sched.c 218.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/stop_machine.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
P
Peter Zijlstra 已提交
70 71
#include <linux/debugfs.h>
#include <linux/ctype.h>
72
#include <linux/ftrace.h>
73
#include <linux/slab.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
77
#include <asm/mutex.h>
L
Linus Torvalds 已提交
78

79
#include "sched_cpupri.h"
T
Tejun Heo 已提交
80
#include "workqueue_sched.h"
81
#include "sched_autogroup.h"
82

83
#define CREATE_TRACE_POINTS
84
#include <trace/events/sched.h>
85

L
Linus Torvalds 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
105
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
106
 */
107
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
108

I
Ingo Molnar 已提交
109 110 111
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
112 113 114
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
115
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
116 117 118
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
119

120 121 122 123 124
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

125 126
static inline int rt_policy(int policy)
{
127
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
128 129 130 131 132 133 134 135 136
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
137
/*
I
Ingo Molnar 已提交
138
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
139
 */
I
Ingo Molnar 已提交
140 141 142 143 144
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

145
struct rt_bandwidth {
I
Ingo Molnar 已提交
146
	/* nests inside the rq lock: */
147
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
148 149 150
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

184
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
185

186 187 188 189 190
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

191 192 193
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
194 195 196 197 198 199
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

200
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
201 202 203 204 205
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

206
	raw_spin_lock(&rt_b->rt_runtime_lock);
207
	for (;;) {
208 209 210
		unsigned long delta;
		ktime_t soft, hard;

211 212 213 214 215
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216 217 218 219 220

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221
				HRTIMER_MODE_ABS_PINNED, 0);
222
	}
223
	raw_spin_unlock(&rt_b->rt_runtime_lock);
224 225 226 227 228 229 230 231 232
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

233
/*
234
 * sched_domains_mutex serializes calls to init_sched_domains,
235 236 237 238
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
239
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
240

241 242
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
243 244
struct cfs_rq;

P
Peter Zijlstra 已提交
245 246
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
247
/* task group related information */
248
struct task_group {
249
	struct cgroup_subsys_state css;
250

251
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
252 253 254 255 256
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
P
Peter Zijlstra 已提交
257 258

	atomic_t load_weight;
259 260 261 262 263 264
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

265
	struct rt_bandwidth rt_bandwidth;
266
#endif
267

268
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
269
	struct list_head list;
P
Peter Zijlstra 已提交
270 271 272 273

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
274 275 276 277

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif
S
Srivatsa Vaddagiri 已提交
278 279
};

280
/* task_group_lock serializes the addition/removal of task groups */
281
static DEFINE_SPINLOCK(task_group_lock);
282

283 284
#ifdef CONFIG_FAIR_GROUP_SCHED

285
# define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
286

287
/*
288 289 290 291
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
292 293 294
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
295
#define MIN_SHARES	2
296
#define MAX_SHARES	(1UL << 18)
297

298
static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
299 300
#endif

S
Srivatsa Vaddagiri 已提交
301
/* Default task group.
I
Ingo Molnar 已提交
302
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
303
 */
304
struct task_group root_task_group;
S
Srivatsa Vaddagiri 已提交
305

D
Dhaval Giani 已提交
306
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
307

I
Ingo Molnar 已提交
308 309 310 311 312 313
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
314
	u64 min_vruntime;
315 316 317
#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
#endif
I
Ingo Molnar 已提交
318 319 320

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
321 322 323 324 325 326

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
327 328
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
329
	struct sched_entity *curr, *next, *last, *skip;
P
Peter Zijlstra 已提交
330

331
#ifdef	CONFIG_SCHED_DEBUG
P
Peter Zijlstra 已提交
332
	unsigned int nr_spread_over;
333
#endif
P
Peter Zijlstra 已提交
334

335
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
336 337
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
338 339
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
340 341 342 343 344 345
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
346
	int on_list;
I
Ingo Molnar 已提交
347 348
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
349 350 351

#ifdef CONFIG_SMP
	/*
352
	 * the part of load.weight contributed by tasks
353
	 */
354
	unsigned long task_weight;
355

356 357 358 359 360 361 362
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
363

364
	/*
365 366 367 368 369
	 * Maintaining per-cpu shares distribution for group scheduling
	 *
	 * load_stamp is the last time we updated the load average
	 * load_last is the last time we updated the load average and saw load
	 * load_unacc_exec_time is currently unaccounted execution time
370
	 */
P
Peter Zijlstra 已提交
371 372
	u64 load_avg;
	u64 load_period;
373
	u64 load_stamp, load_last, load_unacc_exec_time;
374

P
Peter Zijlstra 已提交
375
	unsigned long load_contribution;
376
#endif
I
Ingo Molnar 已提交
377 378
#endif
};
L
Linus Torvalds 已提交
379

I
Ingo Molnar 已提交
380 381 382
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
383
	unsigned long rt_nr_running;
384
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
385 386
	struct {
		int curr; /* highest queued rt task prio */
387
#ifdef CONFIG_SMP
388
		int next; /* next highest */
389
#endif
390
	} highest_prio;
P
Peter Zijlstra 已提交
391
#endif
P
Peter Zijlstra 已提交
392
#ifdef CONFIG_SMP
393
	unsigned long rt_nr_migratory;
394
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
395
	int overloaded;
396
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
397
#endif
P
Peter Zijlstra 已提交
398
	int rt_throttled;
P
Peter Zijlstra 已提交
399
	u64 rt_time;
P
Peter Zijlstra 已提交
400
	u64 rt_runtime;
I
Ingo Molnar 已提交
401
	/* Nests inside the rq lock: */
402
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
403

404
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
405 406
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
407 408 409 410
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
411 412
};

G
Gregory Haskins 已提交
413 414 415 416
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
417 418
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
419 420 421 422 423 424
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
425
	struct rcu_head rcu;
426 427
	cpumask_var_t span;
	cpumask_var_t online;
428

I
Ingo Molnar 已提交
429
	/*
430 431 432
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
433
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
434
	atomic_t rto_count;
435
	struct cpupri cpupri;
G
Gregory Haskins 已提交
436 437
};

438 439 440 441
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
442 443
static struct root_domain def_root_domain;

444
#endif /* CONFIG_SMP */
G
Gregory Haskins 已提交
445

L
Linus Torvalds 已提交
446 447 448 449 450 451 452
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
453
struct rq {
454
	/* runqueue lock: */
455
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
456 457 458 459 460 461

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
462 463
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
464
	unsigned long last_load_update_tick;
465
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
466
	u64 nohz_stamp;
467
	unsigned char nohz_balance_kick;
468
#endif
469
	int skip_clock_update;
470

471 472
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
473 474 475 476
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
477 478
	struct rt_rq rt;

I
Ingo Molnar 已提交
479
#ifdef CONFIG_FAIR_GROUP_SCHED
480 481
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
482 483
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
484
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
485 486 487 488 489 490 491 492 493 494
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

495
	struct task_struct *curr, *idle, *stop;
496
	unsigned long next_balance;
L
Linus Torvalds 已提交
497
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
498

499
	u64 clock;
500
	u64 clock_task;
I
Ingo Molnar 已提交
501

L
Linus Torvalds 已提交
502 503 504
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
505
	struct root_domain *rd;
L
Linus Torvalds 已提交
506 507
	struct sched_domain *sd;

508 509
	unsigned long cpu_power;

510
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
511
	/* For active balancing */
512
	int post_schedule;
L
Linus Torvalds 已提交
513 514
	int active_balance;
	int push_cpu;
515
	struct cpu_stop_work active_balance_work;
516 517
	/* cpu of this runqueue: */
	int cpu;
518
	int online;
L
Linus Torvalds 已提交
519

520
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
521

522 523
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
524 525
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
526 527
#endif

528 529 530 531
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64 prev_irq_time;
#endif

532 533 534 535
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
536
#ifdef CONFIG_SCHED_HRTICK
537 538 539 540
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
541 542 543
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
544 545 546
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
547 548
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
549 550

	/* sys_sched_yield() stats */
551
	unsigned int yld_count;
L
Linus Torvalds 已提交
552 553

	/* schedule() stats */
554 555 556
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
557 558

	/* try_to_wake_up() stats */
559 560
	unsigned int ttwu_count;
	unsigned int ttwu_local;
L
Linus Torvalds 已提交
561
#endif
562 563 564 565

#ifdef CONFIG_SMP
	struct task_struct *wake_list;
#endif
L
Linus Torvalds 已提交
566 567
};

568
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
569

570

571
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
I
Ingo Molnar 已提交
572

573 574 575 576 577 578 579 580 581
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

582
#define rcu_dereference_check_sched_domain(p) \
583
	rcu_dereference_check((p), \
584
			      rcu_read_lock_held() || \
585 586
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
587 588
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
590 591 592 593
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
594
#define for_each_domain(cpu, __sd) \
595
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
596 597 598 599 600

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
601
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
602

603 604 605 606 607 608
#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
 * We use task_subsys_state_check() and extend the RCU verification
609
 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
610 611 612 613 614
 * holds that lock for each task it moves into the cgroup. Therefore
 * by holding that lock, we pin the task to the current cgroup.
 */
static inline struct task_group *task_group(struct task_struct *p)
{
615
	struct task_group *tg;
616 617 618
	struct cgroup_subsys_state *css;

	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
619
			lockdep_is_held(&p->pi_lock));
620 621 622
	tg = container_of(css, struct task_group, css);

	return autogroup_task_group(p, tg);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

649
static void update_rq_clock_task(struct rq *rq, s64 delta);
650

651
static void update_rq_clock(struct rq *rq)
652
{
653
	s64 delta;
654

655
	if (rq->skip_clock_update > 0)
656
		return;
657

658 659 660
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
661 662
}

I
Ingo Molnar 已提交
663 664 665 666 667 668 669 670 671
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
672
/**
673
 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
674
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
675 676 677 678
 *
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
679
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
680
{
681
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
682 683
}

I
Ingo Molnar 已提交
684 685 686
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
687 688 689 690

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
691
enum {
P
Peter Zijlstra 已提交
692
#include "sched_features.h"
I
Ingo Molnar 已提交
693 694
};

P
Peter Zijlstra 已提交
695 696 697 698 699
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
700
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
701 702 703 704 705 706 707 708 709
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

710
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
711 712 713 714 715 716
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
717
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
718 719 720 721
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
722 723 724
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
725
	}
L
Li Zefan 已提交
726
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
727

L
Li Zefan 已提交
728
	return 0;
P
Peter Zijlstra 已提交
729 730 731 732 733 734 735
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
736
	char *cmp;
P
Peter Zijlstra 已提交
737 738 739 740 741 742 743 744 745 746
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
747
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
748

H
Hillf Danton 已提交
749
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
750 751 752 753 754
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
755
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
P
Peter Zijlstra 已提交
756 757 758 759 760 761 762 763 764 765 766
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

767
	*ppos += cnt;
P
Peter Zijlstra 已提交
768 769 770 771

	return cnt;
}

L
Li Zefan 已提交
772 773 774 775 776
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

777
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
778 779 780 781 782
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
797

798 799 800 801 802 803
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

804 805 806 807 808 809 810 811
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
812
/*
P
Peter Zijlstra 已提交
813
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
814 815
 * default: 1s
 */
P
Peter Zijlstra 已提交
816
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
817

818 819
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
820 821 822 823 824
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
825

826 827 828 829 830 831 832
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
833
	if (sysctl_sched_rt_runtime < 0)
834 835 836 837
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
838

L
Linus Torvalds 已提交
839
#ifndef prepare_arch_switch
840 841 842 843 844 845
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

846 847 848 849 850
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

851
static inline int task_running(struct rq *rq, struct task_struct *p)
852
{
P
Peter Zijlstra 已提交
853 854 855
#ifdef CONFIG_SMP
	return p->on_cpu;
#else
856
	return task_current(rq, p);
P
Peter Zijlstra 已提交
857
#endif
858 859
}

P
Peter Zijlstra 已提交
860
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
861
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
862
{
P
Peter Zijlstra 已提交
863 864 865 866 867 868 869 870
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->on_cpu = 1;
#endif
871 872
}

873
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
874
{
P
Peter Zijlstra 已提交
875 876 877 878 879 880 881 882 883
#ifdef CONFIG_SMP
	/*
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->on_cpu = 0;
#endif
884 885 886 887
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
888 889 890 891 892 893 894
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

895
	raw_spin_unlock_irq(&rq->lock);
896 897 898
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
899
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
900 901 902 903 904 905 906
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
P
Peter Zijlstra 已提交
907
	next->on_cpu = 1;
908 909
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
910
	raw_spin_unlock_irq(&rq->lock);
911
#else
912
	raw_spin_unlock(&rq->lock);
913 914 915
#endif
}

916
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
917 918 919
{
#ifdef CONFIG_SMP
	/*
P
Peter Zijlstra 已提交
920
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
921 922 923 924
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
P
Peter Zijlstra 已提交
925
	prev->on_cpu = 0;
926 927 928
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
929
#endif
930 931
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
932

933
/*
934
 * __task_rq_lock - lock the rq @p resides on.
935
 */
936
static inline struct rq *__task_rq_lock(struct task_struct *p)
937 938
	__acquires(rq->lock)
{
939 940
	struct rq *rq;

941 942
	lockdep_assert_held(&p->pi_lock);

943
	for (;;) {
944
		rq = task_rq(p);
945
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
946
		if (likely(rq == task_rq(p)))
947
			return rq;
948
		raw_spin_unlock(&rq->lock);
949 950 951
	}
}

L
Linus Torvalds 已提交
952
/*
953
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
954
 */
955
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
956
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
957 958
	__acquires(rq->lock)
{
959
	struct rq *rq;
L
Linus Torvalds 已提交
960

961
	for (;;) {
962
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
963
		rq = task_rq(p);
964
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
965
		if (likely(rq == task_rq(p)))
966
			return rq;
967 968
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
969 970 971
	}
}

A
Alexey Dobriyan 已提交
972
static void __task_rq_unlock(struct rq *rq)
973 974
	__releases(rq->lock)
{
975
	raw_spin_unlock(&rq->lock);
976 977
}

978 979
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
980
	__releases(rq->lock)
981
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
982
{
983 984
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
985 986 987
}

/*
988
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
989
 */
A
Alexey Dobriyan 已提交
990
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
991 992
	__acquires(rq->lock)
{
993
	struct rq *rq;
L
Linus Torvalds 已提交
994 995 996

	local_irq_disable();
	rq = this_rq();
997
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
998 999 1000 1001

	return rq;
}

P
Peter Zijlstra 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1023
	if (!cpu_active(cpu_of(rq)))
1024
		return 0;
P
Peter Zijlstra 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1044
	raw_spin_lock(&rq->lock);
1045
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1046
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1047
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1048 1049 1050 1051

	return HRTIMER_NORESTART;
}

1052
#ifdef CONFIG_SMP
1053 1054 1055 1056
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1057
{
1058
	struct rq *rq = arg;
1059

1060
	raw_spin_lock(&rq->lock);
1061 1062
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1063
	raw_spin_unlock(&rq->lock);
1064 1065
}

1066 1067 1068 1069 1070 1071
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1072
{
1073 1074
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1075

1076
	hrtimer_set_expires(timer, time);
1077 1078 1079 1080

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1081
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1082 1083
		rq->hrtick_csd_pending = 1;
	}
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1098
		hrtick_clear(cpu_rq(cpu));
1099 1100 1101 1102 1103 1104
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1105
static __init void init_hrtick(void)
1106 1107 1108
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1109 1110 1111 1112 1113 1114 1115 1116
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1117
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1118
			HRTIMER_MODE_REL_PINNED, 0);
1119
}
1120

A
Andrew Morton 已提交
1121
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1122 1123
{
}
1124
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1125

1126
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1127
{
1128 1129
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1130

1131 1132 1133 1134
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1135

1136 1137
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1138
}
A
Andrew Morton 已提交
1139
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1140 1141 1142 1143 1144 1145 1146 1147
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1148 1149 1150
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1151
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1152

I
Ingo Molnar 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1166
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1167 1168 1169
{
	int cpu;

1170
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1171

1172
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1173 1174
		return;

1175
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1192
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1193 1194
		return;
	resched_task(cpu_curr(cpu));
1195
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1196
}
1197 1198

#ifdef CONFIG_NO_HZ
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

1213
	rcu_read_lock();
1214
	for_each_domain(cpu, sd) {
1215 1216 1217 1218 1219 1220
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
1221
	}
1222 1223
unlock:
	rcu_read_unlock();
1224 1225
	return cpu;
}
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1258
	set_tsk_need_resched(rq->idle);
1259 1260 1261 1262 1263 1264

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1265

1266
#endif /* CONFIG_NO_HZ */
1267

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
1278 1279 1280 1281 1282 1283
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1295
#else /* !CONFIG_SMP */
1296
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1297
{
1298
	assert_raw_spin_locked(&task_rq(p)->lock);
1299
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1300
}
1301 1302 1303 1304

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1305 1306 1307 1308

static void sched_avg_update(struct rq *rq)
{
}
1309
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1310

1311 1312 1313 1314 1315 1316 1317 1318
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1319 1320 1321
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1322
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1323

1324 1325 1326
/*
 * delta *= weight / lw
 */
1327
static unsigned long
1328 1329 1330 1331 1332
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1333 1334
	tmp = (u64)delta_exec * weight;

1335 1336 1337 1338
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
1339
			lw->inv_weight = WMULT_CONST / lw->weight;
1340
	}
1341 1342 1343 1344

	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1345
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1346
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1347 1348
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1349
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1350

1351
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1352 1353
}

1354
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1355 1356
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1357
	lw->inv_weight = 0;
1358 1359
}

1360
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1361 1362
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1363
	lw->inv_weight = 0;
1364 1365
}

P
Peter Zijlstra 已提交
1366 1367 1368 1369 1370 1371
static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

1372 1373 1374 1375
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1376
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1377 1378 1379 1380
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1381 1382
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1392 1393 1394
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1395 1396
 */
static const int prio_to_weight[40] = {
1397 1398 1399 1400 1401 1402 1403 1404
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1405 1406
};

1407 1408 1409 1410 1411 1412 1413
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1414
static const u32 prio_to_wmult[40] = {
1415 1416 1417 1418 1419 1420 1421 1422
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1423
};
1424

1425 1426 1427 1428 1429 1430 1431 1432
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1433 1434
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1435 1436
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1437 1438
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1439 1440
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1441 1442
#endif

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1453
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1454
typedef int (*tg_visitor)(struct task_group *, void *);
1455 1456 1457 1458 1459

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1460
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1461 1462
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1463
	int ret;
1464 1465 1466 1467

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1468 1469 1470
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1471 1472 1473 1474 1475 1476 1477
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1478 1479 1480
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1481 1482 1483 1484 1485

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1486
out_unlock:
1487
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1488 1489

	return ret;
1490 1491
}

P
Peter Zijlstra 已提交
1492 1493 1494
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1495
}
P
Peter Zijlstra 已提交
1496 1497 1498
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1538 1539
static unsigned long power_of(int cpu)
{
1540
	return cpu_rq(cpu)->cpu_power;
1541 1542
}

P
Peter Zijlstra 已提交
1543 1544 1545 1546 1547
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1548
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1549

1550 1551
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1552 1553
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1554 1555 1556 1557 1558

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1559 1560

/*
1561 1562 1563
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1564
 */
P
Peter Zijlstra 已提交
1565
static int tg_load_down(struct task_group *tg, void *data)
1566
{
1567
	unsigned long load;
P
Peter Zijlstra 已提交
1568
	long cpu = (long)data;
1569

1570 1571 1572 1573
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
P
Peter Zijlstra 已提交
1574
		load *= tg->se[cpu]->load.weight;
1575 1576
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1577

1578
	tg->cfs_rq[cpu]->h_load = load;
1579

P
Peter Zijlstra 已提交
1580
	return 0;
1581 1582
}

P
Peter Zijlstra 已提交
1583
static void update_h_load(long cpu)
1584
{
P
Peter Zijlstra 已提交
1585
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1586 1587
}

1588 1589
#endif

1590 1591
#ifdef CONFIG_PREEMPT

1592 1593
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1594
/*
1595 1596 1597 1598 1599 1600
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1601
 */
1602 1603 1604 1605 1606
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1607
	raw_spin_unlock(&this_rq->lock);
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1622 1623 1624 1625 1626 1627
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1628
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1629
		if (busiest < this_rq) {
1630 1631 1632 1633
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1634 1635
			ret = 1;
		} else
1636 1637
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1638 1639 1640 1641
	}
	return ret;
}

1642 1643 1644 1645 1646 1647 1648 1649 1650
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1651
		raw_spin_unlock(&this_rq->lock);
1652 1653 1654 1655 1656 1657
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1658 1659 1660
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1661
	raw_spin_unlock(&busiest->lock);
1662 1663
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
#else /* CONFIG_SMP */

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	BUG_ON(rq1 != rq2);
	raw_spin_lock(&rq1->lock);
	__acquire(rq2->lock);	/* Fake it out ;) */
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	BUG_ON(rq1 != rq2);
	raw_spin_unlock(&rq1->lock);
	__release(rq2->lock);
}

1740 1741
#endif

1742
static void calc_load_account_idle(struct rq *this_rq);
1743
static void update_sysctl(void);
1744
static int get_update_sysctl_factor(void);
1745
static void update_cpu_load(struct rq *this_rq);
1746

P
Peter Zijlstra 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1760

1761
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1762

1763
#define sched_class_highest (&stop_sched_class)
1764 1765
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1766

1767 1768
#include "sched_stats.h"

1769
static void inc_nr_running(struct rq *rq)
1770 1771 1772 1773
{
	rq->nr_running++;
}

1774
static void dec_nr_running(struct rq *rq)
1775 1776 1777 1778
{
	rq->nr_running--;
}

1779 1780
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
1781 1782 1783
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
1784 1785 1786 1787
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
N
Nikhil Rao 已提交
1788 1789
		load->weight = WEIGHT_IDLEPRIO;
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
1790 1791
		return;
	}
1792

N
Nikhil Rao 已提交
1793 1794
	load->weight = prio_to_weight[prio];
	load->inv_weight = prio_to_wmult[prio];
1795 1796
}

1797
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1798
{
1799
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1800
	sched_info_queued(p);
1801
	p->sched_class->enqueue_task(rq, p, flags);
1802 1803
}

1804
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1805
{
1806
	update_rq_clock(rq);
1807
	sched_info_dequeued(p);
1808
	p->sched_class->dequeue_task(rq, p, flags);
1809 1810
}

1811 1812 1813
/*
 * activate_task - move a task to the runqueue.
 */
1814
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1815 1816 1817 1818
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1819
	enqueue_task(rq, p, flags);
1820 1821 1822 1823 1824 1825
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1826
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1827 1828 1829 1830
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1831
	dequeue_task(rq, p, flags);
1832 1833 1834
	dec_nr_running(rq);
}

1835 1836
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

1837 1838 1839 1840 1841 1842 1843
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
1844 1845 1846
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
1847
 */
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
1902 1903 1904
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
1905
#endif /* CONFIG_64BIT */
1906

1907 1908 1909 1910
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
1911 1912 1913
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
1914
	s64 delta;
1915 1916 1917 1918 1919 1920 1921 1922
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
1923 1924 1925
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

1926
	irq_time_write_begin();
1927 1928 1929 1930 1931 1932 1933
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
1934
		__this_cpu_add(cpu_hardirq_time, delta);
1935
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1936
		__this_cpu_add(cpu_softirq_time, delta);
1937

1938
	irq_time_write_end();
1939 1940
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
1941
EXPORT_SYMBOL_GPL(account_system_vtime);
1942

1943
static void update_rq_clock_task(struct rq *rq, s64 delta)
1944
{
1945 1946
	s64 irq_delta;

1947
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
	rq->clock_task += delta;

	if (irq_delta && sched_feat(NONIRQ_POWER))
		sched_rt_avg_update(rq, irq_delta);
1973 1974
}

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
static int irqtime_account_hi_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

2005
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2006

2007 2008
#define sched_clock_irqtime	(0)

2009
static void update_rq_clock_task(struct rq *rq, s64 delta)
2010
{
2011
	rq->clock_task += delta;
2012 2013
}

2014
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2015

2016 2017 2018
#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
2019
#include "sched_autogroup.c"
2020
#include "sched_stoptask.c"
2021 2022 2023 2024
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

2055
/*
I
Ingo Molnar 已提交
2056
 * __normal_prio - return the priority that is based on the static prio
2057 2058 2059
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
2060
	return p->static_prio;
2061 2062
}

2063 2064 2065 2066 2067 2068 2069
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
2070
static inline int normal_prio(struct task_struct *p)
2071 2072 2073
{
	int prio;

2074
	if (task_has_rt_policy(p))
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
2088
static int effective_prio(struct task_struct *p)
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
2101 2102 2103 2104
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
2105
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
2106 2107 2108 2109
{
	return cpu_curr(task_cpu(p)) == p;
}

2110 2111
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
2112
				       int oldprio)
2113 2114 2115
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
2116 2117 2118 2119
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
2120 2121
}

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
2143
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2144 2145 2146
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
2147
#ifdef CONFIG_SMP
2148 2149 2150
/*
 * Is this task likely cache-hot:
 */
2151
static int
2152 2153 2154 2155
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2156 2157 2158
	if (p->sched_class != &fair_sched_class)
		return 0;

2159 2160 2161
	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

2162 2163 2164
	/*
	 * Buddy candidates are cache hot:
	 */
2165
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2166 2167
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2168 2169
		return 1;

2170 2171 2172 2173 2174
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2175 2176 2177 2178 2179
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2180
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2181
{
2182 2183 2184 2185 2186
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2187 2188
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2189 2190 2191 2192 2193

#ifdef CONFIG_LOCKDEP
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
2194 2195
#endif

2196
	trace_sched_migrate_task(p, new_cpu);
2197

2198 2199 2200 2201
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2202 2203

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2204 2205
}

2206
struct migration_arg {
2207
	struct task_struct *task;
L
Linus Torvalds 已提交
2208
	int dest_cpu;
2209
};
L
Linus Torvalds 已提交
2210

2211 2212
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2213 2214 2215
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2216 2217 2218 2219 2220 2221 2222
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2223 2224 2225 2226 2227 2228
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2229
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2230 2231
{
	unsigned long flags;
I
Ingo Molnar 已提交
2232
	int running, on_rq;
R
Roland McGrath 已提交
2233
	unsigned long ncsw;
2234
	struct rq *rq;
L
Linus Torvalds 已提交
2235

2236 2237 2238 2239 2240 2241 2242 2243
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2244

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2256 2257 2258
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2259
			cpu_relax();
R
Roland McGrath 已提交
2260
		}
2261

2262 2263 2264 2265 2266 2267
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2268
		trace_sched_wait_task(p);
2269
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
2270
		on_rq = p->on_rq;
R
Roland McGrath 已提交
2271
		ncsw = 0;
2272
		if (!match_state || p->state == match_state)
2273
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2274
		task_rq_unlock(rq, p, &flags);
2275

R
Roland McGrath 已提交
2276 2277 2278 2279 2280 2281
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2292

2293 2294 2295 2296 2297
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2298
		 * So if it was still runnable (but just not actively
2299 2300 2301 2302
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
2303 2304 2305 2306
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2307 2308
			continue;
		}
2309

2310 2311 2312 2313 2314 2315 2316
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2317 2318

	return ncsw;
L
Linus Torvalds 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
2328
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
2329 2330 2331 2332 2333
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2334
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2335 2336 2337 2338 2339 2340 2341 2342 2343
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2344
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2345
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2346

2347
#ifdef CONFIG_SMP
2348
/*
2349
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2350
 */
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2367 2368 2369 2370 2371 2372 2373 2374 2375
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
2376 2377 2378 2379 2380
	}

	return dest_cpu;
}

2381
/*
2382
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2383
 */
2384
static inline
2385
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2386
{
2387
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2400
		     !cpu_online(cpu)))
2401
		cpu = select_fallback_rq(task_cpu(p), p);
2402 2403

	return cpu;
2404
}
2405 2406 2407 2408 2409 2410

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2411 2412
#endif

P
Peter Zijlstra 已提交
2413
static void
2414
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
2415
{
P
Peter Zijlstra 已提交
2416
#ifdef CONFIG_SCHEDSTATS
2417 2418
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
2429
		rcu_read_lock();
P
Peter Zijlstra 已提交
2430 2431 2432 2433 2434 2435
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
2436
		rcu_read_unlock();
P
Peter Zijlstra 已提交
2437 2438 2439 2440
	}
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
2441
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2442 2443

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
2444
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
2445 2446

	if (cpu != task_cpu(p))
T
Tejun Heo 已提交
2447 2448
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
2449 2450 2451 2452 2453
#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
2454
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
2455
	p->on_rq = 1;
2456 2457 2458 2459

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2460 2461
}

2462 2463 2464
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
2465
static void
2466
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
2467
{
2468
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
#ifdef CONFIG_SMP
static void sched_ttwu_pending(void)
{
	struct rq *rq = this_rq();
	struct task_struct *list = xchg(&rq->wake_list, NULL);

	if (!list)
		return;

	raw_spin_lock(&rq->lock);

	while (list) {
		struct task_struct *p = list;
		list = list->wake_entry;
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
	sched_ttwu_pending();
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	struct task_struct *next = rq->wake_list;

	for (;;) {
		struct task_struct *old = next;

		p->wake_entry = next;
		next = cmpxchg(&rq->wake_list, old, p);
		if (next == old)
			break;
	}

	if (!next)
		smp_send_reschedule(cpu);
}
#endif

2566 2567 2568 2569
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

2570 2571 2572 2573 2574 2575 2576
#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_TTWU_QUEUE)
	if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

2577 2578 2579
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
2580 2581 2582
}

/**
L
Linus Torvalds 已提交
2583
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2584
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2585
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2586
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2587 2588 2589 2590 2591 2592 2593
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2594 2595
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2596
 */
2597 2598
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
2599 2600
{
	unsigned long flags;
2601
	int cpu, success = 0;
P
Peter Zijlstra 已提交
2602

2603
	smp_wmb();
2604
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
2605
	if (!(p->state & state))
L
Linus Torvalds 已提交
2606 2607
		goto out;

2608
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
2609 2610
	cpu = task_cpu(p);

2611 2612
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2613 2614

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
2615
	/*
2616 2617
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
2618
	 */
2619 2620 2621 2622 2623 2624 2625 2626
	while (p->on_cpu) {
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
		/*
		 * If called from interrupt context we could have landed in the
		 * middle of schedule(), in this case we should take care not
		 * to spin on ->on_cpu if p is current, since that would
		 * deadlock.
		 */
2627 2628 2629 2630
		if (p == current) {
			ttwu_queue(p, cpu);
			goto stat;
		}
2631 2632
#endif
		cpu_relax();
2633
	}
2634
	/*
2635
	 * Pairs with the smp_wmb() in finish_lock_switch().
2636
	 */
2637
	smp_rmb();
L
Linus Torvalds 已提交
2638

2639
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2640
	p->state = TASK_WAKING;
2641

2642
	if (p->sched_class->task_waking)
2643
		p->sched_class->task_waking(p);
2644

2645
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2646
	if (task_cpu(p) != cpu)
2647
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2648 2649
#endif /* CONFIG_SMP */

2650 2651
	ttwu_queue(p, cpu);
stat:
2652
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2653
out:
2654
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2655 2656 2657 2658

	return success;
}

T
Tejun Heo 已提交
2659 2660 2661 2662
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
2663
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2664
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2665
 * the current task.
T
Tejun Heo 已提交
2666 2667 2668 2669 2670 2671 2672 2673 2674
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

2675 2676 2677 2678 2679 2680
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
2681
	if (!(p->state & TASK_NORMAL))
2682
		goto out;
T
Tejun Heo 已提交
2683

P
Peter Zijlstra 已提交
2684
	if (!p->on_rq)
P
Peter Zijlstra 已提交
2685 2686
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

2687
	ttwu_do_wakeup(rq, p, 0);
2688
	ttwu_stat(p, smp_processor_id(), 0);
2689 2690
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2691 2692
}

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2704
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2705
{
2706
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2707 2708 2709
}
EXPORT_SYMBOL(wake_up_process);

2710
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2711 2712 2713 2714 2715 2716 2717
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2718 2719 2720 2721 2722
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
2723 2724 2725
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2726 2727
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2728
	p->se.prev_sum_exec_runtime	= 0;
2729
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2730
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2731
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2732 2733

#ifdef CONFIG_SCHEDSTATS
2734
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2735
#endif
N
Nick Piggin 已提交
2736

P
Peter Zijlstra 已提交
2737
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
2738

2739 2740 2741
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2742 2743 2744 2745 2746
}

/*
 * fork()/clone()-time setup:
 */
2747
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
2748
{
2749
	unsigned long flags;
I
Ingo Molnar 已提交
2750 2751 2752
	int cpu = get_cpu();

	__sched_fork(p);
2753
	/*
2754
	 * We mark the process as running here. This guarantees that
2755 2756 2757
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2758
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2759

2760 2761 2762 2763
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2764
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2765
			p->policy = SCHED_NORMAL;
2766 2767
			p->normal_prio = p->static_prio;
		}
2768

2769 2770
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2771
			p->normal_prio = p->static_prio;
2772 2773 2774
			set_load_weight(p);
		}

2775 2776 2777 2778 2779 2780
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2781

2782 2783 2784 2785 2786
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2787 2788
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2789

P
Peter Zijlstra 已提交
2790 2791 2792
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2793 2794 2795 2796 2797 2798 2799
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2800
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2801
	set_task_cpu(p, cpu);
2802
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2803

2804
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2805
	if (likely(sched_info_on()))
2806
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2807
#endif
P
Peter Zijlstra 已提交
2808 2809
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2810
#endif
L
Linus Torvalds 已提交
2811
#ifdef CONFIG_PREEMPT
2812
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2813
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2814
#endif
2815
#ifdef CONFIG_SMP
2816
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2817
#endif
2818

N
Nick Piggin 已提交
2819
	put_cpu();
L
Linus Torvalds 已提交
2820 2821 2822 2823 2824 2825 2826 2827 2828
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2829
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2830 2831
{
	unsigned long flags;
I
Ingo Molnar 已提交
2832
	struct rq *rq;
2833

2834
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2835 2836 2837 2838 2839 2840
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2841
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
2842 2843
#endif

2844
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2845
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
2846
	p->on_rq = 1;
2847
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2848
	check_preempt_curr(rq, p, WF_FORK);
2849
#ifdef CONFIG_SMP
2850 2851
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2852
#endif
2853
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2854 2855
}

2856 2857 2858
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2859
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2860
 * @notifier: notifier struct to register
2861 2862 2863 2864 2865 2866 2867 2868 2869
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2870
 * @notifier: notifier struct to unregister
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2900
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2912
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2913

2914 2915 2916
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2917
 * @prev: the current task that is being switched out
2918 2919 2920 2921 2922 2923 2924 2925 2926
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2927 2928 2929
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2930
{
2931 2932
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
2933
	fire_sched_out_preempt_notifiers(prev, next);
2934 2935
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
2936
	trace_sched_switch(prev, next);
2937 2938
}

L
Linus Torvalds 已提交
2939 2940
/**
 * finish_task_switch - clean up after a task-switch
2941
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2942 2943
 * @prev: the thread we just switched away from.
 *
2944 2945 2946 2947
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2948 2949
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2950
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2951 2952 2953
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2954
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2955 2956 2957
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2958
	long prev_state;
L
Linus Torvalds 已提交
2959 2960 2961 2962 2963

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2964
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2965 2966
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2967
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2968 2969 2970 2971 2972
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2973
	prev_state = prev->state;
2974
	finish_arch_switch(prev);
2975 2976 2977
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2978
	perf_event_task_sched_in(current);
2979 2980 2981
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2982
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2983

2984
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2985 2986
	if (mm)
		mmdrop(mm);
2987
	if (unlikely(prev_state == TASK_DEAD)) {
2988 2989 2990
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2991
		 */
2992
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2993
		put_task_struct(prev);
2994
	}
L
Linus Torvalds 已提交
2995 2996
}

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

3012
		raw_spin_lock_irqsave(&rq->lock, flags);
3013 3014
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
3015
		raw_spin_unlock_irqrestore(&rq->lock, flags);
3016 3017 3018 3019 3020 3021

		rq->post_schedule = 0;
	}
}

#else
3022

3023 3024 3025 3026 3027 3028
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
3029 3030
}

3031 3032
#endif

L
Linus Torvalds 已提交
3033 3034 3035 3036
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
3037
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
3038 3039
	__releases(rq->lock)
{
3040 3041
	struct rq *rq = this_rq();

3042
	finish_task_switch(rq, prev);
3043

3044 3045 3046 3047 3048
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
3049

3050 3051 3052 3053
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
3054
	if (current->set_child_tid)
3055
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
3056 3057 3058 3059 3060 3061
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
3062
static inline void
3063
context_switch(struct rq *rq, struct task_struct *prev,
3064
	       struct task_struct *next)
L
Linus Torvalds 已提交
3065
{
I
Ingo Molnar 已提交
3066
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
3067

3068
	prepare_task_switch(rq, prev, next);
3069

I
Ingo Molnar 已提交
3070 3071
	mm = next->mm;
	oldmm = prev->active_mm;
3072 3073 3074 3075 3076
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
3077
	arch_start_context_switch(prev);
3078

3079
	if (!mm) {
L
Linus Torvalds 已提交
3080 3081 3082 3083 3084 3085
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

3086
	if (!prev->mm) {
L
Linus Torvalds 已提交
3087 3088 3089
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
3090 3091 3092 3093 3094 3095 3096
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
3097
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3098
#endif
L
Linus Torvalds 已提交
3099 3100 3101 3102

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
3103 3104 3105 3106 3107 3108 3109
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
3127
}
L
Linus Torvalds 已提交
3128 3129

unsigned long nr_uninterruptible(void)
3130
{
L
Linus Torvalds 已提交
3131
	unsigned long i, sum = 0;
3132

3133
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3134
		sum += cpu_rq(i)->nr_uninterruptible;
3135 3136

	/*
L
Linus Torvalds 已提交
3137 3138
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
3139
	 */
L
Linus Torvalds 已提交
3140 3141
	if (unlikely((long)sum < 0))
		sum = 0;
3142

L
Linus Torvalds 已提交
3143
	return sum;
3144 3145
}

L
Linus Torvalds 已提交
3146
unsigned long long nr_context_switches(void)
3147
{
3148 3149
	int i;
	unsigned long long sum = 0;
3150

3151
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3152
		sum += cpu_rq(i)->nr_switches;
3153

L
Linus Torvalds 已提交
3154 3155
	return sum;
}
3156

L
Linus Torvalds 已提交
3157 3158 3159
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
3160

3161
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3162
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
3163

L
Linus Torvalds 已提交
3164 3165
	return sum;
}
3166

3167
unsigned long nr_iowait_cpu(int cpu)
3168
{
3169
	struct rq *this = cpu_rq(cpu);
3170 3171
	return atomic_read(&this->nr_iowait);
}
3172

3173 3174 3175 3176 3177
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
3178

3179

3180 3181 3182 3183 3184
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
3185

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

3201 3202 3203 3204 3205 3206 3207 3208 3209
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
3361 3362 3363 3364 3365 3366 3367 3368 3369
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
3370 3371 3372 3373

static void calc_global_nohz(unsigned long ticks)
{
}
3374 3375
#endif

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3389 3390 3391
}

/*
3392 3393
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3394
 */
3395
void calc_global_load(unsigned long ticks)
3396
{
3397
	long active;
L
Linus Torvalds 已提交
3398

3399 3400 3401
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
3402
		return;
L
Linus Torvalds 已提交
3403

3404 3405
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3406

3407 3408 3409
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3410

3411 3412
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3413

3414
/*
3415 3416
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3417 3418 3419
 */
static void calc_load_account_active(struct rq *this_rq)
{
3420
	long delta;
3421

3422 3423
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3424

3425 3426 3427
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3428
		atomic_long_add(delta, &calc_load_tasks);
3429 3430

	this_rq->calc_load_update += LOAD_FREQ;
3431 3432
}

3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

3500
/*
I
Ingo Molnar 已提交
3501
 * Update rq->cpu_load[] statistics. This function is usually called every
3502 3503
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
3504
 */
I
Ingo Molnar 已提交
3505
static void update_cpu_load(struct rq *this_rq)
3506
{
3507
	unsigned long this_load = this_rq->load.weight;
3508 3509
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
3510
	int i, scale;
3511

I
Ingo Molnar 已提交
3512
	this_rq->nr_load_updates++;
3513

3514 3515 3516 3517 3518 3519 3520
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
3521
	/* Update our load: */
3522 3523
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
3524
		unsigned long old_load, new_load;
3525

I
Ingo Molnar 已提交
3526
		/* scale is effectively 1 << i now, and >> i divides by scale */
3527

I
Ingo Molnar 已提交
3528
		old_load = this_rq->cpu_load[i];
3529
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
3530
		new_load = this_load;
I
Ingo Molnar 已提交
3531 3532 3533 3534 3535 3536
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
3537 3538 3539
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
3540
	}
3541 3542

	sched_avg_update(this_rq);
3543 3544 3545 3546 3547
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
3548

3549
	calc_load_account_active(this_rq);
3550 3551
}

I
Ingo Molnar 已提交
3552
#ifdef CONFIG_SMP
3553

3554
/*
P
Peter Zijlstra 已提交
3555 3556
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3557
 */
P
Peter Zijlstra 已提交
3558
void sched_exec(void)
3559
{
P
Peter Zijlstra 已提交
3560
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3561
	unsigned long flags;
3562
	int dest_cpu;
3563

3564
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3565
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3566 3567
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3568

3569
	if (likely(cpu_active(dest_cpu))) {
3570
		struct migration_arg arg = { p, dest_cpu };
3571

3572 3573
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3574 3575
		return;
	}
3576
unlock:
3577
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3578
}
I
Ingo Molnar 已提交
3579

L
Linus Torvalds 已提交
3580 3581 3582 3583 3584 3585 3586
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3587
 * Return any ns on the sched_clock that have not yet been accounted in
3588
 * @p in case that task is currently running.
3589 3590
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3591
 */
3592 3593 3594 3595 3596 3597
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
3598
		ns = rq->clock_task - p->se.exec_start;
3599 3600 3601 3602 3603 3604 3605
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3606
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3607 3608
{
	unsigned long flags;
3609
	struct rq *rq;
3610
	u64 ns = 0;
3611

3612
	rq = task_rq_lock(p, &flags);
3613
	ns = do_task_delta_exec(p, rq);
3614
	task_rq_unlock(rq, p, &flags);
3615

3616 3617
	return ns;
}
3618

3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3632
	task_rq_unlock(rq, p, &flags);
3633 3634 3635

	return ns;
}
3636

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3656
	task_rq_unlock(rq, p, &flags);
3657

L
Linus Torvalds 已提交
3658 3659 3660 3661 3662 3663 3664
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3665
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3666
 */
3667 3668
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3669 3670 3671 3672
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3673
	/* Add user time to process. */
L
Linus Torvalds 已提交
3674
	p->utime = cputime_add(p->utime, cputime);
3675
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3676
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3677 3678 3679 3680 3681 3682 3683

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3684 3685

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3686 3687
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3688 3689
}

3690 3691 3692 3693
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3694
 * @cputime_scaled: cputime scaled by cpu frequency
3695
 */
3696 3697
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3698 3699 3700 3701 3702 3703
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3704
	/* Add guest time to process. */
3705
	p->utime = cputime_add(p->utime, cputime);
3706
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3707
	account_group_user_time(p, cputime);
3708 3709
	p->gtime = cputime_add(p->gtime, cputime);

3710
	/* Add guest time to cpustat. */
3711 3712 3713 3714 3715 3716 3717
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3718 3719
}

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
			cputime_t cputime_scaled, cputime64_t *target_cputime64)
{
	cputime64_t tmp = cputime_to_cputime64(cputime);

	/* Add system time to process. */
	p->stime = cputime_add(p->stime, cputime);
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
	*target_cputime64 = cputime64_add(*target_cputime64, tmp);
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
3746 3747 3748 3749 3750
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3751
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3752 3753
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3754
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3755 3756
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3757
	cputime64_t *target_cputime64;
L
Linus Torvalds 已提交
3758

3759
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3760
		account_guest_time(p, cputime, cputime_scaled);
3761 3762
		return;
	}
3763

L
Linus Torvalds 已提交
3764
	if (hardirq_count() - hardirq_offset)
3765
		target_cputime64 = &cpustat->irq;
3766
	else if (in_serving_softirq())
3767
		target_cputime64 = &cpustat->softirq;
L
Linus Torvalds 已提交
3768
	else
3769
		target_cputime64 = &cpustat->system;
3770

3771
	__account_system_time(p, cputime, cputime_scaled, target_cputime64);
L
Linus Torvalds 已提交
3772 3773
}

3774
/*
L
Linus Torvalds 已提交
3775
 * Account for involuntary wait time.
3776
 * @cputime: the cpu time spent in involuntary wait
3777
 */
3778
void account_steal_time(cputime_t cputime)
3779
{
3780 3781 3782 3783
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3784 3785
}

L
Linus Torvalds 已提交
3786
/*
3787 3788
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3789
 */
3790
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3791 3792
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3793
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3794
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3795

3796 3797 3798 3799
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3800 3801
}

3802 3803
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
	cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	if (irqtime_account_hi_update()) {
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	} else if (irqtime_account_si_update()) {
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3837 3838 3839 3840 3841 3842 3843 3844
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->softirq);
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->system);
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
3865
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3866 3867 3868
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
3869
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3870 3871 3872 3873 3874 3875 3876 3877

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3878
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3879 3880
	struct rq *rq = this_rq();

3881 3882 3883 3884 3885
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

3886
	if (user_tick)
3887
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3888
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3889
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3890 3891
				    one_jiffy_scaled);
	else
3892
		account_idle_time(cputime_one_jiffy);
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
3911 3912 3913 3914 3915 3916

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

3917
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3918 3919
}

3920 3921
#endif

3922 3923 3924 3925
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3926
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3927
{
3928 3929
	*ut = p->utime;
	*st = p->stime;
3930 3931
}

3932
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3933
{
3934 3935 3936 3937 3938 3939
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3940 3941
}
#else
3942 3943

#ifndef nsecs_to_cputime
3944
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3945 3946
#endif

3947
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3948
{
3949
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3950 3951 3952 3953

	/*
	 * Use CFS's precise accounting:
	 */
3954
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3955 3956

	if (total) {
3957
		u64 temp = rtime;
3958

3959
		temp *= utime;
3960
		do_div(temp, total);
3961 3962 3963
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3964

3965 3966 3967
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3968
	p->prev_utime = max(p->prev_utime, utime);
3969
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3970

3971 3972
	*ut = p->prev_utime;
	*st = p->prev_stime;
3973 3974
}

3975 3976 3977 3978
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3979
{
3980 3981 3982
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3983

3984
	thread_group_cputime(p, &cputime);
3985

3986 3987
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3988

3989
	if (total) {
3990
		u64 temp = rtime;
3991

3992
		temp *= cputime.utime;
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
4004 4005 4006
}
#endif

4007 4008 4009 4010 4011 4012 4013 4014
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4015
	struct task_struct *curr = rq->curr;
4016 4017

	sched_clock_tick();
I
Ingo Molnar 已提交
4018

4019
	raw_spin_lock(&rq->lock);
4020
	update_rq_clock(rq);
4021
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
4022
	curr->sched_class->task_tick(rq, curr, 0);
4023
	raw_spin_unlock(&rq->lock);
4024

4025
	perf_event_task_tick();
4026

4027
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4028 4029
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4030
#endif
L
Linus Torvalds 已提交
4031 4032
}

4033
notrace unsigned long get_parent_ip(unsigned long addr)
4034 4035 4036 4037 4038 4039 4040 4041
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4042

4043 4044 4045
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

4046
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4047
{
4048
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4049 4050 4051
	/*
	 * Underflow?
	 */
4052 4053
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4054
#endif
L
Linus Torvalds 已提交
4055
	preempt_count() += val;
4056
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4057 4058 4059
	/*
	 * Spinlock count overflowing soon?
	 */
4060 4061
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4062 4063 4064
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4065 4066 4067
}
EXPORT_SYMBOL(add_preempt_count);

4068
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4069
{
4070
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4071 4072 4073
	/*
	 * Underflow?
	 */
4074
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4075
		return;
L
Linus Torvalds 已提交
4076 4077 4078
	/*
	 * Is the spinlock portion underflowing?
	 */
4079 4080 4081
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4082
#endif
4083

4084 4085
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4086 4087 4088 4089 4090 4091 4092
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4093
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4094
 */
I
Ingo Molnar 已提交
4095
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4096
{
4097 4098
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
4099 4100
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
4101

I
Ingo Molnar 已提交
4102
	debug_show_held_locks(prev);
4103
	print_modules();
I
Ingo Molnar 已提交
4104 4105
	if (irqs_disabled())
		print_irqtrace_events(prev);
4106 4107 4108 4109 4110

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4111
}
L
Linus Torvalds 已提交
4112

I
Ingo Molnar 已提交
4113 4114 4115 4116 4117
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4118
	/*
I
Ingo Molnar 已提交
4119
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4120 4121 4122
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4123
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4124 4125
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4126 4127
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4128
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4129 4130
}

P
Peter Zijlstra 已提交
4131
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
4132
{
4133
	if (prev->on_rq || rq->skip_clock_update < 0)
4134
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
4135
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
4136 4137
}

I
Ingo Molnar 已提交
4138 4139 4140 4141
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4142
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
4143
{
4144
	const struct sched_class *class;
I
Ingo Molnar 已提交
4145
	struct task_struct *p;
L
Linus Torvalds 已提交
4146 4147

	/*
I
Ingo Molnar 已提交
4148 4149
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4150
	 */
I
Ingo Molnar 已提交
4151
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4152
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4153 4154
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4155 4156
	}

4157
	for_each_class(class) {
4158
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4159 4160 4161
		if (p)
			return p;
	}
4162 4163

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
4164
}
L
Linus Torvalds 已提交
4165

I
Ingo Molnar 已提交
4166 4167 4168
/*
 * schedule() is the main scheduler function.
 */
4169
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
4170 4171
{
	struct task_struct *prev, *next;
4172
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4173
	struct rq *rq;
4174
	int cpu;
I
Ingo Molnar 已提交
4175

4176 4177
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
4178 4179
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
4180
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
4181 4182 4183
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
4184

4185
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4186
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4187

4188
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
4189

4190
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
4191
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
4192
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
4193
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
4194
		} else {
4195 4196 4197
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
4198
			/*
4199 4200 4201
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
4202 4203 4204 4205 4206 4207 4208 4209
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
P
Peter Zijlstra 已提交
4210

4211
			/*
4212 4213
			 * If we are going to sleep and we have plugged IO
			 * queued, make sure to submit it to avoid deadlocks.
4214 4215 4216
			 */
			if (blk_needs_flush_plug(prev)) {
				raw_spin_unlock(&rq->lock);
4217
				blk_schedule_flush_plug(prev);
4218 4219
				raw_spin_lock(&rq->lock);
			}
T
Tejun Heo 已提交
4220
		}
I
Ingo Molnar 已提交
4221
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4222 4223
	}

4224
	pre_schedule(rq, prev);
4225

I
Ingo Molnar 已提交
4226
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4227 4228
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
4229
	put_prev_task(rq, prev);
4230
	next = pick_next_task(rq);
4231 4232
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
4233 4234 4235 4236 4237 4238

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4239
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4240
		/*
4241 4242 4243 4244
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
4245 4246 4247
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4248
	} else
4249
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
4250

4251
	post_schedule(rq);
L
Linus Torvalds 已提交
4252 4253

	preempt_enable_no_resched();
4254
	if (need_resched())
L
Linus Torvalds 已提交
4255 4256 4257 4258
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

4259
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4260

4261 4262 4263
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	bool ret = false;
4264

4265 4266 4267
	rcu_read_lock();
	if (lock->owner != owner)
		goto fail;
4268 4269

	/*
4270 4271 4272 4273
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
4274
	 */
4275
	barrier();
4276

4277 4278 4279
	ret = owner->on_cpu;
fail:
	rcu_read_unlock();
4280

4281 4282
	return ret;
}
4283

4284 4285 4286 4287 4288 4289 4290 4291
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
4292

4293 4294
	while (owner_running(lock, owner)) {
		if (need_resched())
4295 4296
			return 0;

4297
		arch_mutex_cpu_relax();
4298
	}
4299

4300 4301 4302 4303 4304 4305 4306
	/*
	 * If the owner changed to another task there is likely
	 * heavy contention, stop spinning.
	 */
	if (lock->owner)
		return 0;

4307 4308 4309 4310
	return 1;
}
#endif

L
Linus Torvalds 已提交
4311 4312
#ifdef CONFIG_PREEMPT
/*
4313
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4314
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4315 4316
 * occur there and call schedule directly.
 */
4317
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
4318 4319
{
	struct thread_info *ti = current_thread_info();
4320

L
Linus Torvalds 已提交
4321 4322
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4323
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4324
	 */
N
Nick Piggin 已提交
4325
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4326 4327
		return;

4328
	do {
4329
		add_preempt_count_notrace(PREEMPT_ACTIVE);
4330
		schedule();
4331
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4332

4333 4334 4335 4336 4337
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4338
	} while (need_resched());
L
Linus Torvalds 已提交
4339 4340 4341 4342
}
EXPORT_SYMBOL(preempt_schedule);

/*
4343
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4344 4345 4346 4347 4348 4349 4350
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4351

4352
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4353 4354
	BUG_ON(ti->preempt_count || !irqs_disabled());

4355 4356 4357 4358 4359 4360
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4361

4362 4363 4364 4365 4366
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4367
	} while (need_resched());
L
Linus Torvalds 已提交
4368 4369 4370 4371
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
4372
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
4373
			  void *key)
L
Linus Torvalds 已提交
4374
{
P
Peter Zijlstra 已提交
4375
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
4376 4377 4378 4379
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4380 4381
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4382 4383 4384
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4385
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4386 4387
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4388
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
4389
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
4390
{
4391
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4392

4393
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4394 4395
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
4396
		if (curr->func(curr, mode, wake_flags, key) &&
4397
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4398 4399 4400 4401 4402 4403 4404 4405 4406
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4407
 * @key: is directly passed to the wakeup function
4408 4409 4410
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4411
 */
4412
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4413
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4426
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4427 4428 4429
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
4430
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
4431

4432 4433 4434 4435
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
4436
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4437

L
Linus Torvalds 已提交
4438
/**
4439
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4440 4441 4442
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4443
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
4444 4445 4446 4447 4448 4449 4450
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
4451 4452 4453
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4454
 */
4455 4456
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4457 4458
{
	unsigned long flags;
P
Peter Zijlstra 已提交
4459
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
4460 4461 4462 4463 4464

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
4465
		wake_flags = 0;
L
Linus Torvalds 已提交
4466 4467

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
4468
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
4469 4470
	spin_unlock_irqrestore(&q->lock, flags);
}
4471 4472 4473 4474 4475 4476 4477 4478 4479
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4480 4481
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4482 4483 4484 4485 4486 4487 4488 4489
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4490 4491 4492
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4493
 */
4494
void complete(struct completion *x)
L
Linus Torvalds 已提交
4495 4496 4497 4498 4499
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4500
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4501 4502 4503 4504
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4505 4506 4507 4508 4509
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4510 4511 4512
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4513
 */
4514
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4515 4516 4517 4518 4519
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4520
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4521 4522 4523 4524
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4525 4526
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4527 4528 4529 4530
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
4531
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
4532
		do {
4533
			if (signal_pending_state(state, current)) {
4534 4535
				timeout = -ERESTARTSYS;
				break;
4536 4537
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4538 4539 4540
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4541
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4542
		__remove_wait_queue(&x->wait, &wait);
4543 4544
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4545 4546
	}
	x->done--;
4547
	return timeout ?: 1;
L
Linus Torvalds 已提交
4548 4549
}

4550 4551
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4552 4553 4554 4555
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4556
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4557
	spin_unlock_irq(&x->wait.lock);
4558 4559
	return timeout;
}
L
Linus Torvalds 已提交
4560

4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4571
void __sched wait_for_completion(struct completion *x)
4572 4573
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4574
}
4575
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4576

4577 4578 4579 4580 4581 4582 4583 4584 4585
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4586
unsigned long __sched
4587
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4588
{
4589
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4590
}
4591
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4592

4593 4594 4595 4596 4597 4598 4599
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4600
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4601
{
4602 4603 4604 4605
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4606
}
4607
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4608

4609 4610 4611 4612 4613 4614 4615 4616
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4617
long __sched
4618 4619
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4620
{
4621
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4622
}
4623
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4624

4625 4626 4627 4628 4629 4630 4631
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4632 4633 4634 4635 4636 4637 4638 4639 4640
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4641 4642 4643 4644 4645 4646 4647 4648 4649
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
4650
long __sched
4651 4652 4653 4654 4655 4656 4657
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4672
	unsigned long flags;
4673 4674
	int ret = 1;

4675
	spin_lock_irqsave(&x->wait.lock, flags);
4676 4677 4678 4679
	if (!x->done)
		ret = 0;
	else
		x->done--;
4680
	spin_unlock_irqrestore(&x->wait.lock, flags);
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4695
	unsigned long flags;
4696 4697
	int ret = 1;

4698
	spin_lock_irqsave(&x->wait.lock, flags);
4699 4700
	if (!x->done)
		ret = 0;
4701
	spin_unlock_irqrestore(&x->wait.lock, flags);
4702 4703 4704 4705
	return ret;
}
EXPORT_SYMBOL(completion_done);

4706 4707
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4708
{
I
Ingo Molnar 已提交
4709 4710 4711 4712
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4713

4714
	__set_current_state(state);
L
Linus Torvalds 已提交
4715

4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4730 4731 4732
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4733
long __sched
I
Ingo Molnar 已提交
4734
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4735
{
4736
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4737 4738 4739
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4740
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4741
{
4742
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4743 4744 4745
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4746
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4747
{
4748
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4749 4750 4751
}
EXPORT_SYMBOL(sleep_on_timeout);

4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4764
void rt_mutex_setprio(struct task_struct *p, int prio)
4765
{
4766
	int oldprio, on_rq, running;
4767
	struct rq *rq;
4768
	const struct sched_class *prev_class;
4769 4770 4771

	BUG_ON(prio < 0 || prio > MAX_PRIO);

4772
	rq = __task_rq_lock(p);
4773

4774
	trace_sched_pi_setprio(p, prio);
4775
	oldprio = p->prio;
4776
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
4777
	on_rq = p->on_rq;
4778
	running = task_current(rq, p);
4779
	if (on_rq)
4780
		dequeue_task(rq, p, 0);
4781 4782
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4783 4784 4785 4786 4787 4788

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4789 4790
	p->prio = prio;

4791 4792
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4793
	if (on_rq)
4794
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4795

P
Peter Zijlstra 已提交
4796
	check_class_changed(rq, p, prev_class, oldprio);
4797
	__task_rq_unlock(rq);
4798 4799 4800 4801
}

#endif

4802
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4803
{
I
Ingo Molnar 已提交
4804
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4805
	unsigned long flags;
4806
	struct rq *rq;
L
Linus Torvalds 已提交
4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4819
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4820
	 */
4821
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4822 4823 4824
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
4825
	on_rq = p->on_rq;
4826
	if (on_rq)
4827
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4828 4829

	p->static_prio = NICE_TO_PRIO(nice);
4830
	set_load_weight(p);
4831 4832 4833
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4834

I
Ingo Molnar 已提交
4835
	if (on_rq) {
4836
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4837
		/*
4838 4839
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4840
		 */
4841
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4842 4843 4844
			resched_task(rq->curr);
	}
out_unlock:
4845
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
4846 4847 4848
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4849 4850 4851 4852 4853
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4854
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4855
{
4856 4857
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4858

4859
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4860 4861 4862
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4863 4864 4865 4866 4867 4868 4869 4870 4871
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4872
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4873
{
4874
	long nice, retval;
L
Linus Torvalds 已提交
4875 4876 4877 4878 4879 4880

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4881 4882
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4883 4884 4885
	if (increment > 40)
		increment = 40;

4886
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4887 4888 4889 4890 4891
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4892 4893 4894
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4913
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4914 4915 4916 4917 4918 4919 4920 4921
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4922
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4923 4924 4925
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4926
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4941
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4942 4943 4944 4945 4946 4947 4948 4949
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4950
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4951
{
4952
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4953 4954 4955
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4956 4957
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4958 4959 4960
{
	p->policy = policy;
	p->rt_priority = prio;
4961 4962 4963
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4964 4965 4966 4967
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4968
	set_load_weight(p);
L
Linus Torvalds 已提交
4969 4970
}

4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4981 4982 4983 4984 4985
	if (cred->user->user_ns == pcred->user->user_ns)
		match = (cred->euid == pcred->euid ||
			 cred->euid == pcred->uid);
	else
		match = false;
4986 4987 4988 4989
	rcu_read_unlock();
	return match;
}

4990
static int __sched_setscheduler(struct task_struct *p, int policy,
4991
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4992
{
4993
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4994
	unsigned long flags;
4995
	const struct sched_class *prev_class;
4996
	struct rq *rq;
4997
	int reset_on_fork;
L
Linus Torvalds 已提交
4998

4999 5000
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5001 5002
recheck:
	/* double check policy once rq lock held */
5003 5004
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
5005
		policy = oldpolicy = p->policy;
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
5016 5017
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5018 5019
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5020 5021
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5022
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5023
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5024
		return -EINVAL;
5025
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5026 5027
		return -EINVAL;

5028 5029 5030
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5031
	if (user && !capable(CAP_SYS_NICE)) {
5032
		if (rt_policy(policy)) {
5033 5034
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
5045

I
Ingo Molnar 已提交
5046
		/*
5047 5048
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
5049
		 */
5050 5051 5052 5053
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
5054

5055
		/* can't change other user's priorities */
5056
		if (!check_same_owner(p))
5057
			return -EPERM;
5058 5059 5060 5061

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
5062
	}
L
Linus Torvalds 已提交
5063

5064
	if (user) {
5065
		retval = security_task_setscheduler(p);
5066 5067 5068 5069
		if (retval)
			return retval;
	}

5070 5071 5072
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
5073
	 *
L
Lucas De Marchi 已提交
5074
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
5075 5076
	 * runqueue lock must be held.
	 */
5077
	rq = task_rq_lock(p, &flags);
5078

5079 5080 5081 5082
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
5083
		task_rq_unlock(rq, p, &flags);
5084 5085 5086
		return -EINVAL;
	}

5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {

		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return 0;
	}

5098 5099 5100 5101 5102 5103 5104
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5105 5106
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
5107
			task_rq_unlock(rq, p, &flags);
5108 5109 5110 5111 5112
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
5113 5114 5115
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5116
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
5117 5118
		goto recheck;
	}
P
Peter Zijlstra 已提交
5119
	on_rq = p->on_rq;
5120
	running = task_current(rq, p);
5121
	if (on_rq)
5122
		deactivate_task(rq, p, 0);
5123 5124
	if (running)
		p->sched_class->put_prev_task(rq, p);
5125

5126 5127
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
5128
	oldprio = p->prio;
5129
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
5130
	__setscheduler(rq, p, policy, param->sched_priority);
5131

5132 5133
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
5134
	if (on_rq)
I
Ingo Molnar 已提交
5135
		activate_task(rq, p, 0);
5136

P
Peter Zijlstra 已提交
5137
	check_class_changed(rq, p, prev_class, oldprio);
5138
	task_rq_unlock(rq, p, &flags);
5139

5140 5141
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5142 5143
	return 0;
}
5144 5145 5146 5147 5148 5149 5150 5151 5152 5153

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
5154
		       const struct sched_param *param)
5155 5156 5157
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5158 5159
EXPORT_SYMBOL_GPL(sched_setscheduler);

5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5172
			       const struct sched_param *param)
5173 5174 5175 5176
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5177 5178
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5179 5180 5181
{
	struct sched_param lparam;
	struct task_struct *p;
5182
	int retval;
L
Linus Torvalds 已提交
5183 5184 5185 5186 5187

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5188 5189 5190

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5191
	p = find_process_by_pid(pid);
5192 5193 5194
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5195

L
Linus Torvalds 已提交
5196 5197 5198 5199 5200 5201 5202 5203 5204
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5205 5206
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5207
{
5208 5209 5210 5211
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5212 5213 5214 5215 5216 5217 5218 5219
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5220
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5221 5222 5223 5224 5225 5226 5227 5228
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5229
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5230
{
5231
	struct task_struct *p;
5232
	int retval;
L
Linus Torvalds 已提交
5233 5234

	if (pid < 0)
5235
		return -EINVAL;
L
Linus Torvalds 已提交
5236 5237

	retval = -ESRCH;
5238
	rcu_read_lock();
L
Linus Torvalds 已提交
5239 5240 5241 5242
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
5243 5244
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
5245
	}
5246
	rcu_read_unlock();
L
Linus Torvalds 已提交
5247 5248 5249 5250
	return retval;
}

/**
5251
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
5252 5253 5254
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5255
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5256 5257
{
	struct sched_param lp;
5258
	struct task_struct *p;
5259
	int retval;
L
Linus Torvalds 已提交
5260 5261

	if (!param || pid < 0)
5262
		return -EINVAL;
L
Linus Torvalds 已提交
5263

5264
	rcu_read_lock();
L
Linus Torvalds 已提交
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
5275
	rcu_read_unlock();
L
Linus Torvalds 已提交
5276 5277 5278 5279 5280 5281 5282 5283 5284

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
5285
	rcu_read_unlock();
L
Linus Torvalds 已提交
5286 5287 5288
	return retval;
}

5289
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5290
{
5291
	cpumask_var_t cpus_allowed, new_mask;
5292 5293
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5294

5295
	get_online_cpus();
5296
	rcu_read_lock();
L
Linus Torvalds 已提交
5297 5298 5299

	p = find_process_by_pid(pid);
	if (!p) {
5300
		rcu_read_unlock();
5301
		put_online_cpus();
L
Linus Torvalds 已提交
5302 5303 5304
		return -ESRCH;
	}

5305
	/* Prevent p going away */
L
Linus Torvalds 已提交
5306
	get_task_struct(p);
5307
	rcu_read_unlock();
L
Linus Torvalds 已提交
5308

5309 5310 5311 5312 5313 5314 5315 5316
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5317
	retval = -EPERM;
5318
	if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
L
Linus Torvalds 已提交
5319 5320
		goto out_unlock;

5321
	retval = security_task_setscheduler(p);
5322 5323 5324
	if (retval)
		goto out_unlock;

5325 5326
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
5327
again:
5328
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5329

P
Paul Menage 已提交
5330
	if (!retval) {
5331 5332
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5333 5334 5335 5336 5337
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5338
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5339 5340 5341
			goto again;
		}
	}
L
Linus Torvalds 已提交
5342
out_unlock:
5343 5344 5345 5346
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5347
	put_task_struct(p);
5348
	put_online_cpus();
L
Linus Torvalds 已提交
5349 5350 5351 5352
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5353
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5354
{
5355 5356 5357 5358 5359
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5360 5361 5362 5363 5364 5365 5366 5367 5368
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5369 5370
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5371
{
5372
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5373 5374
	int retval;

5375 5376
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5377

5378 5379 5380 5381 5382
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5383 5384
}

5385
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5386
{
5387
	struct task_struct *p;
5388
	unsigned long flags;
L
Linus Torvalds 已提交
5389 5390
	int retval;

5391
	get_online_cpus();
5392
	rcu_read_lock();
L
Linus Torvalds 已提交
5393 5394 5395 5396 5397 5398

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5399 5400 5401 5402
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5403
	raw_spin_lock_irqsave(&p->pi_lock, flags);
5404
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5405
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5406 5407

out_unlock:
5408
	rcu_read_unlock();
5409
	put_online_cpus();
L
Linus Torvalds 已提交
5410

5411
	return retval;
L
Linus Torvalds 已提交
5412 5413 5414 5415 5416 5417 5418 5419
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5420 5421
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5422 5423
{
	int ret;
5424
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5425

A
Anton Blanchard 已提交
5426
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5427 5428
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
5429 5430
		return -EINVAL;

5431 5432
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5433

5434 5435
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
5436
		size_t retlen = min_t(size_t, len, cpumask_size());
5437 5438

		if (copy_to_user(user_mask_ptr, mask, retlen))
5439 5440
			ret = -EFAULT;
		else
5441
			ret = retlen;
5442 5443
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5444

5445
	return ret;
L
Linus Torvalds 已提交
5446 5447 5448 5449 5450
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5451 5452
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5453
 */
5454
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5455
{
5456
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5457

5458
	schedstat_inc(rq, yld_count);
5459
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5460 5461 5462 5463 5464 5465

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5466
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5467
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
5468 5469 5470 5471 5472 5473 5474
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
5475 5476 5477 5478 5479
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
5480
static void __cond_resched(void)
L
Linus Torvalds 已提交
5481
{
5482 5483 5484
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5485 5486
}

5487
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5488
{
P
Peter Zijlstra 已提交
5489
	if (should_resched()) {
L
Linus Torvalds 已提交
5490 5491 5492 5493 5494
		__cond_resched();
		return 1;
	}
	return 0;
}
5495
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5496 5497

/*
5498
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5499 5500
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5501
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5502 5503 5504
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5505
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5506
{
P
Peter Zijlstra 已提交
5507
	int resched = should_resched();
J
Jan Kara 已提交
5508 5509
	int ret = 0;

5510 5511
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5512
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5513
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5514
		if (resched)
N
Nick Piggin 已提交
5515 5516 5517
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5518
		ret = 1;
L
Linus Torvalds 已提交
5519 5520
		spin_lock(lock);
	}
J
Jan Kara 已提交
5521
	return ret;
L
Linus Torvalds 已提交
5522
}
5523
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5524

5525
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5526 5527 5528
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5529
	if (should_resched()) {
5530
		local_bh_enable();
L
Linus Torvalds 已提交
5531 5532 5533 5534 5535 5536
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5537
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5538 5539 5540 5541

/**
 * yield - yield the current processor to other threads.
 *
5542
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5543 5544 5545 5546 5547 5548 5549 5550 5551
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

5552 5553 5554 5555
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
5556 5557
 * @p: target task
 * @preempt: whether task preemption is allowed or not
5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5592
	if (yielded) {
5593
		schedstat_inc(rq, yld_count);
5594 5595 5596 5597 5598 5599 5600
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
5613
/*
I
Ingo Molnar 已提交
5614
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5615 5616 5617 5618
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5619
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5620

5621
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5622
	atomic_inc(&rq->nr_iowait);
5623
	blk_flush_plug(current);
5624
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5625
	schedule();
5626
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5627
	atomic_dec(&rq->nr_iowait);
5628
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5629 5630 5631 5632 5633
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5634
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5635 5636
	long ret;

5637
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5638
	atomic_inc(&rq->nr_iowait);
5639
	blk_flush_plug(current);
5640
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5641
	ret = schedule_timeout(timeout);
5642
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5643
	atomic_dec(&rq->nr_iowait);
5644
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5655
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5656 5657 5658 5659 5660 5661 5662 5663 5664
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5665
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5666
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5680
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5681 5682 5683 5684 5685 5686 5687 5688 5689
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5690
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5691
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5705
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5706
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5707
{
5708
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5709
	unsigned int time_slice;
5710 5711
	unsigned long flags;
	struct rq *rq;
5712
	int retval;
L
Linus Torvalds 已提交
5713 5714 5715
	struct timespec t;

	if (pid < 0)
5716
		return -EINVAL;
L
Linus Torvalds 已提交
5717 5718

	retval = -ESRCH;
5719
	rcu_read_lock();
L
Linus Torvalds 已提交
5720 5721 5722 5723 5724 5725 5726 5727
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5728 5729
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
5730
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
5731

5732
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5733
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5734 5735
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5736

L
Linus Torvalds 已提交
5737
out_unlock:
5738
	rcu_read_unlock();
L
Linus Torvalds 已提交
5739 5740 5741
	return retval;
}

5742
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5743

5744
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5745 5746
{
	unsigned long free = 0;
5747
	unsigned state;
L
Linus Torvalds 已提交
5748 5749

	state = p->state ? __ffs(p->state) + 1 : 0;
5750
	printk(KERN_INFO "%-15.15s %c", p->comm,
5751
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5752
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5753
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5754
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5755
	else
P
Peter Zijlstra 已提交
5756
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5757 5758
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5759
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5760
	else
P
Peter Zijlstra 已提交
5761
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5762 5763
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5764
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5765
#endif
P
Peter Zijlstra 已提交
5766
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5767 5768
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5769

5770
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5771 5772
}

I
Ingo Molnar 已提交
5773
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5774
{
5775
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5776

5777
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5778 5779
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5780
#else
P
Peter Zijlstra 已提交
5781 5782
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5783 5784 5785 5786 5787
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5788
		 * console might take a lot of time:
L
Linus Torvalds 已提交
5789 5790
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5791
		if (!state_filter || (p->state & state_filter))
5792
			sched_show_task(p);
L
Linus Torvalds 已提交
5793 5794
	} while_each_thread(g, p);

5795 5796
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5797 5798 5799
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5800
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5801 5802 5803
	/*
	 * Only show locks if all tasks are dumped:
	 */
5804
	if (!state_filter)
I
Ingo Molnar 已提交
5805
		debug_show_all_locks();
L
Linus Torvalds 已提交
5806 5807
}

I
Ingo Molnar 已提交
5808 5809
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5810
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5811 5812
}

5813 5814 5815 5816 5817 5818 5819 5820
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5821
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5822
{
5823
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5824 5825
	unsigned long flags;

5826
	raw_spin_lock_irqsave(&rq->lock, flags);
5827

I
Ingo Molnar 已提交
5828
	__sched_fork(idle);
5829
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5830 5831
	idle->se.exec_start = sched_clock();

5832
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5844
	__set_task_cpu(idle, cpu);
5845
	rcu_read_unlock();
L
Linus Torvalds 已提交
5846 5847

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
5848 5849
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
5850
#endif
5851
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5852 5853

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5854
	task_thread_info(idle)->preempt_count = 0;
J
Jonathan Corbet 已提交
5855

I
Ingo Molnar 已提交
5856 5857 5858 5859
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5860
	ftrace_graph_init_idle_task(idle, cpu);
L
Linus Torvalds 已提交
5861 5862 5863 5864 5865 5866 5867
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5868
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5869
 */
5870
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5871

I
Ingo Molnar 已提交
5872 5873 5874 5875 5876 5877 5878 5879 5880
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5881
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5882
{
5883
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5898

5899 5900
	return factor;
}
I
Ingo Molnar 已提交
5901

5902 5903 5904
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5905

5906 5907 5908 5909 5910 5911 5912
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}
5913

5914 5915 5916
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5917 5918
}

L
Linus Torvalds 已提交
5919 5920 5921 5922
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5923 5924 5925 5926 5927 5928
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5929
 *    it and puts it into the right queue.
5930 5931
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5932 5933 5934 5935 5936 5937 5938 5939
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5940
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5941 5942
 * call is not atomic; no spinlocks may be held.
 */
5943
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5944 5945
{
	unsigned long flags;
5946
	struct rq *rq;
5947
	unsigned int dest_cpu;
5948
	int ret = 0;
L
Linus Torvalds 已提交
5949 5950

	rq = task_rq_lock(p, &flags);
5951

5952 5953 5954
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

5955
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5956 5957 5958 5959
		ret = -EINVAL;
		goto out;
	}

5960
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5961 5962 5963 5964
		ret = -EINVAL;
		goto out;
	}

5965
	if (p->sched_class->set_cpus_allowed)
5966
		p->sched_class->set_cpus_allowed(p, new_mask);
5967
	else {
5968 5969
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5970 5971
	}

L
Linus Torvalds 已提交
5972
	/* Can the task run on the task's current CPU? If so, we're done */
5973
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5974 5975
		goto out;

5976
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5977
	if (p->on_rq) {
5978
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5979
		/* Need help from migration thread: drop lock and wait. */
5980
		task_rq_unlock(rq, p, &flags);
5981
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5982 5983 5984 5985
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
5986
	task_rq_unlock(rq, p, &flags);
5987

L
Linus Torvalds 已提交
5988 5989
	return ret;
}
5990
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5991 5992

/*
I
Ingo Molnar 已提交
5993
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5994 5995 5996 5997 5998 5999
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6000 6001
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6002
 */
6003
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6004
{
6005
	struct rq *rq_dest, *rq_src;
6006
	int ret = 0;
L
Linus Torvalds 已提交
6007

6008
	if (unlikely(!cpu_active(dest_cpu)))
6009
		return ret;
L
Linus Torvalds 已提交
6010 6011 6012 6013

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

6014
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
6015 6016 6017
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6018
		goto done;
L
Linus Torvalds 已提交
6019
	/* Affinity changed (again). */
6020
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6021
		goto fail;
L
Linus Torvalds 已提交
6022

6023 6024 6025 6026
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
6027
	if (p->on_rq) {
6028
		deactivate_task(rq_src, p, 0);
6029
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6030
		activate_task(rq_dest, p, 0);
6031
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6032
	}
L
Linus Torvalds 已提交
6033
done:
6034
	ret = 1;
L
Linus Torvalds 已提交
6035
fail:
L
Linus Torvalds 已提交
6036
	double_rq_unlock(rq_src, rq_dest);
6037
	raw_spin_unlock(&p->pi_lock);
6038
	return ret;
L
Linus Torvalds 已提交
6039 6040 6041
}

/*
6042 6043 6044
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
6045
 */
6046
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
6047
{
6048
	struct migration_arg *arg = data;
6049

6050 6051 6052 6053
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
6054
	local_irq_disable();
6055
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6056
	local_irq_enable();
L
Linus Torvalds 已提交
6057
	return 0;
6058 6059
}

L
Linus Torvalds 已提交
6060
#ifdef CONFIG_HOTPLUG_CPU
6061

6062
/*
6063 6064
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
6065
 */
6066
void idle_task_exit(void)
L
Linus Torvalds 已提交
6067
{
6068
	struct mm_struct *mm = current->active_mm;
6069

6070
	BUG_ON(cpu_online(smp_processor_id()));
6071

6072 6073 6074
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
6075 6076 6077 6078 6079 6080 6081 6082 6083
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6084
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6085
{
6086
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
6087 6088 6089 6090 6091

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
6092
/*
6093
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
6094
 */
6095
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
6096
{
6097 6098
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
6099 6100
}

6101
/*
6102 6103 6104 6105 6106 6107
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
6108
 */
6109
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
6110
{
6111
	struct rq *rq = cpu_rq(dead_cpu);
6112 6113
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
6114 6115

	/*
6116 6117 6118 6119 6120 6121 6122
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
6123
	 */
6124
	rq->stop = NULL;
6125

I
Ingo Molnar 已提交
6126
	for ( ; ; ) {
6127 6128 6129 6130 6131
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
6132
			break;
6133

6134
		next = pick_next_task(rq);
6135
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
6136
		next->sched_class->put_prev_task(rq, next);
6137

6138 6139 6140 6141 6142 6143 6144
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
6145
	}
6146

6147
	rq->stop = stop;
6148
}
6149

L
Linus Torvalds 已提交
6150 6151
#endif /* CONFIG_HOTPLUG_CPU */

6152 6153 6154
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6155 6156
	{
		.procname	= "sched_domain",
6157
		.mode		= 0555,
6158
	},
6159
	{}
6160 6161 6162
};

static struct ctl_table sd_ctl_root[] = {
6163 6164
	{
		.procname	= "kernel",
6165
		.mode		= 0555,
6166 6167
		.child		= sd_ctl_dir,
	},
6168
	{}
6169 6170 6171 6172 6173
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6174
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6175 6176 6177 6178

	return entry;
}

6179 6180
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6181
	struct ctl_table *entry;
6182

6183 6184 6185
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6186
	 * will always be set. In the lowest directory the names are
6187 6188 6189
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6190 6191
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6192 6193 6194
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6195 6196 6197 6198 6199

	kfree(*tablep);
	*tablep = NULL;
}

6200
static void
6201
set_table_entry(struct ctl_table *entry,
6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6215
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6216

6217 6218 6219
	if (table == NULL)
		return NULL;

6220
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6221
		sizeof(long), 0644, proc_doulongvec_minmax);
6222
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6223
		sizeof(long), 0644, proc_doulongvec_minmax);
6224
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6225
		sizeof(int), 0644, proc_dointvec_minmax);
6226
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6227
		sizeof(int), 0644, proc_dointvec_minmax);
6228
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6229
		sizeof(int), 0644, proc_dointvec_minmax);
6230
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6231
		sizeof(int), 0644, proc_dointvec_minmax);
6232
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6233
		sizeof(int), 0644, proc_dointvec_minmax);
6234
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6235
		sizeof(int), 0644, proc_dointvec_minmax);
6236
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6237
		sizeof(int), 0644, proc_dointvec_minmax);
6238
	set_table_entry(&table[9], "cache_nice_tries",
6239 6240
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6241
	set_table_entry(&table[10], "flags", &sd->flags,
6242
		sizeof(int), 0644, proc_dointvec_minmax);
6243 6244 6245
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6246 6247 6248 6249

	return table;
}

6250
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6251 6252 6253 6254 6255 6256 6257 6258 6259
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6260 6261
	if (table == NULL)
		return NULL;
6262 6263 6264 6265 6266

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6267
		entry->mode = 0555;
6268 6269 6270 6271 6272 6273 6274 6275
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6276
static void register_sched_domain_sysctl(void)
6277
{
6278
	int i, cpu_num = num_possible_cpus();
6279 6280 6281
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6282 6283 6284
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6285 6286 6287
	if (entry == NULL)
		return;

6288
	for_each_possible_cpu(i) {
6289 6290
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6291
		entry->mode = 0555;
6292
		entry->child = sd_alloc_ctl_cpu_table(i);
6293
		entry++;
6294
	}
6295 6296

	WARN_ON(sd_sysctl_header);
6297 6298
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6299

6300
/* may be called multiple times per register */
6301 6302
static void unregister_sched_domain_sysctl(void)
{
6303 6304
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6305
	sd_sysctl_header = NULL;
6306 6307
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6308
}
6309
#else
6310 6311 6312 6313
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6314 6315 6316 6317
{
}
#endif

6318 6319 6320 6321 6322
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6323
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6343
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6344 6345 6346 6347
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6348 6349 6350 6351
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6352 6353
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6354
{
6355
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6356
	unsigned long flags;
6357
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6358

6359
	switch (action & ~CPU_TASKS_FROZEN) {
6360

L
Linus Torvalds 已提交
6361
	case CPU_UP_PREPARE:
6362
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
6363
		break;
6364

L
Linus Torvalds 已提交
6365
	case CPU_ONLINE:
6366
		/* Update our root-domain */
6367
		raw_spin_lock_irqsave(&rq->lock, flags);
6368
		if (rq->rd) {
6369
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6370 6371

			set_rq_online(rq);
6372
		}
6373
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6374
		break;
6375

L
Linus Torvalds 已提交
6376
#ifdef CONFIG_HOTPLUG_CPU
6377
	case CPU_DYING:
6378
		sched_ttwu_pending();
G
Gregory Haskins 已提交
6379
		/* Update our root-domain */
6380
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6381
		if (rq->rd) {
6382
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6383
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6384
		}
6385 6386
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
6387
		raw_spin_unlock_irqrestore(&rq->lock, flags);
6388 6389 6390

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
6391
		break;
L
Linus Torvalds 已提交
6392 6393
#endif
	}
6394 6395 6396

	update_max_interval();

L
Linus Torvalds 已提交
6397 6398 6399
	return NOTIFY_OK;
}

6400 6401 6402
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
6403
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
6404
 */
6405
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6406
	.notifier_call = migration_call,
6407
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
6408 6409
};

6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

6435
static int __init migration_init(void)
L
Linus Torvalds 已提交
6436 6437
{
	void *cpu = (void *)(long)smp_processor_id();
6438
	int err;
6439

6440
	/* Initialize migration for the boot CPU */
6441 6442
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6443 6444
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6445

6446 6447 6448 6449
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

6450
	return 0;
L
Linus Torvalds 已提交
6451
}
6452
early_initcall(migration_init);
L
Linus Torvalds 已提交
6453 6454 6455
#endif

#ifdef CONFIG_SMP
6456

6457 6458
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

6459
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6460

6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6471
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6472
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6473
{
I
Ingo Molnar 已提交
6474
	struct sched_group *group = sd->groups;
6475
	char str[256];
L
Linus Torvalds 已提交
6476

R
Rusty Russell 已提交
6477
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6478
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6479 6480 6481 6482

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6483
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6484
		if (sd->parent)
P
Peter Zijlstra 已提交
6485 6486
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6487
		return -1;
N
Nick Piggin 已提交
6488 6489
	}

P
Peter Zijlstra 已提交
6490
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6491

6492
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6493 6494
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6495
	}
6496
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6497 6498
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6499
	}
L
Linus Torvalds 已提交
6500

I
Ingo Molnar 已提交
6501
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6502
	do {
I
Ingo Molnar 已提交
6503
		if (!group) {
P
Peter Zijlstra 已提交
6504 6505
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6506 6507 6508
			break;
		}

6509
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6510 6511 6512
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6513 6514
			break;
		}
L
Linus Torvalds 已提交
6515

6516
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6517 6518
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6519 6520
			break;
		}
L
Linus Torvalds 已提交
6521

6522
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6523 6524
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6525 6526
			break;
		}
L
Linus Torvalds 已提交
6527

6528
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6529

R
Rusty Russell 已提交
6530
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6531

P
Peter Zijlstra 已提交
6532
		printk(KERN_CONT " %s", str);
6533
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6534 6535
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6536
		}
L
Linus Torvalds 已提交
6537

I
Ingo Molnar 已提交
6538 6539
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6540
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6541

6542
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6543
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6544

6545 6546
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6547 6548
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6549 6550
	return 0;
}
L
Linus Torvalds 已提交
6551

I
Ingo Molnar 已提交
6552 6553 6554
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
6555

6556 6557 6558
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6559 6560 6561 6562
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6563

I
Ingo Molnar 已提交
6564 6565 6566
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
6567
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
6568
			break;
L
Linus Torvalds 已提交
6569 6570
		level++;
		sd = sd->parent;
6571
		if (!sd)
I
Ingo Molnar 已提交
6572 6573
			break;
	}
L
Linus Torvalds 已提交
6574
}
6575
#else /* !CONFIG_SCHED_DEBUG */
6576
# define sched_domain_debug(sd, cpu) do { } while (0)
6577
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6578

6579
static int sd_degenerate(struct sched_domain *sd)
6580
{
6581
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6582 6583 6584 6585 6586 6587
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6588 6589 6590
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6591 6592 6593 6594 6595
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6596
	if (sd->flags & (SD_WAKE_AFFINE))
6597 6598 6599 6600 6601
		return 0;

	return 1;
}

6602 6603
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6604 6605 6606 6607 6608 6609
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6610
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6611 6612 6613 6614 6615 6616 6617
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6618 6619 6620
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6621 6622
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6623 6624 6625 6626 6627 6628 6629
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6630
static void free_rootdomain(struct rcu_head *rcu)
6631
{
6632
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6633

6634
	cpupri_cleanup(&rd->cpupri);
6635 6636 6637 6638 6639 6640
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6641 6642
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6643
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6644 6645
	unsigned long flags;

6646
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6647 6648

	if (rq->rd) {
I
Ingo Molnar 已提交
6649
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6650

6651
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6652
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6653

6654
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6655

I
Ingo Molnar 已提交
6656 6657 6658 6659 6660 6661 6662
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6663 6664 6665 6666 6667
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6668
	cpumask_set_cpu(rq->cpu, rd->span);
6669
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6670
		set_rq_online(rq);
G
Gregory Haskins 已提交
6671

6672
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6673 6674

	if (old_rd)
6675
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
6676 6677
}

6678
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6679 6680 6681
{
	memset(rd, 0, sizeof(*rd));

6682
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6683
		goto out;
6684
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6685
		goto free_span;
6686
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6687
		goto free_online;
6688

6689
	if (cpupri_init(&rd->cpupri) != 0)
6690
		goto free_rto_mask;
6691
	return 0;
6692

6693 6694
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6695 6696 6697 6698
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6699
out:
6700
	return -ENOMEM;
G
Gregory Haskins 已提交
6701 6702 6703 6704
}

static void init_defrootdomain(void)
{
6705
	init_rootdomain(&def_root_domain);
6706

G
Gregory Haskins 已提交
6707 6708 6709
	atomic_set(&def_root_domain.refcount, 1);
}

6710
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6711 6712 6713 6714 6715 6716 6717
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6718
	if (init_rootdomain(rd) != 0) {
6719 6720 6721
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6722 6723 6724 6725

	return rd;
}

6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
	if (atomic_dec_and_test(&sd->groups->ref))
		kfree(sd->groups);
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

L
Linus Torvalds 已提交
6745
/*
I
Ingo Molnar 已提交
6746
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6747 6748
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6749 6750
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6751
{
6752
	struct rq *rq = cpu_rq(cpu);
6753 6754 6755
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6756
	for (tmp = sd; tmp; ) {
6757 6758 6759
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6760

6761
		if (sd_parent_degenerate(tmp, parent)) {
6762
			tmp->parent = parent->parent;
6763 6764
			if (parent->parent)
				parent->parent->child = tmp;
6765
			destroy_sched_domain(parent, cpu);
6766 6767
		} else
			tmp = tmp->parent;
6768 6769
	}

6770
	if (sd && sd_degenerate(sd)) {
6771
		tmp = sd;
6772
		sd = sd->parent;
6773
		destroy_sched_domain(tmp, cpu);
6774 6775 6776
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6777

6778
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
6779

G
Gregory Haskins 已提交
6780
	rq_attach_root(rq, rd);
6781
	tmp = rq->sd;
N
Nick Piggin 已提交
6782
	rcu_assign_pointer(rq->sd, sd);
6783
	destroy_sched_domains(tmp, cpu);
L
Linus Torvalds 已提交
6784 6785 6786
}

/* cpus with isolated domains */
6787
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6788 6789 6790 6791

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6792
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6793
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6794 6795 6796
	return 1;
}

I
Ingo Molnar 已提交
6797
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6798

6799
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6800

6801
#ifdef CONFIG_NUMA
6802

6803 6804 6805 6806 6807
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6808
 * Find the next node to include in a given scheduling domain. Simply
6809 6810 6811 6812
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6813
static int find_next_best_node(int node, nodemask_t *used_nodes)
6814
{
6815
	int i, n, val, min_val, best_node = -1;
6816 6817 6818

	min_val = INT_MAX;

6819
	for (i = 0; i < nr_node_ids; i++) {
6820
		/* Start at @node */
6821
		n = (node + i) % nr_node_ids;
6822 6823 6824 6825 6826

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6827
		if (node_isset(n, *used_nodes))
6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6839 6840
	if (best_node != -1)
		node_set(best_node, *used_nodes);
6841 6842 6843 6844 6845 6846
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6847
 * @span: resulting cpumask
6848
 *
I
Ingo Molnar 已提交
6849
 * Given a node, construct a good cpumask for its sched_domain to span. It
6850 6851 6852
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6853
static void sched_domain_node_span(int node, struct cpumask *span)
6854
{
6855
	nodemask_t used_nodes;
6856
	int i;
6857

6858
	cpumask_clear(span);
6859
	nodes_clear(used_nodes);
6860

6861
	cpumask_or(span, span, cpumask_of_node(node));
6862
	node_set(node, used_nodes);
6863 6864

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6865
		int next_node = find_next_best_node(node, &used_nodes);
6866 6867
		if (next_node < 0)
			break;
6868
		cpumask_or(span, span, cpumask_of_node(next_node));
6869 6870
	}
}
6871 6872 6873 6874 6875 6876 6877 6878 6879

static const struct cpumask *cpu_node_mask(int cpu)
{
	lockdep_assert_held(&sched_domains_mutex);

	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);

	return sched_domains_tmpmask;
}
6880 6881 6882 6883 6884

static const struct cpumask *cpu_allnodes_mask(int cpu)
{
	return cpu_possible_mask;
}
6885
#endif /* CONFIG_NUMA */
6886

6887 6888 6889 6890 6891
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

6892
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6893

6894 6895 6896 6897 6898
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
};

6899
struct s_data {
6900
	struct sched_domain ** __percpu sd;
6901 6902 6903
	struct root_domain	*rd;
};

6904 6905
enum s_alloc {
	sa_rootdomain,
6906
	sa_sd,
6907
	sa_sd_storage,
6908 6909 6910
	sa_none,
};

6911 6912 6913
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6914 6915 6916
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

struct sched_domain_topology_level {
6917 6918
	sched_domain_init_f init;
	sched_domain_mask_f mask;
6919
	struct sd_data      data;
6920 6921
};

6922
/*
6923
 * Assumes the sched_domain tree is fully constructed
6924
 */
6925
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6926
{
6927 6928
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6929

6930 6931
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6932

6933
	if (sg)
6934 6935 6936
		*sg = *per_cpu_ptr(sdd->sg, cpu);

	return cpu;
6937 6938
}

6939
/*
6940 6941 6942 6943 6944 6945 6946 6947
 * build_sched_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
 *
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
6948
 */
6949
static void
6950
build_sched_groups(struct sched_domain *sd)
L
Linus Torvalds 已提交
6951
{
6952 6953 6954
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6955
	struct cpumask *covered;
6956
	int i;
6957

6958 6959 6960
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6961
	cpumask_clear(covered);
6962

6963 6964 6965 6966
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
6967

6968 6969
		if (cpumask_test_cpu(i, covered))
			continue;
6970

6971 6972
		cpumask_clear(sched_group_cpus(sg));
		sg->cpu_power = 0;
6973

6974 6975 6976
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6977

6978 6979 6980
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6981

6982 6983 6984 6985 6986 6987 6988
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6989
}
6990

6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	WARN_ON(!sd || !sd->groups);

7005
	if (cpu != group_first_cpu(sd->groups))
7006 7007
		return;

7008 7009
	sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));

7010
	update_group_power(sd, cpu);
7011 7012
}

7013 7014 7015 7016 7017
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7018 7019 7020 7021 7022 7023
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7024 7025 7026 7027 7028 7029 7030 7031 7032
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
7046 7047 7048
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
7049

7050
static int default_relax_domain_level = -1;
7051
int sched_domain_level_max;
7052 7053 7054

static int __init setup_relax_domain_level(char *str)
{
7055 7056 7057
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
7058
	if (val < sched_domain_level_max)
7059 7060
		default_relax_domain_level = val;

7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
7079
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7080 7081
	} else {
		/* turn on idle balance on this domain */
7082
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7083 7084 7085
	}
}

7086 7087 7088
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

7089 7090 7091 7092 7093
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
7094 7095
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
7096 7097
	case sa_sd:
		free_percpu(d->sd); /* fall through */
7098
	case sa_sd_storage:
7099
		__sdt_free(cpu_map); /* fall through */
7100 7101 7102 7103
	case sa_none:
		break;
	}
}
7104

7105 7106 7107
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
7108 7109
	memset(d, 0, sizeof(*d));

7110 7111
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
7112 7113 7114
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
7115
	d->rd = alloc_rootdomain();
7116
	if (!d->rd)
7117
		return sa_sd;
7118 7119
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
7120

7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;
	struct sched_group *sg = sd->groups;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

	if (cpu == cpumask_first(sched_group_cpus(sg))) {
		WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
	}
}

7140 7141
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
7142
{
7143
	return topology_thread_cpumask(cpu);
7144
}
7145
#endif
7146

7147 7148 7149
/*
 * Topology list, bottom-up.
 */
7150
static struct sched_domain_topology_level default_topology[] = {
7151 7152
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
7153
#endif
7154
#ifdef CONFIG_SCHED_MC
7155
	{ sd_init_MC, cpu_coregroup_mask, },
7156
#endif
7157 7158 7159 7160 7161 7162 7163
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
#ifdef CONFIG_NUMA
	{ sd_init_NODE, cpu_node_mask, },
	{ sd_init_ALLNODES, cpu_allnodes_mask, },
L
Linus Torvalds 已提交
7164
#endif
7165 7166 7167 7168 7169
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sg, j) = sg;
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
			kfree(*per_cpu_ptr(sdd->sd, j));
			kfree(*per_cpu_ptr(sdd->sg, j));
		}
		free_percpu(sdd->sd);
		free_percpu(sdd->sg);
	}
}

7226 7227
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
7228
		struct sched_domain_attr *attr, struct sched_domain *child,
7229 7230
		int cpu)
{
7231
	struct sched_domain *sd = tl->init(tl, cpu);
7232
	if (!sd)
7233
		return child;
7234 7235 7236

	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7237 7238 7239
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
7240
		child->parent = sd;
7241
	}
7242
	sd->child = child;
7243 7244 7245 7246

	return sd;
}

7247 7248 7249 7250
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
7251 7252
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
7253 7254
{
	enum s_alloc alloc_state = sa_none;
7255
	struct sched_domain *sd;
7256
	struct s_data d;
7257
	int i, ret = -ENOMEM;
7258

7259 7260 7261
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
7262

7263
	/* Set up domains for cpus specified by the cpu_map. */
7264
	for_each_cpu(i, cpu_map) {
7265 7266
		struct sched_domain_topology_level *tl;

7267
		sd = NULL;
7268 7269
		for (tl = sched_domain_topology; tl->init; tl++)
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7270

7271 7272 7273
		while (sd->child)
			sd = sd->child;

7274
		*per_cpu_ptr(d.sd, i) = sd;
7275 7276 7277 7278 7279 7280 7281 7282
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
			get_group(i, sd->private, &sd->groups);
			atomic_inc(&sd->groups->ref);
7283

7284 7285 7286
			if (i != cpumask_first(sched_domain_span(sd)))
				continue;

7287
			build_sched_groups(sd);
7288
		}
7289
	}
7290

L
Linus Torvalds 已提交
7291
	/* Calculate CPU power for physical packages and nodes */
7292 7293 7294
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
7295

7296 7297
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
7298
			init_sched_groups_power(i, sd);
7299
		}
7300
	}
7301

L
Linus Torvalds 已提交
7302
	/* Attach the domains */
7303
	rcu_read_lock();
7304
	for_each_cpu(i, cpu_map) {
7305
		sd = *per_cpu_ptr(d.sd, i);
7306
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7307
	}
7308
	rcu_read_unlock();
7309

7310
	ret = 0;
7311
error:
7312
	__free_domain_allocs(&d, alloc_state, cpu_map);
7313
	return ret;
L
Linus Torvalds 已提交
7314
}
P
Paul Jackson 已提交
7315

7316
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7317
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7318 7319
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7320 7321 7322

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7323 7324
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7325
 */
7326
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7327

7328 7329 7330 7331 7332 7333
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7334
{
7335
	return 0;
7336 7337
}

7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7363
/*
I
Ingo Molnar 已提交
7364
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7365 7366
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7367
 */
7368
static int init_sched_domains(const struct cpumask *cpu_map)
7369
{
7370 7371
	int err;

7372
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7373
	ndoms_cur = 1;
7374
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7375
	if (!doms_cur)
7376 7377
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7378
	dattr_cur = NULL;
7379
	err = build_sched_domains(doms_cur[0], NULL);
7380
	register_sched_domain_sysctl();
7381 7382

	return err;
7383 7384 7385 7386 7387 7388
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7389
static void detach_destroy_domains(const struct cpumask *cpu_map)
7390 7391 7392
{
	int i;

7393
	rcu_read_lock();
7394
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7395
		cpu_attach_domain(NULL, &def_root_domain, i);
7396
	rcu_read_unlock();
7397 7398
}

7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7415 7416
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7417
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7418 7419 7420
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7421
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7422 7423 7424
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7425 7426 7427
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7428 7429 7430 7431 7432 7433
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7434
 *
7435
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7436 7437
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7438
 *
P
Paul Jackson 已提交
7439 7440
 * Call with hotplug lock held
 */
7441
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7442
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7443
{
7444
	int i, j, n;
7445
	int new_topology;
P
Paul Jackson 已提交
7446

7447
	mutex_lock(&sched_domains_mutex);
7448

7449 7450 7451
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7452 7453 7454
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7455
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7456 7457 7458

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7459
		for (j = 0; j < n && !new_topology; j++) {
7460
			if (cpumask_equal(doms_cur[i], doms_new[j])
7461
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7462 7463 7464
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7465
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7466 7467 7468 7469
match1:
		;
	}

7470 7471
	if (doms_new == NULL) {
		ndoms_cur = 0;
7472
		doms_new = &fallback_doms;
7473
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7474
		WARN_ON_ONCE(dattr_new);
7475 7476
	}

P
Paul Jackson 已提交
7477 7478
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7479
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7480
			if (cpumask_equal(doms_new[i], doms_cur[j])
7481
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7482 7483 7484
				goto match2;
		}
		/* no match - add a new doms_new */
7485
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7486 7487 7488 7489 7490
match2:
		;
	}

	/* Remember the new sched domains */
7491 7492
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7493
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7494
	doms_cur = doms_new;
7495
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7496
	ndoms_cur = ndoms_new;
7497 7498

	register_sched_domain_sysctl();
7499

7500
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7501 7502
}

7503
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7504
static void reinit_sched_domains(void)
7505
{
7506
	get_online_cpus();
7507 7508 7509 7510

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7511
	rebuild_sched_domains();
7512
	put_online_cpus();
7513 7514 7515 7516
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7517
	unsigned int level = 0;
7518

7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7530 7531 7532
		return -EINVAL;

	if (smt)
7533
		sched_smt_power_savings = level;
7534
	else
7535
		sched_mc_power_savings = level;
7536

7537
	reinit_sched_domains();
7538

7539
	return count;
7540 7541 7542
}

#ifdef CONFIG_SCHED_MC
7543
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7544
					   struct sysdev_class_attribute *attr,
7545
					   char *page)
7546 7547 7548
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7549
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7550
					    struct sysdev_class_attribute *attr,
7551
					    const char *buf, size_t count)
7552 7553 7554
{
	return sched_power_savings_store(buf, count, 0);
}
7555 7556 7557
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7558 7559 7560
#endif

#ifdef CONFIG_SCHED_SMT
7561
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7562
					    struct sysdev_class_attribute *attr,
7563
					    char *page)
7564 7565 7566
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7567
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7568
					     struct sysdev_class_attribute *attr,
7569
					     const char *buf, size_t count)
7570 7571 7572
{
	return sched_power_savings_store(buf, count, 1);
}
7573 7574
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7575 7576 7577
		   sched_smt_power_savings_store);
#endif

7578
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7594
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7595

L
Linus Torvalds 已提交
7596
/*
7597 7598 7599
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7600
 */
7601 7602
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7603
{
7604
	switch (action & ~CPU_TASKS_FROZEN) {
7605
	case CPU_ONLINE:
7606
	case CPU_DOWN_FAILED:
7607
		cpuset_update_active_cpus();
7608
		return NOTIFY_OK;
7609 7610 7611 7612
	default:
		return NOTIFY_DONE;
	}
}
7613

7614 7615
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7616 7617 7618 7619 7620
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
7621 7622 7623 7624 7625 7626 7627
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7628
{
P
Peter Zijlstra 已提交
7629 7630
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7631 7632
	switch (action) {
	case CPU_DOWN_PREPARE:
7633
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7634
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7635 7636 7637
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7638
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7639
	case CPU_ONLINE:
7640
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7641
		enable_runtime(cpu_rq(cpu));
7642 7643
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7644 7645 7646 7647 7648 7649 7650
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7651 7652 7653
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7654
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7655

7656
	get_online_cpus();
7657
	mutex_lock(&sched_domains_mutex);
7658
	init_sched_domains(cpu_active_mask);
7659 7660 7661
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7662
	mutex_unlock(&sched_domains_mutex);
7663
	put_online_cpus();
7664

7665 7666
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7667 7668 7669 7670

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7671
	init_hrtick();
7672 7673

	/* Move init over to a non-isolated CPU */
7674
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7675
		BUG();
I
Ingo Molnar 已提交
7676
	sched_init_granularity();
7677
	free_cpumask_var(non_isolated_cpus);
7678

7679
	init_sched_rt_class();
L
Linus Torvalds 已提交
7680 7681 7682 7683
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7684
	sched_init_granularity();
L
Linus Torvalds 已提交
7685 7686 7687
}
#endif /* CONFIG_SMP */

7688 7689
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7690 7691 7692 7693 7694 7695 7696
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7697
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7698 7699
{
	cfs_rq->tasks_timeline = RB_ROOT;
7700
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7701 7702
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
7703
	/* allow initial update_cfs_load() to truncate */
7704
#ifdef CONFIG_SMP
7705
	cfs_rq->load_stamp = 1;
7706
#endif
I
Ingo Molnar 已提交
7707
#endif
P
Peter Zijlstra 已提交
7708
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7709 7710
}

P
Peter Zijlstra 已提交
7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7724
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7725
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7726
#ifdef CONFIG_SMP
7727
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7728 7729
#endif
#endif
P
Peter Zijlstra 已提交
7730 7731 7732
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7733
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7734 7735 7736 7737
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7738
	rt_rq->rt_runtime = 0;
7739
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7740

7741
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7742
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7743 7744
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7745 7746
}

P
Peter Zijlstra 已提交
7747
#ifdef CONFIG_FAIR_GROUP_SCHED
7748
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7749
				struct sched_entity *se, int cpu,
7750
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7751
{
7752
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7753 7754 7755 7756 7757
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;

	tg->se[cpu] = se;
7758
	/* se could be NULL for root_task_group */
D
Dhaval Giani 已提交
7759 7760 7761
	if (!se)
		return;

7762 7763 7764 7765 7766
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7767
	se->my_q = cfs_rq;
7768
	update_load_set(&se->load, 0);
7769
	se->parent = parent;
P
Peter Zijlstra 已提交
7770
}
7771
#endif
P
Peter Zijlstra 已提交
7772

7773
#ifdef CONFIG_RT_GROUP_SCHED
7774
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7775
		struct sched_rt_entity *rt_se, int cpu,
7776
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7777
{
7778 7779
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7780 7781 7782
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7783
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7784 7785

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7786 7787 7788
	if (!rt_se)
		return;

7789 7790 7791 7792 7793
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7794
	rt_se->my_q = rt_rq;
7795
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7796 7797 7798 7799
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7800 7801
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7802
	int i, j;
7803 7804 7805 7806 7807 7808 7809
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7810
#endif
7811
#ifdef CONFIG_CPUMASK_OFFSTACK
7812
	alloc_size += num_possible_cpus() * cpumask_size();
7813 7814
#endif
	if (alloc_size) {
7815
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7816 7817

#ifdef CONFIG_FAIR_GROUP_SCHED
7818
		root_task_group.se = (struct sched_entity **)ptr;
7819 7820
		ptr += nr_cpu_ids * sizeof(void **);

7821
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7822
		ptr += nr_cpu_ids * sizeof(void **);
7823

7824
#endif /* CONFIG_FAIR_GROUP_SCHED */
7825
#ifdef CONFIG_RT_GROUP_SCHED
7826
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7827 7828
		ptr += nr_cpu_ids * sizeof(void **);

7829
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7830 7831
		ptr += nr_cpu_ids * sizeof(void **);

7832
#endif /* CONFIG_RT_GROUP_SCHED */
7833 7834 7835 7836 7837 7838
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7839
	}
I
Ingo Molnar 已提交
7840

G
Gregory Haskins 已提交
7841 7842 7843 7844
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7845 7846 7847 7848
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
7849
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7850
			global_rt_period(), global_rt_runtime());
7851
#endif /* CONFIG_RT_GROUP_SCHED */
7852

D
Dhaval Giani 已提交
7853
#ifdef CONFIG_CGROUP_SCHED
7854 7855
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7856
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
7857
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7858

7859
	for_each_possible_cpu(i) {
7860
		struct rq *rq;
L
Linus Torvalds 已提交
7861 7862

		rq = cpu_rq(i);
7863
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7864
		rq->nr_running = 0;
7865 7866
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7867
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7868
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7869
#ifdef CONFIG_FAIR_GROUP_SCHED
7870
		root_task_group.shares = root_task_group_load;
P
Peter Zijlstra 已提交
7871
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7872
		/*
7873
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7874 7875 7876 7877
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7878
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7879 7880 7881
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7882
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7883 7884 7885
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7886
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7887
		 *
7888 7889
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7890
		 */
7891
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7892 7893 7894
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7895
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7896
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7897
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7898
#endif
L
Linus Torvalds 已提交
7899

I
Ingo Molnar 已提交
7900 7901
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7902 7903 7904

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7905
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7906
		rq->sd = NULL;
G
Gregory Haskins 已提交
7907
		rq->rd = NULL;
7908
		rq->cpu_power = SCHED_LOAD_SCALE;
7909
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7910
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7911
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7912
		rq->push_cpu = 0;
7913
		rq->cpu = i;
7914
		rq->online = 0;
7915 7916
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7917
		rq_attach_root(rq, &def_root_domain);
7918 7919 7920 7921
#ifdef CONFIG_NO_HZ
		rq->nohz_balance_kick = 0;
		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
#endif
L
Linus Torvalds 已提交
7922
#endif
P
Peter Zijlstra 已提交
7923
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7924 7925 7926
		atomic_set(&rq->nr_iowait, 0);
	}

7927
	set_load_weight(&init_task);
7928

7929 7930 7931 7932
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7933
#ifdef CONFIG_SMP
7934
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7935 7936
#endif

7937
#ifdef CONFIG_RT_MUTEXES
7938
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7939 7940
#endif

L
Linus Torvalds 已提交
7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7954 7955 7956

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7957 7958 7959 7960
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7961

7962
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7963
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7964
#ifdef CONFIG_SMP
7965
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7966
#ifdef CONFIG_NO_HZ
7967 7968 7969 7970 7971
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
	atomic_set(&nohz.load_balancer, nr_cpu_ids);
	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7972
#endif
R
Rusty Russell 已提交
7973 7974 7975
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7976
#endif /* SMP */
7977

7978
	scheduler_running = 1;
L
Linus Torvalds 已提交
7979 7980 7981
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7982 7983
static inline int preempt_count_equals(int preempt_offset)
{
7984
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7985

A
Arnd Bergmann 已提交
7986
	return (nested == preempt_offset);
7987 7988
}

7989
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7990
{
7991
#ifdef in_atomic
L
Linus Torvalds 已提交
7992 7993
	static unsigned long prev_jiffy;	/* ratelimiting */

7994 7995
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7996 7997 7998 7999 8000
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
8001 8002 8003 8004 8005 8006 8007
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
8008 8009 8010 8011 8012

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8013 8014 8015 8016 8017 8018
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8019 8020
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
8021 8022
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
8023
	int on_rq;
8024

P
Peter Zijlstra 已提交
8025
	on_rq = p->on_rq;
8026 8027 8028 8029 8030 8031 8032
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
8033 8034

	check_class_changed(rq, p, prev_class, old_prio);
8035 8036
}

L
Linus Torvalds 已提交
8037 8038
void normalize_rt_tasks(void)
{
8039
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8040
	unsigned long flags;
8041
	struct rq *rq;
L
Linus Torvalds 已提交
8042

8043
	read_lock_irqsave(&tasklist_lock, flags);
8044
	do_each_thread(g, p) {
8045 8046 8047 8048 8049 8050
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8051 8052
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
8053 8054 8055
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
8056
#endif
I
Ingo Molnar 已提交
8057 8058 8059 8060 8061 8062 8063 8064

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8065
			continue;
I
Ingo Molnar 已提交
8066
		}
L
Linus Torvalds 已提交
8067

8068
		raw_spin_lock(&p->pi_lock);
8069
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8070

8071
		normalize_task(rq, p);
8072

8073
		__task_rq_unlock(rq);
8074
		raw_spin_unlock(&p->pi_lock);
8075 8076
	} while_each_thread(g, p);

8077
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8078 8079 8080
}

#endif /* CONFIG_MAGIC_SYSRQ */
8081

8082
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8083
/*
8084
 * These functions are only useful for the IA64 MCA handling, or kdb.
8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8099
struct task_struct *curr_task(int cpu)
8100 8101 8102 8103
{
	return cpu_curr(cpu);
}

8104 8105 8106
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
8107 8108 8109 8110 8111 8112
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8113 8114
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8115 8116 8117 8118 8119 8120 8121
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8122
void set_curr_task(int cpu, struct task_struct *p)
8123 8124 8125 8126 8127
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8128

8129 8130
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8145 8146
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8147 8148
{
	struct cfs_rq *cfs_rq;
8149
	struct sched_entity *se;
S
Srivatsa Vaddagiri 已提交
8150 8151
	int i;

8152
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8153 8154
	if (!tg->cfs_rq)
		goto err;
8155
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8156 8157
	if (!tg->se)
		goto err;
8158 8159

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8160 8161

	for_each_possible_cpu(i) {
8162 8163
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8164 8165 8166
		if (!cfs_rq)
			goto err;

8167 8168
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8169
		if (!se)
8170
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8171

8172
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8173 8174 8175 8176
	}

	return 1;

P
Peter Zijlstra 已提交
8177
err_free_rq:
8178
	kfree(cfs_rq);
P
Peter Zijlstra 已提交
8179
err:
8180 8181 8182 8183 8184
	return 0;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
8196
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8197
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8198
}
8199
#else /* !CONFG_FAIR_GROUP_SCHED */
8200 8201 8202 8203
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8204 8205
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8206 8207 8208 8209 8210 8211 8212
{
	return 1;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8213
#endif /* CONFIG_FAIR_GROUP_SCHED */
8214 8215

#ifdef CONFIG_RT_GROUP_SCHED
8216 8217 8218 8219
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8220 8221
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8233 8234
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8235 8236
{
	struct rt_rq *rt_rq;
8237
	struct sched_rt_entity *rt_se;
8238 8239
	int i;

8240
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8241 8242
	if (!tg->rt_rq)
		goto err;
8243
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8244 8245 8246
	if (!tg->rt_se)
		goto err;

8247 8248
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8249 8250

	for_each_possible_cpu(i) {
8251 8252
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8253 8254
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8255

8256 8257
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8258
		if (!rt_se)
8259
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8260

8261
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8262 8263
	}

8264 8265
	return 1;

P
Peter Zijlstra 已提交
8266
err_free_rq:
8267
	kfree(rt_rq);
P
Peter Zijlstra 已提交
8268
err:
8269 8270
	return 0;
}
8271
#else /* !CONFIG_RT_GROUP_SCHED */
8272 8273 8274 8275
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8276 8277
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8278 8279 8280
{
	return 1;
}
8281
#endif /* CONFIG_RT_GROUP_SCHED */
8282

D
Dhaval Giani 已提交
8283
#ifdef CONFIG_CGROUP_SCHED
8284 8285 8286 8287
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
8288
	autogroup_free(tg);
8289 8290 8291 8292
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8293
struct task_group *sched_create_group(struct task_group *parent)
8294 8295 8296 8297 8298 8299 8300 8301
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8302
	if (!alloc_fair_sched_group(tg, parent))
8303 8304
		goto err;

8305
	if (!alloc_rt_sched_group(tg, parent))
8306 8307
		goto err;

8308
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8309
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8310 8311 8312 8313 8314

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8315
	list_add_rcu(&tg->siblings, &parent->children);
8316
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8317

8318
	return tg;
S
Srivatsa Vaddagiri 已提交
8319 8320

err:
P
Peter Zijlstra 已提交
8321
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8322 8323 8324
	return ERR_PTR(-ENOMEM);
}

8325
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8326
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8327 8328
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8329
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8330 8331
}

8332
/* Destroy runqueue etc associated with a task group */
8333
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8334
{
8335
	unsigned long flags;
8336
	int i;
S
Srivatsa Vaddagiri 已提交
8337

8338 8339
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
8340
		unregister_fair_sched_group(tg, i);
8341 8342

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8343
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8344
	list_del_rcu(&tg->siblings);
8345
	spin_unlock_irqrestore(&task_group_lock, flags);
8346 8347

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8348
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8349 8350
}

8351
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8352 8353 8354
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8355 8356
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8357 8358 8359 8360 8361 8362 8363
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8364
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
8365
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
8366

8367
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8368
		dequeue_task(rq, tsk, 0);
8369 8370
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8371

P
Peter Zijlstra 已提交
8372
#ifdef CONFIG_FAIR_GROUP_SCHED
8373 8374 8375
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
8376
#endif
8377
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
8378

8379 8380 8381
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8382
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8383

8384
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
8385
}
D
Dhaval Giani 已提交
8386
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8387

8388
#ifdef CONFIG_FAIR_GROUP_SCHED
8389 8390
static DEFINE_MUTEX(shares_mutex);

8391
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8392 8393
{
	int i;
8394
	unsigned long flags;
8395

8396 8397 8398 8399 8400 8401
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8402 8403
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8404 8405
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8406

8407
	mutex_lock(&shares_mutex);
8408
	if (tg->shares == shares)
8409
		goto done;
S
Srivatsa Vaddagiri 已提交
8410

8411
	tg->shares = shares;
8412
	for_each_possible_cpu(i) {
8413 8414 8415 8416 8417 8418 8419
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
8420
			update_cfs_shares(group_cfs_rq(se));
8421
		raw_spin_unlock_irqrestore(&rq->lock, flags);
8422
	}
S
Srivatsa Vaddagiri 已提交
8423

8424
done:
8425
	mutex_unlock(&shares_mutex);
8426
	return 0;
S
Srivatsa Vaddagiri 已提交
8427 8428
}

8429 8430 8431 8432
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8433
#endif
8434

8435
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8436
/*
P
Peter Zijlstra 已提交
8437
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8438
 */
P
Peter Zijlstra 已提交
8439 8440 8441 8442 8443
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8444
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8445

P
Peter Zijlstra 已提交
8446
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8447 8448
}

P
Peter Zijlstra 已提交
8449 8450
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8451
{
P
Peter Zijlstra 已提交
8452
	struct task_struct *g, *p;
8453

P
Peter Zijlstra 已提交
8454 8455 8456 8457
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8458

P
Peter Zijlstra 已提交
8459 8460
	return 0;
}
8461

P
Peter Zijlstra 已提交
8462 8463 8464 8465 8466
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8467

P
Peter Zijlstra 已提交
8468 8469 8470 8471 8472 8473
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8474

P
Peter Zijlstra 已提交
8475 8476
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8477

P
Peter Zijlstra 已提交
8478 8479 8480
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8481 8482
	}

8483 8484 8485 8486 8487
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8488

8489 8490 8491
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8492 8493
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8494

P
Peter Zijlstra 已提交
8495
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8496

8497 8498 8499 8500 8501
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8502

8503 8504 8505
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8506 8507 8508
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8509

P
Peter Zijlstra 已提交
8510 8511 8512 8513
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8514

P
Peter Zijlstra 已提交
8515
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8516
	}
P
Peter Zijlstra 已提交
8517

P
Peter Zijlstra 已提交
8518 8519 8520 8521
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8522 8523
}

P
Peter Zijlstra 已提交
8524
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8525
{
P
Peter Zijlstra 已提交
8526 8527 8528 8529 8530 8531 8532
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8533 8534
}

8535 8536
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8537
{
P
Peter Zijlstra 已提交
8538
	int i, err = 0;
P
Peter Zijlstra 已提交
8539 8540

	mutex_lock(&rt_constraints_mutex);
8541
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8542 8543
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8544
		goto unlock;
P
Peter Zijlstra 已提交
8545

8546
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8547 8548
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8549 8550 8551 8552

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8553
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8554
		rt_rq->rt_runtime = rt_runtime;
8555
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8556
	}
8557
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8558
unlock:
8559
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8560 8561 8562
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8563 8564
}

8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8577 8578 8579 8580
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8581
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8582 8583
		return -1;

8584
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8585 8586 8587
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8588 8589 8590 8591 8592 8593 8594 8595

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8596 8597 8598
	if (rt_period == 0)
		return -EINVAL;

8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8613
	u64 runtime, period;
8614 8615
	int ret = 0;

8616 8617 8618
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8619 8620 8621 8622 8623 8624 8625 8626
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8627

8628
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8629
	read_lock(&tasklist_lock);
8630
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8631
	read_unlock(&tasklist_lock);
8632 8633 8634 8635
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8636 8637 8638 8639 8640 8641 8642 8643 8644 8645

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8646
#else /* !CONFIG_RT_GROUP_SCHED */
8647 8648
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8649 8650 8651
	unsigned long flags;
	int i;

8652 8653 8654
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8655 8656 8657 8658 8659 8660 8661
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8662
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8663 8664 8665
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8666
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8667
		rt_rq->rt_runtime = global_rt_runtime();
8668
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8669
	}
8670
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8671

8672 8673
	return 0;
}
8674
#endif /* CONFIG_RT_GROUP_SCHED */
8675 8676

int sched_rt_handler(struct ctl_table *table, int write,
8677
		void __user *buffer, size_t *lenp,
8678 8679 8680 8681 8682 8683 8684 8685 8686 8687
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8688
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8705

8706
#ifdef CONFIG_CGROUP_SCHED
8707 8708

/* return corresponding task_group object of a cgroup */
8709
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8710
{
8711 8712
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8713 8714 8715
}

static struct cgroup_subsys_state *
8716
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8717
{
8718
	struct task_group *tg, *parent;
8719

8720
	if (!cgrp->parent) {
8721
		/* This is early initialization for the top cgroup */
8722
		return &root_task_group.css;
8723 8724
	}

8725 8726
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8727 8728 8729 8730 8731 8732
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8733 8734
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8735
{
8736
	struct task_group *tg = cgroup_tg(cgrp);
8737 8738 8739 8740

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8741
static int
8742
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8743
{
8744
#ifdef CONFIG_RT_GROUP_SCHED
8745
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8746 8747
		return -EINVAL;
#else
8748 8749 8750
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8751
#endif
8752 8753
	return 0;
}
8754

8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8774 8775 8776 8777
	return 0;
}

static void
8778
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8779 8780
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8781 8782
{
	sched_move_task(tsk);
8783 8784 8785 8786 8787 8788 8789 8790
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8791 8792
}

8793
static void
8794 8795
cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

8808
#ifdef CONFIG_FAIR_GROUP_SCHED
8809
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8810
				u64 shareval)
8811
{
8812
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8813 8814
}

8815
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8816
{
8817
	struct task_group *tg = cgroup_tg(cgrp);
8818 8819 8820

	return (u64) tg->shares;
}
8821
#endif /* CONFIG_FAIR_GROUP_SCHED */
8822

8823
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8824
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8825
				s64 val)
P
Peter Zijlstra 已提交
8826
{
8827
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8828 8829
}

8830
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8831
{
8832
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8833
}
8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8845
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8846

8847
static struct cftype cpu_files[] = {
8848
#ifdef CONFIG_FAIR_GROUP_SCHED
8849 8850
	{
		.name = "shares",
8851 8852
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8853
	},
8854 8855
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8856
	{
P
Peter Zijlstra 已提交
8857
		.name = "rt_runtime_us",
8858 8859
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8860
	},
8861 8862
	{
		.name = "rt_period_us",
8863 8864
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8865
	},
8866
#endif
8867 8868 8869 8870
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8871
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8872 8873 8874
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8875 8876 8877 8878 8879
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8880
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
8881 8882
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8883 8884 8885
	.early_init	= 1,
};

8886
#endif	/* CONFIG_CGROUP_SCHED */
8887 8888 8889 8890 8891 8892 8893 8894 8895 8896

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8897
/* track cpu usage of a group of tasks and its child groups */
8898 8899 8900
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8901
	u64 __percpu *cpuusage;
8902
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8903
	struct cpuacct *parent;
8904 8905 8906 8907 8908
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8909
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8910
{
8911
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8924
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8925 8926
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8927
	int i;
8928 8929

	if (!ca)
8930
		goto out;
8931 8932

	ca->cpuusage = alloc_percpu(u64);
8933 8934 8935 8936 8937 8938
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8939

8940 8941 8942
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8943
	return &ca->css;
8944 8945 8946 8947 8948 8949 8950 8951 8952

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8953 8954 8955
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8956
static void
8957
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8958
{
8959
	struct cpuacct *ca = cgroup_ca(cgrp);
8960
	int i;
8961

8962 8963
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8964 8965 8966 8967
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8968 8969
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8970
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8971 8972 8973 8974 8975 8976
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8977
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8978
	data = *cpuusage;
8979
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8980 8981 8982 8983 8984 8985 8986 8987 8988
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8989
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8990 8991 8992 8993 8994

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8995
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8996
	*cpuusage = val;
8997
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8998 8999 9000 9001 9002
#else
	*cpuusage = val;
#endif
}

9003
/* return total cpu usage (in nanoseconds) of a group */
9004
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9005
{
9006
	struct cpuacct *ca = cgroup_ca(cgrp);
9007 9008 9009
	u64 totalcpuusage = 0;
	int i;

9010 9011
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9012 9013 9014 9015

	return totalcpuusage;
}

9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9028 9029
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9030 9031 9032 9033 9034

out:
	return err;
}

9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

9069 9070 9071
static struct cftype files[] = {
	{
		.name = "usage",
9072 9073
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9074
	},
9075 9076 9077 9078
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9079 9080 9081 9082
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9083 9084
};

9085
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9086
{
9087
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9088 9089 9090 9091 9092 9093 9094 9095 9096 9097
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9098
	int cpu;
9099

L
Li Zefan 已提交
9100
	if (unlikely(!cpuacct_subsys.active))
9101 9102
		return;

9103
	cpu = task_cpu(tsk);
9104 9105 9106

	rcu_read_lock();

9107 9108
	ca = task_ca(tsk);

9109
	for (; ca; ca = ca->parent) {
9110
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9111 9112
		*cpuusage += cputime;
	}
9113 9114

	rcu_read_unlock();
9115 9116
}

9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9134 9135 9136 9137 9138 9139 9140
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9141
	int batch = CPUACCT_BATCH;
9142 9143 9144 9145 9146 9147 9148 9149

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9150
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9151 9152 9153 9154 9155
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9156 9157 9158 9159 9160 9161 9162 9163
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9164