sched.c 228.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/stop_machine.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
P
Peter Zijlstra 已提交
70 71
#include <linux/debugfs.h>
#include <linux/ctype.h>
72
#include <linux/ftrace.h>
73
#include <linux/slab.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
77
#include <asm/mutex.h>
L
Linus Torvalds 已提交
78

79
#include "sched_cpupri.h"
T
Tejun Heo 已提交
80
#include "workqueue_sched.h"
81
#include "sched_autogroup.h"
82

83
#define CREATE_TRACE_POINTS
84
#include <trace/events/sched.h>
85

L
Linus Torvalds 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
105
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
106
 */
107
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
108

I
Ingo Molnar 已提交
109 110 111
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
112 113 114
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
115
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
116 117 118
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
119

120 121 122 123 124
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

125 126
static inline int rt_policy(int policy)
{
127
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
128 129 130 131 132 133 134 135 136
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
137
/*
I
Ingo Molnar 已提交
138
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
139
 */
I
Ingo Molnar 已提交
140 141 142 143 144
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

145
struct rt_bandwidth {
I
Ingo Molnar 已提交
146
	/* nests inside the rq lock: */
147
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
148 149 150
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

184
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
185

186 187 188 189 190
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

191 192 193
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
194 195 196 197 198 199
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

200
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
201 202 203 204 205
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

206
	raw_spin_lock(&rt_b->rt_runtime_lock);
207
	for (;;) {
208 209 210
		unsigned long delta;
		ktime_t soft, hard;

211 212 213 214 215
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216 217 218 219 220

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221
				HRTIMER_MODE_ABS_PINNED, 0);
222
	}
223
	raw_spin_unlock(&rt_b->rt_runtime_lock);
224 225 226 227 228 229 230 231 232
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

233 234 235 236 237 238
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
239
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
240

241 242
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
243 244
struct cfs_rq;

P
Peter Zijlstra 已提交
245 246
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
247
/* task group related information */
248
struct task_group {
249
	struct cgroup_subsys_state css;
250

251
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
252 253 254 255 256
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
P
Peter Zijlstra 已提交
257 258

	atomic_t load_weight;
259 260 261 262 263 264
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

265
	struct rt_bandwidth rt_bandwidth;
266
#endif
267

268
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
269
	struct list_head list;
P
Peter Zijlstra 已提交
270 271 272 273

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
274 275 276 277

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif
S
Srivatsa Vaddagiri 已提交
278 279
};

280
/* task_group_lock serializes the addition/removal of task groups */
281
static DEFINE_SPINLOCK(task_group_lock);
282

283 284
#ifdef CONFIG_FAIR_GROUP_SCHED

285
# define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
286

287
/*
288 289 290 291
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
292 293 294
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
295
#define MIN_SHARES	2
296
#define MAX_SHARES	(1UL << 18)
297

298
static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
299 300
#endif

S
Srivatsa Vaddagiri 已提交
301
/* Default task group.
I
Ingo Molnar 已提交
302
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
303
 */
304
struct task_group root_task_group;
S
Srivatsa Vaddagiri 已提交
305

D
Dhaval Giani 已提交
306
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
307

I
Ingo Molnar 已提交
308 309 310 311 312 313
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
314
	u64 min_vruntime;
315 316 317
#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
#endif
I
Ingo Molnar 已提交
318 319 320

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
321 322 323 324 325 326

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
327 328
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
329
	struct sched_entity *curr, *next, *last, *skip;
P
Peter Zijlstra 已提交
330

P
Peter Zijlstra 已提交
331
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
332

333
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
334 335
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
336 337
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
338 339 340 341 342 343
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
344
	int on_list;
I
Ingo Molnar 已提交
345 346
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
347 348 349

#ifdef CONFIG_SMP
	/*
350
	 * the part of load.weight contributed by tasks
351
	 */
352
	unsigned long task_weight;
353

354 355 356 357 358 359 360
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
361

362
	/*
363 364 365 366 367
	 * Maintaining per-cpu shares distribution for group scheduling
	 *
	 * load_stamp is the last time we updated the load average
	 * load_last is the last time we updated the load average and saw load
	 * load_unacc_exec_time is currently unaccounted execution time
368
	 */
P
Peter Zijlstra 已提交
369 370
	u64 load_avg;
	u64 load_period;
371
	u64 load_stamp, load_last, load_unacc_exec_time;
372

P
Peter Zijlstra 已提交
373
	unsigned long load_contribution;
374
#endif
I
Ingo Molnar 已提交
375 376
#endif
};
L
Linus Torvalds 已提交
377

I
Ingo Molnar 已提交
378 379 380
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
381
	unsigned long rt_nr_running;
382
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
383 384
	struct {
		int curr; /* highest queued rt task prio */
385
#ifdef CONFIG_SMP
386
		int next; /* next highest */
387
#endif
388
	} highest_prio;
P
Peter Zijlstra 已提交
389
#endif
P
Peter Zijlstra 已提交
390
#ifdef CONFIG_SMP
391
	unsigned long rt_nr_migratory;
392
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
393
	int overloaded;
394
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
395
#endif
P
Peter Zijlstra 已提交
396
	int rt_throttled;
P
Peter Zijlstra 已提交
397
	u64 rt_time;
P
Peter Zijlstra 已提交
398
	u64 rt_runtime;
I
Ingo Molnar 已提交
399
	/* Nests inside the rq lock: */
400
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
401

402
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
403 404
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
405 406 407 408
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
409 410
};

G
Gregory Haskins 已提交
411 412 413 414
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
415 416
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
417 418 419 420 421 422
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
423 424
	cpumask_var_t span;
	cpumask_var_t online;
425

I
Ingo Molnar 已提交
426
	/*
427 428 429
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
430
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
431
	atomic_t rto_count;
432
	struct cpupri cpupri;
G
Gregory Haskins 已提交
433 434
};

435 436 437 438
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
439 440
static struct root_domain def_root_domain;

441
#endif /* CONFIG_SMP */
G
Gregory Haskins 已提交
442

L
Linus Torvalds 已提交
443 444 445 446 447 448 449
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
450
struct rq {
451
	/* runqueue lock: */
452
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
453 454 455 456 457 458

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
459 460
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
461
	unsigned long last_load_update_tick;
462
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
463
	u64 nohz_stamp;
464
	unsigned char nohz_balance_kick;
465
#endif
466 467
	unsigned int skip_clock_update;

468 469
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
470 471 472 473
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
474 475
	struct rt_rq rt;

I
Ingo Molnar 已提交
476
#ifdef CONFIG_FAIR_GROUP_SCHED
477 478
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
479 480
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
481
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
482 483 484 485 486 487 488 489 490 491
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

492
	struct task_struct *curr, *idle, *stop;
493
	unsigned long next_balance;
L
Linus Torvalds 已提交
494
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
495

496
	u64 clock;
497
	u64 clock_task;
I
Ingo Molnar 已提交
498

L
Linus Torvalds 已提交
499 500 501
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
502
	struct root_domain *rd;
L
Linus Torvalds 已提交
503 504
	struct sched_domain *sd;

505 506
	unsigned long cpu_power;

507
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
508
	/* For active balancing */
509
	int post_schedule;
L
Linus Torvalds 已提交
510 511
	int active_balance;
	int push_cpu;
512
	struct cpu_stop_work active_balance_work;
513 514
	/* cpu of this runqueue: */
	int cpu;
515
	int online;
L
Linus Torvalds 已提交
516

517
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
518

519 520
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
521 522
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
523 524
#endif

525 526 527 528
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64 prev_irq_time;
#endif

529 530 531 532
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
533
#ifdef CONFIG_SCHED_HRTICK
534 535 536 537
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
538 539 540
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
541 542 543
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
544 545
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
546 547

	/* sys_sched_yield() stats */
548
	unsigned int yld_count;
L
Linus Torvalds 已提交
549 550

	/* schedule() stats */
551 552 553
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
554 555

	/* try_to_wake_up() stats */
556 557
	unsigned int ttwu_count;
	unsigned int ttwu_local;
L
Linus Torvalds 已提交
558 559 560
#endif
};

561
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
562

563

564
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
I
Ingo Molnar 已提交
565

566 567 568 569 570 571 572 573 574
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

575
#define rcu_dereference_check_sched_domain(p) \
576 577 578 579
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
580 581
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
582
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
583 584 585 586
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
587
#define for_each_domain(cpu, __sd) \
588
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
589 590 591 592 593

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
594
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
595

596 597 598 599 600 601 602 603 604 605 606 607
#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
 * We use task_subsys_state_check() and extend the RCU verification
 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
 * holds that lock for each task it moves into the cgroup. Therefore
 * by holding that lock, we pin the task to the current cgroup.
 */
static inline struct task_group *task_group(struct task_struct *p)
{
608
	struct task_group *tg;
609 610 611 612
	struct cgroup_subsys_state *css;

	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
			lockdep_is_held(&task_rq(p)->lock));
613 614 615
	tg = container_of(css, struct task_group, css);

	return autogroup_task_group(p, tg);
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

642
static void update_rq_clock_task(struct rq *rq, s64 delta);
643

644
static void update_rq_clock(struct rq *rq)
645
{
646
	s64 delta;
647

648 649
	if (rq->skip_clock_update)
		return;
650

651 652 653
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
654 655
}

I
Ingo Molnar 已提交
656 657 658 659 660 661 662 663 664
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
665
/**
666
 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
667
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
668 669 670 671
 *
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
672
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
673
{
674
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
675 676
}

I
Ingo Molnar 已提交
677 678 679
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
680 681 682 683

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
684
enum {
P
Peter Zijlstra 已提交
685
#include "sched_features.h"
I
Ingo Molnar 已提交
686 687
};

P
Peter Zijlstra 已提交
688 689 690 691 692
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
693
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
694 695 696 697 698 699 700 701 702
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

703
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
704 705 706 707 708 709
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
710
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
711 712 713 714
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
715 716 717
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
718
	}
L
Li Zefan 已提交
719
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
720

L
Li Zefan 已提交
721
	return 0;
P
Peter Zijlstra 已提交
722 723 724 725 726 727 728
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
729
	char *cmp;
P
Peter Zijlstra 已提交
730 731 732 733 734 735 736 737 738 739
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
740
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
741

H
Hillf Danton 已提交
742
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
743 744 745 746 747
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
748
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
P
Peter Zijlstra 已提交
749 750 751 752 753 754 755 756 757 758 759
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

760
	*ppos += cnt;
P
Peter Zijlstra 已提交
761 762 763 764

	return cnt;
}

L
Li Zefan 已提交
765 766 767 768 769
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

770
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
771 772 773 774 775
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
790

791 792 793 794 795 796
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

797 798 799 800 801 802 803 804
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
805
/*
P
Peter Zijlstra 已提交
806
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
807 808
 * default: 1s
 */
P
Peter Zijlstra 已提交
809
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
810

811 812
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
813 814 815 816 817
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
818

819 820 821 822 823 824 825
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
826
	if (sysctl_sched_rt_runtime < 0)
827 828 829 830
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
831

L
Linus Torvalds 已提交
832
#ifndef prepare_arch_switch
833 834 835 836 837 838
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

839 840 841 842 843
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

844
static inline int task_running(struct rq *rq, struct task_struct *p)
845
{
P
Peter Zijlstra 已提交
846 847 848
#ifdef CONFIG_SMP
	return p->on_cpu;
#else
849
	return task_current(rq, p);
P
Peter Zijlstra 已提交
850
#endif
851 852
}

P
Peter Zijlstra 已提交
853
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
854
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
855
{
P
Peter Zijlstra 已提交
856 857 858 859 860 861 862 863
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->on_cpu = 1;
#endif
864 865
}

866
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
867
{
P
Peter Zijlstra 已提交
868 869 870 871 872 873 874 875 876
#ifdef CONFIG_SMP
	/*
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->on_cpu = 0;
#endif
877 878 879 880
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
881 882 883 884 885 886 887
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

888
	raw_spin_unlock_irq(&rq->lock);
889 890 891
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
892
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
893 894 895 896 897 898 899
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
P
Peter Zijlstra 已提交
900
	next->on_cpu = 1;
901 902
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
903
	raw_spin_unlock_irq(&rq->lock);
904
#else
905
	raw_spin_unlock(&rq->lock);
906 907 908
#endif
}

909
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
910 911 912
{
#ifdef CONFIG_SMP
	/*
P
Peter Zijlstra 已提交
913
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
914 915 916 917
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
P
Peter Zijlstra 已提交
918
	prev->on_cpu = 0;
919 920 921
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
922
#endif
923 924
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
925

926
/*
P
Peter Zijlstra 已提交
927 928
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
929 930 931
 */
static inline int task_is_waking(struct task_struct *p)
{
932
	return unlikely(p->state == TASK_WAKING);
933 934
}

935 936 937 938
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
939
static inline struct rq *__task_rq_lock(struct task_struct *p)
940 941
	__acquires(rq->lock)
{
942 943
	struct rq *rq;

944
	for (;;) {
945
		rq = task_rq(p);
946
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
947
		if (likely(rq == task_rq(p)))
948
			return rq;
949
		raw_spin_unlock(&rq->lock);
950 951 952
	}
}

L
Linus Torvalds 已提交
953 954
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
955
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
956 957
 * explicitly disabling preemption.
 */
958
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
959 960
	__acquires(rq->lock)
{
961
	struct rq *rq;
L
Linus Torvalds 已提交
962

963 964 965
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
966
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
967
		if (likely(rq == task_rq(p)))
968
			return rq;
969
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
970 971 972
	}
}

A
Alexey Dobriyan 已提交
973
static void __task_rq_unlock(struct rq *rq)
974 975
	__releases(rq->lock)
{
976
	raw_spin_unlock(&rq->lock);
977 978
}

979
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
980 981
	__releases(rq->lock)
{
982
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
983 984 985
}

/*
986
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
987
 */
A
Alexey Dobriyan 已提交
988
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
989 990
	__acquires(rq->lock)
{
991
	struct rq *rq;
L
Linus Torvalds 已提交
992 993 994

	local_irq_disable();
	rq = this_rq();
995
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
996 997 998 999

	return rq;
}

P
Peter Zijlstra 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1021
	if (!cpu_active(cpu_of(rq)))
1022
		return 0;
P
Peter Zijlstra 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1042
	raw_spin_lock(&rq->lock);
1043
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1044
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1045
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1046 1047 1048 1049

	return HRTIMER_NORESTART;
}

1050
#ifdef CONFIG_SMP
1051 1052 1053 1054
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1055
{
1056
	struct rq *rq = arg;
1057

1058
	raw_spin_lock(&rq->lock);
1059 1060
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1061
	raw_spin_unlock(&rq->lock);
1062 1063
}

1064 1065 1066 1067 1068 1069
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1070
{
1071 1072
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1073

1074
	hrtimer_set_expires(timer, time);
1075 1076 1077 1078

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1079
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1080 1081
		rq->hrtick_csd_pending = 1;
	}
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1096
		hrtick_clear(cpu_rq(cpu));
1097 1098 1099 1100 1101 1102
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1103
static __init void init_hrtick(void)
1104 1105 1106
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1107 1108 1109 1110 1111 1112 1113 1114
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1115
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1116
			HRTIMER_MODE_REL_PINNED, 0);
1117
}
1118

A
Andrew Morton 已提交
1119
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1120 1121
{
}
1122
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1123

1124
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1125
{
1126 1127
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1128

1129 1130 1131 1132
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1133

1134 1135
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1136
}
A
Andrew Morton 已提交
1137
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1138 1139 1140 1141 1142 1143 1144 1145
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1146 1147 1148
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1149
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1150

I
Ingo Molnar 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1164
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1165 1166 1167
{
	int cpu;

1168
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1169

1170
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1171 1172
		return;

1173
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1190
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1191 1192
		return;
	resched_task(cpu_curr(cpu));
1193
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1194
}
1195 1196

#ifdef CONFIG_NO_HZ
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		for_each_cpu(i, sched_domain_span(sd))
			if (!idle_cpu(i))
				return i;
	}
	return cpu;
}
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1250
	set_tsk_need_resched(rq->idle);
1251 1252 1253 1254 1255 1256

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1257

1258
#endif /* CONFIG_NO_HZ */
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
1270 1271 1272 1273 1274 1275
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1287
#else /* !CONFIG_SMP */
1288
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1289
{
1290
	assert_raw_spin_locked(&task_rq(p)->lock);
1291
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1292
}
1293 1294 1295 1296

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1297 1298 1299 1300

static void sched_avg_update(struct rq *rq)
{
}
1301
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1302

1303 1304 1305 1306 1307 1308 1309 1310
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1311 1312 1313
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1314
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1315

1316 1317 1318
/*
 * delta *= weight / lw
 */
1319
static unsigned long
1320 1321 1322 1323 1324
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1325 1326 1327 1328 1329 1330 1331
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1332 1333 1334 1335 1336

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1337
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1338
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1339 1340
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1341
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1342

1343
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1344 1345
}

1346
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1347 1348
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1349
	lw->inv_weight = 0;
1350 1351
}

1352
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1353 1354
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1355
	lw->inv_weight = 0;
1356 1357
}

P
Peter Zijlstra 已提交
1358 1359 1360 1361 1362 1363
static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

1364 1365 1366 1367
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1368
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1369 1370 1371 1372
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1373 1374
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1384 1385 1386
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1387 1388
 */
static const int prio_to_weight[40] = {
1389 1390 1391 1392 1393 1394 1395 1396
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1397 1398
};

1399 1400 1401 1402 1403 1404 1405
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1406
static const u32 prio_to_wmult[40] = {
1407 1408 1409 1410 1411 1412 1413 1414
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1415
};
1416

1417 1418 1419 1420 1421 1422 1423 1424
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1425 1426
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1427 1428
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1429 1430
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1431 1432
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1433 1434
#endif

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1445
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1446
typedef int (*tg_visitor)(struct task_group *, void *);
1447 1448 1449 1450 1451

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1452
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1453 1454
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1455
	int ret;
1456 1457 1458 1459

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1460 1461 1462
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1463 1464 1465 1466 1467 1468 1469
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1470 1471 1472
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1473 1474 1475 1476 1477

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1478
out_unlock:
1479
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1480 1481

	return ret;
1482 1483
}

P
Peter Zijlstra 已提交
1484 1485 1486
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1487
}
P
Peter Zijlstra 已提交
1488 1489 1490
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1530 1531
static unsigned long power_of(int cpu)
{
1532
	return cpu_rq(cpu)->cpu_power;
1533 1534
}

P
Peter Zijlstra 已提交
1535 1536 1537 1538 1539
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1540
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1541

1542 1543
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1544 1545
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1546 1547 1548 1549 1550

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1551 1552

/*
1553 1554 1555
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1556
 */
P
Peter Zijlstra 已提交
1557
static int tg_load_down(struct task_group *tg, void *data)
1558
{
1559
	unsigned long load;
P
Peter Zijlstra 已提交
1560
	long cpu = (long)data;
1561

1562 1563 1564 1565
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
P
Peter Zijlstra 已提交
1566
		load *= tg->se[cpu]->load.weight;
1567 1568
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1569

1570
	tg->cfs_rq[cpu]->h_load = load;
1571

P
Peter Zijlstra 已提交
1572
	return 0;
1573 1574
}

P
Peter Zijlstra 已提交
1575
static void update_h_load(long cpu)
1576
{
P
Peter Zijlstra 已提交
1577
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1578 1579
}

1580 1581
#endif

1582 1583
#ifdef CONFIG_PREEMPT

1584 1585
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1586
/*
1587 1588 1589 1590 1591 1592
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1593
 */
1594 1595 1596 1597 1598
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1599
	raw_spin_unlock(&this_rq->lock);
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1614 1615 1616 1617 1618 1619
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1620
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1621
		if (busiest < this_rq) {
1622 1623 1624 1625
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1626 1627
			ret = 1;
		} else
1628 1629
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1630 1631 1632 1633
	}
	return ret;
}

1634 1635 1636 1637 1638 1639 1640 1641 1642
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1643
		raw_spin_unlock(&this_rq->lock);
1644 1645 1646 1647 1648 1649
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1650 1651 1652
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1653
	raw_spin_unlock(&busiest->lock);
1654 1655
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
#else /* CONFIG_SMP */

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	BUG_ON(rq1 != rq2);
	raw_spin_lock(&rq1->lock);
	__acquire(rq2->lock);	/* Fake it out ;) */
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	BUG_ON(rq1 != rq2);
	raw_spin_unlock(&rq1->lock);
	__release(rq2->lock);
}

1732 1733
#endif

1734
static void calc_load_account_idle(struct rq *this_rq);
1735
static void update_sysctl(void);
1736
static int get_update_sysctl_factor(void);
1737
static void update_cpu_load(struct rq *this_rq);
1738

P
Peter Zijlstra 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1752

1753
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1754

1755
#define sched_class_highest (&stop_sched_class)
1756 1757
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1758

1759 1760
#include "sched_stats.h"

1761
static void inc_nr_running(struct rq *rq)
1762 1763 1764 1765
{
	rq->nr_running++;
}

1766
static void dec_nr_running(struct rq *rq)
1767 1768 1769 1770
{
	rq->nr_running--;
}

1771 1772
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
1773 1774 1775 1776 1777 1778 1779 1780
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1781

I
Ingo Molnar 已提交
1782 1783
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1784 1785
}

1786
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1787
{
1788
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1789
	sched_info_queued(p);
1790
	p->sched_class->enqueue_task(rq, p, flags);
1791 1792
}

1793
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1794
{
1795
	update_rq_clock(rq);
1796
	sched_info_dequeued(p);
1797
	p->sched_class->dequeue_task(rq, p, flags);
1798 1799
}

1800 1801 1802
/*
 * activate_task - move a task to the runqueue.
 */
1803
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1804 1805 1806 1807
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1808
	enqueue_task(rq, p, flags);
1809 1810 1811 1812 1813 1814
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1815
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1816 1817 1818 1819
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1820
	dequeue_task(rq, p, flags);
1821 1822 1823
	dec_nr_running(rq);
}

1824 1825
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

1826 1827 1828 1829 1830 1831 1832
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
1833 1834 1835
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
1836
 */
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
1891 1892 1893
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
1894
#endif /* CONFIG_64BIT */
1895

1896 1897 1898 1899
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
1900 1901 1902
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
1903
	s64 delta;
1904 1905 1906 1907 1908 1909 1910 1911
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
1912 1913 1914
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

1915
	irq_time_write_begin();
1916 1917 1918 1919 1920 1921 1922
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
1923
		__this_cpu_add(cpu_hardirq_time, delta);
1924
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1925
		__this_cpu_add(cpu_softirq_time, delta);
1926

1927
	irq_time_write_end();
1928 1929
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
1930
EXPORT_SYMBOL_GPL(account_system_vtime);
1931

1932
static void update_rq_clock_task(struct rq *rq, s64 delta)
1933
{
1934 1935
	s64 irq_delta;

1936
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
	rq->clock_task += delta;

	if (irq_delta && sched_feat(NONIRQ_POWER))
		sched_rt_avg_update(rq, irq_delta);
1962 1963
}

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
static int irqtime_account_hi_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

1994
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
1995

1996 1997
#define sched_clock_irqtime	(0)

1998
static void update_rq_clock_task(struct rq *rq, s64 delta)
1999
{
2000
	rq->clock_task += delta;
2001 2002
}

2003
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2004

2005 2006 2007
#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
2008
#include "sched_autogroup.c"
2009
#include "sched_stoptask.c"
2010 2011 2012 2013
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

2044
/*
I
Ingo Molnar 已提交
2045
 * __normal_prio - return the priority that is based on the static prio
2046 2047 2048
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
2049
	return p->static_prio;
2050 2051
}

2052 2053 2054 2055 2056 2057 2058
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
2059
static inline int normal_prio(struct task_struct *p)
2060 2061 2062
{
	int prio;

2063
	if (task_has_rt_policy(p))
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
2077
static int effective_prio(struct task_struct *p)
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
2090 2091 2092 2093
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
2094
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
2095 2096 2097 2098
{
	return cpu_curr(task_cpu(p)) == p;
}

2099 2100
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
2101
				       int oldprio)
2102 2103 2104
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
2105 2106 2107 2108
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
2109 2110
}

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
2132
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2133 2134 2135
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
2136
#ifdef CONFIG_SMP
2137 2138 2139
/*
 * Is this task likely cache-hot:
 */
2140
static int
2141 2142 2143 2144
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2145 2146 2147
	if (p->sched_class != &fair_sched_class)
		return 0;

2148 2149 2150
	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

2151 2152 2153
	/*
	 * Buddy candidates are cache hot:
	 */
2154
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2155 2156
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2157 2158
		return 1;

2159 2160 2161 2162 2163
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2164 2165 2166 2167 2168
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2169
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2170
{
2171 2172 2173 2174 2175
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2176 2177
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2178 2179
#endif

2180
	trace_sched_migrate_task(p, new_cpu);
2181

2182 2183 2184 2185
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2186 2187

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2188 2189
}

2190
struct migration_arg {
2191
	struct task_struct *task;
L
Linus Torvalds 已提交
2192
	int dest_cpu;
2193
};
L
Linus Torvalds 已提交
2194

2195 2196
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2197 2198 2199 2200
/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2201
static bool need_migrate_task(struct task_struct *p)
L
Linus Torvalds 已提交
2202 2203 2204
{
	/*
	 * If the task is not on a runqueue (and not running), then
2205
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2206
	 */
2207 2208 2209
	bool running = p->on_rq || p->on_cpu;
	smp_rmb(); /* finish_lock_switch() */
	return running;
L
Linus Torvalds 已提交
2210 2211 2212 2213 2214
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2215 2216 2217 2218 2219 2220 2221
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2222 2223 2224 2225 2226 2227
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2228
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2229 2230
{
	unsigned long flags;
I
Ingo Molnar 已提交
2231
	int running, on_rq;
R
Roland McGrath 已提交
2232
	unsigned long ncsw;
2233
	struct rq *rq;
L
Linus Torvalds 已提交
2234

2235 2236 2237 2238 2239 2240 2241 2242
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2243

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2255 2256 2257
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2258
			cpu_relax();
R
Roland McGrath 已提交
2259
		}
2260

2261 2262 2263 2264 2265 2266
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2267
		trace_sched_wait_task(p);
2268
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
2269
		on_rq = p->on_rq;
R
Roland McGrath 已提交
2270
		ncsw = 0;
2271
		if (!match_state || p->state == match_state)
2272
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2273
		task_rq_unlock(rq, &flags);
2274

R
Roland McGrath 已提交
2275 2276 2277 2278 2279 2280
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2291

2292 2293 2294 2295 2296
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2297
		 * So if it was still runnable (but just not actively
2298 2299 2300 2301
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
2302 2303 2304 2305
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2306 2307
			continue;
		}
2308

2309 2310 2311 2312 2313 2314 2315
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2316 2317

	return ncsw;
L
Linus Torvalds 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
2327
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
2328 2329 2330 2331 2332
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2333
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2343
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2344
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2345

2346
#ifdef CONFIG_SMP
2347
/*
2348
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2349
 */
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2366 2367 2368 2369 2370 2371 2372 2373 2374
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
2375 2376 2377 2378 2379
	}

	return dest_cpu;
}

2380
/*
2381
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2382
 */
2383
static inline
2384
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2385
{
2386
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2399
		     !cpu_online(cpu)))
2400
		cpu = select_fallback_rq(task_cpu(p), p);
2401 2402

	return cpu;
2403
}
2404 2405 2406 2407 2408 2409

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2410 2411
#endif

P
Peter Zijlstra 已提交
2412 2413
static void
ttwu_stat(struct rq *rq, struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
2414
{
P
Peter Zijlstra 已提交
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
#ifdef CONFIG_SCHEDSTATS
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
2436
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2437 2438

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
2439
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
2440 2441

	if (cpu != task_cpu(p))
T
Tejun Heo 已提交
2442 2443
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
2444 2445 2446 2447 2448
#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
2449
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
2450
	p->on_rq = 1;
2451 2452 2453 2454

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2455 2456
}

2457 2458
static void
ttwu_post_activation(struct task_struct *p, struct rq *rq, int wake_flags)
T
Tejun Heo 已提交
2459
{
2460
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

/**
L
Linus Torvalds 已提交
2482
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2483
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2484
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2485
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2486 2487 2488 2489 2490 2491 2492
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2493 2494
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2495
 */
P
Peter Zijlstra 已提交
2496 2497
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2498
{
2499
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2500
	unsigned long flags;
2501
	unsigned long en_flags = ENQUEUE_WAKEUP;
2502
	struct rq *rq;
L
Linus Torvalds 已提交
2503

P
Peter Zijlstra 已提交
2504
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2505

2506
	smp_wmb();
2507 2508
	raw_spin_lock_irqsave(&p->pi_lock, flags);
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2509
	if (!(p->state & state))
L
Linus Torvalds 已提交
2510 2511
		goto out;

P
Peter Zijlstra 已提交
2512 2513
	cpu = task_cpu(p);

P
Peter Zijlstra 已提交
2514
	if (p->on_rq)
L
Linus Torvalds 已提交
2515 2516
		goto out_running;

2517
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2518 2519 2520 2521
#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2522
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2523
	p->state = TASK_WAKING;
2524

2525
	if (p->sched_class->task_waking) {
2526
		p->sched_class->task_waking(p);
2527 2528
		en_flags |= ENQUEUE_WAKING;
	}
2529

2530
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2531
	if (cpu != orig_cpu)
2532
		set_task_cpu(p, cpu);
2533
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2534

2535 2536
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2537

2538 2539 2540 2541 2542 2543 2544
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2545
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2546

2547 2548 2549
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;

L
Linus Torvalds 已提交
2550 2551
out_activate:
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
2552
	ttwu_activate(rq, p, en_flags);
L
Linus Torvalds 已提交
2553
out_running:
2554
	ttwu_post_activation(p, rq, wake_flags);
P
Peter Zijlstra 已提交
2555
	ttwu_stat(rq, p, cpu, wake_flags);
2556
	success = 1;
L
Linus Torvalds 已提交
2557
out:
2558 2559
	__task_rq_unlock(rq);
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
2560
	put_cpu();
L
Linus Torvalds 已提交
2561 2562 2563 2564

	return success;
}

T
Tejun Heo 已提交
2565 2566 2567 2568
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
2569
 * Put @p on the run-queue if it's not already there.  The caller must
T
Tejun Heo 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
 * the current task.  this_rq() stays locked over invocation.
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

	if (!(p->state & TASK_NORMAL))
		return;

P
Peter Zijlstra 已提交
2584
	if (!p->on_rq)
P
Peter Zijlstra 已提交
2585 2586
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

2587
	ttwu_post_activation(p, rq, 0);
P
Peter Zijlstra 已提交
2588
	ttwu_stat(rq, p, smp_processor_id(), 0);
T
Tejun Heo 已提交
2589 2590
}

2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2602
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2603
{
2604
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2605 2606 2607
}
EXPORT_SYMBOL(wake_up_process);

2608
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2609 2610 2611 2612 2613 2614 2615
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2616 2617 2618 2619 2620
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
2621 2622 2623
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2624 2625
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2626
	p->se.prev_sum_exec_runtime	= 0;
2627
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2628
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2629
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2630 2631

#ifdef CONFIG_SCHEDSTATS
2632
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2633
#endif
N
Nick Piggin 已提交
2634

P
Peter Zijlstra 已提交
2635
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
2636

2637 2638 2639
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2650
	/*
2651
	 * We mark the process as running here. This guarantees that
2652 2653 2654
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2655
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2656

2657 2658 2659 2660
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2661
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2662
			p->policy = SCHED_NORMAL;
2663 2664
			p->normal_prio = p->static_prio;
		}
2665

2666 2667
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2668
			p->normal_prio = p->static_prio;
2669 2670 2671
			set_load_weight(p);
		}

2672 2673 2674 2675 2676 2677
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2678

2679 2680 2681 2682 2683
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2684 2685
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2686

P
Peter Zijlstra 已提交
2687 2688 2689
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2690 2691 2692 2693 2694 2695 2696 2697
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
	rcu_read_lock();
2698
	set_task_cpu(p, cpu);
2699
	rcu_read_unlock();
2700

2701
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2702
	if (likely(sched_info_on()))
2703
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2704
#endif
P
Peter Zijlstra 已提交
2705 2706
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2707
#endif
L
Linus Torvalds 已提交
2708
#ifdef CONFIG_PREEMPT
2709
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2710
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2711
#endif
2712
#ifdef CONFIG_SMP
2713
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2714
#endif
2715

N
Nick Piggin 已提交
2716
	put_cpu();
L
Linus Torvalds 已提交
2717 2718 2719 2720 2721 2722 2723 2724 2725
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2726
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2727 2728
{
	unsigned long flags;
I
Ingo Molnar 已提交
2729
	struct rq *rq;
2730
	int cpu __maybe_unused = get_cpu();
2731 2732

#ifdef CONFIG_SMP
2733 2734 2735
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2736 2737 2738 2739 2740
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2741 2742
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2743
	 */
2744
	cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2745
	set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2746

2747
	p->state = TASK_RUNNING;
2748 2749 2750 2751
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2752
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
2753
	p->on_rq = 1;
2754
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2755
	check_preempt_curr(rq, p, WF_FORK);
2756
#ifdef CONFIG_SMP
2757 2758
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2759
#endif
I
Ingo Molnar 已提交
2760
	task_rq_unlock(rq, &flags);
2761
	put_cpu();
L
Linus Torvalds 已提交
2762 2763
}

2764 2765 2766
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2767
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2768
 * @notifier: notifier struct to register
2769 2770 2771 2772 2773 2774 2775 2776 2777
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2778
 * @notifier: notifier struct to unregister
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2808
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2820
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2821

2822 2823 2824
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2825
 * @prev: the current task that is being switched out
2826 2827 2828 2829 2830 2831 2832 2833 2834
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2835 2836 2837
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2838
{
2839 2840
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
2841
	fire_sched_out_preempt_notifiers(prev, next);
2842 2843
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
2844
	trace_sched_switch(prev, next);
2845 2846
}

L
Linus Torvalds 已提交
2847 2848
/**
 * finish_task_switch - clean up after a task-switch
2849
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2850 2851
 * @prev: the thread we just switched away from.
 *
2852 2853 2854 2855
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2856 2857
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2858
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2859 2860 2861
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2862
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2863 2864 2865
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2866
	long prev_state;
L
Linus Torvalds 已提交
2867 2868 2869 2870 2871

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2872
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2873 2874
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2875
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2876 2877 2878 2879 2880
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2881
	prev_state = prev->state;
2882
	finish_arch_switch(prev);
2883 2884 2885
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2886
	perf_event_task_sched_in(current);
2887 2888 2889
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2890
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2891

2892
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2893 2894
	if (mm)
		mmdrop(mm);
2895
	if (unlikely(prev_state == TASK_DEAD)) {
2896 2897 2898
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2899
		 */
2900
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2901
		put_task_struct(prev);
2902
	}
L
Linus Torvalds 已提交
2903 2904
}

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2920
		raw_spin_lock_irqsave(&rq->lock, flags);
2921 2922
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2923
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2924 2925 2926 2927 2928 2929

		rq->post_schedule = 0;
	}
}

#else
2930

2931 2932 2933 2934 2935 2936
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2937 2938
}

2939 2940
#endif

L
Linus Torvalds 已提交
2941 2942 2943 2944
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2945
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2946 2947
	__releases(rq->lock)
{
2948 2949
	struct rq *rq = this_rq();

2950
	finish_task_switch(rq, prev);
2951

2952 2953 2954 2955 2956
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2957

2958 2959 2960 2961
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2962
	if (current->set_child_tid)
2963
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2964 2965 2966 2967 2968 2969
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2970
static inline void
2971
context_switch(struct rq *rq, struct task_struct *prev,
2972
	       struct task_struct *next)
L
Linus Torvalds 已提交
2973
{
I
Ingo Molnar 已提交
2974
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2975

2976
	prepare_task_switch(rq, prev, next);
2977

I
Ingo Molnar 已提交
2978 2979
	mm = next->mm;
	oldmm = prev->active_mm;
2980 2981 2982 2983 2984
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2985
	arch_start_context_switch(prev);
2986

2987
	if (!mm) {
L
Linus Torvalds 已提交
2988 2989 2990 2991 2992 2993
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2994
	if (!prev->mm) {
L
Linus Torvalds 已提交
2995 2996 2997
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2998 2999 3000 3001 3002 3003 3004
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
3005
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3006
#endif
L
Linus Torvalds 已提交
3007 3008 3009 3010

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
3011 3012 3013 3014 3015 3016 3017
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
3035
}
L
Linus Torvalds 已提交
3036 3037

unsigned long nr_uninterruptible(void)
3038
{
L
Linus Torvalds 已提交
3039
	unsigned long i, sum = 0;
3040

3041
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3042
		sum += cpu_rq(i)->nr_uninterruptible;
3043 3044

	/*
L
Linus Torvalds 已提交
3045 3046
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
3047
	 */
L
Linus Torvalds 已提交
3048 3049
	if (unlikely((long)sum < 0))
		sum = 0;
3050

L
Linus Torvalds 已提交
3051
	return sum;
3052 3053
}

L
Linus Torvalds 已提交
3054
unsigned long long nr_context_switches(void)
3055
{
3056 3057
	int i;
	unsigned long long sum = 0;
3058

3059
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3060
		sum += cpu_rq(i)->nr_switches;
3061

L
Linus Torvalds 已提交
3062 3063
	return sum;
}
3064

L
Linus Torvalds 已提交
3065 3066 3067
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
3068

3069
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3070
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
3071

L
Linus Torvalds 已提交
3072 3073
	return sum;
}
3074

3075
unsigned long nr_iowait_cpu(int cpu)
3076
{
3077
	struct rq *this = cpu_rq(cpu);
3078 3079
	return atomic_read(&this->nr_iowait);
}
3080

3081 3082 3083 3084 3085
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
3086

3087

3088 3089 3090 3091 3092
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
3093

3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

3109 3110 3111 3112 3113 3114 3115 3116 3117
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
3269 3270 3271 3272 3273 3274 3275 3276 3277
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
3278 3279 3280 3281

static void calc_global_nohz(unsigned long ticks)
{
}
3282 3283
#endif

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3297 3298 3299
}

/*
3300 3301
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3302
 */
3303
void calc_global_load(unsigned long ticks)
3304
{
3305
	long active;
L
Linus Torvalds 已提交
3306

3307 3308 3309
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
3310
		return;
L
Linus Torvalds 已提交
3311

3312 3313
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3314

3315 3316 3317
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3318

3319 3320
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3321

3322
/*
3323 3324
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3325 3326 3327
 */
static void calc_load_account_active(struct rq *this_rq)
{
3328
	long delta;
3329

3330 3331
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3332

3333 3334 3335
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3336
		atomic_long_add(delta, &calc_load_tasks);
3337 3338

	this_rq->calc_load_update += LOAD_FREQ;
3339 3340
}

3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

3408
/*
I
Ingo Molnar 已提交
3409
 * Update rq->cpu_load[] statistics. This function is usually called every
3410 3411
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
3412
 */
I
Ingo Molnar 已提交
3413
static void update_cpu_load(struct rq *this_rq)
3414
{
3415
	unsigned long this_load = this_rq->load.weight;
3416 3417
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
3418
	int i, scale;
3419

I
Ingo Molnar 已提交
3420
	this_rq->nr_load_updates++;
3421

3422 3423 3424 3425 3426 3427 3428
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
3429
	/* Update our load: */
3430 3431
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
3432
		unsigned long old_load, new_load;
3433

I
Ingo Molnar 已提交
3434
		/* scale is effectively 1 << i now, and >> i divides by scale */
3435

I
Ingo Molnar 已提交
3436
		old_load = this_rq->cpu_load[i];
3437
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
3438
		new_load = this_load;
I
Ingo Molnar 已提交
3439 3440 3441 3442 3443 3444
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
3445 3446 3447
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
3448
	}
3449 3450

	sched_avg_update(this_rq);
3451 3452 3453 3454 3455
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
3456

3457
	calc_load_account_active(this_rq);
3458 3459
}

I
Ingo Molnar 已提交
3460
#ifdef CONFIG_SMP
3461

3462
/*
P
Peter Zijlstra 已提交
3463 3464
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3465
 */
P
Peter Zijlstra 已提交
3466
void sched_exec(void)
3467
{
P
Peter Zijlstra 已提交
3468
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3469
	unsigned long flags;
3470
	struct rq *rq;
3471
	int dest_cpu;
3472

L
Linus Torvalds 已提交
3473
	rq = task_rq_lock(p, &flags);
3474
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3475 3476
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3477

3478
	/*
P
Peter Zijlstra 已提交
3479
	 * select_task_rq() can race against ->cpus_allowed
3480
	 */
3481
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3482
	    likely(cpu_active(dest_cpu)) && need_migrate_task(p)) {
3483
		struct migration_arg arg = { p, dest_cpu };
3484

L
Linus Torvalds 已提交
3485
		task_rq_unlock(rq, &flags);
3486
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3487 3488
		return;
	}
3489
unlock:
L
Linus Torvalds 已提交
3490 3491
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3492

L
Linus Torvalds 已提交
3493 3494 3495 3496 3497 3498 3499
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3500
 * Return any ns on the sched_clock that have not yet been accounted in
3501
 * @p in case that task is currently running.
3502 3503
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3504
 */
3505 3506 3507 3508 3509 3510
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
3511
		ns = rq->clock_task - p->se.exec_start;
3512 3513 3514 3515 3516 3517 3518
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3519
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3520 3521
{
	unsigned long flags;
3522
	struct rq *rq;
3523
	u64 ns = 0;
3524

3525
	rq = task_rq_lock(p, &flags);
3526 3527
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3528

3529 3530
	return ns;
}
3531

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3549

3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3569
	task_rq_unlock(rq, &flags);
3570

L
Linus Torvalds 已提交
3571 3572 3573 3574 3575 3576 3577
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3578
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3579
 */
3580 3581
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3582 3583 3584 3585
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3586
	/* Add user time to process. */
L
Linus Torvalds 已提交
3587
	p->utime = cputime_add(p->utime, cputime);
3588
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3589
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3590 3591 3592 3593 3594 3595 3596

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3597 3598

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3599 3600
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3601 3602
}

3603 3604 3605 3606
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3607
 * @cputime_scaled: cputime scaled by cpu frequency
3608
 */
3609 3610
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3611 3612 3613 3614 3615 3616
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3617
	/* Add guest time to process. */
3618
	p->utime = cputime_add(p->utime, cputime);
3619
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3620
	account_group_user_time(p, cputime);
3621 3622
	p->gtime = cputime_add(p->gtime, cputime);

3623
	/* Add guest time to cpustat. */
3624 3625 3626 3627 3628 3629 3630
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3631 3632
}

3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
			cputime_t cputime_scaled, cputime64_t *target_cputime64)
{
	cputime64_t tmp = cputime_to_cputime64(cputime);

	/* Add system time to process. */
	p->stime = cputime_add(p->stime, cputime);
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
	*target_cputime64 = cputime64_add(*target_cputime64, tmp);
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
3659 3660 3661 3662 3663
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3664
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3665 3666
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3667
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3668 3669
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3670
	cputime64_t *target_cputime64;
L
Linus Torvalds 已提交
3671

3672
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3673
		account_guest_time(p, cputime, cputime_scaled);
3674 3675
		return;
	}
3676

L
Linus Torvalds 已提交
3677
	if (hardirq_count() - hardirq_offset)
3678
		target_cputime64 = &cpustat->irq;
3679
	else if (in_serving_softirq())
3680
		target_cputime64 = &cpustat->softirq;
L
Linus Torvalds 已提交
3681
	else
3682
		target_cputime64 = &cpustat->system;
3683

3684
	__account_system_time(p, cputime, cputime_scaled, target_cputime64);
L
Linus Torvalds 已提交
3685 3686
}

3687
/*
L
Linus Torvalds 已提交
3688
 * Account for involuntary wait time.
3689
 * @cputime: the cpu time spent in involuntary wait
3690
 */
3691
void account_steal_time(cputime_t cputime)
3692
{
3693 3694 3695 3696
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3697 3698
}

L
Linus Torvalds 已提交
3699
/*
3700 3701
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3702
 */
3703
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3704 3705
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3706
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3707
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3708

3709 3710 3711 3712
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3713 3714
}

3715 3716
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
	cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	if (irqtime_account_hi_update()) {
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	} else if (irqtime_account_si_update()) {
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3750 3751 3752 3753 3754 3755 3756 3757
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->softirq);
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->system);
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
3778
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3779 3780 3781
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
3782
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3783 3784 3785 3786 3787 3788 3789 3790

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3791
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3792 3793
	struct rq *rq = this_rq();

3794 3795 3796 3797 3798
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

3799
	if (user_tick)
3800
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3801
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3802
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3803 3804
				    one_jiffy_scaled);
	else
3805
		account_idle_time(cputime_one_jiffy);
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
3824 3825 3826 3827 3828 3829

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

3830
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3831 3832
}

3833 3834
#endif

3835 3836 3837 3838
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3839
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3840
{
3841 3842
	*ut = p->utime;
	*st = p->stime;
3843 3844
}

3845
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3846
{
3847 3848 3849 3850 3851 3852
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3853 3854
}
#else
3855 3856

#ifndef nsecs_to_cputime
3857
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3858 3859
#endif

3860
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3861
{
3862
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3863 3864 3865 3866

	/*
	 * Use CFS's precise accounting:
	 */
3867
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3868 3869

	if (total) {
3870
		u64 temp = rtime;
3871

3872
		temp *= utime;
3873
		do_div(temp, total);
3874 3875 3876
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3877

3878 3879 3880
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3881
	p->prev_utime = max(p->prev_utime, utime);
3882
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3883

3884 3885
	*ut = p->prev_utime;
	*st = p->prev_stime;
3886 3887
}

3888 3889 3890 3891
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3892
{
3893 3894 3895
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3896

3897
	thread_group_cputime(p, &cputime);
3898

3899 3900
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3901

3902
	if (total) {
3903
		u64 temp = rtime;
3904

3905
		temp *= cputime.utime;
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3917 3918 3919
}
#endif

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3931
	struct task_struct *curr = rq->curr;
3932 3933

	sched_clock_tick();
I
Ingo Molnar 已提交
3934

3935
	raw_spin_lock(&rq->lock);
3936
	update_rq_clock(rq);
3937
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3938
	curr->sched_class->task_tick(rq, curr, 0);
3939
	raw_spin_unlock(&rq->lock);
3940

3941
	perf_event_task_tick();
3942

3943
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3944 3945
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3946
#endif
L
Linus Torvalds 已提交
3947 3948
}

3949
notrace unsigned long get_parent_ip(unsigned long addr)
3950 3951 3952 3953 3954 3955 3956 3957
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3958

3959 3960 3961
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3962
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3963
{
3964
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3965 3966 3967
	/*
	 * Underflow?
	 */
3968 3969
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3970
#endif
L
Linus Torvalds 已提交
3971
	preempt_count() += val;
3972
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3973 3974 3975
	/*
	 * Spinlock count overflowing soon?
	 */
3976 3977
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3978 3979 3980
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3981 3982 3983
}
EXPORT_SYMBOL(add_preempt_count);

3984
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3985
{
3986
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3987 3988 3989
	/*
	 * Underflow?
	 */
3990
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3991
		return;
L
Linus Torvalds 已提交
3992 3993 3994
	/*
	 * Is the spinlock portion underflowing?
	 */
3995 3996 3997
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3998
#endif
3999

4000 4001
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4002 4003 4004 4005 4006 4007 4008
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4009
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4010
 */
I
Ingo Molnar 已提交
4011
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4012
{
4013 4014
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
4015 4016
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
4017

I
Ingo Molnar 已提交
4018
	debug_show_held_locks(prev);
4019
	print_modules();
I
Ingo Molnar 已提交
4020 4021
	if (irqs_disabled())
		print_irqtrace_events(prev);
4022 4023 4024 4025 4026

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4027
}
L
Linus Torvalds 已提交
4028

I
Ingo Molnar 已提交
4029 4030 4031 4032 4033
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4034
	/*
I
Ingo Molnar 已提交
4035
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4036 4037 4038
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4039
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4040 4041
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4042 4043
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4044
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4045 4046
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4047
		schedstat_inc(this_rq(), rq_sched_info.bkl_count);
4048
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4049 4050
	}
#endif
I
Ingo Molnar 已提交
4051 4052
}

P
Peter Zijlstra 已提交
4053
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
4054
{
P
Peter Zijlstra 已提交
4055
	if (prev->on_rq)
4056
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
4057
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
4058 4059
}

I
Ingo Molnar 已提交
4060 4061 4062 4063
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4064
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
4065
{
4066
	const struct sched_class *class;
I
Ingo Molnar 已提交
4067
	struct task_struct *p;
L
Linus Torvalds 已提交
4068 4069

	/*
I
Ingo Molnar 已提交
4070 4071
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4072
	 */
I
Ingo Molnar 已提交
4073
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4074
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4075 4076
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4077 4078
	}

4079
	for_each_class(class) {
4080
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4081 4082 4083
		if (p)
			return p;
	}
4084 4085

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
4086
}
L
Linus Torvalds 已提交
4087

I
Ingo Molnar 已提交
4088 4089 4090
/*
 * schedule() is the main scheduler function.
 */
4091
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
4092 4093
{
	struct task_struct *prev, *next;
4094
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4095
	struct rq *rq;
4096
	int cpu;
I
Ingo Molnar 已提交
4097

4098 4099
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
4100 4101
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
4102
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
4103 4104 4105
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
4106

4107
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4108
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4109

4110
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
4111

4112
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
4113
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
4114
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
4115
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
		} else {
			/*
			 * If a worker is going to sleep, notify and
			 * ask workqueue whether it wants to wake up a
			 * task to maintain concurrency.  If so, wake
			 * up the task.
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
P
Peter Zijlstra 已提交
4130

4131
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
P
Peter Zijlstra 已提交
4132
			prev->on_rq = 0;
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142

			/*
			 * If we are going to sleep and we have plugged IO queued, make
			 * sure to submit it to avoid deadlocks.
			 */
			if (blk_needs_flush_plug(prev)) {
				raw_spin_unlock(&rq->lock);
				blk_flush_plug(prev);
				raw_spin_lock(&rq->lock);
			}
T
Tejun Heo 已提交
4143
		}
I
Ingo Molnar 已提交
4144
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4145 4146
	}

4147
	pre_schedule(rq, prev);
4148

I
Ingo Molnar 已提交
4149
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4150 4151
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
4152
	put_prev_task(rq, prev);
4153
	next = pick_next_task(rq);
4154 4155
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
4156 4157 4158 4159 4160 4161

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4162
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4163
		/*
4164 4165 4166 4167
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
4168 4169 4170
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4171
	} else
4172
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
4173

4174
	post_schedule(rq);
L
Linus Torvalds 已提交
4175 4176

	preempt_enable_no_resched();
4177
	if (need_resched())
L
Linus Torvalds 已提交
4178 4179 4180 4181
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

4182
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4183

4184 4185 4186
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	bool ret = false;
4187

4188 4189 4190
	rcu_read_lock();
	if (lock->owner != owner)
		goto fail;
4191 4192

	/*
4193 4194 4195 4196
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
4197
	 */
4198
	barrier();
4199

4200 4201 4202
	ret = owner->on_cpu;
fail:
	rcu_read_unlock();
4203

4204 4205
	return ret;
}
4206

4207 4208 4209 4210 4211 4212 4213 4214
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
4215

4216 4217
	while (owner_running(lock, owner)) {
		if (need_resched())
4218 4219
			return 0;

4220
		arch_mutex_cpu_relax();
4221
	}
4222

4223 4224 4225 4226 4227 4228 4229
	/*
	 * If the owner changed to another task there is likely
	 * heavy contention, stop spinning.
	 */
	if (lock->owner)
		return 0;

4230 4231 4232 4233
	return 1;
}
#endif

L
Linus Torvalds 已提交
4234 4235
#ifdef CONFIG_PREEMPT
/*
4236
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4237
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4238 4239
 * occur there and call schedule directly.
 */
4240
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
4241 4242
{
	struct thread_info *ti = current_thread_info();
4243

L
Linus Torvalds 已提交
4244 4245
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4246
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4247
	 */
N
Nick Piggin 已提交
4248
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4249 4250
		return;

4251
	do {
4252
		add_preempt_count_notrace(PREEMPT_ACTIVE);
4253
		schedule();
4254
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4255

4256 4257 4258 4259 4260
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4261
	} while (need_resched());
L
Linus Torvalds 已提交
4262 4263 4264 4265
}
EXPORT_SYMBOL(preempt_schedule);

/*
4266
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4267 4268 4269 4270 4271 4272 4273
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4274

4275
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4276 4277
	BUG_ON(ti->preempt_count || !irqs_disabled());

4278 4279 4280 4281 4282 4283
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4284

4285 4286 4287 4288 4289
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4290
	} while (need_resched());
L
Linus Torvalds 已提交
4291 4292 4293 4294
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
4295
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
4296
			  void *key)
L
Linus Torvalds 已提交
4297
{
P
Peter Zijlstra 已提交
4298
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
4299 4300 4301 4302
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4303 4304
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4305 4306 4307
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4308
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4309 4310
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4311
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
4312
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
4313
{
4314
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4315

4316
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4317 4318
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
4319
		if (curr->func(curr, mode, wake_flags, key) &&
4320
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4321 4322 4323 4324 4325 4326 4327 4328 4329
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4330
 * @key: is directly passed to the wakeup function
4331 4332 4333
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4334
 */
4335
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4336
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4349
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4350 4351 4352
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
4353
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
4354

4355 4356 4357 4358
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
4359
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4360

L
Linus Torvalds 已提交
4361
/**
4362
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4363 4364 4365
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4366
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
4367 4368 4369 4370 4371 4372 4373
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
4374 4375 4376
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4377
 */
4378 4379
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4380 4381
{
	unsigned long flags;
P
Peter Zijlstra 已提交
4382
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
4383 4384 4385 4386 4387

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
4388
		wake_flags = 0;
L
Linus Torvalds 已提交
4389 4390

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
4391
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
4392 4393
	spin_unlock_irqrestore(&q->lock, flags);
}
4394 4395 4396 4397 4398 4399 4400 4401 4402
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4403 4404
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4405 4406 4407 4408 4409 4410 4411 4412
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4413 4414 4415
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4416
 */
4417
void complete(struct completion *x)
L
Linus Torvalds 已提交
4418 4419 4420 4421 4422
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4423
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4424 4425 4426 4427
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4428 4429 4430 4431 4432
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4433 4434 4435
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4436
 */
4437
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4438 4439 4440 4441 4442
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4443
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4444 4445 4446 4447
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4448 4449
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4450 4451 4452 4453
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
4454
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
4455
		do {
4456
			if (signal_pending_state(state, current)) {
4457 4458
				timeout = -ERESTARTSYS;
				break;
4459 4460
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4461 4462 4463
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4464
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4465
		__remove_wait_queue(&x->wait, &wait);
4466 4467
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4468 4469
	}
	x->done--;
4470
	return timeout ?: 1;
L
Linus Torvalds 已提交
4471 4472
}

4473 4474
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4475 4476 4477 4478
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4479
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4480
	spin_unlock_irq(&x->wait.lock);
4481 4482
	return timeout;
}
L
Linus Torvalds 已提交
4483

4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4494
void __sched wait_for_completion(struct completion *x)
4495 4496
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4497
}
4498
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4499

4500 4501 4502 4503 4504 4505 4506 4507 4508
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4509
unsigned long __sched
4510
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4511
{
4512
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4513
}
4514
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4515

4516 4517 4518 4519 4520 4521 4522
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4523
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4524
{
4525 4526 4527 4528
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4529
}
4530
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4531

4532 4533 4534 4535 4536 4537 4538 4539
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4540
long __sched
4541 4542
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4543
{
4544
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4545
}
4546
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4547

4548 4549 4550 4551 4552 4553 4554
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4555 4556 4557 4558 4559 4560 4561 4562 4563
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4564 4565 4566 4567 4568 4569 4570 4571 4572
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
4573
long __sched
4574 4575 4576 4577 4578 4579 4580
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4595
	unsigned long flags;
4596 4597
	int ret = 1;

4598
	spin_lock_irqsave(&x->wait.lock, flags);
4599 4600 4601 4602
	if (!x->done)
		ret = 0;
	else
		x->done--;
4603
	spin_unlock_irqrestore(&x->wait.lock, flags);
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4618
	unsigned long flags;
4619 4620
	int ret = 1;

4621
	spin_lock_irqsave(&x->wait.lock, flags);
4622 4623
	if (!x->done)
		ret = 0;
4624
	spin_unlock_irqrestore(&x->wait.lock, flags);
4625 4626 4627 4628
	return ret;
}
EXPORT_SYMBOL(completion_done);

4629 4630
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4631
{
I
Ingo Molnar 已提交
4632 4633 4634 4635
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4636

4637
	__set_current_state(state);
L
Linus Torvalds 已提交
4638

4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4653 4654 4655
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4656
long __sched
I
Ingo Molnar 已提交
4657
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4658
{
4659
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4660 4661 4662
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4663
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4664
{
4665
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4666 4667 4668
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4669
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4670
{
4671
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4672 4673 4674
}
EXPORT_SYMBOL(sleep_on_timeout);

4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4687
void rt_mutex_setprio(struct task_struct *p, int prio)
4688 4689
{
	unsigned long flags;
4690
	int oldprio, on_rq, running;
4691
	struct rq *rq;
4692
	const struct sched_class *prev_class;
4693 4694 4695

	BUG_ON(prio < 0 || prio > MAX_PRIO);

4696 4697
	lockdep_assert_held(&p->pi_lock);

4698 4699
	rq = task_rq_lock(p, &flags);

4700
	trace_sched_pi_setprio(p, prio);
4701
	oldprio = p->prio;
4702
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
4703
	on_rq = p->on_rq;
4704
	running = task_current(rq, p);
4705
	if (on_rq)
4706
		dequeue_task(rq, p, 0);
4707 4708
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4709 4710 4711 4712 4713 4714

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4715 4716
	p->prio = prio;

4717 4718
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4719
	if (on_rq)
4720
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4721

P
Peter Zijlstra 已提交
4722
	check_class_changed(rq, p, prev_class, oldprio);
4723 4724 4725 4726 4727
	task_rq_unlock(rq, &flags);
}

#endif

4728
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4729
{
I
Ingo Molnar 已提交
4730
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4731
	unsigned long flags;
4732
	struct rq *rq;
L
Linus Torvalds 已提交
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4745
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4746
	 */
4747
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4748 4749 4750
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
4751
	on_rq = p->on_rq;
4752
	if (on_rq)
4753
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4754 4755

	p->static_prio = NICE_TO_PRIO(nice);
4756
	set_load_weight(p);
4757 4758 4759
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4760

I
Ingo Molnar 已提交
4761
	if (on_rq) {
4762
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4763
		/*
4764 4765
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4766
		 */
4767
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4768 4769 4770 4771 4772 4773 4774
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4775 4776 4777 4778 4779
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4780
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4781
{
4782 4783
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4784

4785
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4786 4787 4788
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4789 4790 4791 4792 4793 4794 4795 4796 4797
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4798
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4799
{
4800
	long nice, retval;
L
Linus Torvalds 已提交
4801 4802 4803 4804 4805 4806

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4807 4808
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4809 4810 4811
	if (increment > 40)
		increment = 40;

4812
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4813 4814 4815 4816 4817
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4818 4819 4820
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4839
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4840 4841 4842 4843 4844 4845 4846 4847
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4848
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4849 4850 4851
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4852
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4867
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4868 4869 4870 4871 4872 4873 4874 4875
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4876
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4877
{
4878
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4879 4880 4881
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4882 4883
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4884 4885 4886
{
	p->policy = policy;
	p->rt_priority = prio;
4887 4888 4889
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4890 4891 4892 4893
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4894
	set_load_weight(p);
L
Linus Torvalds 已提交
4895 4896
}

4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4907 4908 4909 4910 4911
	if (cred->user->user_ns == pcred->user->user_ns)
		match = (cred->euid == pcred->euid ||
			 cred->euid == pcred->uid);
	else
		match = false;
4912 4913 4914 4915
	rcu_read_unlock();
	return match;
}

4916
static int __sched_setscheduler(struct task_struct *p, int policy,
4917
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4918
{
4919
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4920
	unsigned long flags;
4921
	const struct sched_class *prev_class;
4922
	struct rq *rq;
4923
	int reset_on_fork;
L
Linus Torvalds 已提交
4924

4925 4926
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4927 4928
recheck:
	/* double check policy once rq lock held */
4929 4930
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4931
		policy = oldpolicy = p->policy;
4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4942 4943
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4944 4945
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4946 4947
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4948
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4949
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4950
		return -EINVAL;
4951
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4952 4953
		return -EINVAL;

4954 4955 4956
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4957
	if (user && !capable(CAP_SYS_NICE)) {
4958
		if (rt_policy(policy)) {
4959 4960
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4971

I
Ingo Molnar 已提交
4972
		/*
4973 4974
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4975
		 */
4976 4977 4978 4979
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
4980

4981
		/* can't change other user's priorities */
4982
		if (!check_same_owner(p))
4983
			return -EPERM;
4984 4985 4986 4987

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4988
	}
L
Linus Torvalds 已提交
4989

4990
	if (user) {
4991
		retval = security_task_setscheduler(p);
4992 4993 4994 4995
		if (retval)
			return retval;
	}

4996 4997 4998 4999
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
5000
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5001
	/*
L
Lucas De Marchi 已提交
5002
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
5003 5004
	 * runqueue lock must be held.
	 */
5005
	rq = __task_rq_lock(p);
5006

5007 5008 5009 5010 5011 5012 5013 5014 5015
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return -EINVAL;
	}

5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {

		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return 0;
	}

5027 5028 5029 5030 5031 5032 5033
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5034 5035
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
5036 5037 5038 5039 5040 5041 5042
			__task_rq_unlock(rq);
			raw_spin_unlock_irqrestore(&p->pi_lock, flags);
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
5043 5044 5045
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5046
		__task_rq_unlock(rq);
5047
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5048 5049
		goto recheck;
	}
P
Peter Zijlstra 已提交
5050
	on_rq = p->on_rq;
5051
	running = task_current(rq, p);
5052
	if (on_rq)
5053
		deactivate_task(rq, p, 0);
5054 5055
	if (running)
		p->sched_class->put_prev_task(rq, p);
5056

5057 5058
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
5059
	oldprio = p->prio;
5060
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
5061
	__setscheduler(rq, p, policy, param->sched_priority);
5062

5063 5064
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
5065
	if (on_rq)
I
Ingo Molnar 已提交
5066
		activate_task(rq, p, 0);
5067

P
Peter Zijlstra 已提交
5068
	check_class_changed(rq, p, prev_class, oldprio);
5069
	__task_rq_unlock(rq);
5070
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5071

5072 5073
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5074 5075
	return 0;
}
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
5086
		       const struct sched_param *param)
5087 5088 5089
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5090 5091
EXPORT_SYMBOL_GPL(sched_setscheduler);

5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5104
			       const struct sched_param *param)
5105 5106 5107 5108
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5109 5110
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5111 5112 5113
{
	struct sched_param lparam;
	struct task_struct *p;
5114
	int retval;
L
Linus Torvalds 已提交
5115 5116 5117 5118 5119

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5120 5121 5122

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5123
	p = find_process_by_pid(pid);
5124 5125 5126
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5127

L
Linus Torvalds 已提交
5128 5129 5130 5131 5132 5133 5134 5135 5136
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5137 5138
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5139
{
5140 5141 5142 5143
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5144 5145 5146 5147 5148 5149 5150 5151
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5152
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5153 5154 5155 5156 5157 5158 5159 5160
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5161
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5162
{
5163
	struct task_struct *p;
5164
	int retval;
L
Linus Torvalds 已提交
5165 5166

	if (pid < 0)
5167
		return -EINVAL;
L
Linus Torvalds 已提交
5168 5169

	retval = -ESRCH;
5170
	rcu_read_lock();
L
Linus Torvalds 已提交
5171 5172 5173 5174
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
5175 5176
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
5177
	}
5178
	rcu_read_unlock();
L
Linus Torvalds 已提交
5179 5180 5181 5182
	return retval;
}

/**
5183
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
5184 5185 5186
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5187
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5188 5189
{
	struct sched_param lp;
5190
	struct task_struct *p;
5191
	int retval;
L
Linus Torvalds 已提交
5192 5193

	if (!param || pid < 0)
5194
		return -EINVAL;
L
Linus Torvalds 已提交
5195

5196
	rcu_read_lock();
L
Linus Torvalds 已提交
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
5207
	rcu_read_unlock();
L
Linus Torvalds 已提交
5208 5209 5210 5211 5212 5213 5214 5215 5216

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
5217
	rcu_read_unlock();
L
Linus Torvalds 已提交
5218 5219 5220
	return retval;
}

5221
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5222
{
5223
	cpumask_var_t cpus_allowed, new_mask;
5224 5225
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5226

5227
	get_online_cpus();
5228
	rcu_read_lock();
L
Linus Torvalds 已提交
5229 5230 5231

	p = find_process_by_pid(pid);
	if (!p) {
5232
		rcu_read_unlock();
5233
		put_online_cpus();
L
Linus Torvalds 已提交
5234 5235 5236
		return -ESRCH;
	}

5237
	/* Prevent p going away */
L
Linus Torvalds 已提交
5238
	get_task_struct(p);
5239
	rcu_read_unlock();
L
Linus Torvalds 已提交
5240

5241 5242 5243 5244 5245 5246 5247 5248
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5249
	retval = -EPERM;
5250
	if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
L
Linus Torvalds 已提交
5251 5252
		goto out_unlock;

5253
	retval = security_task_setscheduler(p);
5254 5255 5256
	if (retval)
		goto out_unlock;

5257 5258
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
5259
again:
5260
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5261

P
Paul Menage 已提交
5262
	if (!retval) {
5263 5264
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5265 5266 5267 5268 5269
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5270
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5271 5272 5273
			goto again;
		}
	}
L
Linus Torvalds 已提交
5274
out_unlock:
5275 5276 5277 5278
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5279
	put_task_struct(p);
5280
	put_online_cpus();
L
Linus Torvalds 已提交
5281 5282 5283 5284
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5285
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5286
{
5287 5288 5289 5290 5291
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5292 5293 5294 5295 5296 5297 5298 5299 5300
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5301 5302
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5303
{
5304
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5305 5306
	int retval;

5307 5308
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5309

5310 5311 5312 5313 5314
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5315 5316
}

5317
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5318
{
5319
	struct task_struct *p;
5320
	unsigned long flags;
L
Linus Torvalds 已提交
5321 5322
	int retval;

5323
	get_online_cpus();
5324
	rcu_read_lock();
L
Linus Torvalds 已提交
5325 5326 5327 5328 5329 5330

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5331 5332 5333 5334
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5335
	raw_spin_lock_irqsave(&p->pi_lock, flags);
5336
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5337
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5338 5339

out_unlock:
5340
	rcu_read_unlock();
5341
	put_online_cpus();
L
Linus Torvalds 已提交
5342

5343
	return retval;
L
Linus Torvalds 已提交
5344 5345 5346 5347 5348 5349 5350 5351
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5352 5353
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5354 5355
{
	int ret;
5356
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5357

A
Anton Blanchard 已提交
5358
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5359 5360
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
5361 5362
		return -EINVAL;

5363 5364
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5365

5366 5367
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
5368
		size_t retlen = min_t(size_t, len, cpumask_size());
5369 5370

		if (copy_to_user(user_mask_ptr, mask, retlen))
5371 5372
			ret = -EFAULT;
		else
5373
			ret = retlen;
5374 5375
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5376

5377
	return ret;
L
Linus Torvalds 已提交
5378 5379 5380 5381 5382
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5383 5384
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5385
 */
5386
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5387
{
5388
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5389

5390
	schedstat_inc(rq, yld_count);
5391
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5392 5393 5394 5395 5396 5397

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5398
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5399
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
5400 5401 5402 5403 5404 5405 5406
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
5407 5408 5409 5410 5411
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
5412
static void __cond_resched(void)
L
Linus Torvalds 已提交
5413
{
5414 5415 5416
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5417 5418
}

5419
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5420
{
P
Peter Zijlstra 已提交
5421
	if (should_resched()) {
L
Linus Torvalds 已提交
5422 5423 5424 5425 5426
		__cond_resched();
		return 1;
	}
	return 0;
}
5427
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5428 5429

/*
5430
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5431 5432
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5433
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5434 5435 5436
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5437
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5438
{
P
Peter Zijlstra 已提交
5439
	int resched = should_resched();
J
Jan Kara 已提交
5440 5441
	int ret = 0;

5442 5443
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5444
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5445
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5446
		if (resched)
N
Nick Piggin 已提交
5447 5448 5449
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5450
		ret = 1;
L
Linus Torvalds 已提交
5451 5452
		spin_lock(lock);
	}
J
Jan Kara 已提交
5453
	return ret;
L
Linus Torvalds 已提交
5454
}
5455
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5456

5457
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5458 5459 5460
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5461
	if (should_resched()) {
5462
		local_bh_enable();
L
Linus Torvalds 已提交
5463 5464 5465 5466 5467 5468
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5469
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5470 5471 5472 5473

/**
 * yield - yield the current processor to other threads.
 *
5474
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5475 5476 5477 5478 5479 5480 5481 5482 5483
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

5484 5485 5486 5487
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
5488 5489
 * @p: target task
 * @preempt: whether task preemption is allowed or not
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5524
	if (yielded) {
5525
		schedstat_inc(rq, yld_count);
5526 5527 5528 5529 5530 5531 5532
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
5545
/*
I
Ingo Molnar 已提交
5546
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5547 5548 5549 5550
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5551
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5552

5553
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5554
	atomic_inc(&rq->nr_iowait);
5555
	blk_flush_plug(current);
5556
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5557
	schedule();
5558
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5559
	atomic_dec(&rq->nr_iowait);
5560
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5561 5562 5563 5564 5565
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5566
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5567 5568
	long ret;

5569
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5570
	atomic_inc(&rq->nr_iowait);
5571
	blk_flush_plug(current);
5572
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5573
	ret = schedule_timeout(timeout);
5574
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5575
	atomic_dec(&rq->nr_iowait);
5576
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5587
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5588 5589 5590 5591 5592 5593 5594 5595 5596
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5597
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5598
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5612
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5613 5614 5615 5616 5617 5618 5619 5620 5621
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5622
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5623
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5637
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5638
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5639
{
5640
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5641
	unsigned int time_slice;
5642 5643
	unsigned long flags;
	struct rq *rq;
5644
	int retval;
L
Linus Torvalds 已提交
5645 5646 5647
	struct timespec t;

	if (pid < 0)
5648
		return -EINVAL;
L
Linus Torvalds 已提交
5649 5650

	retval = -ESRCH;
5651
	rcu_read_lock();
L
Linus Torvalds 已提交
5652 5653 5654 5655 5656 5657 5658 5659
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5660 5661 5662
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5663

5664
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5665
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5666 5667
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5668

L
Linus Torvalds 已提交
5669
out_unlock:
5670
	rcu_read_unlock();
L
Linus Torvalds 已提交
5671 5672 5673
	return retval;
}

5674
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5675

5676
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5677 5678
{
	unsigned long free = 0;
5679
	unsigned state;
L
Linus Torvalds 已提交
5680 5681

	state = p->state ? __ffs(p->state) + 1 : 0;
5682
	printk(KERN_INFO "%-15.15s %c", p->comm,
5683
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5684
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5685
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5686
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5687
	else
P
Peter Zijlstra 已提交
5688
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5689 5690
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5691
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5692
	else
P
Peter Zijlstra 已提交
5693
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5694 5695
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5696
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5697
#endif
P
Peter Zijlstra 已提交
5698
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5699 5700
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5701

5702
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5703 5704
}

I
Ingo Molnar 已提交
5705
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5706
{
5707
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5708

5709
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5710 5711
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5712
#else
P
Peter Zijlstra 已提交
5713 5714
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5715 5716 5717 5718 5719
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5720
		 * console might take a lot of time:
L
Linus Torvalds 已提交
5721 5722
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5723
		if (!state_filter || (p->state & state_filter))
5724
			sched_show_task(p);
L
Linus Torvalds 已提交
5725 5726
	} while_each_thread(g, p);

5727 5728
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5729 5730 5731
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5732
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5733 5734 5735
	/*
	 * Only show locks if all tasks are dumped:
	 */
5736
	if (!state_filter)
I
Ingo Molnar 已提交
5737
		debug_show_all_locks();
L
Linus Torvalds 已提交
5738 5739
}

I
Ingo Molnar 已提交
5740 5741
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5742
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5743 5744
}

5745 5746 5747 5748 5749 5750 5751 5752
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5753
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5754
{
5755
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5756 5757
	unsigned long flags;

5758
	raw_spin_lock_irqsave(&rq->lock, flags);
5759

I
Ingo Molnar 已提交
5760
	__sched_fork(idle);
5761
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5762 5763
	idle->se.exec_start = sched_clock();

5764
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5776
	__set_task_cpu(idle, cpu);
5777
	rcu_read_unlock();
L
Linus Torvalds 已提交
5778 5779

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
5780 5781
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
5782
#endif
5783
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5784 5785

	/* Set the preempt count _outside_ the spinlocks! */
5786 5787 5788
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5789
	task_thread_info(idle)->preempt_count = 0;
5790
#endif
I
Ingo Molnar 已提交
5791 5792 5793 5794
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5795
	ftrace_graph_init_idle_task(idle, cpu);
L
Linus Torvalds 已提交
5796 5797 5798 5799 5800 5801 5802
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5803
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5804
 */
5805
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5806

I
Ingo Molnar 已提交
5807 5808 5809 5810 5811 5812 5813 5814 5815
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5816
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5817
{
5818
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5833

5834 5835
	return factor;
}
I
Ingo Molnar 已提交
5836

5837 5838 5839
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5840

5841 5842 5843 5844 5845 5846 5847
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}
5848

5849 5850 5851
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5852 5853
}

L
Linus Torvalds 已提交
5854 5855 5856 5857
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5858 5859 5860 5861 5862 5863
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5864
 *    it and puts it into the right queue.
5865 5866
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5867 5868 5869 5870 5871 5872 5873 5874
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5875
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5876 5877
 * call is not atomic; no spinlocks may be held.
 */
5878
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5879 5880
{
	unsigned long flags;
5881
	struct rq *rq;
5882
	unsigned int dest_cpu;
5883
	int ret = 0;
L
Linus Torvalds 已提交
5884

5885 5886
	raw_spin_lock_irqsave(&p->pi_lock, flags);
	rq = __task_rq_lock(p);
5887

5888
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5889 5890 5891 5892
		ret = -EINVAL;
		goto out;
	}

5893
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5894
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5895 5896 5897 5898
		ret = -EINVAL;
		goto out;
	}

5899
	if (p->sched_class->set_cpus_allowed)
5900
		p->sched_class->set_cpus_allowed(p, new_mask);
5901
	else {
5902 5903
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5904 5905
	}

L
Linus Torvalds 已提交
5906
	/* Can the task run on the task's current CPU? If so, we're done */
5907
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5908 5909
		goto out;

5910
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5911
	if (need_migrate_task(p)) {
5912
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5913
		/* Need help from migration thread: drop lock and wait. */
5914 5915
		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5916
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5917 5918 5919 5920
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
5921 5922
	__task_rq_unlock(rq);
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5923

L
Linus Torvalds 已提交
5924 5925
	return ret;
}
5926
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5927 5928

/*
I
Ingo Molnar 已提交
5929
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5930 5931 5932 5933 5934 5935
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5936 5937
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5938
 */
5939
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5940
{
5941
	struct rq *rq_dest, *rq_src;
5942
	int ret = 0;
L
Linus Torvalds 已提交
5943

5944
	if (unlikely(!cpu_active(dest_cpu)))
5945
		return ret;
L
Linus Torvalds 已提交
5946 5947 5948 5949 5950 5951 5952

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5953
		goto done;
L
Linus Torvalds 已提交
5954
	/* Affinity changed (again). */
5955
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5956
		goto fail;
L
Linus Torvalds 已提交
5957

5958 5959 5960 5961
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
5962
	if (p->on_rq) {
5963
		deactivate_task(rq_src, p, 0);
5964
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5965
		activate_task(rq_dest, p, 0);
5966
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5967
	}
L
Linus Torvalds 已提交
5968
done:
5969
	ret = 1;
L
Linus Torvalds 已提交
5970
fail:
L
Linus Torvalds 已提交
5971
	double_rq_unlock(rq_src, rq_dest);
5972
	return ret;
L
Linus Torvalds 已提交
5973 5974 5975
}

/*
5976 5977 5978
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5979
 */
5980
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5981
{
5982
	struct migration_arg *arg = data;
5983

5984 5985 5986 5987
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5988
	local_irq_disable();
5989
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5990
	local_irq_enable();
L
Linus Torvalds 已提交
5991
	return 0;
5992 5993
}

L
Linus Torvalds 已提交
5994
#ifdef CONFIG_HOTPLUG_CPU
5995

5996
/*
5997 5998
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5999
 */
6000
void idle_task_exit(void)
L
Linus Torvalds 已提交
6001
{
6002
	struct mm_struct *mm = current->active_mm;
6003

6004
	BUG_ON(cpu_online(smp_processor_id()));
6005

6006 6007 6008
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
6009 6010 6011 6012 6013 6014 6015 6016 6017
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6018
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6019
{
6020
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
6021 6022 6023 6024 6025

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
6026
/*
6027
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
6028
 */
6029
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
6030
{
6031 6032
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
6033 6034
}

6035
/*
6036 6037 6038 6039 6040 6041
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
6042
 */
6043
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
6044
{
6045
	struct rq *rq = cpu_rq(dead_cpu);
6046 6047
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
6048 6049

	/*
6050 6051 6052 6053 6054 6055 6056
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
6057
	 */
6058
	rq->stop = NULL;
6059

I
Ingo Molnar 已提交
6060
	for ( ; ; ) {
6061 6062 6063 6064 6065
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
6066
			break;
6067

6068
		next = pick_next_task(rq);
6069
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
6070
		next->sched_class->put_prev_task(rq, next);
6071

6072 6073 6074 6075 6076 6077 6078
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
6079
	}
6080

6081
	rq->stop = stop;
6082
}
6083

L
Linus Torvalds 已提交
6084 6085
#endif /* CONFIG_HOTPLUG_CPU */

6086 6087 6088
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6089 6090
	{
		.procname	= "sched_domain",
6091
		.mode		= 0555,
6092
	},
6093
	{}
6094 6095 6096
};

static struct ctl_table sd_ctl_root[] = {
6097 6098
	{
		.procname	= "kernel",
6099
		.mode		= 0555,
6100 6101
		.child		= sd_ctl_dir,
	},
6102
	{}
6103 6104 6105 6106 6107
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6108
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6109 6110 6111 6112

	return entry;
}

6113 6114
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6115
	struct ctl_table *entry;
6116

6117 6118 6119
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6120
	 * will always be set. In the lowest directory the names are
6121 6122 6123
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6124 6125
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6126 6127 6128
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6129 6130 6131 6132 6133

	kfree(*tablep);
	*tablep = NULL;
}

6134
static void
6135
set_table_entry(struct ctl_table *entry,
6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6149
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6150

6151 6152 6153
	if (table == NULL)
		return NULL;

6154
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6155
		sizeof(long), 0644, proc_doulongvec_minmax);
6156
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6157
		sizeof(long), 0644, proc_doulongvec_minmax);
6158
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6159
		sizeof(int), 0644, proc_dointvec_minmax);
6160
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6161
		sizeof(int), 0644, proc_dointvec_minmax);
6162
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6163
		sizeof(int), 0644, proc_dointvec_minmax);
6164
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6165
		sizeof(int), 0644, proc_dointvec_minmax);
6166
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6167
		sizeof(int), 0644, proc_dointvec_minmax);
6168
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6169
		sizeof(int), 0644, proc_dointvec_minmax);
6170
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6171
		sizeof(int), 0644, proc_dointvec_minmax);
6172
	set_table_entry(&table[9], "cache_nice_tries",
6173 6174
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6175
	set_table_entry(&table[10], "flags", &sd->flags,
6176
		sizeof(int), 0644, proc_dointvec_minmax);
6177 6178 6179
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6180 6181 6182 6183

	return table;
}

6184
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6185 6186 6187 6188 6189 6190 6191 6192 6193
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6194 6195
	if (table == NULL)
		return NULL;
6196 6197 6198 6199 6200

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6201
		entry->mode = 0555;
6202 6203 6204 6205 6206 6207 6208 6209
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6210
static void register_sched_domain_sysctl(void)
6211
{
6212
	int i, cpu_num = num_possible_cpus();
6213 6214 6215
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6216 6217 6218
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6219 6220 6221
	if (entry == NULL)
		return;

6222
	for_each_possible_cpu(i) {
6223 6224
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6225
		entry->mode = 0555;
6226
		entry->child = sd_alloc_ctl_cpu_table(i);
6227
		entry++;
6228
	}
6229 6230

	WARN_ON(sd_sysctl_header);
6231 6232
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6233

6234
/* may be called multiple times per register */
6235 6236
static void unregister_sched_domain_sysctl(void)
{
6237 6238
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6239
	sd_sysctl_header = NULL;
6240 6241
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6242
}
6243
#else
6244 6245 6246 6247
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6248 6249 6250 6251
{
}
#endif

6252 6253 6254 6255 6256
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6257
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6277
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6278 6279 6280 6281
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6282 6283 6284 6285
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6286 6287
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6288
{
6289
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6290
	unsigned long flags;
6291
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6292

6293
	switch (action & ~CPU_TASKS_FROZEN) {
6294

L
Linus Torvalds 已提交
6295
	case CPU_UP_PREPARE:
6296
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
6297
		break;
6298

L
Linus Torvalds 已提交
6299
	case CPU_ONLINE:
6300
		/* Update our root-domain */
6301
		raw_spin_lock_irqsave(&rq->lock, flags);
6302
		if (rq->rd) {
6303
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6304 6305

			set_rq_online(rq);
6306
		}
6307
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6308
		break;
6309

L
Linus Torvalds 已提交
6310
#ifdef CONFIG_HOTPLUG_CPU
6311
	case CPU_DYING:
G
Gregory Haskins 已提交
6312
		/* Update our root-domain */
6313
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6314
		if (rq->rd) {
6315
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6316
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6317
		}
6318 6319
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
6320
		raw_spin_unlock_irqrestore(&rq->lock, flags);
6321 6322 6323

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
6324
		break;
L
Linus Torvalds 已提交
6325 6326
#endif
	}
6327 6328 6329

	update_max_interval();

L
Linus Torvalds 已提交
6330 6331 6332
	return NOTIFY_OK;
}

6333 6334 6335
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
6336
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
6337
 */
6338
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6339
	.notifier_call = migration_call,
6340
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
6341 6342
};

6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

6368
static int __init migration_init(void)
L
Linus Torvalds 已提交
6369 6370
{
	void *cpu = (void *)(long)smp_processor_id();
6371
	int err;
6372

6373
	/* Initialize migration for the boot CPU */
6374 6375
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6376 6377
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6378

6379 6380 6381 6382
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

6383
	return 0;
L
Linus Torvalds 已提交
6384
}
6385
early_initcall(migration_init);
L
Linus Torvalds 已提交
6386 6387 6388
#endif

#ifdef CONFIG_SMP
6389

6390
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6391

6392 6393 6394 6395 6396 6397 6398 6399 6400 6401
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6402
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6403
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6404
{
I
Ingo Molnar 已提交
6405
	struct sched_group *group = sd->groups;
6406
	char str[256];
L
Linus Torvalds 已提交
6407

R
Rusty Russell 已提交
6408
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6409
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6410 6411 6412 6413

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6414
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6415
		if (sd->parent)
P
Peter Zijlstra 已提交
6416 6417
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6418
		return -1;
N
Nick Piggin 已提交
6419 6420
	}

P
Peter Zijlstra 已提交
6421
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6422

6423
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6424 6425
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6426
	}
6427
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6428 6429
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6430
	}
L
Linus Torvalds 已提交
6431

I
Ingo Molnar 已提交
6432
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6433
	do {
I
Ingo Molnar 已提交
6434
		if (!group) {
P
Peter Zijlstra 已提交
6435 6436
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6437 6438 6439
			break;
		}

6440
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6441 6442 6443
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6444 6445
			break;
		}
L
Linus Torvalds 已提交
6446

6447
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6448 6449
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6450 6451
			break;
		}
L
Linus Torvalds 已提交
6452

6453
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6454 6455
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6456 6457
			break;
		}
L
Linus Torvalds 已提交
6458

6459
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6460

R
Rusty Russell 已提交
6461
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6462

P
Peter Zijlstra 已提交
6463
		printk(KERN_CONT " %s", str);
6464
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6465 6466
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6467
		}
L
Linus Torvalds 已提交
6468

I
Ingo Molnar 已提交
6469 6470
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6471
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6472

6473
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6474
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6475

6476 6477
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6478 6479
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6480 6481
	return 0;
}
L
Linus Torvalds 已提交
6482

I
Ingo Molnar 已提交
6483 6484
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6485
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6486
	int level = 0;
L
Linus Torvalds 已提交
6487

6488 6489 6490
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6491 6492 6493 6494
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6495

I
Ingo Molnar 已提交
6496 6497
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6498
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6499 6500 6501 6502
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6503
	for (;;) {
6504
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6505
			break;
L
Linus Torvalds 已提交
6506 6507
		level++;
		sd = sd->parent;
6508
		if (!sd)
I
Ingo Molnar 已提交
6509 6510
			break;
	}
6511
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6512
}
6513
#else /* !CONFIG_SCHED_DEBUG */
6514
# define sched_domain_debug(sd, cpu) do { } while (0)
6515
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6516

6517
static int sd_degenerate(struct sched_domain *sd)
6518
{
6519
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6520 6521 6522 6523 6524 6525
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6526 6527 6528
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6529 6530 6531 6532 6533
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6534
	if (sd->flags & (SD_WAKE_AFFINE))
6535 6536 6537 6538 6539
		return 0;

	return 1;
}

6540 6541
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6542 6543 6544 6545 6546 6547
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6548
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6549 6550 6551 6552 6553 6554 6555
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6556 6557 6558
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6559 6560
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6561 6562 6563 6564 6565 6566 6567
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6568 6569
static void free_rootdomain(struct root_domain *rd)
{
6570 6571
	synchronize_sched();

6572 6573
	cpupri_cleanup(&rd->cpupri);

6574 6575 6576 6577 6578 6579
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6580 6581
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6582
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6583 6584
	unsigned long flags;

6585
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6586 6587

	if (rq->rd) {
I
Ingo Molnar 已提交
6588
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6589

6590
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6591
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6592

6593
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6594

I
Ingo Molnar 已提交
6595 6596 6597 6598 6599 6600 6601
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6602 6603 6604 6605 6606
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6607
	cpumask_set_cpu(rq->cpu, rd->span);
6608
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6609
		set_rq_online(rq);
G
Gregory Haskins 已提交
6610

6611
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6612 6613 6614

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6615 6616
}

6617
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6618 6619 6620
{
	memset(rd, 0, sizeof(*rd));

6621
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6622
		goto out;
6623
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6624
		goto free_span;
6625
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6626
		goto free_online;
6627

6628
	if (cpupri_init(&rd->cpupri) != 0)
6629
		goto free_rto_mask;
6630
	return 0;
6631

6632 6633
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6634 6635 6636 6637
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6638
out:
6639
	return -ENOMEM;
G
Gregory Haskins 已提交
6640 6641 6642 6643
}

static void init_defrootdomain(void)
{
6644
	init_rootdomain(&def_root_domain);
6645

G
Gregory Haskins 已提交
6646 6647 6648
	atomic_set(&def_root_domain.refcount, 1);
}

6649
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6650 6651 6652 6653 6654 6655 6656
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6657
	if (init_rootdomain(rd) != 0) {
6658 6659 6660
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6661 6662 6663 6664

	return rd;
}

L
Linus Torvalds 已提交
6665
/*
I
Ingo Molnar 已提交
6666
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6667 6668
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6669 6670
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6671
{
6672
	struct rq *rq = cpu_rq(cpu);
6673 6674
	struct sched_domain *tmp;

6675 6676 6677
	for (tmp = sd; tmp; tmp = tmp->parent)
		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));

6678
	/* Remove the sched domains which do not contribute to scheduling. */
6679
	for (tmp = sd; tmp; ) {
6680 6681 6682
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6683

6684
		if (sd_parent_degenerate(tmp, parent)) {
6685
			tmp->parent = parent->parent;
6686 6687
			if (parent->parent)
				parent->parent->child = tmp;
6688 6689
		} else
			tmp = tmp->parent;
6690 6691
	}

6692
	if (sd && sd_degenerate(sd)) {
6693
		sd = sd->parent;
6694 6695 6696
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6697 6698 6699

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6700
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6701
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6702 6703 6704
}

/* cpus with isolated domains */
6705
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6706 6707 6708 6709

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6710
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6711
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6712 6713 6714
	return 1;
}

I
Ingo Molnar 已提交
6715
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6716 6717

/*
6718 6719
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6720 6721
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6722 6723 6724 6725 6726
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6727
static void
6728 6729 6730
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6731
					struct sched_group **sg,
6732 6733
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6734 6735 6736 6737
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6738
	cpumask_clear(covered);
6739

6740
	for_each_cpu(i, span) {
6741
		struct sched_group *sg;
6742
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6743 6744
		int j;

6745
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6746 6747
			continue;

6748
		cpumask_clear(sched_group_cpus(sg));
6749
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6750

6751
		for_each_cpu(j, span) {
6752
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6753 6754
				continue;

6755
			cpumask_set_cpu(j, covered);
6756
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6757 6758 6759 6760 6761 6762 6763 6764 6765 6766
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6767
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6768

6769
#ifdef CONFIG_NUMA
6770

6771 6772 6773 6774 6775
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6776
 * Find the next node to include in a given scheduling domain. Simply
6777 6778 6779 6780
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6781
static int find_next_best_node(int node, nodemask_t *used_nodes)
6782 6783 6784 6785 6786
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6787
	for (i = 0; i < nr_node_ids; i++) {
6788
		/* Start at @node */
6789
		n = (node + i) % nr_node_ids;
6790 6791 6792 6793 6794

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6795
		if (node_isset(n, *used_nodes))
6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6807
	node_set(best_node, *used_nodes);
6808 6809 6810 6811 6812 6813
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6814
 * @span: resulting cpumask
6815
 *
I
Ingo Molnar 已提交
6816
 * Given a node, construct a good cpumask for its sched_domain to span. It
6817 6818 6819
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6820
static void sched_domain_node_span(int node, struct cpumask *span)
6821
{
6822
	nodemask_t used_nodes;
6823
	int i;
6824

6825
	cpumask_clear(span);
6826
	nodes_clear(used_nodes);
6827

6828
	cpumask_or(span, span, cpumask_of_node(node));
6829
	node_set(node, used_nodes);
6830 6831

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6832
		int next_node = find_next_best_node(node, &used_nodes);
6833

6834
		cpumask_or(span, span, cpumask_of_node(next_node));
6835 6836
	}
}
6837
#endif /* CONFIG_NUMA */
6838

6839
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6840

6841 6842
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6843 6844 6845
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6857 6858 6859 6860 6861 6862 6863 6864 6865 6866
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
6867
	cpumask_var_t		this_book_map;
6868 6869 6870 6871 6872 6873
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6874 6875 6876 6877 6878
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
6879
	sa_this_book_map,
6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6892
/*
6893
 * SMT sched-domains:
6894
 */
L
Linus Torvalds 已提交
6895
#ifdef CONFIG_SCHED_SMT
6896
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6897
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6898

I
Ingo Molnar 已提交
6899
static int
6900 6901
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6902
{
6903
	if (sg)
6904
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6905 6906
	return cpu;
}
6907
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6908

6909 6910 6911
/*
 * multi-core sched-domains:
 */
6912
#ifdef CONFIG_SCHED_MC
6913 6914
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6915

I
Ingo Molnar 已提交
6916
static int
6917 6918
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6919
{
6920
	int group;
6921
#ifdef CONFIG_SCHED_SMT
6922
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6923
	group = cpumask_first(mask);
6924 6925 6926
#else
	group = cpu;
#endif
6927
	if (sg)
6928
		*sg = &per_cpu(sched_group_core, group).sg;
6929
	return group;
6930
}
6931
#endif /* CONFIG_SCHED_MC */
6932

6933 6934 6935 6936 6937 6938 6939
/*
 * book sched-domains:
 */
#ifdef CONFIG_SCHED_BOOK
static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);

I
Ingo Molnar 已提交
6940
static int
6941 6942
cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6943
{
6944 6945 6946 6947 6948 6949 6950 6951
	int group = cpu;
#ifdef CONFIG_SCHED_MC
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_SMT)
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
	group = cpumask_first(mask);
#endif
6952
	if (sg)
6953 6954
		*sg = &per_cpu(sched_group_book, group).sg;
	return group;
6955
}
6956
#endif /* CONFIG_SCHED_BOOK */
6957

6958 6959
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6960

I
Ingo Molnar 已提交
6961
static int
6962 6963
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6964
{
6965
	int group;
6966 6967 6968 6969
#ifdef CONFIG_SCHED_BOOK
	cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_MC)
6970
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6971
	group = cpumask_first(mask);
6972
#elif defined(CONFIG_SCHED_SMT)
6973
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6974
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6975
#else
6976
	group = cpu;
L
Linus Torvalds 已提交
6977
#endif
6978
	if (sg)
6979
		*sg = &per_cpu(sched_group_phys, group).sg;
6980
	return group;
L
Linus Torvalds 已提交
6981 6982 6983 6984
}

#ifdef CONFIG_NUMA
/*
6985 6986 6987
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6988
 */
6989
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6990
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6991

6992
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6993
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6994

6995 6996 6997
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6998
{
6999 7000
	int group;

7001
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7002
	group = cpumask_first(nodemask);
7003 7004

	if (sg)
7005
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7006
	return group;
L
Linus Torvalds 已提交
7007
}
7008

7009 7010 7011 7012 7013 7014 7015
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7016
	do {
7017
		for_each_cpu(j, sched_group_cpus(sg)) {
7018
			struct sched_domain *sd;
7019

7020
			sd = &per_cpu(phys_domains, j).sd;
7021
			if (j != group_first_cpu(sd->groups)) {
7022 7023 7024 7025 7026 7027
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7028

7029
			sg->cpu_power += sd->groups->cpu_power;
7030 7031 7032
		}
		sg = sg->next;
	} while (sg != group_head);
7033
}
7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
7055 7056
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
7057 7058 7059 7060 7061 7062 7063 7064 7065
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

7066
	sg->cpu_power = 0;
7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
7085 7086
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
7087 7088
			return -ENOMEM;
		}
7089
		sg->cpu_power = 0;
7090 7091 7092 7093 7094 7095 7096 7097 7098
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
7099
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7100

7101
#ifdef CONFIG_NUMA
7102
/* Free memory allocated for various sched_group structures */
7103 7104
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7105
{
7106
	int cpu, i;
7107

7108
	for_each_cpu(cpu, cpu_map) {
7109 7110 7111 7112 7113 7114
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7115
		for (i = 0; i < nr_node_ids; i++) {
7116 7117
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7118
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7119
			if (cpumask_empty(nodemask))
7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7136
#else /* !CONFIG_NUMA */
7137 7138
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7139 7140
{
}
7141
#endif /* CONFIG_NUMA */
7142

7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
7157 7158
	long power;
	int weight;
7159 7160 7161

	WARN_ON(!sd || !sd->groups);

7162
	if (cpu != group_first_cpu(sd->groups))
7163 7164
		return;

7165 7166
	sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));

7167 7168
	child = sd->child;

7169
	sd->groups->cpu_power = 0;
7170

7171 7172 7173 7174 7175
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
7176 7177 7178
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
7179
		 */
P
Peter Zijlstra 已提交
7180 7181
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
7182
			power /= weight;
P
Peter Zijlstra 已提交
7183 7184
			power >>= SCHED_LOAD_SHIFT;
		}
7185
		sd->groups->cpu_power += power;
7186 7187 7188 7189
		return;
	}

	/*
7190
	 * Add cpu_power of each child group to this groups cpu_power.
7191 7192 7193
	 */
	group = child->groups;
	do {
7194
		sd->groups->cpu_power += group->cpu_power;
7195 7196 7197 7198
		group = group->next;
	} while (group != child->groups);
}

7199 7200 7201 7202 7203
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7204 7205 7206 7207 7208 7209
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7210
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7211

7212 7213 7214 7215 7216
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7217
	sd->level = SD_LV_##type;				\
7218
	SD_INIT_NAME(sd, type);					\
7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
7232 7233 7234
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
7235

7236 7237 7238 7239
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7240 7241 7242 7243 7244 7245
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
7264
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7265 7266
	} else {
		/* turn on idle balance on this domain */
7267
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7268 7269 7270
	}
}

7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
7284 7285
	case sa_this_book_map:
		free_cpumask_var(d->this_book_map); /* fall through */
7286 7287 7288 7289 7290 7291 7292
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
7293
#ifdef CONFIG_NUMA
7294 7295 7296 7297 7298 7299 7300
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
7301
#endif
7302 7303 7304 7305
	case sa_none:
		break;
	}
}
7306

7307 7308 7309
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
7310
#ifdef CONFIG_NUMA
7311 7312 7313 7314 7315 7316 7317 7318 7319 7320
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
7321
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7322
		return sa_notcovered;
7323
	}
7324
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7325
#endif
7326 7327 7328 7329 7330 7331
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
7332
	if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7333
		return sa_this_core_map;
7334 7335
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_book_map;
7336 7337 7338 7339
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
7340
		printk(KERN_WARNING "Cannot alloc root domain\n");
7341
		return sa_tmpmask;
G
Gregory Haskins 已提交
7342
	}
7343 7344
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
7345

7346 7347 7348 7349
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
7350
#ifdef CONFIG_NUMA
7351
	struct sched_domain *parent;
L
Linus Torvalds 已提交
7352

7353 7354 7355 7356 7357
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
7358
		set_domain_attribute(sd, attr);
7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7373
#endif
7374 7375
	return sd;
}
L
Linus Torvalds 已提交
7376

7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
7392

7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409
static struct sched_domain *__build_book_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
#ifdef CONFIG_SCHED_BOOK
	sd = &per_cpu(book_domains, i).sd;
	SD_INIT(sd, BOOK);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
#endif
	return sd;
}

7410 7411 7412 7413 7414
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
7415
#ifdef CONFIG_SCHED_MC
7416 7417 7418 7419 7420 7421 7422
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7423
#endif
7424 7425
	return sd;
}
7426

7427 7428 7429 7430 7431
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
7432
#ifdef CONFIG_SCHED_SMT
7433 7434 7435 7436 7437 7438 7439
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
7440
#endif
7441 7442
	return sd;
}
L
Linus Torvalds 已提交
7443

7444 7445 7446 7447
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
7448
#ifdef CONFIG_SCHED_SMT
7449 7450 7451 7452 7453 7454 7455 7456
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7457
#endif
7458
#ifdef CONFIG_SCHED_MC
7459 7460 7461 7462 7463 7464 7465
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
7466 7467 7468 7469 7470 7471 7472 7473 7474
#endif
#ifdef CONFIG_SCHED_BOOK
	case SD_LV_BOOK: /* set up book groups */
		cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
		if (cpu == cpumask_first(d->this_book_map))
			init_sched_build_groups(d->this_book_map, cpu_map,
						&cpu_to_book_group,
						d->send_covered, d->tmpmask);
		break;
7475
#endif
7476 7477 7478 7479 7480 7481 7482
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7483
#ifdef CONFIG_NUMA
7484 7485 7486 7487 7488
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
7489 7490
	default:
		break;
7491
	}
7492
}
7493

7494 7495 7496 7497 7498 7499 7500 7501 7502
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7503
	struct sched_domain *sd;
7504
	int i;
7505
#ifdef CONFIG_NUMA
7506
	d.sd_allnodes = 0;
7507
#endif
7508

7509 7510 7511 7512
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7513

L
Linus Torvalds 已提交
7514
	/*
7515
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7516
	 */
7517
	for_each_cpu(i, cpu_map) {
7518 7519
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7520

7521
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7522
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7523
		sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7524
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7525
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7526
	}
7527

7528
	for_each_cpu(i, cpu_map) {
7529
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7530
		build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7531
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7532
	}
7533

L
Linus Torvalds 已提交
7534
	/* Set up physical groups */
7535 7536
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7537

L
Linus Torvalds 已提交
7538 7539
#ifdef CONFIG_NUMA
	/* Set up node groups */
7540 7541
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7542

7543 7544
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7545
			goto error;
L
Linus Torvalds 已提交
7546 7547 7548
#endif

	/* Calculate CPU power for physical packages and nodes */
7549
#ifdef CONFIG_SCHED_SMT
7550
	for_each_cpu(i, cpu_map) {
7551
		sd = &per_cpu(cpu_domains, i).sd;
7552
		init_sched_groups_power(i, sd);
7553
	}
L
Linus Torvalds 已提交
7554
#endif
7555
#ifdef CONFIG_SCHED_MC
7556
	for_each_cpu(i, cpu_map) {
7557
		sd = &per_cpu(core_domains, i).sd;
7558
		init_sched_groups_power(i, sd);
7559 7560
	}
#endif
7561 7562 7563 7564 7565 7566
#ifdef CONFIG_SCHED_BOOK
	for_each_cpu(i, cpu_map) {
		sd = &per_cpu(book_domains, i).sd;
		init_sched_groups_power(i, sd);
	}
#endif
7567

7568
	for_each_cpu(i, cpu_map) {
7569
		sd = &per_cpu(phys_domains, i).sd;
7570
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7571 7572
	}

7573
#ifdef CONFIG_NUMA
7574
	for (i = 0; i < nr_node_ids; i++)
7575
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7576

7577
	if (d.sd_allnodes) {
7578
		struct sched_group *sg;
7579

7580
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7581
								d.tmpmask);
7582 7583
		init_numa_sched_groups_power(sg);
	}
7584 7585
#endif

L
Linus Torvalds 已提交
7586
	/* Attach the domains */
7587
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7588
#ifdef CONFIG_SCHED_SMT
7589
		sd = &per_cpu(cpu_domains, i).sd;
7590
#elif defined(CONFIG_SCHED_MC)
7591
		sd = &per_cpu(core_domains, i).sd;
7592 7593
#elif defined(CONFIG_SCHED_BOOK)
		sd = &per_cpu(book_domains, i).sd;
L
Linus Torvalds 已提交
7594
#else
7595
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7596
#endif
7597
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7598
	}
7599

7600 7601 7602
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7603 7604

error:
7605 7606
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7607
}
P
Paul Jackson 已提交
7608

7609
static int build_sched_domains(const struct cpumask *cpu_map)
7610 7611 7612 7613
{
	return __build_sched_domains(cpu_map, NULL);
}

7614
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7615
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7616 7617
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7618 7619 7620

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7621 7622
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7623
 */
7624
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7625

7626 7627 7628 7629 7630 7631
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7632
{
7633
	return 0;
7634 7635
}

7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7661
/*
I
Ingo Molnar 已提交
7662
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7663 7664
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7665
 */
7666
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7667
{
7668 7669
	int err;

7670
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7671
	ndoms_cur = 1;
7672
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7673
	if (!doms_cur)
7674 7675
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7676
	dattr_cur = NULL;
7677
	err = build_sched_domains(doms_cur[0]);
7678
	register_sched_domain_sysctl();
7679 7680

	return err;
7681 7682
}

7683 7684
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7685
{
7686
	free_sched_groups(cpu_map, tmpmask);
7687
}
L
Linus Torvalds 已提交
7688

7689 7690 7691 7692
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7693
static void detach_destroy_domains(const struct cpumask *cpu_map)
7694
{
7695 7696
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7697 7698
	int i;

7699
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7700
		cpu_attach_domain(NULL, &def_root_domain, i);
7701
	synchronize_sched();
7702
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7703 7704
}

7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7721 7722
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7723
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7724 7725 7726
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7727
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7728 7729 7730
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7731 7732 7733
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7734 7735 7736 7737 7738 7739
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7740
 *
7741
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7742 7743
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7744
 *
P
Paul Jackson 已提交
7745 7746
 * Call with hotplug lock held
 */
7747
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7748
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7749
{
7750
	int i, j, n;
7751
	int new_topology;
P
Paul Jackson 已提交
7752

7753
	mutex_lock(&sched_domains_mutex);
7754

7755 7756 7757
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7758 7759 7760
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7761
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7762 7763 7764

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7765
		for (j = 0; j < n && !new_topology; j++) {
7766
			if (cpumask_equal(doms_cur[i], doms_new[j])
7767
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7768 7769 7770
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7771
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7772 7773 7774 7775
match1:
		;
	}

7776 7777
	if (doms_new == NULL) {
		ndoms_cur = 0;
7778
		doms_new = &fallback_doms;
7779
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7780
		WARN_ON_ONCE(dattr_new);
7781 7782
	}

P
Paul Jackson 已提交
7783 7784
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7785
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7786
			if (cpumask_equal(doms_new[i], doms_cur[j])
7787
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7788 7789 7790
				goto match2;
		}
		/* no match - add a new doms_new */
7791
		__build_sched_domains(doms_new[i],
7792
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7793 7794 7795 7796 7797
match2:
		;
	}

	/* Remember the new sched domains */
7798 7799
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7800
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7801
	doms_cur = doms_new;
7802
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7803
	ndoms_cur = ndoms_new;
7804 7805

	register_sched_domain_sysctl();
7806

7807
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7808 7809
}

7810
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7811
static void arch_reinit_sched_domains(void)
7812
{
7813
	get_online_cpus();
7814 7815 7816 7817

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7818
	rebuild_sched_domains();
7819
	put_online_cpus();
7820 7821 7822 7823
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7824
	unsigned int level = 0;
7825

7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7837 7838 7839
		return -EINVAL;

	if (smt)
7840
		sched_smt_power_savings = level;
7841
	else
7842
		sched_mc_power_savings = level;
7843

7844
	arch_reinit_sched_domains();
7845

7846
	return count;
7847 7848 7849
}

#ifdef CONFIG_SCHED_MC
7850
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7851
					   struct sysdev_class_attribute *attr,
7852
					   char *page)
7853 7854 7855
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7856
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7857
					    struct sysdev_class_attribute *attr,
7858
					    const char *buf, size_t count)
7859 7860 7861
{
	return sched_power_savings_store(buf, count, 0);
}
7862 7863 7864
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7865 7866 7867
#endif

#ifdef CONFIG_SCHED_SMT
7868
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7869
					    struct sysdev_class_attribute *attr,
7870
					    char *page)
7871 7872 7873
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7874
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7875
					     struct sysdev_class_attribute *attr,
7876
					     const char *buf, size_t count)
7877 7878 7879
{
	return sched_power_savings_store(buf, count, 1);
}
7880 7881
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7882 7883 7884
		   sched_smt_power_savings_store);
#endif

7885
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7901
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7902

L
Linus Torvalds 已提交
7903
/*
7904 7905 7906
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7907
 */
7908 7909
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7910
{
7911
	switch (action & ~CPU_TASKS_FROZEN) {
7912
	case CPU_ONLINE:
7913
	case CPU_DOWN_FAILED:
7914
		cpuset_update_active_cpus();
7915
		return NOTIFY_OK;
7916 7917 7918 7919
	default:
		return NOTIFY_DONE;
	}
}
7920

7921 7922
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7923 7924 7925 7926 7927
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
7928 7929 7930 7931 7932 7933 7934
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7935
{
P
Peter Zijlstra 已提交
7936 7937
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7938 7939
	switch (action) {
	case CPU_DOWN_PREPARE:
7940
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7941
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7942 7943 7944
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7945
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7946
	case CPU_ONLINE:
7947
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7948
		enable_runtime(cpu_rq(cpu));
7949 7950
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7951 7952 7953 7954 7955 7956 7957
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7958 7959 7960
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7961
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7962

7963 7964 7965 7966 7967
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7968
	get_online_cpus();
7969
	mutex_lock(&sched_domains_mutex);
7970
	arch_init_sched_domains(cpu_active_mask);
7971 7972 7973
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7974
	mutex_unlock(&sched_domains_mutex);
7975
	put_online_cpus();
7976

7977 7978
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7979 7980 7981 7982

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7983
	init_hrtick();
7984 7985

	/* Move init over to a non-isolated CPU */
7986
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7987
		BUG();
I
Ingo Molnar 已提交
7988
	sched_init_granularity();
7989
	free_cpumask_var(non_isolated_cpus);
7990

7991
	init_sched_rt_class();
L
Linus Torvalds 已提交
7992 7993 7994 7995
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7996
	sched_init_granularity();
L
Linus Torvalds 已提交
7997 7998 7999
}
#endif /* CONFIG_SMP */

8000 8001
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
8002 8003 8004 8005 8006 8007 8008
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8009
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8010 8011
{
	cfs_rq->tasks_timeline = RB_ROOT;
8012
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8013 8014
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
8015
	/* allow initial update_cfs_load() to truncate */
8016
#ifdef CONFIG_SMP
8017
	cfs_rq->load_stamp = 1;
8018
#endif
I
Ingo Molnar 已提交
8019
#endif
P
Peter Zijlstra 已提交
8020
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8021 8022
}

P
Peter Zijlstra 已提交
8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8036
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8037
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
8038
#ifdef CONFIG_SMP
8039
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
8040 8041
#endif
#endif
P
Peter Zijlstra 已提交
8042 8043 8044
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
8045
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
8046 8047 8048 8049
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8050
	rt_rq->rt_runtime = 0;
8051
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8052

8053
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8054
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8055 8056
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8057 8058
}

P
Peter Zijlstra 已提交
8059
#ifdef CONFIG_FAIR_GROUP_SCHED
8060
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8061
				struct sched_entity *se, int cpu,
8062
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8063
{
8064
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8065 8066 8067 8068 8069
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;

	tg->se[cpu] = se;
8070
	/* se could be NULL for root_task_group */
D
Dhaval Giani 已提交
8071 8072 8073
	if (!se)
		return;

8074 8075 8076 8077 8078
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8079
	se->my_q = cfs_rq;
8080
	update_load_set(&se->load, 0);
8081
	se->parent = parent;
P
Peter Zijlstra 已提交
8082
}
8083
#endif
P
Peter Zijlstra 已提交
8084

8085
#ifdef CONFIG_RT_GROUP_SCHED
8086
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8087
		struct sched_rt_entity *rt_se, int cpu,
8088
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8089
{
8090 8091
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8092 8093 8094
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
8095
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8096 8097

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8098 8099 8100
	if (!rt_se)
		return;

8101 8102 8103 8104 8105
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8106
	rt_se->my_q = rt_rq;
8107
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8108 8109 8110 8111
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8112 8113
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8114
	int i, j;
8115 8116 8117 8118 8119 8120 8121
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8122
#endif
8123
#ifdef CONFIG_CPUMASK_OFFSTACK
8124
	alloc_size += num_possible_cpus() * cpumask_size();
8125 8126
#endif
	if (alloc_size) {
8127
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8128 8129

#ifdef CONFIG_FAIR_GROUP_SCHED
8130
		root_task_group.se = (struct sched_entity **)ptr;
8131 8132
		ptr += nr_cpu_ids * sizeof(void **);

8133
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8134
		ptr += nr_cpu_ids * sizeof(void **);
8135

8136
#endif /* CONFIG_FAIR_GROUP_SCHED */
8137
#ifdef CONFIG_RT_GROUP_SCHED
8138
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8139 8140
		ptr += nr_cpu_ids * sizeof(void **);

8141
		root_task_group.rt_rq = (struct rt_rq **)ptr;
8142 8143
		ptr += nr_cpu_ids * sizeof(void **);

8144
#endif /* CONFIG_RT_GROUP_SCHED */
8145 8146 8147 8148 8149 8150
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
8151
	}
I
Ingo Molnar 已提交
8152

G
Gregory Haskins 已提交
8153 8154 8155 8156
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8157 8158 8159 8160
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
8161
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8162
			global_rt_period(), global_rt_runtime());
8163
#endif /* CONFIG_RT_GROUP_SCHED */
8164

D
Dhaval Giani 已提交
8165
#ifdef CONFIG_CGROUP_SCHED
8166 8167
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
8168
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
8169
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
8170

8171
	for_each_possible_cpu(i) {
8172
		struct rq *rq;
L
Linus Torvalds 已提交
8173 8174

		rq = cpu_rq(i);
8175
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8176
		rq->nr_running = 0;
8177 8178
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
8179
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8180
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8181
#ifdef CONFIG_FAIR_GROUP_SCHED
8182
		root_task_group.shares = root_task_group_load;
P
Peter Zijlstra 已提交
8183
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8184
		/*
8185
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
8186 8187 8188 8189
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
8190
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
8191 8192 8193
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
8194
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
8195 8196 8197
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
8198
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
8199
		 *
8200 8201
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
8202
		 */
8203
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
8204 8205 8206
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8207
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8208
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8209
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
8210
#endif
L
Linus Torvalds 已提交
8211

I
Ingo Molnar 已提交
8212 8213
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
8214 8215 8216

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
8217
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8218
		rq->sd = NULL;
G
Gregory Haskins 已提交
8219
		rq->rd = NULL;
8220
		rq->cpu_power = SCHED_LOAD_SCALE;
8221
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
8222
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8223
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8224
		rq->push_cpu = 0;
8225
		rq->cpu = i;
8226
		rq->online = 0;
8227 8228
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
8229
		rq_attach_root(rq, &def_root_domain);
8230 8231 8232 8233
#ifdef CONFIG_NO_HZ
		rq->nohz_balance_kick = 0;
		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
#endif
L
Linus Torvalds 已提交
8234
#endif
P
Peter Zijlstra 已提交
8235
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8236 8237 8238
		atomic_set(&rq->nr_iowait, 0);
	}

8239
	set_load_weight(&init_task);
8240

8241 8242 8243 8244
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8245
#ifdef CONFIG_SMP
8246
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8247 8248
#endif

8249
#ifdef CONFIG_RT_MUTEXES
8250
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8251 8252
#endif

L
Linus Torvalds 已提交
8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
8266 8267 8268

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
8269 8270 8271 8272
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8273

8274
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8275
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8276
#ifdef CONFIG_SMP
8277
#ifdef CONFIG_NO_HZ
8278 8279 8280 8281 8282
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
	atomic_set(&nohz.load_balancer, nr_cpu_ids);
	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8283
#endif
R
Rusty Russell 已提交
8284 8285 8286
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8287
#endif /* SMP */
8288

8289
	scheduler_running = 1;
L
Linus Torvalds 已提交
8290 8291 8292
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8293 8294
static inline int preempt_count_equals(int preempt_offset)
{
8295
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8296

A
Arnd Bergmann 已提交
8297
	return (nested == preempt_offset);
8298 8299
}

8300
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
8301
{
8302
#ifdef in_atomic
L
Linus Torvalds 已提交
8303 8304
	static unsigned long prev_jiffy;	/* ratelimiting */

8305 8306
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
8307 8308 8309 8310 8311
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
8312 8313 8314 8315 8316 8317 8318
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
8319 8320 8321 8322 8323

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8324 8325 8326 8327 8328 8329
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8330 8331
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
8332 8333
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
8334
	int on_rq;
8335

P
Peter Zijlstra 已提交
8336
	on_rq = p->on_rq;
8337 8338 8339 8340 8341 8342 8343
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
8344 8345

	check_class_changed(rq, p, prev_class, old_prio);
8346 8347
}

L
Linus Torvalds 已提交
8348 8349
void normalize_rt_tasks(void)
{
8350
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8351
	unsigned long flags;
8352
	struct rq *rq;
L
Linus Torvalds 已提交
8353

8354
	read_lock_irqsave(&tasklist_lock, flags);
8355
	do_each_thread(g, p) {
8356 8357 8358 8359 8360 8361
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8362 8363
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
8364 8365 8366
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
8367
#endif
I
Ingo Molnar 已提交
8368 8369 8370 8371 8372 8373 8374 8375

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8376
			continue;
I
Ingo Molnar 已提交
8377
		}
L
Linus Torvalds 已提交
8378

8379
		raw_spin_lock(&p->pi_lock);
8380
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8381

8382
		normalize_task(rq, p);
8383

8384
		__task_rq_unlock(rq);
8385
		raw_spin_unlock(&p->pi_lock);
8386 8387
	} while_each_thread(g, p);

8388
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8389 8390 8391
}

#endif /* CONFIG_MAGIC_SYSRQ */
8392

8393
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8394
/*
8395
 * These functions are only useful for the IA64 MCA handling, or kdb.
8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8410
struct task_struct *curr_task(int cpu)
8411 8412 8413 8414
{
	return cpu_curr(cpu);
}

8415 8416 8417
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
8418 8419 8420 8421 8422 8423
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8424 8425
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8426 8427 8428 8429 8430 8431 8432
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8433
void set_curr_task(int cpu, struct task_struct *p)
8434 8435 8436 8437 8438
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8439

8440 8441
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8456 8457
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8458 8459
{
	struct cfs_rq *cfs_rq;
8460
	struct sched_entity *se;
S
Srivatsa Vaddagiri 已提交
8461 8462
	int i;

8463
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8464 8465
	if (!tg->cfs_rq)
		goto err;
8466
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8467 8468
	if (!tg->se)
		goto err;
8469 8470

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8471 8472

	for_each_possible_cpu(i) {
8473 8474
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8475 8476 8477
		if (!cfs_rq)
			goto err;

8478 8479
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8480
		if (!se)
8481
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8482

8483
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8484 8485 8486 8487
	}

	return 1;

P
Peter Zijlstra 已提交
8488
err_free_rq:
8489
	kfree(cfs_rq);
P
Peter Zijlstra 已提交
8490
err:
8491 8492 8493 8494 8495
	return 0;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
8507
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8508
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8509
}
8510
#else /* !CONFG_FAIR_GROUP_SCHED */
8511 8512 8513 8514
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8515 8516
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8517 8518 8519 8520 8521 8522 8523
{
	return 1;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8524
#endif /* CONFIG_FAIR_GROUP_SCHED */
8525 8526

#ifdef CONFIG_RT_GROUP_SCHED
8527 8528 8529 8530
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8531 8532
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8544 8545
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8546 8547
{
	struct rt_rq *rt_rq;
8548
	struct sched_rt_entity *rt_se;
8549 8550 8551
	struct rq *rq;
	int i;

8552
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8553 8554
	if (!tg->rt_rq)
		goto err;
8555
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8556 8557 8558
	if (!tg->rt_se)
		goto err;

8559 8560
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8561 8562 8563 8564

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8565 8566
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8567 8568
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8569

8570 8571
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8572
		if (!rt_se)
8573
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8574

8575
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8576 8577
	}

8578 8579
	return 1;

P
Peter Zijlstra 已提交
8580
err_free_rq:
8581
	kfree(rt_rq);
P
Peter Zijlstra 已提交
8582
err:
8583 8584
	return 0;
}
8585
#else /* !CONFIG_RT_GROUP_SCHED */
8586 8587 8588 8589
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8590 8591
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8592 8593 8594
{
	return 1;
}
8595
#endif /* CONFIG_RT_GROUP_SCHED */
8596

D
Dhaval Giani 已提交
8597
#ifdef CONFIG_CGROUP_SCHED
8598 8599 8600 8601
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
8602
	autogroup_free(tg);
8603 8604 8605 8606
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8607
struct task_group *sched_create_group(struct task_group *parent)
8608 8609 8610 8611 8612 8613 8614 8615
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8616
	if (!alloc_fair_sched_group(tg, parent))
8617 8618
		goto err;

8619
	if (!alloc_rt_sched_group(tg, parent))
8620 8621
		goto err;

8622
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8623
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8624 8625 8626 8627 8628

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8629
	list_add_rcu(&tg->siblings, &parent->children);
8630
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8631

8632
	return tg;
S
Srivatsa Vaddagiri 已提交
8633 8634

err:
P
Peter Zijlstra 已提交
8635
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8636 8637 8638
	return ERR_PTR(-ENOMEM);
}

8639
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8640
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8641 8642
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8643
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8644 8645
}

8646
/* Destroy runqueue etc associated with a task group */
8647
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8648
{
8649
	unsigned long flags;
8650
	int i;
S
Srivatsa Vaddagiri 已提交
8651

8652 8653
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
8654
		unregister_fair_sched_group(tg, i);
8655 8656

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8657
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8658
	list_del_rcu(&tg->siblings);
8659
	spin_unlock_irqrestore(&task_group_lock, flags);
8660 8661

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8662
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8663 8664
}

8665
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8666 8667 8668
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8669 8670
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8671 8672 8673 8674 8675 8676 8677
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8678
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
8679
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
8680

8681
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8682
		dequeue_task(rq, tsk, 0);
8683 8684
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8685

P
Peter Zijlstra 已提交
8686
#ifdef CONFIG_FAIR_GROUP_SCHED
8687 8688 8689
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
8690
#endif
8691
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
8692

8693 8694 8695
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8696
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8697 8698 8699

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8700
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8701

8702
#ifdef CONFIG_FAIR_GROUP_SCHED
8703 8704
static DEFINE_MUTEX(shares_mutex);

8705
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8706 8707
{
	int i;
8708
	unsigned long flags;
8709

8710 8711 8712 8713 8714 8715
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8716 8717
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8718 8719
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8720

8721
	mutex_lock(&shares_mutex);
8722
	if (tg->shares == shares)
8723
		goto done;
S
Srivatsa Vaddagiri 已提交
8724

8725
	tg->shares = shares;
8726
	for_each_possible_cpu(i) {
8727 8728 8729 8730 8731 8732 8733
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
8734
			update_cfs_shares(group_cfs_rq(se));
8735
		raw_spin_unlock_irqrestore(&rq->lock, flags);
8736
	}
S
Srivatsa Vaddagiri 已提交
8737

8738
done:
8739
	mutex_unlock(&shares_mutex);
8740
	return 0;
S
Srivatsa Vaddagiri 已提交
8741 8742
}

8743 8744 8745 8746
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8747
#endif
8748

8749
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8750
/*
P
Peter Zijlstra 已提交
8751
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8752
 */
P
Peter Zijlstra 已提交
8753 8754 8755 8756 8757
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8758
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8759

P
Peter Zijlstra 已提交
8760
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8761 8762
}

P
Peter Zijlstra 已提交
8763 8764
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8765
{
P
Peter Zijlstra 已提交
8766
	struct task_struct *g, *p;
8767

P
Peter Zijlstra 已提交
8768 8769 8770 8771
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8772

P
Peter Zijlstra 已提交
8773 8774
	return 0;
}
8775

P
Peter Zijlstra 已提交
8776 8777 8778 8779 8780
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8781

P
Peter Zijlstra 已提交
8782 8783 8784 8785 8786 8787
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8788

P
Peter Zijlstra 已提交
8789 8790
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8791

P
Peter Zijlstra 已提交
8792 8793 8794
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8795 8796
	}

8797 8798 8799 8800 8801
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8802

8803 8804 8805
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8806 8807
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8808

P
Peter Zijlstra 已提交
8809
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8810

8811 8812 8813 8814 8815
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8816

8817 8818 8819
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8820 8821 8822
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8823

P
Peter Zijlstra 已提交
8824 8825 8826 8827
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8828

P
Peter Zijlstra 已提交
8829
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8830
	}
P
Peter Zijlstra 已提交
8831

P
Peter Zijlstra 已提交
8832 8833 8834 8835
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8836 8837
}

P
Peter Zijlstra 已提交
8838
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8839
{
P
Peter Zijlstra 已提交
8840 8841 8842 8843 8844 8845 8846
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8847 8848
}

8849 8850
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8851
{
P
Peter Zijlstra 已提交
8852
	int i, err = 0;
P
Peter Zijlstra 已提交
8853 8854

	mutex_lock(&rt_constraints_mutex);
8855
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8856 8857
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8858
		goto unlock;
P
Peter Zijlstra 已提交
8859

8860
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8861 8862
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8863 8864 8865 8866

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8867
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8868
		rt_rq->rt_runtime = rt_runtime;
8869
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8870
	}
8871
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8872
unlock:
8873
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8874 8875 8876
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8877 8878
}

8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8891 8892 8893 8894
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8895
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8896 8897
		return -1;

8898
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8899 8900 8901
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8902 8903 8904 8905 8906 8907 8908 8909

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8910 8911 8912
	if (rt_period == 0)
		return -EINVAL;

8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8927
	u64 runtime, period;
8928 8929
	int ret = 0;

8930 8931 8932
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8933 8934 8935 8936 8937 8938 8939 8940
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8941

8942
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8943
	read_lock(&tasklist_lock);
8944
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8945
	read_unlock(&tasklist_lock);
8946 8947 8948 8949
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8950 8951 8952 8953 8954 8955 8956 8957 8958 8959

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8960
#else /* !CONFIG_RT_GROUP_SCHED */
8961 8962
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8963 8964 8965
	unsigned long flags;
	int i;

8966 8967 8968
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8969 8970 8971 8972 8973 8974 8975
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8976
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8977 8978 8979
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8980
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8981
		rt_rq->rt_runtime = global_rt_runtime();
8982
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8983
	}
8984
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8985

8986 8987
	return 0;
}
8988
#endif /* CONFIG_RT_GROUP_SCHED */
8989 8990

int sched_rt_handler(struct ctl_table *table, int write,
8991
		void __user *buffer, size_t *lenp,
8992 8993 8994 8995 8996 8997 8998 8999 9000 9001
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

9002
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9019

9020
#ifdef CONFIG_CGROUP_SCHED
9021 9022

/* return corresponding task_group object of a cgroup */
9023
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9024
{
9025 9026
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9027 9028 9029
}

static struct cgroup_subsys_state *
9030
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9031
{
9032
	struct task_group *tg, *parent;
9033

9034
	if (!cgrp->parent) {
9035
		/* This is early initialization for the top cgroup */
9036
		return &root_task_group.css;
9037 9038
	}

9039 9040
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9041 9042 9043 9044 9045 9046
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9047 9048
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9049
{
9050
	struct task_group *tg = cgroup_tg(cgrp);
9051 9052 9053 9054

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9055
static int
9056
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9057
{
9058
#ifdef CONFIG_RT_GROUP_SCHED
9059
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9060 9061
		return -EINVAL;
#else
9062 9063 9064
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9065
#endif
9066 9067
	return 0;
}
9068

9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
9088 9089 9090 9091
	return 0;
}

static void
9092
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9093 9094
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
9095 9096
{
	sched_move_task(tsk);
9097 9098 9099 9100 9101 9102 9103 9104
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
9105 9106
}

9107
static void
9108 9109
cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

9122
#ifdef CONFIG_FAIR_GROUP_SCHED
9123
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9124
				u64 shareval)
9125
{
9126
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9127 9128
}

9129
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9130
{
9131
	struct task_group *tg = cgroup_tg(cgrp);
9132 9133 9134

	return (u64) tg->shares;
}
9135
#endif /* CONFIG_FAIR_GROUP_SCHED */
9136

9137
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9138
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9139
				s64 val)
P
Peter Zijlstra 已提交
9140
{
9141
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9142 9143
}

9144
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9145
{
9146
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9147
}
9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9159
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9160

9161
static struct cftype cpu_files[] = {
9162
#ifdef CONFIG_FAIR_GROUP_SCHED
9163 9164
	{
		.name = "shares",
9165 9166
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9167
	},
9168 9169
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9170
	{
P
Peter Zijlstra 已提交
9171
		.name = "rt_runtime_us",
9172 9173
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9174
	},
9175 9176
	{
		.name = "rt_period_us",
9177 9178
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9179
	},
9180
#endif
9181 9182 9183 9184
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9185
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9186 9187 9188
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9189 9190 9191 9192 9193
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
9194
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
9195 9196
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9197 9198 9199
	.early_init	= 1,
};

9200
#endif	/* CONFIG_CGROUP_SCHED */
9201 9202 9203 9204 9205 9206 9207 9208 9209 9210

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9211
/* track cpu usage of a group of tasks and its child groups */
9212 9213 9214
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
9215
	u64 __percpu *cpuusage;
9216
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9217
	struct cpuacct *parent;
9218 9219 9220 9221 9222
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9223
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9224
{
9225
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9238
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9239 9240
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9241
	int i;
9242 9243

	if (!ca)
9244
		goto out;
9245 9246

	ca->cpuusage = alloc_percpu(u64);
9247 9248 9249 9250 9251 9252
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
9253

9254 9255 9256
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9257
	return &ca->css;
9258 9259 9260 9261 9262 9263 9264 9265 9266

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
9267 9268 9269
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9270
static void
9271
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9272
{
9273
	struct cpuacct *ca = cgroup_ca(cgrp);
9274
	int i;
9275

9276 9277
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
9278 9279 9280 9281
	free_percpu(ca->cpuusage);
	kfree(ca);
}

9282 9283
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
9284
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9285 9286 9287 9288 9289 9290
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
9291
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9292
	data = *cpuusage;
9293
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9294 9295 9296 9297 9298 9299 9300 9301 9302
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
9303
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9304 9305 9306 9307 9308

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
9309
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9310
	*cpuusage = val;
9311
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9312 9313 9314 9315 9316
#else
	*cpuusage = val;
#endif
}

9317
/* return total cpu usage (in nanoseconds) of a group */
9318
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9319
{
9320
	struct cpuacct *ca = cgroup_ca(cgrp);
9321 9322 9323
	u64 totalcpuusage = 0;
	int i;

9324 9325
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9326 9327 9328 9329

	return totalcpuusage;
}

9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9342 9343
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9344 9345 9346 9347 9348

out:
	return err;
}

9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

9383 9384 9385
static struct cftype files[] = {
	{
		.name = "usage",
9386 9387
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9388
	},
9389 9390 9391 9392
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9393 9394 9395 9396
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9397 9398
};

9399
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9400
{
9401
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9402 9403 9404 9405 9406 9407 9408 9409 9410 9411
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9412
	int cpu;
9413

L
Li Zefan 已提交
9414
	if (unlikely(!cpuacct_subsys.active))
9415 9416
		return;

9417
	cpu = task_cpu(tsk);
9418 9419 9420

	rcu_read_lock();

9421 9422
	ca = task_ca(tsk);

9423
	for (; ca; ca = ca->parent) {
9424
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9425 9426
		*cpuusage += cputime;
	}
9427 9428

	rcu_read_unlock();
9429 9430
}

9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9448 9449 9450 9451 9452 9453 9454
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9455
	int batch = CPUACCT_BATCH;
9456 9457 9458 9459 9460 9461 9462 9463

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9464
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9465 9466 9467 9468 9469
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9470 9471 9472 9473 9474 9475 9476 9477
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9478