

7007 7008
	switch (what) {
	case sa_rootdomain:
7009 7010
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
7011 7012
	case sa_sd:
		free_percpu(d->sd); /* fall through */
7013 7014 7015 7016 7017 7018 7019 7020 7021
	case sa_sd_storage:
		for (i = 0; i < SD_LV_MAX; i++) {
			for_each_cpu(j, cpu_map) {
				kfree(*per_cpu_ptr(d->sdd[i].sd, j));
				kfree(*per_cpu_ptr(d->sdd[i].sg, j));
			}
			free_percpu(d->sdd[i].sd);
			free_percpu(d->sdd[i].sg);
		} /* fall through */
7022 7023 7024 7025
	case sa_none:
		break;
	}
}
7026

7027 7028 7029
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060
	int i, j;

	memset(d, 0, sizeof(*d));

	for (i = 0; i < SD_LV_MAX; i++) {
		d->sdd[i].sd = alloc_percpu(struct sched_domain *);
		if (!d->sdd[i].sd)
			return sa_sd_storage;

		d->sdd[i].sg = alloc_percpu(struct sched_group *);
		if (!d->sdd[i].sg)
			return sa_sd_storage;

		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return sa_sd_storage;

			*per_cpu_ptr(d->sdd[i].sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return sa_sd_storage;

			*per_cpu_ptr(d->sdd[i].sg, j) = sg;
		}
7061
	}
7062 7063 7064
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
7065
	d->rd = alloc_rootdomain();
7066
	if (!d->rd)
7067
		return sa_sd;
7068 7069
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
7070

7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;
	struct sched_group *sg = sd->groups;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

	if (cpu == cpumask_first(sched_group_cpus(sg))) {
		WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
	}
}

7090 7091 7092
static struct sched_domain *__build_allnodes_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
7093 7094
{
	struct sched_domain *sd = NULL;
7095
#ifdef CONFIG_NUMA
7096 7097 7098 7099 7100 7101 7102 7103 7104
	sd = sd_init_ALLNODES(d, i);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), cpu_map);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
#endif
	return sd;
}
7105

7106 7107 7108 7109 7110 7111
static struct sched_domain *__build_node_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = NULL;
#ifdef CONFIG_NUMA
7112
	sd = sd_init_NODE(d, i);
7113 7114
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7115
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7116 7117 7118
	sd->parent = parent;
	if (parent)
		parent->child = sd;
L
Linus Torvalds 已提交
7119
#endif
7120 7121
	return sd;
}
L
Linus Torvalds 已提交
7122

7123 7124 7125 7126 7127
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
7128
	sd = sd_init_CPU(d, i);
7129
	set_domain_attribute(sd, attr);
7130 7131
	cpumask_and(sched_domain_span(sd),
			cpumask_of_node(cpu_to_node(i)), cpu_map);
7132 7133 7134 7135 7136
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	return sd;
}
L
Linus Torvalds 已提交
7137

7138 7139 7140 7141 7142 7143
static struct sched_domain *__build_book_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
#ifdef CONFIG_SCHED_BOOK
7144
	sd = sd_init_BOOK(d, i);
7145 7146 7147 7148 7149 7150 7151 7152
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
	sd->parent = parent;
	parent->child = sd;
#endif
	return sd;
}

7153 7154 7155 7156 7157
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
7158
#ifdef CONFIG_SCHED_MC
7159
	sd = sd_init_MC(d, i);
7160 7161 7162 7163
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
7164
#endif
7165 7166
	return sd;
}
7167

7168 7169 7170 7171 7172
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
7173
#ifdef CONFIG_SCHED_SMT
7174
	sd = sd_init_SIBLING(d, i);
7175 7176 7177 7178
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
L
Linus Torvalds 已提交
7179
#endif
7180 7181
	return sd;
}
L
Linus Torvalds 已提交
7182

7183 7184 7185 7186
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
7187 7188
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
7189 7190
{
	enum s_alloc alloc_state = sa_none;
7191
	struct sched_domain *sd;
7192
	struct s_data d;
7193
	int i, ret = -ENOMEM;
7194

7195 7196 7197
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
7198

7199
	/* Set up domains for cpus specified by the cpu_map. */
7200
	for_each_cpu(i, cpu_map) {
7201 7202 7203
		sd = NULL;
		sd = __build_allnodes_sched_domain(&d, cpu_map, attr, sd, i);
		sd = __build_node_sched_domain(&d, cpu_map, attr, sd, i);
7204
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7205
		sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7206
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7207
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7208

7209
		*per_cpu_ptr(d.sd, i) = sd;
7210 7211 7212 7213 7214 7215 7216 7217
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
			get_group(i, sd->private, &sd->groups);
			atomic_inc(&sd->groups->ref);
7218

7219 7220 7221
			if (i != cpumask_first(sched_domain_span(sd)))
				continue;

7222
			build_sched_groups(sd);
7223
		}
7224
	}
7225

L
Linus Torvalds 已提交
7226
	/* Calculate CPU power for physical packages and nodes */
7227 7228 7229
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
7230

7231 7232
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
7233
			init_sched_groups_power(i, sd);
7234
		}
7235
	}
7236

L
Linus Torvalds 已提交
7237
	/* Attach the domains */
7238
	rcu_read_lock();
7239
	for_each_cpu(i, cpu_map) {
7240
		sd = *per_cpu_ptr(d.sd, i);
7241
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7242
	}
7243
	rcu_read_unlock();
7244

7245
	ret = 0;
7246
error:
7247
	__free_domain_allocs(&d, alloc_state, cpu_map);
7248
	return ret;
L
Linus Torvalds 已提交
7249
}
P
Paul Jackson 已提交
7250

7251
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7252
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7253 7254
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7255 7256 7257

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7258 7259
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7260
 */
7261
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7262

7263 7264 7265 7266 7267 7268
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7269
{
7270
	return 0;
7271 7272
}

7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7298
/*
I
Ingo Molnar 已提交
7299
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7300 7301
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7302
 */
7303
static int init_sched_domains(const struct cpumask *cpu_map)
7304
{
7305 7306
	int err;

7307
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7308
	ndoms_cur = 1;
7309
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7310
	if (!doms_cur)
7311 7312
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7313
	dattr_cur = NULL;
7314
	err = build_sched_domains(doms_cur[0], NULL);
7315
	register_sched_domain_sysctl();
7316 7317

	return err;
7318 7319 7320 7321 7322 7323
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7324
static void detach_destroy_domains(const struct cpumask *cpu_map)
7325 7326 7327
{
	int i;

7328
	rcu_read_lock();
7329
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7330
		cpu_attach_domain(NULL, &def_root_domain, i);
7331
	rcu_read_unlock();
7332 7333
}

7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7350 7351
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7352
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7353 7354 7355
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7356
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7357 7358 7359
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7360 7361 7362
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7363 7364 7365 7366 7367 7368
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7369
 *
7370
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7371 7372
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7373
 *
P
Paul Jackson 已提交
7374 7375
 * Call with hotplug lock held
 */
7376
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7377
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7378
{
7379
	int i, j, n;
7380
	int new_topology;
P
Paul Jackson 已提交
7381

7382
	mutex_lock(&sched_domains_mutex);
7383

7384 7385 7386
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7387 7388 7389
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7390
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7391 7392 7393

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7394
		for (j = 0; j < n && !new_topology; j++) {
7395
			if (cpumask_equal(doms_cur[i], doms_new[j])
7396
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7397 7398 7399
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7400
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7401 7402 7403 7404
match1:
		;
	}

7405 7406
	if (doms_new == NULL) {
		ndoms_cur = 0;
7407
		doms_new = &fallback_doms;
7408
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7409
		WARN_ON_ONCE(dattr_new);
7410 7411
	}

P
Paul Jackson 已提交
7412 7413
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7414
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7415
			if (cpumask_equal(doms_new[i], doms_cur[j])
7416
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7417 7418 7419
				goto match2;
		}
		/* no match - add a new doms_new */
7420
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7421 7422 7423 7424 7425
match2:
		;
	}

	/* Remember the new sched domains */
7426 7427
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7428
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7429
	doms_cur = doms_new;
7430
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7431
	ndoms_cur = ndoms_new;
7432 7433

	register_sched_domain_sysctl();
7434

7435
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7436 7437
}

7438
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7439
static void reinit_sched_domains(void)
7440
{
7441
	get_online_cpus();
7442 7443 7444 7445

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7446
	rebuild_sched_domains();
7447
	put_online_cpus();
7448 7449 7450 7451
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7452
	unsigned int level = 0;
7453

7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7465 7466 7467
		return -EINVAL;

	if (smt)
7468
		sched_smt_power_savings = level;
7469
	else
7470
		sched_mc_power_savings = level;
7471

7472
	reinit_sched_domains();
7473

7474
	return count;
7475 7476 7477
}

#ifdef CONFIG_SCHED_MC
7478
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7479
					   struct sysdev_class_attribute *attr,
7480
					   char *page)
7481 7482 7483
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7484
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7485
					    struct sysdev_class_attribute *attr,
7486
					    const char *buf, size_t count)
7487 7488 7489
{
	return sched_power_savings_store(buf, count, 0);
}
7490 7491 7492
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7493 7494 7495
#endif

#ifdef CONFIG_SCHED_SMT
7496
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7497
					    struct sysdev_class_attribute *attr,
7498
					    char *page)
7499 7500 7501
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7502
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7503
					     struct sysdev_class_attribute *attr,
7504
					     const char *buf, size_t count)
7505 7506 7507
{
	return sched_power_savings_store(buf, count, 1);
}
7508 7509
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7510 7511 7512
		   sched_smt_power_savings_store);
#endif

7513
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7529
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7530

L
Linus Torvalds 已提交
7531
/*
7532 7533 7534
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7535
 */
7536 7537
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7538
{
7539
	switch (action & ~CPU_TASKS_FROZEN) {
7540
	case CPU_ONLINE:
7541
	case CPU_DOWN_FAILED:
7542
		cpuset_update_active_cpus();
7543
		return NOTIFY_OK;
7544 7545 7546 7547
	default:
		return NOTIFY_DONE;
	}
}
7548

7549 7550
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7551 7552 7553 7554 7555
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
7556 7557 7558 7559 7560 7561 7562
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7563
{
P
Peter Zijlstra 已提交
7564 7565
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7566 7567
	switch (action) {
	case CPU_DOWN_PREPARE:
7568
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7569
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7570 7571 7572
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7573
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7574
	case CPU_ONLINE:
7575
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7576
		enable_runtime(cpu_rq(cpu));
7577 7578
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7579 7580 7581 7582 7583 7584 7585
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7586 7587 7588
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7589
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7590

7591
	get_online_cpus();
7592
	mutex_lock(&sched_domains_mutex);
7593
	init_sched_domains(cpu_active_mask);
7594 7595 7596
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7597
	mutex_unlock(&sched_domains_mutex);
7598
	put_online_cpus();
7599

7600 7601
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7602 7603 7604 7605

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7606
	init_hrtick();
7607 7608

	/* Move init over to a non-isolated CPU */
7609
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7610
		BUG();
I
Ingo Molnar 已提交
7611
	sched_init_granularity();
7612
	free_cpumask_var(non_isolated_cpus);
7613

7614
	init_sched_rt_class();
L
Linus Torvalds 已提交
7615 7616 7617 7618
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7619
	sched_init_granularity();
L
Linus Torvalds 已提交
7620 7621 7622
}
#endif /* CONFIG_SMP */

7623 7624
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7625 7626 7627 7628 7629 7630 7631
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7632
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7633 7634
{
	cfs_rq->tasks_timeline = RB_ROOT;
7635
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7636 7637
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
7638
	/* allow initial update_cfs_load() to truncate */
7639
#ifdef CONFIG_SMP
7640
	cfs_rq->load_stamp = 1;
7641
#endif
I
Ingo Molnar 已提交
7642
#endif
P
Peter Zijlstra 已提交
7643
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7644 7645
}

P
Peter Zijlstra 已提交
7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7659
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7660
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7661
#ifdef CONFIG_SMP
7662
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7663 7664
#endif
#endif
P
Peter Zijlstra 已提交
7665 7666 7667
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7668
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7669 7670 7671 7672
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7673
	rt_rq->rt_runtime = 0;
7674
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7675

7676
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7677
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7678 7679
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7680 7681
}

P
Peter Zijlstra 已提交
7682
#ifdef CONFIG_FAIR_GROUP_SCHED
7683
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7684
				struct sched_entity *se, int cpu,
7685
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7686
{
7687
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7688 7689 7690 7691 7692
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;

	tg->se[cpu] = se;
7693
	/* se could be NULL for root_task_group */
D
Dhaval Giani 已提交
7694 7695 7696
	if (!se)
		return;

7697 7698 7699 7700 7701
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7702
	se->my_q = cfs_rq;
7703
	update_load_set(&se->load, 0);
7704
	se->parent = parent;
P
Peter Zijlstra 已提交
7705
}
7706
#endif
P
Peter Zijlstra 已提交
7707

7708
#ifdef CONFIG_RT_GROUP_SCHED
7709
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7710
		struct sched_rt_entity *rt_se, int cpu,
7711
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7712
{
7713 7714
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7715 7716 7717
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7718
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7719 7720

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7721 7722 7723
	if (!rt_se)
		return;

7724 7725 7726 7727 7728
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7729
	rt_se->my_q = rt_rq;
7730
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7731 7732 7733 7734
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7735 7736
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7737
	int i, j;
7738 7739 7740 7741 7742 7743 7744
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7745
#endif
7746
#ifdef CONFIG_CPUMASK_OFFSTACK
7747
	alloc_size += num_possible_cpus() * cpumask_size();
7748 7749
#endif
	if (alloc_size) {
7750
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7751 7752

#ifdef CONFIG_FAIR_GROUP_SCHED
7753
		root_task_group.se = (struct sched_entity **)ptr;
7754 7755
		ptr += nr_cpu_ids * sizeof(void **);

7756
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7757
		ptr += nr_cpu_ids * sizeof(void **);
7758

7759
#endif /* CONFIG_FAIR_GROUP_SCHED */
7760
#ifdef CONFIG_RT_GROUP_SCHED
7761
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7762 7763
		ptr += nr_cpu_ids * sizeof(void **);

7764
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7765 7766
		ptr += nr_cpu_ids * sizeof(void **);

7767
#endif /* CONFIG_RT_GROUP_SCHED */
7768 7769 7770 7771 7772 7773
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7774
	}
I
Ingo Molnar 已提交
7775

G
Gregory Haskins 已提交
7776 7777 7778 7779
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7780 7781 7782 7783
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
7784
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7785
			global_rt_period(), global_rt_runtime());
7786
#endif /* CONFIG_RT_GROUP_SCHED */
7787

D
Dhaval Giani 已提交
7788
#ifdef CONFIG_CGROUP_SCHED
7789 7790
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7791
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
7792
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7793

7794
	for_each_possible_cpu(i) {
7795
		struct rq *rq;
L
Linus Torvalds 已提交
7796 7797

		rq = cpu_rq(i);
7798
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7799
		rq->nr_running = 0;
7800 7801
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7802
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7803
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7804
#ifdef CONFIG_FAIR_GROUP_SCHED
7805
		root_task_group.shares = root_task_group_load;
P
Peter Zijlstra 已提交
7806
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7807
		/*
7808
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7809 7810 7811 7812
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7813
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7814 7815 7816
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7817
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7818 7819 7820
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7821
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7822
		 *
7823 7824
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7825
		 */
7826
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7827 7828 7829
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7830
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7831
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7832
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7833
#endif
L
Linus Torvalds 已提交
7834

I
Ingo Molnar 已提交
7835 7836
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7837 7838 7839

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7840
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7841
		rq->sd = NULL;
G
Gregory Haskins 已提交
7842
		rq->rd = NULL;
7843
		rq->cpu_power = SCHED_LOAD_SCALE;
7844
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7845
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7846
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7847
		rq->push_cpu = 0;
7848
		rq->cpu = i;
7849
		rq->online = 0;
7850 7851
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7852
		rq_attach_root(rq, &def_root_domain);
7853 7854 7855 7856
#ifdef CONFIG_NO_HZ
		rq->nohz_balance_kick = 0;
		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
#endif
L
Linus Torvalds 已提交
7857
#endif
P
Peter Zijlstra 已提交
7858
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7859 7860 7861
		atomic_set(&rq->nr_iowait, 0);
	}

7862
	set_load_weight(&init_task);
7863

7864 7865 7866 7867
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7868
#ifdef CONFIG_SMP
7869
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7870 7871
#endif

7872
#ifdef CONFIG_RT_MUTEXES
7873
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7874 7875
#endif

L
Linus Torvalds 已提交
7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7889 7890 7891

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7892 7893 7894 7895
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7896

7897
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7898
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7899
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7900
#ifdef CONFIG_SMP
7901
#ifdef CONFIG_NO_HZ
7902 7903 7904 7905 7906
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
	atomic_set(&nohz.load_balancer, nr_cpu_ids);
	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7907
#endif
R
Rusty Russell 已提交
7908 7909 7910
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7911
#endif /* SMP */
7912

7913
	scheduler_running = 1;
L
Linus Torvalds 已提交
7914 7915 7916
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7917 7918
static inline int preempt_count_equals(int preempt_offset)
{
7919
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7920

A
Arnd Bergmann 已提交
7921
	return (nested == preempt_offset);
7922 7923
}

7924
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7925
{
7926
#ifdef in_atomic
L
Linus Torvalds 已提交
7927 7928
	static unsigned long prev_jiffy;	/* ratelimiting */

7929 7930
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7931 7932 7933 7934 7935
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7936 7937 7938 7939 7940 7941 7942
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7943 7944 7945 7946 7947

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7948 7949 7950 7951 7952 7953
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7954 7955
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7956 7957
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7958
	int on_rq;
7959

7960 7961 7962 7963 7964 7965 7966 7967
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7968 7969

	check_class_changed(rq, p, prev_class, old_prio);
7970 7971
}

L
Linus Torvalds 已提交
7972 7973
void normalize_rt_tasks(void)
{
7974
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7975
	unsigned long flags;
7976
	struct rq *rq;
L
Linus Torvalds 已提交
7977

7978
	read_lock_irqsave(&tasklist_lock, flags);
7979
	do_each_thread(g, p) {
7980 7981 7982 7983 7984 7985
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7986 7987
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7988 7989 7990
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7991
#endif
I
Ingo Molnar 已提交
7992 7993 7994 7995 7996 7997 7998 7999

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8000
			continue;
I
Ingo Molnar 已提交
8001
		}
L
Linus Torvalds 已提交
8002

8003
		raw_spin_lock(&p->pi_lock);
8004
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8005

8006
		normalize_task(rq, p);
8007

8008
		__task_rq_unlock(rq);
8009
		raw_spin_unlock(&p->pi_lock);
8010 8011
	} while_each_thread(g, p);

8012
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8013 8014 8015
}

#endif /* CONFIG_MAGIC_SYSRQ */
8016

8017
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8018
/*
8019
 * These functions are only useful for the IA64 MCA handling, or kdb.
8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8034
struct task_struct *curr_task(int cpu)
8035 8036 8037 8038
{
	return cpu_curr(cpu);
}

8039 8040 8041
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
8042 8043 8044 8045 8046 8047
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8048 8049
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8050 8051 8052 8053 8054 8055 8056
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8057
void set_curr_task(int cpu, struct task_struct *p)
8058 8059 8060 8061 8062
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8063

8064 8065
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8080 8081
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8082 8083
{
	struct cfs_rq *cfs_rq;
8084
	struct sched_entity *se;
S
Srivatsa Vaddagiri 已提交
8085 8086
	int i;

8087
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8088 8089
	if (!tg->cfs_rq)
		goto err;
8090
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8091 8092
	if (!tg->se)
		goto err;
8093 8094

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8095 8096

	for_each_possible_cpu(i) {
8097 8098
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8099 8100 8101
		if (!cfs_rq)
			goto err;

8102 8103
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8104
		if (!se)
8105
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8106

8107
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8108 8109 8110 8111
	}

	return 1;

P
Peter Zijlstra 已提交
8112
err_free_rq:
8113
	kfree(cfs_rq);
P
Peter Zijlstra 已提交
8114
err:
8115 8116 8117 8118 8119
	return 0;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
8131
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8132
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8133
}
8134
#else /* !CONFG_FAIR_GROUP_SCHED */
8135 8136 8137 8138
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8139 8140
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8141 8142 8143 8144 8145 8146 8147
{
	return 1;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8148
#endif /* CONFIG_FAIR_GROUP_SCHED */
8149 8150

#ifdef CONFIG_RT_GROUP_SCHED
8151 8152 8153 8154
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8155 8156
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8168 8169
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8170 8171
{
	struct rt_rq *rt_rq;
8172
	struct sched_rt_entity *rt_se;
8173 8174 8175
	struct rq *rq;
	int i;

8176
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8177 8178
	if (!tg->rt_rq)
		goto err;
8179
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8180 8181 8182
	if (!tg->rt_se)
		goto err;

8183 8184
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8185 8186 8187 8188

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8189 8190
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8191 8192
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8193

8194 8195
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8196
		if (!rt_se)
8197
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8198

8199
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8200 8201
	}

8202 8203
	return 1;

P
Peter Zijlstra 已提交
8204
err_free_rq:
8205
	kfree(rt_rq);
P
Peter Zijlstra 已提交
8206
err:
8207 8208
	return 0;
}
8209
#else /* !CONFIG_RT_GROUP_SCHED */
8210 8211 8212 8213
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8214 8215
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8216 8217 8218
{
	return 1;
}
8219
#endif /* CONFIG_RT_GROUP_SCHED */
8220

D
Dhaval Giani 已提交
8221
#ifdef CONFIG_CGROUP_SCHED
8222 8223 8224 8225
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
8226
	autogroup_free(tg);
8227 8228 8229 8230
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8231
struct task_group *sched_create_group(struct task_group *parent)
8232 8233 8234 8235 8236 8237 8238 8239
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8240
	if (!alloc_fair_sched_group(tg, parent))
8241 8242
		goto err;

8243
	if (!alloc_rt_sched_group(tg, parent))
8244 8245
		goto err;

8246
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8247
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8248 8249 8250 8251 8252

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8253
	list_add_rcu(&tg->siblings, &parent->children);
8254
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8255

8256
	return tg;
S
Srivatsa Vaddagiri 已提交
8257 8258

err:
P
Peter Zijlstra 已提交
8259
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8260 8261 8262
	return ERR_PTR(-ENOMEM);
}

8263
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8264
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8265 8266
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8267
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8268 8269
}

8270
/* Destroy runqueue etc associated with a task group */
8271
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8272
{
8273
	unsigned long flags;
8274
	int i;
S
Srivatsa Vaddagiri 已提交
8275

8276 8277
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
8278
		unregister_fair_sched_group(tg, i);
8279 8280

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8281
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8282
	list_del_rcu(&tg->siblings);
8283
	spin_unlock_irqrestore(&task_group_lock, flags);
8284 8285

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8286
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8287 8288
}

8289
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8290 8291 8292
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8293 8294
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8295 8296 8297 8298 8299 8300 8301
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8302
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8303 8304
	on_rq = tsk->se.on_rq;

8305
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8306
		dequeue_task(rq, tsk, 0);
8307 8308
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8309

P
Peter Zijlstra 已提交
8310
#ifdef CONFIG_FAIR_GROUP_SCHED
8311 8312 8313
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
8314
#endif
8315
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
8316

8317 8318 8319
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8320
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8321 8322 8323

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8324
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8325

8326
#ifdef CONFIG_FAIR_GROUP_SCHED
8327 8328
static DEFINE_MUTEX(shares_mutex);

8329
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8330 8331
{
	int i;
8332
	unsigned long flags;
8333

8334 8335 8336 8337 8338 8339
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8340 8341
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8342 8343
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8344

8345
	mutex_lock(&shares_mutex);
8346
	if (tg->shares == shares)
8347
		goto done;
S
Srivatsa Vaddagiri 已提交
8348

8349
	tg->shares = shares;
8350
	for_each_possible_cpu(i) {
8351 8352 8353 8354 8355 8356 8357
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
8358
			update_cfs_shares(group_cfs_rq(se));
8359
		raw_spin_unlock_irqrestore(&rq->lock, flags);
8360
	}
S
Srivatsa Vaddagiri 已提交
8361

8362
done:
8363
	mutex_unlock(&shares_mutex);
8364
	return 0;
S
Srivatsa Vaddagiri 已提交
8365 8366
}

8367 8368 8369 8370
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8371
#endif
8372

8373
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8374
/*
P
Peter Zijlstra 已提交
8375
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8376
 */
P
Peter Zijlstra 已提交
8377 8378 8379 8380 8381
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8382
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8383

P
Peter Zijlstra 已提交
8384
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8385 8386
}

P
Peter Zijlstra 已提交
8387 8388
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8389
{
P
Peter Zijlstra 已提交
8390
	struct task_struct *g, *p;
8391

P
Peter Zijlstra 已提交
8392 8393 8394 8395
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8396

P
Peter Zijlstra 已提交
8397 8398
	return 0;
}
8399

P
Peter Zijlstra 已提交
8400 8401 8402 8403 8404
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8405

P
Peter Zijlstra 已提交
8406 8407 8408 8409 8410 8411
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8412

P
Peter Zijlstra 已提交
8413 8414
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8415

P
Peter Zijlstra 已提交
8416 8417 8418
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8419 8420
	}

8421 8422 8423 8424 8425
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8426

8427 8428 8429
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8430 8431
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8432

P
Peter Zijlstra 已提交
8433
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8434

8435 8436 8437 8438 8439
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8440

8441 8442 8443
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8444 8445 8446
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8447

P
Peter Zijlstra 已提交
8448 8449 8450 8451
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8452

P
Peter Zijlstra 已提交
8453
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8454
	}
P
Peter Zijlstra 已提交
8455

P
Peter Zijlstra 已提交
8456 8457 8458 8459
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8460 8461
}

P
Peter Zijlstra 已提交
8462
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8463
{
P
Peter Zijlstra 已提交
8464 8465 8466 8467 8468 8469 8470
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8471 8472
}

8473 8474
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8475
{
P
Peter Zijlstra 已提交
8476
	int i, err = 0;
P
Peter Zijlstra 已提交
8477 8478

	mutex_lock(&rt_constraints_mutex);
8479
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8480 8481
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8482
		goto unlock;
P
Peter Zijlstra 已提交
8483

8484
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8485 8486
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8487 8488 8489 8490

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8491
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8492
		rt_rq->rt_runtime = rt_runtime;
8493
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8494
	}
8495
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8496
unlock:
8497
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8498 8499 8500
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8501 8502
}

8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8515 8516 8517 8518
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8519
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8520 8521
		return -1;

8522
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8523 8524 8525
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8526 8527 8528 8529 8530 8531 8532 8533

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8534 8535 8536
	if (rt_period == 0)
		return -EINVAL;

8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8551
	u64 runtime, period;
8552 8553
	int ret = 0;

8554 8555 8556
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8557 8558 8559 8560 8561 8562 8563 8564
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8565

8566
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8567
	read_lock(&tasklist_lock);
8568
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8569
	read_unlock(&tasklist_lock);
8570 8571 8572 8573
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8574 8575 8576 8577 8578 8579 8580 8581 8582 8583

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8584
#else /* !CONFIG_RT_GROUP_SCHED */
8585 8586
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8587 8588 8589
	unsigned long flags;
	int i;

8590 8591 8592
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8593 8594 8595 8596 8597 8598 8599
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8600
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8601 8602 8603
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8604
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8605
		rt_rq->rt_runtime = global_rt_runtime();
8606
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8607
	}
8608
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8609

8610 8611
	return 0;
}
8612
#endif /* CONFIG_RT_GROUP_SCHED */
8613 8614

int sched_rt_handler(struct ctl_table *table, int write,
8615
		void __user *buffer, size_t *lenp,
8616 8617 8618 8619 8620 8621 8622 8623 8624 8625
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8626
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8643

8644
#ifdef CONFIG_CGROUP_SCHED
8645 8646

/* return corresponding task_group object of a cgroup */
8647
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8648
{
8649 8650
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8651 8652 8653
}

static struct cgroup_subsys_state *
8654
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8655
{
8656
	struct task_group *tg, *parent;
8657

8658
	if (!cgrp->parent) {
8659
		/* This is early initialization for the top cgroup */
8660
		return &root_task_group.css;
8661 8662
	}

8663 8664
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8665 8666 8667 8668 8669 8670
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8671 8672
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8673
{
8674
	struct task_group *tg = cgroup_tg(cgrp);
8675 8676 8677 8678

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8679
static int
8680
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8681
{
8682
#ifdef CONFIG_RT_GROUP_SCHED
8683
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8684 8685
		return -EINVAL;
#else
8686 8687 8688
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8689
#endif
8690 8691
	return 0;
}
8692

8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8712 8713 8714 8715
	return 0;
}

static void
8716
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8717 8718
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8719 8720
{
	sched_move_task(tsk);
8721 8722 8723 8724 8725 8726 8727 8728
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8729 8730
}

8731
static void
8732 8733
cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

8746
#ifdef CONFIG_FAIR_GROUP_SCHED
8747
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8748
				u64 shareval)
8749
{
8750
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8751 8752
}

8753
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8754
{
8755
	struct task_group *tg = cgroup_tg(cgrp);
8756 8757 8758

	return (u64) tg->shares;
}
8759
#endif /* CONFIG_FAIR_GROUP_SCHED */
8760

8761
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8762
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8763
				s64 val)
P
Peter Zijlstra 已提交
8764
{
8765
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8766 8767
}

8768
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8769
{
8770
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8771
}
8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8783
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8784

8785
static struct cftype cpu_files[] = {
8786
#ifdef CONFIG_FAIR_GROUP_SCHED
8787 8788
	{
		.name = "shares",
8789 8790
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8791
	},
8792 8793
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8794
	{
P
Peter Zijlstra 已提交
8795
		.name = "rt_runtime_us",
8796 8797
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8798
	},
8799 8800
	{
		.name = "rt_period_us",
8801 8802
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8803
	},
8804
#endif
8805 8806 8807 8808
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8809
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8810 8811 8812
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8813 8814 8815 8816 8817
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8818
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
8819 8820
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8821 8822 8823
	.early_init	= 1,
};

8824
#endif	/* CONFIG_CGROUP_SCHED */
8825 8826 8827 8828 8829 8830 8831 8832 8833 8834

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8835
/* track cpu usage of a group of tasks and its child groups */
8836 8837 8838
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8839
	u64 __percpu *cpuusage;
8840
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8841
	struct cpuacct *parent;
8842 8843 8844 8845 8846
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8847
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8848
{
8849
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8862
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8863 8864
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8865
	int i;
8866 8867

	if (!ca)
8868
		goto out;
8869 8870

	ca->cpuusage = alloc_percpu(u64);
8871 8872 8873 8874 8875 8876
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8877

8878 8879 8880
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8881
	return &ca->css;
8882 8883 8884 8885 8886 8887 8888 8889 8890

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8891 8892 8893
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8894
static void
8895
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8896
{
8897
	struct cpuacct *ca = cgroup_ca(cgrp);
8898
	int i;
8899

8900 8901
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8902 8903 8904 8905
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8906 8907
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8908
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8909 8910 8911 8912 8913 8914
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8915
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8916
	data = *cpuusage;
8917
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8918 8919 8920 8921 8922 8923 8924 8925 8926
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8927
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8928 8929 8930 8931 8932

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8933
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8934
	*cpuusage = val;
8935
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8936 8937 8938 8939 8940
#else
	*cpuusage = val;
#endif
}

8941
/* return total cpu usage (in nanoseconds) of a group */
8942
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8943
{
8944
	struct cpuacct *ca = cgroup_ca(cgrp);
8945 8946 8947
	u64 totalcpuusage = 0;
	int i;

8948 8949
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8950 8951 8952 8953

	return totalcpuusage;
}

8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8966 8967
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8968 8969 8970 8971 8972

out:
	return err;
}

8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

9007 9008 9009
static struct cftype files[] = {
	{
		.name = "usage",
9010 9011
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9012
	},
9013 9014 9015 9016
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9017 9018 9019 9020
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9021 9022
};

9023
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9024
{
9025
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9026 9027 9028 9029 9030 9031 9032 9033 9034 9035
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9036
	int cpu;
9037

L
Li Zefan 已提交
9038
	if (unlikely(!cpuacct_subsys.active))
9039 9040
		return;

9041
	cpu = task_cpu(tsk);
9042 9043 9044

	rcu_read_lock();

9045 9046
	ca = task_ca(tsk);

9047
	for (; ca; ca = ca->parent) {
9048
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9049 9050
		*cpuusage += cputime;
	}
9051 9052

	rcu_read_unlock();
9053 9054
}

9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9072 9073 9074 9075 9076 9077 9078
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9079
	int batch = CPUACCT_BATCH;
9080 9081 9082 9083 9084 9085 9086 9087

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9088
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9089 9090 9091 9092 9093
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9094 9095 9096 9097 9098 9099 9100 9101
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9102