sched.c 228.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/stop_machine.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <linux/slab.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
78
#include <asm/mutex.h>
L
Linus Torvalds 已提交
79

80
#include "sched_cpupri.h"
T
Tejun Heo 已提交
81
#include "workqueue_sched.h"
82
#include "sched_autogroup.h"
83

84
#define CREATE_TRACE_POINTS
85
#include <trace/events/sched.h>
86

L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
106
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
107
 */
108
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
109

I
Ingo Molnar 已提交
110 111 112
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
113 114 115
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
116
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
117 118 119
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
120

121 122 123 124 125
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

126 127
static inline int rt_policy(int policy)
{
128
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
129 130 131 132 133 134 135 136 137
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
138
/*
I
Ingo Molnar 已提交
139
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
140
 */
I
Ingo Molnar 已提交
141 142 143 144 145
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

146
struct rt_bandwidth {
I
Ingo Molnar 已提交
147
	/* nests inside the rq lock: */
148
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
149 150 151
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

185
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
186

187 188 189 190 191
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

192 193 194
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
195 196 197 198 199 200
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

201
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
202 203 204 205 206
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

207
	raw_spin_lock(&rt_b->rt_runtime_lock);
208
	for (;;) {
209 210 211
		unsigned long delta;
		ktime_t soft, hard;

212 213 214 215 216
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
217 218 219 220 221

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
222
				HRTIMER_MODE_ABS_PINNED, 0);
223
	}
224
	raw_spin_unlock(&rt_b->rt_runtime_lock);
225 226 227 228 229 230 231 232 233
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

234 235 236 237 238 239
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
240
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
241

242 243
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
244 245
struct cfs_rq;

P
Peter Zijlstra 已提交
246 247
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
248
/* task group related information */
249
struct task_group {
250
	struct cgroup_subsys_state css;
251

252
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
253 254 255 256 257
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
P
Peter Zijlstra 已提交
258 259

	atomic_t load_weight;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
275 276 277 278

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif
S
Srivatsa Vaddagiri 已提交
279 280
};

281
/* task_group_lock serializes the addition/removal of task groups */
282
static DEFINE_SPINLOCK(task_group_lock);
283

284 285
#ifdef CONFIG_FAIR_GROUP_SCHED

286
# define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
287

288
/*
289 290 291 292
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
293 294 295
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
296
#define MIN_SHARES	2
297
#define MAX_SHARES	(1UL << 18)
298

299
static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
300 301
#endif

S
Srivatsa Vaddagiri 已提交
302
/* Default task group.
I
Ingo Molnar 已提交
303
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
304
 */
305
struct task_group root_task_group;
S
Srivatsa Vaddagiri 已提交
306

D
Dhaval Giani 已提交
307
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
308

I
Ingo Molnar 已提交
309 310 311 312 313 314
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
315
	u64 min_vruntime;
I
Ingo Molnar 已提交
316 317 318

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
319 320 321 322 323 324

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
325 326
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
327
	struct sched_entity *curr, *next, *last, *skip;
P
Peter Zijlstra 已提交
328

P
Peter Zijlstra 已提交
329
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
330

331
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
332 333
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
334 335
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
336 337 338 339 340 341
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
342
	int on_list;
I
Ingo Molnar 已提交
343 344
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
345 346 347

#ifdef CONFIG_SMP
	/*
348
	 * the part of load.weight contributed by tasks
349
	 */
350
	unsigned long task_weight;
351

352 353 354 355 356 357 358
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
359

360
	/*
361 362 363 364 365
	 * Maintaining per-cpu shares distribution for group scheduling
	 *
	 * load_stamp is the last time we updated the load average
	 * load_last is the last time we updated the load average and saw load
	 * load_unacc_exec_time is currently unaccounted execution time
366
	 */
P
Peter Zijlstra 已提交
367 368
	u64 load_avg;
	u64 load_period;
369
	u64 load_stamp, load_last, load_unacc_exec_time;
370

P
Peter Zijlstra 已提交
371
	unsigned long load_contribution;
372
#endif
I
Ingo Molnar 已提交
373 374
#endif
};
L
Linus Torvalds 已提交
375

I
Ingo Molnar 已提交
376 377 378
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
379
	unsigned long rt_nr_running;
380
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
381 382
	struct {
		int curr; /* highest queued rt task prio */
383
#ifdef CONFIG_SMP
384
		int next; /* next highest */
385
#endif
386
	} highest_prio;
P
Peter Zijlstra 已提交
387
#endif
P
Peter Zijlstra 已提交
388
#ifdef CONFIG_SMP
389
	unsigned long rt_nr_migratory;
390
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
391
	int overloaded;
392
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
393
#endif
P
Peter Zijlstra 已提交
394
	int rt_throttled;
P
Peter Zijlstra 已提交
395
	u64 rt_time;
P
Peter Zijlstra 已提交
396
	u64 rt_runtime;
I
Ingo Molnar 已提交
397
	/* Nests inside the rq lock: */
398
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
399

400
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
401 402
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
403 404 405 406
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
407 408
};

G
Gregory Haskins 已提交
409 410 411 412
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
413 414
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
415 416 417 418 419 420
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
421 422
	cpumask_var_t span;
	cpumask_var_t online;
423

I
Ingo Molnar 已提交
424
	/*
425 426 427
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
428
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
429
	atomic_t rto_count;
430
	struct cpupri cpupri;
G
Gregory Haskins 已提交
431 432
};

433 434 435 436
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
437 438
static struct root_domain def_root_domain;

439
#endif /* CONFIG_SMP */
G
Gregory Haskins 已提交
440

L
Linus Torvalds 已提交
441 442 443 444 445 446 447
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
448
struct rq {
449
	/* runqueue lock: */
450
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
451 452 453 454 455 456

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
457 458
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
459
	unsigned long last_load_update_tick;
460
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
461
	u64 nohz_stamp;
462
	unsigned char nohz_balance_kick;
463
#endif
464 465
	unsigned int skip_clock_update;

466 467
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
468 469 470 471
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
472 473
	struct rt_rq rt;

I
Ingo Molnar 已提交
474
#ifdef CONFIG_FAIR_GROUP_SCHED
475 476
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
477 478
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
479
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
480 481 482 483 484 485 486 487 488 489
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

490
	struct task_struct *curr, *idle, *stop;
491
	unsigned long next_balance;
L
Linus Torvalds 已提交
492
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
493

494
	u64 clock;
495
	u64 clock_task;
I
Ingo Molnar 已提交
496

L
Linus Torvalds 已提交
497 498 499
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
500
	struct root_domain *rd;
L
Linus Torvalds 已提交
501 502
	struct sched_domain *sd;

503 504
	unsigned long cpu_power;

505
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
506
	/* For active balancing */
507
	int post_schedule;
L
Linus Torvalds 已提交
508 509
	int active_balance;
	int push_cpu;
510
	struct cpu_stop_work active_balance_work;
511 512
	/* cpu of this runqueue: */
	int cpu;
513
	int online;
L
Linus Torvalds 已提交
514

515
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
516

517 518
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
519 520
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
521 522
#endif

523 524 525 526
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64 prev_irq_time;
#endif

527 528 529 530
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
531
#ifdef CONFIG_SCHED_HRTICK
532 533 534 535
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
536 537 538
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
539 540 541
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
542 543
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
544 545

	/* sys_sched_yield() stats */
546
	unsigned int yld_count;
L
Linus Torvalds 已提交
547 548

	/* schedule() stats */
549 550 551
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
552 553

	/* try_to_wake_up() stats */
554 555
	unsigned int ttwu_count;
	unsigned int ttwu_local;
L
Linus Torvalds 已提交
556 557 558
#endif
};

559
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
560

561

562
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
I
Ingo Molnar 已提交
563

564 565 566 567 568 569 570 571 572
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

573
#define rcu_dereference_check_sched_domain(p) \
574 575 576 577
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
578 579
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
580
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
581 582 583 584
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
585
#define for_each_domain(cpu, __sd) \
586
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
587 588 589 590 591

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
592
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
593

594 595 596 597 598 599 600 601 602 603 604 605
#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
 * We use task_subsys_state_check() and extend the RCU verification
 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
 * holds that lock for each task it moves into the cgroup. Therefore
 * by holding that lock, we pin the task to the current cgroup.
 */
static inline struct task_group *task_group(struct task_struct *p)
{
606
	struct task_group *tg;
607 608
	struct cgroup_subsys_state *css;

609 610 611
	if (p->flags & PF_EXITING)
		return &root_task_group;

612 613
	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
			lockdep_is_held(&task_rq(p)->lock));
614 615 616
	tg = container_of(css, struct task_group, css);

	return autogroup_task_group(p, tg);
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

643
static void update_rq_clock_task(struct rq *rq, s64 delta);
644

645
static void update_rq_clock(struct rq *rq)
646
{
647
	s64 delta;
648

649 650
	if (rq->skip_clock_update)
		return;
651

652 653 654
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
655 656
}

I
Ingo Molnar 已提交
657 658 659 660 661 662 663 664 665
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
666 667
/**
 * runqueue_is_locked
668
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
669 670 671 672 673
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
674
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
675
{
676
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
677 678
}

I
Ingo Molnar 已提交
679 680 681
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
682 683 684 685

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
686
enum {
P
Peter Zijlstra 已提交
687
#include "sched_features.h"
I
Ingo Molnar 已提交
688 689
};

P
Peter Zijlstra 已提交
690 691 692 693 694
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
695
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
696 697 698 699 700 701 702 703 704
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

705
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
706 707 708 709 710 711
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
712
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
713 714 715 716
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
717 718 719
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
720
	}
L
Li Zefan 已提交
721
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
722

L
Li Zefan 已提交
723
	return 0;
P
Peter Zijlstra 已提交
724 725 726 727 728 729 730
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
731
	char *cmp;
P
Peter Zijlstra 已提交
732 733 734 735 736 737 738 739 740 741
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
742
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
743

H
Hillf Danton 已提交
744
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
745 746 747 748 749
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
750
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
P
Peter Zijlstra 已提交
751 752 753 754 755 756 757 758 759 760 761
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

762
	*ppos += cnt;
P
Peter Zijlstra 已提交
763 764 765 766

	return cnt;
}

L
Li Zefan 已提交
767 768 769 770 771
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

772
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
773 774 775 776 777
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
792

793 794 795 796 797 798
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

799 800 801 802 803 804 805 806
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
807
/*
P
Peter Zijlstra 已提交
808
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
809 810
 * default: 1s
 */
P
Peter Zijlstra 已提交
811
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
812

813 814
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
815 816 817 818 819
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
820

821 822 823 824 825 826 827
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
828
	if (sysctl_sched_rt_runtime < 0)
829 830 831 832
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
833

L
Linus Torvalds 已提交
834
#ifndef prepare_arch_switch
835 836 837 838 839 840
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

841 842 843 844 845
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

846
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
847
static inline int task_running(struct rq *rq, struct task_struct *p)
848
{
849
	return task_current(rq, p);
850 851
}

852
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 854 855
{
}

856
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857
{
858 859 860 861
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
862 863 864 865 866 867 868
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

869
	raw_spin_unlock_irq(&rq->lock);
870 871 872
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
873
static inline int task_running(struct rq *rq, struct task_struct *p)
874 875 876 877
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
878
	return task_current(rq, p);
879 880 881
#endif
}

882
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 884 885 886 887 888 889 890 891 892
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893
	raw_spin_unlock_irq(&rq->lock);
894
#else
895
	raw_spin_unlock(&rq->lock);
896 897 898
#endif
}

899
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 901 902 903 904 905 906 907 908 909 910 911
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
912
#endif
913 914
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
915

916
/*
P
Peter Zijlstra 已提交
917 918
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
919 920 921
 */
static inline int task_is_waking(struct task_struct *p)
{
922
	return unlikely(p->state == TASK_WAKING);
923 924
}

925 926 927 928
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
929
static inline struct rq *__task_rq_lock(struct task_struct *p)
930 931
	__acquires(rq->lock)
{
932 933
	struct rq *rq;

934
	for (;;) {
935
		rq = task_rq(p);
936
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
937
		if (likely(rq == task_rq(p)))
938
			return rq;
939
		raw_spin_unlock(&rq->lock);
940 941 942
	}
}

L
Linus Torvalds 已提交
943 944
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
945
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
946 947
 * explicitly disabling preemption.
 */
948
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
949 950
	__acquires(rq->lock)
{
951
	struct rq *rq;
L
Linus Torvalds 已提交
952

953 954 955
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
956
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
957
		if (likely(rq == task_rq(p)))
958
			return rq;
959
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
960 961 962
	}
}

A
Alexey Dobriyan 已提交
963
static void __task_rq_unlock(struct rq *rq)
964 965
	__releases(rq->lock)
{
966
	raw_spin_unlock(&rq->lock);
967 968
}

969
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
970 971
	__releases(rq->lock)
{
972
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
973 974 975
}

/*
976
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
977
 */
A
Alexey Dobriyan 已提交
978
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
979 980
	__acquires(rq->lock)
{
981
	struct rq *rq;
L
Linus Torvalds 已提交
982 983 984

	local_irq_disable();
	rq = this_rq();
985
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
986 987 988 989

	return rq;
}

P
Peter Zijlstra 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1011
	if (!cpu_active(cpu_of(rq)))
1012
		return 0;
P
Peter Zijlstra 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1032
	raw_spin_lock(&rq->lock);
1033
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1034
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1035
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1036 1037 1038 1039

	return HRTIMER_NORESTART;
}

1040
#ifdef CONFIG_SMP
1041 1042 1043 1044
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1045
{
1046
	struct rq *rq = arg;
1047

1048
	raw_spin_lock(&rq->lock);
1049 1050
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1051
	raw_spin_unlock(&rq->lock);
1052 1053
}

1054 1055 1056 1057 1058 1059
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1060
{
1061 1062
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1063

1064
	hrtimer_set_expires(timer, time);
1065 1066 1067 1068

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1069
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1070 1071
		rq->hrtick_csd_pending = 1;
	}
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1086
		hrtick_clear(cpu_rq(cpu));
1087 1088 1089 1090 1091 1092
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1093
static __init void init_hrtick(void)
1094 1095 1096
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1097 1098 1099 1100 1101 1102 1103 1104
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1105
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1106
			HRTIMER_MODE_REL_PINNED, 0);
1107
}
1108

A
Andrew Morton 已提交
1109
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1110 1111
{
}
1112
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1113

1114
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1115
{
1116 1117
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1118

1119 1120 1121 1122
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1123

1124 1125
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1126
}
A
Andrew Morton 已提交
1127
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1128 1129 1130 1131 1132 1133 1134 1135
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1136 1137 1138
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1139
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1140

I
Ingo Molnar 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1154
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1155 1156 1157
{
	int cpu;

1158
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1159

1160
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1161 1162
		return;

1163
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1180
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1181 1182
		return;
	resched_task(cpu_curr(cpu));
1183
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1184
}
1185 1186

#ifdef CONFIG_NO_HZ
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		for_each_cpu(i, sched_domain_span(sd))
			if (!idle_cpu(i))
				return i;
	}
	return cpu;
}
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1240
	set_tsk_need_resched(rq->idle);
1241 1242 1243 1244 1245 1246

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1247

1248
#endif /* CONFIG_NO_HZ */
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
1260 1261 1262 1263 1264 1265
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1277
#else /* !CONFIG_SMP */
1278
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1279
{
1280
	assert_raw_spin_locked(&task_rq(p)->lock);
1281
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1282
}
1283 1284 1285 1286

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1287 1288 1289 1290

static void sched_avg_update(struct rq *rq)
{
}
1291
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1292

1293 1294 1295 1296 1297 1298 1299 1300
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1301 1302 1303
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1304
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1305

1306 1307 1308
/*
 * delta *= weight / lw
 */
1309
static unsigned long
1310 1311 1312 1313 1314
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1315 1316 1317 1318 1319 1320 1321
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1322 1323 1324 1325 1326

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1327
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1328
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1329 1330
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1331
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1332

1333
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1334 1335
}

1336
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1337 1338
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1339
	lw->inv_weight = 0;
1340 1341
}

1342
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1343 1344
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1345
	lw->inv_weight = 0;
1346 1347
}

P
Peter Zijlstra 已提交
1348 1349 1350 1351 1352 1353
static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

1354 1355 1356 1357
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1358
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1359 1360 1361 1362
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1363 1364
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1374 1375 1376
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1377 1378
 */
static const int prio_to_weight[40] = {
1379 1380 1381 1382 1383 1384 1385 1386
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1387 1388
};

1389 1390 1391 1392 1393 1394 1395
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1396
static const u32 prio_to_wmult[40] = {
1397 1398 1399 1400 1401 1402 1403 1404
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1405
};
1406

1407 1408 1409 1410 1411 1412 1413 1414
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1415 1416
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1417 1418
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1419 1420
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1421 1422
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1423 1424
#endif

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1435
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1436
typedef int (*tg_visitor)(struct task_group *, void *);
1437 1438 1439 1440 1441

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1442
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1443 1444
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1445
	int ret;
1446 1447 1448 1449

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1450 1451 1452
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1453 1454 1455 1456 1457 1458 1459
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1460 1461 1462
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1463 1464 1465 1466 1467

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1468
out_unlock:
1469
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1470 1471

	return ret;
1472 1473
}

P
Peter Zijlstra 已提交
1474 1475 1476
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1477
}
P
Peter Zijlstra 已提交
1478 1479 1480
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1520 1521
static unsigned long power_of(int cpu)
{
1522
	return cpu_rq(cpu)->cpu_power;
1523 1524
}

P
Peter Zijlstra 已提交
1525 1526 1527 1528 1529
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1530
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1531

1532 1533
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1534 1535
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1536 1537 1538 1539 1540

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1541 1542

/*
1543 1544 1545
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1546
 */
P
Peter Zijlstra 已提交
1547
static int tg_load_down(struct task_group *tg, void *data)
1548
{
1549
	unsigned long load;
P
Peter Zijlstra 已提交
1550
	long cpu = (long)data;
1551

1552 1553 1554 1555
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
P
Peter Zijlstra 已提交
1556
		load *= tg->se[cpu]->load.weight;
1557 1558
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1559

1560
	tg->cfs_rq[cpu]->h_load = load;
1561

P
Peter Zijlstra 已提交
1562
	return 0;
1563 1564
}

P
Peter Zijlstra 已提交
1565
static void update_h_load(long cpu)
1566
{
P
Peter Zijlstra 已提交
1567
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1568 1569
}

1570 1571
#endif

1572 1573
#ifdef CONFIG_PREEMPT

1574 1575
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1576
/*
1577 1578 1579 1580 1581 1582
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1583
 */
1584 1585 1586 1587 1588
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1589
	raw_spin_unlock(&this_rq->lock);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1604 1605 1606 1607 1608 1609
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1610
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1611
		if (busiest < this_rq) {
1612 1613 1614 1615
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1616 1617
			ret = 1;
		} else
1618 1619
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1620 1621 1622 1623
	}
	return ret;
}

1624 1625 1626 1627 1628 1629 1630 1631 1632
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1633
		raw_spin_unlock(&this_rq->lock);
1634 1635 1636 1637 1638 1639
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1640 1641 1642
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1643
	raw_spin_unlock(&busiest->lock);
1644 1645
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
#else /* CONFIG_SMP */

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	BUG_ON(rq1 != rq2);
	raw_spin_lock(&rq1->lock);
	__acquire(rq2->lock);	/* Fake it out ;) */
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	BUG_ON(rq1 != rq2);
	raw_spin_unlock(&rq1->lock);
	__release(rq2->lock);
}

1722 1723
#endif

1724
static void calc_load_account_idle(struct rq *this_rq);
1725
static void update_sysctl(void);
1726
static int get_update_sysctl_factor(void);
1727
static void update_cpu_load(struct rq *this_rq);
1728

P
Peter Zijlstra 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1742

1743
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1744

1745
#define sched_class_highest (&stop_sched_class)
1746 1747
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1748

1749 1750
#include "sched_stats.h"

1751
static void inc_nr_running(struct rq *rq)
1752 1753 1754 1755
{
	rq->nr_running++;
}

1756
static void dec_nr_running(struct rq *rq)
1757 1758 1759 1760
{
	rq->nr_running--;
}

1761 1762
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
1763 1764 1765 1766 1767 1768 1769 1770
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1771

I
Ingo Molnar 已提交
1772 1773
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1774 1775
}

1776
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1777
{
1778
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1779
	sched_info_queued(p);
1780
	p->sched_class->enqueue_task(rq, p, flags);
I
Ingo Molnar 已提交
1781
	p->se.on_rq = 1;
1782 1783
}

1784
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1785
{
1786
	update_rq_clock(rq);
1787
	sched_info_dequeued(p);
1788
	p->sched_class->dequeue_task(rq, p, flags);
I
Ingo Molnar 已提交
1789
	p->se.on_rq = 0;
1790 1791
}

1792 1793 1794
/*
 * activate_task - move a task to the runqueue.
 */
1795
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1796 1797 1798 1799
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1800
	enqueue_task(rq, p, flags);
1801 1802 1803 1804 1805 1806
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1807
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1808 1809 1810 1811
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1812
	dequeue_task(rq, p, flags);
1813 1814 1815
	dec_nr_running(rq);
}

1816 1817
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

1818 1819 1820 1821 1822 1823 1824
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
1825 1826 1827
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
1828
 */
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
1883 1884 1885
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
1886
#endif /* CONFIG_64BIT */
1887

1888 1889 1890 1891
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
1892 1893 1894
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
1895
	s64 delta;
1896 1897 1898 1899 1900 1901 1902 1903
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
1904 1905 1906
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

1907
	irq_time_write_begin();
1908 1909 1910 1911 1912 1913 1914
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
1915
		__this_cpu_add(cpu_hardirq_time, delta);
1916
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1917
		__this_cpu_add(cpu_softirq_time, delta);
1918

1919
	irq_time_write_end();
1920 1921
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
1922
EXPORT_SYMBOL_GPL(account_system_vtime);
1923

1924
static void update_rq_clock_task(struct rq *rq, s64 delta)
1925
{
1926 1927
	s64 irq_delta;

1928
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
	rq->clock_task += delta;

	if (irq_delta && sched_feat(NONIRQ_POWER))
		sched_rt_avg_update(rq, irq_delta);
1954 1955
}

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
static int irqtime_account_hi_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

1986
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
1987

1988 1989
#define sched_clock_irqtime	(0)

1990
static void update_rq_clock_task(struct rq *rq, s64 delta)
1991
{
1992
	rq->clock_task += delta;
1993 1994
}

1995
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1996

1997 1998 1999
#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
2000
#include "sched_autogroup.c"
2001
#include "sched_stoptask.c"
2002 2003 2004 2005
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

2036
/*
I
Ingo Molnar 已提交
2037
 * __normal_prio - return the priority that is based on the static prio
2038 2039 2040
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
2041
	return p->static_prio;
2042 2043
}

2044 2045 2046 2047 2048 2049 2050
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
2051
static inline int normal_prio(struct task_struct *p)
2052 2053 2054
{
	int prio;

2055
	if (task_has_rt_policy(p))
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
2069
static int effective_prio(struct task_struct *p)
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
2082 2083 2084 2085
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
2086
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
2087 2088 2089 2090
{
	return cpu_curr(task_cpu(p)) == p;
}

2091 2092
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
2093
				       int oldprio)
2094 2095 2096
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
2097 2098 2099 2100
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
2101 2102
}

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
2124
	if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2125 2126 2127
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
2128
#ifdef CONFIG_SMP
2129 2130 2131
/*
 * Is this task likely cache-hot:
 */
2132
static int
2133 2134 2135 2136
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2137 2138 2139
	if (p->sched_class != &fair_sched_class)
		return 0;

2140 2141 2142
	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

2143 2144 2145
	/*
	 * Buddy candidates are cache hot:
	 */
2146
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2147 2148
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2149 2150
		return 1;

2151 2152 2153 2154 2155
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2156 2157 2158 2159 2160
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2161
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2162
{
2163 2164 2165 2166 2167
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2168 2169
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2170 2171
#endif

2172
	trace_sched_migrate_task(p, new_cpu);
2173

2174 2175 2176 2177
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2178 2179

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2180 2181
}

2182
struct migration_arg {
2183
	struct task_struct *task;
L
Linus Torvalds 已提交
2184
	int dest_cpu;
2185
};
L
Linus Torvalds 已提交
2186

2187 2188
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2189 2190 2191 2192
/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2193
static bool migrate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
2194 2195 2196
{
	/*
	 * If the task is not on a runqueue (and not running), then
2197
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2198
	 */
2199
	return p->se.on_rq || task_running(rq, p);
L
Linus Torvalds 已提交
2200 2201 2202 2203 2204
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2205 2206 2207 2208 2209 2210 2211
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2212 2213 2214 2215 2216 2217
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2218
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2219 2220
{
	unsigned long flags;
I
Ingo Molnar 已提交
2221
	int running, on_rq;
R
Roland McGrath 已提交
2222
	unsigned long ncsw;
2223
	struct rq *rq;
L
Linus Torvalds 已提交
2224

2225 2226 2227 2228 2229 2230 2231 2232
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2233

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2245 2246 2247
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2248
			cpu_relax();
R
Roland McGrath 已提交
2249
		}
2250

2251 2252 2253 2254 2255 2256
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2257
		trace_sched_wait_task(p);
2258 2259
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2260
		ncsw = 0;
2261
		if (!match_state || p->state == match_state)
2262
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2263
		task_rq_unlock(rq, &flags);
2264

R
Roland McGrath 已提交
2265 2266 2267 2268 2269 2270
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2281

2282 2283 2284 2285 2286
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2287
		 * So if it was still runnable (but just not actively
2288 2289 2290 2291 2292 2293 2294
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2295

2296 2297 2298 2299 2300 2301 2302
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2303 2304

	return ncsw;
L
Linus Torvalds 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2320
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2330
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2331
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2332

T
Thomas Gleixner 已提交
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2354
#ifdef CONFIG_SMP
2355 2356 2357
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2374 2375 2376 2377 2378 2379 2380 2381 2382
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
2383 2384 2385 2386 2387
	}

	return dest_cpu;
}

2388
/*
2389
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2390
 */
2391
static inline
2392
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2393
{
2394
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2407
		     !cpu_online(cpu)))
2408
		cpu = select_fallback_rq(task_cpu(p), p);
2409 2410

	return cpu;
2411
}
2412 2413 2414 2415 2416 2417

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2418 2419
#endif

T
Tejun Heo 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
				 bool is_sync, bool is_migrate, bool is_local,
				 unsigned long en_flags)
{
	schedstat_inc(p, se.statistics.nr_wakeups);
	if (is_sync)
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
	if (is_migrate)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
	if (is_local)
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	else
		schedstat_inc(p, se.statistics.nr_wakeups_remote);

	activate_task(rq, p, en_flags);
}

static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
					int wake_flags, bool success)
{
	trace_sched_wakeup(p, success);
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
T
Tejun Heo 已提交
2459 2460 2461
	/* if a worker is waking up, notify workqueue */
	if ((p->flags & PF_WQ_WORKER) && success)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2462 2463 2464
}

/**
L
Linus Torvalds 已提交
2465
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2466
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2467
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2468
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2469 2470 2471 2472 2473 2474 2475
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2476 2477
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2478
 */
P
Peter Zijlstra 已提交
2479 2480
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2481
{
2482
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2483
	unsigned long flags;
2484
	unsigned long en_flags = ENQUEUE_WAKEUP;
2485
	struct rq *rq;
L
Linus Torvalds 已提交
2486

P
Peter Zijlstra 已提交
2487
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2488

2489
	smp_wmb();
2490
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2491
	if (!(p->state & state))
L
Linus Torvalds 已提交
2492 2493
		goto out;

I
Ingo Molnar 已提交
2494
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2495 2496 2497
		goto out_running;

	cpu = task_cpu(p);
2498
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2499 2500 2501 2502 2503

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2504 2505 2506
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2507 2508
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2509
	 */
2510 2511 2512 2513 2514 2515
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2516
	p->state = TASK_WAKING;
2517

2518
	if (p->sched_class->task_waking) {
2519
		p->sched_class->task_waking(rq, p);
2520 2521
		en_flags |= ENQUEUE_WAKING;
	}
2522

2523 2524
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2525
		set_task_cpu(p, cpu);
2526
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2527

2528 2529
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2530

2531 2532 2533 2534 2535 2536 2537
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2538
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2539

2540 2541 2542 2543 2544 2545 2546
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2547
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2548 2549 2550 2551 2552
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2553
#endif /* CONFIG_SCHEDSTATS */
2554

L
Linus Torvalds 已提交
2555 2556
out_activate:
#endif /* CONFIG_SMP */
T
Tejun Heo 已提交
2557 2558
	ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
		      cpu == this_cpu, en_flags);
L
Linus Torvalds 已提交
2559 2560
	success = 1;
out_running:
T
Tejun Heo 已提交
2561
	ttwu_post_activation(p, rq, wake_flags, success);
L
Linus Torvalds 已提交
2562 2563
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2564
	put_cpu();
L
Linus Torvalds 已提交
2565 2566 2567 2568

	return success;
}

T
Tejun Heo 已提交
2569 2570 2571 2572
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
2573
 * Put @p on the run-queue if it's not already there.  The caller must
T
Tejun Heo 已提交
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
 * the current task.  this_rq() stays locked over invocation.
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);
	bool success = false;

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

	if (!(p->state & TASK_NORMAL))
		return;

	if (!p->se.on_rq) {
		if (likely(!task_running(rq, p))) {
			schedstat_inc(rq, ttwu_count);
			schedstat_inc(rq, ttwu_local);
		}
		ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
		success = true;
	}
	ttwu_post_activation(p, rq, 0, success);
}

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2611
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2612
{
2613
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2614 2615 2616
}
EXPORT_SYMBOL(wake_up_process);

2617
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2618 2619 2620 2621 2622 2623 2624
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2625 2626 2627 2628 2629 2630 2631
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2632
	p->se.prev_sum_exec_runtime	= 0;
2633
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2634
	p->se.vruntime			= 0;
I
Ingo Molnar 已提交
2635 2636

#ifdef CONFIG_SCHEDSTATS
2637
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2638
#endif
N
Nick Piggin 已提交
2639

P
Peter Zijlstra 已提交
2640
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2641
	p->se.on_rq = 0;
2642
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2643

2644 2645 2646
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2657
	/*
2658
	 * We mark the process as running here. This guarantees that
2659 2660 2661
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2662
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2663

2664 2665 2666 2667
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2668
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2669
			p->policy = SCHED_NORMAL;
2670 2671
			p->normal_prio = p->static_prio;
		}
2672

2673 2674
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2675
			p->normal_prio = p->static_prio;
2676 2677 2678
			set_load_weight(p);
		}

2679 2680 2681 2682 2683 2684
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2685

2686 2687 2688 2689 2690
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2691 2692
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2693

P
Peter Zijlstra 已提交
2694 2695 2696
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2697 2698 2699 2700 2701 2702 2703 2704
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
	rcu_read_lock();
2705
	set_task_cpu(p, cpu);
2706
	rcu_read_unlock();
2707

2708
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2709
	if (likely(sched_info_on()))
2710
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2711
#endif
2712
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2713 2714
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2715
#ifdef CONFIG_PREEMPT
2716
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2717
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2718
#endif
2719
#ifdef CONFIG_SMP
2720
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2721
#endif
2722

N
Nick Piggin 已提交
2723
	put_cpu();
L
Linus Torvalds 已提交
2724 2725 2726 2727 2728 2729 2730 2731 2732
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2733
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2734 2735
{
	unsigned long flags;
I
Ingo Molnar 已提交
2736
	struct rq *rq;
2737
	int cpu __maybe_unused = get_cpu();
2738 2739

#ifdef CONFIG_SMP
2740 2741 2742
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2743 2744 2745 2746 2747
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2748 2749
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2750
	 */
2751
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2752
	set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2753

2754
	p->state = TASK_RUNNING;
2755 2756 2757 2758
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2759
	activate_task(rq, p, 0);
2760
	trace_sched_wakeup_new(p, 1);
P
Peter Zijlstra 已提交
2761
	check_preempt_curr(rq, p, WF_FORK);
2762
#ifdef CONFIG_SMP
2763 2764
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2765
#endif
I
Ingo Molnar 已提交
2766
	task_rq_unlock(rq, &flags);
2767
	put_cpu();
L
Linus Torvalds 已提交
2768 2769
}

2770 2771 2772
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2773
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2774
 * @notifier: notifier struct to register
2775 2776 2777 2778 2779 2780 2781 2782 2783
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2784
 * @notifier: notifier struct to unregister
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2814
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2826
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2827

2828 2829 2830
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2831
 * @prev: the current task that is being switched out
2832 2833 2834 2835 2836 2837 2838 2839 2840
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2841 2842 2843
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2844
{
2845
	fire_sched_out_preempt_notifiers(prev, next);
2846 2847 2848 2849
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2850 2851
/**
 * finish_task_switch - clean up after a task-switch
2852
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2853 2854
 * @prev: the thread we just switched away from.
 *
2855 2856 2857 2858
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2859 2860
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2861
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2862 2863 2864
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2865
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2866 2867 2868
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2869
	long prev_state;
L
Linus Torvalds 已提交
2870 2871 2872 2873 2874

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2875
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2876 2877
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2878
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2879 2880 2881 2882 2883
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2884
	prev_state = prev->state;
2885
	finish_arch_switch(prev);
2886 2887 2888
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2889
	perf_event_task_sched_in(current);
2890 2891 2892
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2893
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2894

2895
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2896 2897
	if (mm)
		mmdrop(mm);
2898
	if (unlikely(prev_state == TASK_DEAD)) {
2899 2900 2901
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2902
		 */
2903
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2904
		put_task_struct(prev);
2905
	}
L
Linus Torvalds 已提交
2906 2907
}

2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2923
		raw_spin_lock_irqsave(&rq->lock, flags);
2924 2925
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2926
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2927 2928 2929 2930 2931 2932

		rq->post_schedule = 0;
	}
}

#else
2933

2934 2935 2936 2937 2938 2939
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2940 2941
}

2942 2943
#endif

L
Linus Torvalds 已提交
2944 2945 2946 2947
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2948
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2949 2950
	__releases(rq->lock)
{
2951 2952
	struct rq *rq = this_rq();

2953
	finish_task_switch(rq, prev);
2954

2955 2956 2957 2958 2959
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2960

2961 2962 2963 2964
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2965
	if (current->set_child_tid)
2966
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2967 2968 2969 2970 2971 2972
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2973
static inline void
2974
context_switch(struct rq *rq, struct task_struct *prev,
2975
	       struct task_struct *next)
L
Linus Torvalds 已提交
2976
{
I
Ingo Molnar 已提交
2977
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2978

2979
	prepare_task_switch(rq, prev, next);
2980
	trace_sched_switch(prev, next);
I
Ingo Molnar 已提交
2981 2982
	mm = next->mm;
	oldmm = prev->active_mm;
2983 2984 2985 2986 2987
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2988
	arch_start_context_switch(prev);
2989

2990
	if (!mm) {
L
Linus Torvalds 已提交
2991 2992 2993 2994 2995 2996
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2997
	if (!prev->mm) {
L
Linus Torvalds 已提交
2998 2999 3000
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
3001 3002 3003 3004 3005 3006 3007
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
3008
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3009
#endif
L
Linus Torvalds 已提交
3010 3011 3012 3013

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
3014 3015 3016 3017 3018 3019 3020
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
3038
}
L
Linus Torvalds 已提交
3039 3040

unsigned long nr_uninterruptible(void)
3041
{
L
Linus Torvalds 已提交
3042
	unsigned long i, sum = 0;
3043

3044
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3045
		sum += cpu_rq(i)->nr_uninterruptible;
3046 3047

	/*
L
Linus Torvalds 已提交
3048 3049
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
3050
	 */
L
Linus Torvalds 已提交
3051 3052
	if (unlikely((long)sum < 0))
		sum = 0;
3053

L
Linus Torvalds 已提交
3054
	return sum;
3055 3056
}

L
Linus Torvalds 已提交
3057
unsigned long long nr_context_switches(void)
3058
{
3059 3060
	int i;
	unsigned long long sum = 0;
3061

3062
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3063
		sum += cpu_rq(i)->nr_switches;
3064

L
Linus Torvalds 已提交
3065 3066
	return sum;
}
3067

L
Linus Torvalds 已提交
3068 3069 3070
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
3071

3072
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3073
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
3074

L
Linus Torvalds 已提交
3075 3076
	return sum;
}
3077

3078
unsigned long nr_iowait_cpu(int cpu)
3079
{
3080
	struct rq *this = cpu_rq(cpu);
3081 3082
	return atomic_read(&this->nr_iowait);
}
3083

3084 3085 3086 3087 3088
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
3089

3090

3091 3092 3093 3094 3095
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
3096

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

3112 3113 3114 3115 3116 3117 3118 3119 3120
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
3272 3273 3274 3275 3276 3277 3278 3279 3280
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
3281 3282 3283 3284

static void calc_global_nohz(unsigned long ticks)
{
}
3285 3286
#endif

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3300 3301 3302
}

/*
3303 3304
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3305
 */
3306
void calc_global_load(unsigned long ticks)
3307
{
3308
	long active;
L
Linus Torvalds 已提交
3309

3310 3311 3312
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
3313
		return;
L
Linus Torvalds 已提交
3314

3315 3316
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3317

3318 3319 3320
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3321

3322 3323
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3324

3325
/*
3326 3327
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3328 3329 3330
 */
static void calc_load_account_active(struct rq *this_rq)
{
3331
	long delta;
3332

3333 3334
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3335

3336 3337 3338
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3339
		atomic_long_add(delta, &calc_load_tasks);
3340 3341

	this_rq->calc_load_update += LOAD_FREQ;
3342 3343
}

3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

3411
/*
I
Ingo Molnar 已提交
3412
 * Update rq->cpu_load[] statistics. This function is usually called every
3413 3414
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
3415
 */
I
Ingo Molnar 已提交
3416
static void update_cpu_load(struct rq *this_rq)
3417
{
3418
	unsigned long this_load = this_rq->load.weight;
3419 3420
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
3421
	int i, scale;
3422

I
Ingo Molnar 已提交
3423
	this_rq->nr_load_updates++;
3424

3425 3426 3427 3428 3429 3430 3431
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
3432
	/* Update our load: */
3433 3434
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
3435
		unsigned long old_load, new_load;
3436

I
Ingo Molnar 已提交
3437
		/* scale is effectively 1 << i now, and >> i divides by scale */
3438

I
Ingo Molnar 已提交
3439
		old_load = this_rq->cpu_load[i];
3440
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
3441
		new_load = this_load;
I
Ingo Molnar 已提交
3442 3443 3444 3445 3446 3447
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
3448 3449 3450
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
3451
	}
3452 3453

	sched_avg_update(this_rq);
3454 3455 3456 3457 3458
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
3459

3460
	calc_load_account_active(this_rq);
3461 3462
}

I
Ingo Molnar 已提交
3463
#ifdef CONFIG_SMP
3464

3465
/*
P
Peter Zijlstra 已提交
3466 3467
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3468
 */
P
Peter Zijlstra 已提交
3469
void sched_exec(void)
3470
{
P
Peter Zijlstra 已提交
3471
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3472
	unsigned long flags;
3473
	struct rq *rq;
3474
	int dest_cpu;
3475

L
Linus Torvalds 已提交
3476
	rq = task_rq_lock(p, &flags);
3477 3478 3479
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3480

3481
	/*
P
Peter Zijlstra 已提交
3482
	 * select_task_rq() can race against ->cpus_allowed
3483
	 */
3484
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3485
	    likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3486
		struct migration_arg arg = { p, dest_cpu };
3487

L
Linus Torvalds 已提交
3488
		task_rq_unlock(rq, &flags);
3489
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3490 3491
		return;
	}
3492
unlock:
L
Linus Torvalds 已提交
3493 3494
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3495

L
Linus Torvalds 已提交
3496 3497 3498 3499 3500 3501 3502
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3503
 * Return any ns on the sched_clock that have not yet been accounted in
3504
 * @p in case that task is currently running.
3505 3506
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3507
 */
3508 3509 3510 3511 3512 3513
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
3514
		ns = rq->clock_task - p->se.exec_start;
3515 3516 3517 3518 3519 3520 3521
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3522
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3523 3524
{
	unsigned long flags;
3525
	struct rq *rq;
3526
	u64 ns = 0;
3527

3528
	rq = task_rq_lock(p, &flags);
3529 3530
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3531

3532 3533
	return ns;
}
3534

3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3552

3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3572
	task_rq_unlock(rq, &flags);
3573

L
Linus Torvalds 已提交
3574 3575 3576 3577 3578 3579 3580
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3581
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3582
 */
3583 3584
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3585 3586 3587 3588
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3589
	/* Add user time to process. */
L
Linus Torvalds 已提交
3590
	p->utime = cputime_add(p->utime, cputime);
3591
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3592
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3593 3594 3595 3596 3597 3598 3599

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3600 3601

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3602 3603
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3604 3605
}

3606 3607 3608 3609
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3610
 * @cputime_scaled: cputime scaled by cpu frequency
3611
 */
3612 3613
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3614 3615 3616 3617 3618 3619
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3620
	/* Add guest time to process. */
3621
	p->utime = cputime_add(p->utime, cputime);
3622
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3623
	account_group_user_time(p, cputime);
3624 3625
	p->gtime = cputime_add(p->gtime, cputime);

3626
	/* Add guest time to cpustat. */
3627 3628 3629 3630 3631 3632 3633
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3634 3635
}

3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
			cputime_t cputime_scaled, cputime64_t *target_cputime64)
{
	cputime64_t tmp = cputime_to_cputime64(cputime);

	/* Add system time to process. */
	p->stime = cputime_add(p->stime, cputime);
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
	*target_cputime64 = cputime64_add(*target_cputime64, tmp);
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
3662 3663 3664 3665 3666
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3667
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3668 3669
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3670
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3671 3672
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3673
	cputime64_t *target_cputime64;
L
Linus Torvalds 已提交
3674

3675
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3676
		account_guest_time(p, cputime, cputime_scaled);
3677 3678
		return;
	}
3679

L
Linus Torvalds 已提交
3680
	if (hardirq_count() - hardirq_offset)
3681
		target_cputime64 = &cpustat->irq;
3682
	else if (in_serving_softirq())
3683
		target_cputime64 = &cpustat->softirq;
L
Linus Torvalds 已提交
3684
	else
3685
		target_cputime64 = &cpustat->system;
3686

3687
	__account_system_time(p, cputime, cputime_scaled, target_cputime64);
L
Linus Torvalds 已提交
3688 3689
}

3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
/*
 * Account for involuntary wait time.
 * @cputime: the cpu time spent in involuntary wait
 */
void account_steal_time(cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
}

/*
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
 */
void account_idle_time(cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
	struct rq *rq = this_rq();

	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
}

3718
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3719

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
	cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	if (irqtime_account_hi_update()) {
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	} else if (irqtime_account_si_update()) {
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3753 3754 3755 3756 3757 3758 3759 3760
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->softirq);
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->system);
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
3781
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3782 3783 3784
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
3785
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3786 3787 3788 3789 3790 3791 3792 3793

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3794
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3795 3796
	struct rq *rq = this_rq();

3797 3798 3799 3800 3801
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

3802
	if (user_tick)
3803
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3804
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3805
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3806 3807
				    one_jiffy_scaled);
	else
3808
		account_idle_time(cputime_one_jiffy);
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
3827 3828 3829 3830 3831 3832

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

3833
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3834 3835
}

3836 3837
#endif

3838 3839 3840 3841
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3842
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3843
{
3844 3845
	*ut = p->utime;
	*st = p->stime;
3846 3847
}

3848
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3849
{
3850 3851 3852 3853 3854 3855
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3856 3857
}
#else
3858 3859

#ifndef nsecs_to_cputime
3860
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3861 3862
#endif

3863
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3864
{
3865
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3866 3867 3868 3869

	/*
	 * Use CFS's precise accounting:
	 */
3870
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3871 3872

	if (total) {
3873
		u64 temp = rtime;
3874

3875
		temp *= utime;
3876
		do_div(temp, total);
3877 3878 3879
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3880

3881 3882 3883
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3884
	p->prev_utime = max(p->prev_utime, utime);
3885
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3886

3887 3888
	*ut = p->prev_utime;
	*st = p->prev_stime;
3889 3890
}

3891 3892 3893 3894
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3895
{
3896 3897 3898
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3899

3900
	thread_group_cputime(p, &cputime);
3901

3902 3903
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3904

3905
	if (total) {
3906
		u64 temp = rtime;
3907

3908
		temp *= cputime.utime;
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3920 3921 3922
}
#endif

3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3934
	struct task_struct *curr = rq->curr;
3935 3936

	sched_clock_tick();
I
Ingo Molnar 已提交
3937

3938
	raw_spin_lock(&rq->lock);
3939
	update_rq_clock(rq);
3940
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3941
	curr->sched_class->task_tick(rq, curr, 0);
3942
	raw_spin_unlock(&rq->lock);
3943

3944
	perf_event_task_tick();
3945

3946
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3947 3948
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3949
#endif
L
Linus Torvalds 已提交
3950 3951
}

3952
notrace unsigned long get_parent_ip(unsigned long addr)
3953 3954 3955 3956 3957 3958 3959 3960
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3961

3962 3963 3964
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3965
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3966
{
3967
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3968 3969 3970
	/*
	 * Underflow?
	 */
3971 3972
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3973
#endif
L
Linus Torvalds 已提交
3974
	preempt_count() += val;
3975
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3976 3977 3978
	/*
	 * Spinlock count overflowing soon?
	 */
3979 3980
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3981 3982 3983
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3984 3985 3986
}
EXPORT_SYMBOL(add_preempt_count);

3987
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3988
{
3989
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3990 3991 3992
	/*
	 * Underflow?
	 */
3993
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3994
		return;
L
Linus Torvalds 已提交
3995 3996 3997
	/*
	 * Is the spinlock portion underflowing?
	 */
3998 3999 4000
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4001
#endif
4002

4003 4004
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4005 4006 4007 4008 4009 4010 4011
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4012
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4013
 */
I
Ingo Molnar 已提交
4014
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4015
{
4016 4017
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
4018 4019
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
4020

I
Ingo Molnar 已提交
4021
	debug_show_held_locks(prev);
4022
	print_modules();
I
Ingo Molnar 已提交
4023 4024
	if (irqs_disabled())
		print_irqtrace_events(prev);
4025 4026 4027 4028 4029

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4030
}
L
Linus Torvalds 已提交
4031

I
Ingo Molnar 已提交
4032 4033 4034 4035 4036
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4037
	/*
I
Ingo Molnar 已提交
4038
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4039 4040 4041
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4042
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4043 4044
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4045 4046
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4047
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4048 4049
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4050
		schedstat_inc(this_rq(), rq_sched_info.bkl_count);
4051
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4052 4053
	}
#endif
I
Ingo Molnar 已提交
4054 4055
}

P
Peter Zijlstra 已提交
4056
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
4057
{
4058 4059
	if (prev->se.on_rq)
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
4060
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
4061 4062
}

I
Ingo Molnar 已提交
4063 4064 4065 4066
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4067
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
4068
{
4069
	const struct sched_class *class;
I
Ingo Molnar 已提交
4070
	struct task_struct *p;
L
Linus Torvalds 已提交
4071 4072

	/*
I
Ingo Molnar 已提交
4073 4074
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4075
	 */
I
Ingo Molnar 已提交
4076
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4077
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4078 4079
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4080 4081
	}

4082
	for_each_class(class) {
4083
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4084 4085 4086
		if (p)
			return p;
	}
4087 4088

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
4089
}
L
Linus Torvalds 已提交
4090

I
Ingo Molnar 已提交
4091 4092 4093
/*
 * schedule() is the main scheduler function.
 */
4094
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
4095 4096
{
	struct task_struct *prev, *next;
4097
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4098
	struct rq *rq;
4099
	int cpu;
I
Ingo Molnar 已提交
4100

4101 4102
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
4103 4104
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
4105
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
4106 4107 4108 4109 4110 4111
	prev = rq->curr;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4112

4113
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4114
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4115

4116
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
4117

4118
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
4119
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
4120
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
4121
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
		} else {
			/*
			 * If a worker is going to sleep, notify and
			 * ask workqueue whether it wants to wake up a
			 * task to maintain concurrency.  If so, wake
			 * up the task.
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
4136
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
T
Tejun Heo 已提交
4137
		}
I
Ingo Molnar 已提交
4138
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4139 4140
	}

4141
	pre_schedule(rq, prev);
4142

I
Ingo Molnar 已提交
4143
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4144 4145
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
4146
	put_prev_task(rq, prev);
4147
	next = pick_next_task(rq);
4148 4149
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
4150 4151

	if (likely(prev != next)) {
4152
		sched_info_switch(prev, next);
4153
		perf_event_task_sched_out(prev, next);
4154

L
Linus Torvalds 已提交
4155 4156 4157 4158
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4159
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4160
		/*
4161 4162 4163 4164
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
4165 4166 4167
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4168
	} else
4169
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
4170

4171
	post_schedule(rq);
L
Linus Torvalds 已提交
4172

4173
	if (unlikely(reacquire_kernel_lock(prev)))
L
Linus Torvalds 已提交
4174
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4175

L
Linus Torvalds 已提交
4176
	preempt_enable_no_resched();
4177
	if (need_resched())
L
Linus Torvalds 已提交
4178 4179 4180 4181
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

4182
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
4202
		return 0;
4203 4204 4205 4206 4207 4208 4209 4210 4211
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
4212
		return 0;
4213 4214 4215 4216 4217 4218

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
4219
		return 0;
4220 4221 4222 4223 4224 4225 4226

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
4227 4228 4229 4230 4231 4232 4233 4234
		if (lock->owner != owner) {
			/*
			 * If the lock has switched to a different owner,
			 * we likely have heavy contention. Return 0 to quit
			 * optimistic spinning and not contend further:
			 */
			if (lock->owner)
				return 0;
4235
			break;
4236
		}
4237 4238 4239 4240 4241 4242 4243

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

4244
		arch_mutex_cpu_relax();
4245
	}
4246

4247 4248 4249 4250
	return 1;
}
#endif

L
Linus Torvalds 已提交
4251 4252
#ifdef CONFIG_PREEMPT
/*
4253
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4254
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4255 4256
 * occur there and call schedule directly.
 */
4257
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
4258 4259
{
	struct thread_info *ti = current_thread_info();
4260

L
Linus Torvalds 已提交
4261 4262
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4263
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4264
	 */
N
Nick Piggin 已提交
4265
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4266 4267
		return;

4268
	do {
4269
		add_preempt_count_notrace(PREEMPT_ACTIVE);
4270
		schedule();
4271
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4272

4273 4274 4275 4276 4277
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4278
	} while (need_resched());
L
Linus Torvalds 已提交
4279 4280 4281 4282
}
EXPORT_SYMBOL(preempt_schedule);

/*
4283
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4284 4285 4286 4287 4288 4289 4290
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4291

4292
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4293 4294
	BUG_ON(ti->preempt_count || !irqs_disabled());

4295 4296 4297 4298 4299 4300
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4301

4302 4303 4304 4305 4306
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4307
	} while (need_resched());
L
Linus Torvalds 已提交
4308 4309 4310 4311
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
4312
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
4313
			  void *key)
L
Linus Torvalds 已提交
4314
{
P
Peter Zijlstra 已提交
4315
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
4316 4317 4318 4319
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4320 4321
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4322 4323 4324
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4325
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4326 4327
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4328
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
4329
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
4330
{
4331
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4332

4333
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4334 4335
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
4336
		if (curr->func(curr, mode, wake_flags, key) &&
4337
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4338 4339 4340 4341 4342 4343 4344 4345 4346
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4347
 * @key: is directly passed to the wakeup function
4348 4349 4350
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4351
 */
4352
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4353
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4366
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4367 4368 4369
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
4370
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
4371

4372 4373 4374 4375 4376
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
4377
/**
4378
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4379 4380 4381
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4382
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
4383 4384 4385 4386 4387 4388 4389
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
4390 4391 4392
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4393
 */
4394 4395
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4396 4397
{
	unsigned long flags;
P
Peter Zijlstra 已提交
4398
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
4399 4400 4401 4402 4403

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
4404
		wake_flags = 0;
L
Linus Torvalds 已提交
4405 4406

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
4407
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
4408 4409
	spin_unlock_irqrestore(&q->lock, flags);
}
4410 4411 4412 4413 4414 4415 4416 4417 4418
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4419 4420
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4421 4422 4423 4424 4425 4426 4427 4428
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4429 4430 4431
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4432
 */
4433
void complete(struct completion *x)
L
Linus Torvalds 已提交
4434 4435 4436 4437 4438
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4439
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4440 4441 4442 4443
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4444 4445 4446 4447 4448
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4449 4450 4451
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4452
 */
4453
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4454 4455 4456 4457 4458
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4459
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4460 4461 4462 4463
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4464 4465
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4466 4467 4468 4469
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
4470
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
4471
		do {
4472
			if (signal_pending_state(state, current)) {
4473 4474
				timeout = -ERESTARTSYS;
				break;
4475 4476
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4477 4478 4479
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4480
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4481
		__remove_wait_queue(&x->wait, &wait);
4482 4483
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4484 4485
	}
	x->done--;
4486
	return timeout ?: 1;
L
Linus Torvalds 已提交
4487 4488
}

4489 4490
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4491 4492 4493 4494
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4495
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4496
	spin_unlock_irq(&x->wait.lock);
4497 4498
	return timeout;
}
L
Linus Torvalds 已提交
4499

4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4510
void __sched wait_for_completion(struct completion *x)
4511 4512
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4513
}
4514
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4515

4516 4517 4518 4519 4520 4521 4522 4523 4524
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4525
unsigned long __sched
4526
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4527
{
4528
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4529
}
4530
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4531

4532 4533 4534 4535 4536 4537 4538
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4539
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4540
{
4541 4542 4543 4544
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4545
}
4546
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4547

4548 4549 4550 4551 4552 4553 4554 4555
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4556
long __sched
4557 4558
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4559
{
4560
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4561
}
4562
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4563

4564 4565 4566 4567 4568 4569 4570
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4571 4572 4573 4574 4575 4576 4577 4578 4579
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4580 4581 4582 4583 4584 4585 4586 4587 4588
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
4589
long __sched
4590 4591 4592 4593 4594 4595 4596
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4611
	unsigned long flags;
4612 4613
	int ret = 1;

4614
	spin_lock_irqsave(&x->wait.lock, flags);
4615 4616 4617 4618
	if (!x->done)
		ret = 0;
	else
		x->done--;
4619
	spin_unlock_irqrestore(&x->wait.lock, flags);
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4634
	unsigned long flags;
4635 4636
	int ret = 1;

4637
	spin_lock_irqsave(&x->wait.lock, flags);
4638 4639
	if (!x->done)
		ret = 0;
4640
	spin_unlock_irqrestore(&x->wait.lock, flags);
4641 4642 4643 4644
	return ret;
}
EXPORT_SYMBOL(completion_done);

4645 4646
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4647
{
I
Ingo Molnar 已提交
4648 4649 4650 4651
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4652

4653
	__set_current_state(state);
L
Linus Torvalds 已提交
4654

4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4669 4670 4671
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4672
long __sched
I
Ingo Molnar 已提交
4673
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4674
{
4675
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4676 4677 4678
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4679
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4680
{
4681
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4682 4683 4684
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4685
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4686
{
4687
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4688 4689 4690
}
EXPORT_SYMBOL(sleep_on_timeout);

4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4703
void rt_mutex_setprio(struct task_struct *p, int prio)
4704 4705
{
	unsigned long flags;
4706
	int oldprio, on_rq, running;
4707
	struct rq *rq;
4708
	const struct sched_class *prev_class;
4709 4710 4711 4712 4713

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4714
	trace_sched_pi_setprio(p, prio);
4715
	oldprio = p->prio;
4716
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4717
	on_rq = p->se.on_rq;
4718
	running = task_current(rq, p);
4719
	if (on_rq)
4720
		dequeue_task(rq, p, 0);
4721 4722
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4723 4724 4725 4726 4727 4728

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4729 4730
	p->prio = prio;

4731 4732
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4733
	if (on_rq)
4734
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4735

P
Peter Zijlstra 已提交
4736
	check_class_changed(rq, p, prev_class, oldprio);
4737 4738 4739 4740 4741
	task_rq_unlock(rq, &flags);
}

#endif

4742
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4743
{
I
Ingo Molnar 已提交
4744
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4745
	unsigned long flags;
4746
	struct rq *rq;
L
Linus Torvalds 已提交
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4759
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4760
	 */
4761
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4762 4763 4764
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4765
	on_rq = p->se.on_rq;
4766
	if (on_rq)
4767
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4768 4769

	p->static_prio = NICE_TO_PRIO(nice);
4770
	set_load_weight(p);
4771 4772 4773
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4774

I
Ingo Molnar 已提交
4775
	if (on_rq) {
4776
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4777
		/*
4778 4779
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4780
		 */
4781
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4782 4783 4784 4785 4786 4787 4788
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4789 4790 4791 4792 4793
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4794
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4795
{
4796 4797
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4798

4799
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4800 4801 4802
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4803 4804 4805 4806 4807 4808 4809 4810 4811
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4812
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4813
{
4814
	long nice, retval;
L
Linus Torvalds 已提交
4815 4816 4817 4818 4819 4820

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4821 4822
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4823 4824 4825
	if (increment > 40)
		increment = 40;

4826
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4827 4828 4829 4830 4831
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4832 4833 4834
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4853
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4854 4855 4856 4857 4858 4859 4860 4861
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4862
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4863 4864 4865
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4866
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4881
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4882 4883 4884 4885 4886 4887 4888 4889
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4890
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4891
{
4892
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4893 4894 4895
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4896 4897
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4898
{
I
Ingo Molnar 已提交
4899
	BUG_ON(p->se.on_rq);
4900

L
Linus Torvalds 已提交
4901 4902
	p->policy = policy;
	p->rt_priority = prio;
4903 4904 4905
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4906 4907 4908 4909
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4910
	set_load_weight(p);
L
Linus Torvalds 已提交
4911 4912
}

4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4929
static int __sched_setscheduler(struct task_struct *p, int policy,
4930
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4931
{
4932
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4933
	unsigned long flags;
4934
	const struct sched_class *prev_class;
4935
	struct rq *rq;
4936
	int reset_on_fork;
L
Linus Torvalds 已提交
4937

4938 4939
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4940 4941
recheck:
	/* double check policy once rq lock held */
4942 4943
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4944
		policy = oldpolicy = p->policy;
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4955 4956
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4957 4958
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4959 4960
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4961
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4962
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4963
		return -EINVAL;
4964
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4965 4966
		return -EINVAL;

4967 4968 4969
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4970
	if (user && !capable(CAP_SYS_NICE)) {
4971
		if (rt_policy(policy)) {
4972 4973
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4984

I
Ingo Molnar 已提交
4985
		/*
4986 4987
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4988
		 */
4989 4990 4991 4992
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
4993

4994
		/* can't change other user's priorities */
4995
		if (!check_same_owner(p))
4996
			return -EPERM;
4997 4998 4999 5000

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
5001
	}
L
Linus Torvalds 已提交
5002

5003
	if (user) {
5004
		retval = security_task_setscheduler(p);
5005 5006 5007 5008
		if (retval)
			return retval;
	}

5009 5010 5011 5012
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
5013
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5014 5015 5016 5017
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5018
	rq = __task_rq_lock(p);
5019

5020 5021 5022 5023 5024 5025 5026 5027 5028
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return -EINVAL;
	}

5029 5030 5031 5032 5033 5034 5035
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5036 5037
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
5038 5039 5040 5041 5042 5043 5044
			__task_rq_unlock(rq);
			raw_spin_unlock_irqrestore(&p->pi_lock, flags);
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
5045 5046 5047
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5048
		__task_rq_unlock(rq);
5049
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5050 5051
		goto recheck;
	}
I
Ingo Molnar 已提交
5052
	on_rq = p->se.on_rq;
5053
	running = task_current(rq, p);
5054
	if (on_rq)
5055
		deactivate_task(rq, p, 0);
5056 5057
	if (running)
		p->sched_class->put_prev_task(rq, p);
5058

5059 5060
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
5061
	oldprio = p->prio;
5062
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
5063
	__setscheduler(rq, p, policy, param->sched_priority);
5064

5065 5066
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
5067
	if (on_rq)
I
Ingo Molnar 已提交
5068
		activate_task(rq, p, 0);
5069

P
Peter Zijlstra 已提交
5070
	check_class_changed(rq, p, prev_class, oldprio);
5071
	__task_rq_unlock(rq);
5072
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5073

5074 5075
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5076 5077
	return 0;
}
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
5088
		       const struct sched_param *param)
5089 5090 5091
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5092 5093
EXPORT_SYMBOL_GPL(sched_setscheduler);

5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5106
			       const struct sched_param *param)
5107 5108 5109 5110
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5111 5112
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5113 5114 5115
{
	struct sched_param lparam;
	struct task_struct *p;
5116
	int retval;
L
Linus Torvalds 已提交
5117 5118 5119 5120 5121

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5122 5123 5124

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5125
	p = find_process_by_pid(pid);
5126 5127 5128
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5129

L
Linus Torvalds 已提交
5130 5131 5132 5133 5134 5135 5136 5137 5138
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5139 5140
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5141
{
5142 5143 5144 5145
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5146 5147 5148 5149 5150 5151 5152 5153
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5154
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5155 5156 5157 5158 5159 5160 5161 5162
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5163
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5164
{
5165
	struct task_struct *p;
5166
	int retval;
L
Linus Torvalds 已提交
5167 5168

	if (pid < 0)
5169
		return -EINVAL;
L
Linus Torvalds 已提交
5170 5171

	retval = -ESRCH;
5172
	rcu_read_lock();
L
Linus Torvalds 已提交
5173 5174 5175 5176
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
5177 5178
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
5179
	}
5180
	rcu_read_unlock();
L
Linus Torvalds 已提交
5181 5182 5183 5184
	return retval;
}

/**
5185
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
5186 5187 5188
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5189
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5190 5191
{
	struct sched_param lp;
5192
	struct task_struct *p;
5193
	int retval;
L
Linus Torvalds 已提交
5194 5195

	if (!param || pid < 0)
5196
		return -EINVAL;
L
Linus Torvalds 已提交
5197

5198
	rcu_read_lock();
L
Linus Torvalds 已提交
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
5209
	rcu_read_unlock();
L
Linus Torvalds 已提交
5210 5211 5212 5213 5214 5215 5216 5217 5218

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
5219
	rcu_read_unlock();
L
Linus Torvalds 已提交
5220 5221 5222
	return retval;
}

5223
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5224
{
5225
	cpumask_var_t cpus_allowed, new_mask;
5226 5227
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5228

5229
	get_online_cpus();
5230
	rcu_read_lock();
L
Linus Torvalds 已提交
5231 5232 5233

	p = find_process_by_pid(pid);
	if (!p) {
5234
		rcu_read_unlock();
5235
		put_online_cpus();
L
Linus Torvalds 已提交
5236 5237 5238
		return -ESRCH;
	}

5239
	/* Prevent p going away */
L
Linus Torvalds 已提交
5240
	get_task_struct(p);
5241
	rcu_read_unlock();
L
Linus Torvalds 已提交
5242

5243 5244 5245 5246 5247 5248 5249 5250
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5251
	retval = -EPERM;
5252
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
5253 5254
		goto out_unlock;

5255
	retval = security_task_setscheduler(p);
5256 5257 5258
	if (retval)
		goto out_unlock;

5259 5260
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
5261
again:
5262
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5263

P
Paul Menage 已提交
5264
	if (!retval) {
5265 5266
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5267 5268 5269 5270 5271
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5272
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5273 5274 5275
			goto again;
		}
	}
L
Linus Torvalds 已提交
5276
out_unlock:
5277 5278 5279 5280
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5281
	put_task_struct(p);
5282
	put_online_cpus();
L
Linus Torvalds 已提交
5283 5284 5285 5286
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5287
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5288
{
5289 5290 5291 5292 5293
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5294 5295 5296 5297 5298 5299 5300 5301 5302
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5303 5304
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5305
{
5306
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5307 5308
	int retval;

5309 5310
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5311

5312 5313 5314 5315 5316
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5317 5318
}

5319
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5320
{
5321
	struct task_struct *p;
5322 5323
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
5324 5325
	int retval;

5326
	get_online_cpus();
5327
	rcu_read_lock();
L
Linus Torvalds 已提交
5328 5329 5330 5331 5332 5333

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5334 5335 5336 5337
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5338
	rq = task_rq_lock(p, &flags);
5339
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5340
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5341 5342

out_unlock:
5343
	rcu_read_unlock();
5344
	put_online_cpus();
L
Linus Torvalds 已提交
5345

5346
	return retval;
L
Linus Torvalds 已提交
5347 5348 5349 5350 5351 5352 5353 5354
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5355 5356
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5357 5358
{
	int ret;
5359
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5360

A
Anton Blanchard 已提交
5361
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5362 5363
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
5364 5365
		return -EINVAL;

5366 5367
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5368

5369 5370
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
5371
		size_t retlen = min_t(size_t, len, cpumask_size());
5372 5373

		if (copy_to_user(user_mask_ptr, mask, retlen))
5374 5375
			ret = -EFAULT;
		else
5376
			ret = retlen;
5377 5378
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5379

5380
	return ret;
L
Linus Torvalds 已提交
5381 5382 5383 5384 5385
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5386 5387
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5388
 */
5389
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5390
{
5391
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5392

5393
	schedstat_inc(rq, yld_count);
5394
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5395 5396 5397 5398 5399 5400

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5401
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5402
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
5403 5404 5405 5406 5407 5408 5409
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
5410 5411 5412 5413 5414
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
5415
static void __cond_resched(void)
L
Linus Torvalds 已提交
5416
{
5417 5418 5419
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5420 5421
}

5422
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5423
{
P
Peter Zijlstra 已提交
5424
	if (should_resched()) {
L
Linus Torvalds 已提交
5425 5426 5427 5428 5429
		__cond_resched();
		return 1;
	}
	return 0;
}
5430
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5431 5432

/*
5433
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5434 5435
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5436
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5437 5438 5439
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5440
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5441
{
P
Peter Zijlstra 已提交
5442
	int resched = should_resched();
J
Jan Kara 已提交
5443 5444
	int ret = 0;

5445 5446
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5447
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5448
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5449
		if (resched)
N
Nick Piggin 已提交
5450 5451 5452
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5453
		ret = 1;
L
Linus Torvalds 已提交
5454 5455
		spin_lock(lock);
	}
J
Jan Kara 已提交
5456
	return ret;
L
Linus Torvalds 已提交
5457
}
5458
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5459

5460
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5461 5462 5463
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5464
	if (should_resched()) {
5465
		local_bh_enable();
L
Linus Torvalds 已提交
5466 5467 5468 5469 5470 5471
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5472
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5473 5474 5475 5476

/**
 * yield - yield the current processor to other threads.
 *
5477
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5478 5479 5480 5481 5482 5483 5484 5485 5486
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
	if (yielded)
		schedstat_inc(rq, yld_count);

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
5539
/*
I
Ingo Molnar 已提交
5540
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5541 5542 5543 5544
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5545
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5546

5547
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5548
	atomic_inc(&rq->nr_iowait);
5549
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5550
	schedule();
5551
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5552
	atomic_dec(&rq->nr_iowait);
5553
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5554 5555 5556 5557 5558
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5559
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5560 5561
	long ret;

5562
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5563
	atomic_inc(&rq->nr_iowait);
5564
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5565
	ret = schedule_timeout(timeout);
5566
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5567
	atomic_dec(&rq->nr_iowait);
5568
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5569 5570 5571 5572 5573 5574 5575 5576 5577 5578
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5579
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5580 5581 5582 5583 5584 5585 5586 5587 5588
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5589
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5590
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5604
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5605 5606 5607 5608 5609 5610 5611 5612 5613
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5614
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5615
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5629
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5630
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5631
{
5632
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5633
	unsigned int time_slice;
5634 5635
	unsigned long flags;
	struct rq *rq;
5636
	int retval;
L
Linus Torvalds 已提交
5637 5638 5639
	struct timespec t;

	if (pid < 0)
5640
		return -EINVAL;
L
Linus Torvalds 已提交
5641 5642

	retval = -ESRCH;
5643
	rcu_read_lock();
L
Linus Torvalds 已提交
5644 5645 5646 5647 5648 5649 5650 5651
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5652 5653 5654
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5655

5656
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5657
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5658 5659
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5660

L
Linus Torvalds 已提交
5661
out_unlock:
5662
	rcu_read_unlock();
L
Linus Torvalds 已提交
5663 5664 5665
	return retval;
}

5666
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5667

5668
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5669 5670
{
	unsigned long free = 0;
5671
	unsigned state;
L
Linus Torvalds 已提交
5672 5673

	state = p->state ? __ffs(p->state) + 1 : 0;
5674
	printk(KERN_INFO "%-15.15s %c", p->comm,
5675
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5676
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5677
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5678
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5679
	else
P
Peter Zijlstra 已提交
5680
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5681 5682
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5683
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5684
	else
P
Peter Zijlstra 已提交
5685
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5686 5687
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5688
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5689
#endif
P
Peter Zijlstra 已提交
5690
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5691 5692
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5693

5694
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5695 5696
}

I
Ingo Molnar 已提交
5697
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5698
{
5699
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5700

5701
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5702 5703
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5704
#else
P
Peter Zijlstra 已提交
5705 5706
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5707 5708 5709 5710 5711 5712 5713 5714
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5715
		if (!state_filter || (p->state & state_filter))
5716
			sched_show_task(p);
L
Linus Torvalds 已提交
5717 5718
	} while_each_thread(g, p);

5719 5720
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5721 5722 5723
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5724
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5725 5726 5727
	/*
	 * Only show locks if all tasks are dumped:
	 */
5728
	if (!state_filter)
I
Ingo Molnar 已提交
5729
		debug_show_all_locks();
L
Linus Torvalds 已提交
5730 5731
}

I
Ingo Molnar 已提交
5732 5733
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5734
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5735 5736
}

5737 5738 5739 5740 5741 5742 5743 5744
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5745
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5746
{
5747
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5748 5749
	unsigned long flags;

5750
	raw_spin_lock_irqsave(&rq->lock, flags);
5751

I
Ingo Molnar 已提交
5752
	__sched_fork(idle);
5753
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5754 5755
	idle->se.exec_start = sched_clock();

5756
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5768
	__set_task_cpu(idle, cpu);
5769
	rcu_read_unlock();
L
Linus Torvalds 已提交
5770 5771

	rq->curr = rq->idle = idle;
5772 5773 5774
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5775
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5776 5777

	/* Set the preempt count _outside_ the spinlocks! */
5778 5779 5780
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5781
	task_thread_info(idle)->preempt_count = 0;
5782
#endif
I
Ingo Molnar 已提交
5783 5784 5785 5786
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5787
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5788 5789 5790 5791 5792 5793 5794
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5795
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5796
 */
5797
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5798

I
Ingo Molnar 已提交
5799 5800 5801 5802 5803 5804 5805 5806 5807
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5808
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5809
{
5810
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5825

5826 5827
	return factor;
}
I
Ingo Molnar 已提交
5828

5829 5830 5831
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5832

5833 5834 5835 5836 5837 5838 5839
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}
5840

5841 5842 5843
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5844 5845
}

L
Linus Torvalds 已提交
5846 5847 5848 5849
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5850 5851 5852 5853 5854 5855
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5856
 *    it and puts it into the right queue.
5857 5858
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5859 5860 5861 5862 5863 5864 5865 5866
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5867
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5868 5869
 * call is not atomic; no spinlocks may be held.
 */
5870
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5871 5872
{
	unsigned long flags;
5873
	struct rq *rq;
5874
	unsigned int dest_cpu;
5875
	int ret = 0;
L
Linus Torvalds 已提交
5876

P
Peter Zijlstra 已提交
5877 5878 5879 5880 5881 5882 5883
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5884
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5885 5886 5887 5888
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5889

5890
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5891 5892 5893 5894
		ret = -EINVAL;
		goto out;
	}

5895
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5896
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5897 5898 5899 5900
		ret = -EINVAL;
		goto out;
	}

5901
	if (p->sched_class->set_cpus_allowed)
5902
		p->sched_class->set_cpus_allowed(p, new_mask);
5903
	else {
5904 5905
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5906 5907
	}

L
Linus Torvalds 已提交
5908
	/* Can the task run on the task's current CPU? If so, we're done */
5909
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5910 5911
		goto out;

5912
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5913
	if (migrate_task(p, rq)) {
5914
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5915 5916
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
5917
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5918 5919 5920 5921 5922
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5923

L
Linus Torvalds 已提交
5924 5925
	return ret;
}
5926
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5927 5928

/*
I
Ingo Molnar 已提交
5929
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5930 5931 5932 5933 5934 5935
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5936 5937
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5938
 */
5939
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5940
{
5941
	struct rq *rq_dest, *rq_src;
5942
	int ret = 0;
L
Linus Torvalds 已提交
5943

5944
	if (unlikely(!cpu_active(dest_cpu)))
5945
		return ret;
L
Linus Torvalds 已提交
5946 5947 5948 5949 5950 5951 5952

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5953
		goto done;
L
Linus Torvalds 已提交
5954
	/* Affinity changed (again). */
5955
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5956
		goto fail;
L
Linus Torvalds 已提交
5957

5958 5959 5960 5961 5962
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5963
		deactivate_task(rq_src, p, 0);
5964
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5965
		activate_task(rq_dest, p, 0);
5966
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5967
	}
L
Linus Torvalds 已提交
5968
done:
5969
	ret = 1;
L
Linus Torvalds 已提交
5970
fail:
L
Linus Torvalds 已提交
5971
	double_rq_unlock(rq_src, rq_dest);
5972
	return ret;
L
Linus Torvalds 已提交
5973 5974 5975
}

/*
5976 5977 5978
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5979
 */
5980
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5981
{
5982
	struct migration_arg *arg = data;
5983

5984 5985 5986 5987
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5988
	local_irq_disable();
5989
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5990
	local_irq_enable();
L
Linus Torvalds 已提交
5991
	return 0;
5992 5993
}

L
Linus Torvalds 已提交
5994
#ifdef CONFIG_HOTPLUG_CPU
5995

5996
/*
5997 5998
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5999
 */
6000
void idle_task_exit(void)
L
Linus Torvalds 已提交
6001
{
6002
	struct mm_struct *mm = current->active_mm;
6003

6004
	BUG_ON(cpu_online(smp_processor_id()));
6005

6006 6007 6008
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
6009 6010 6011 6012 6013 6014 6015 6016 6017
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6018
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6019
{
6020
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
6021 6022 6023 6024 6025

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
6026
/*
6027
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
6028
 */
6029
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
6030
{
6031 6032
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
6033 6034
}

6035
/*
6036 6037 6038 6039 6040 6041
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
6042
 */
6043
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
6044
{
6045
	struct rq *rq = cpu_rq(dead_cpu);
6046 6047
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
6048 6049

	/*
6050 6051 6052 6053 6054 6055 6056
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
6057
	 */
6058
	rq->stop = NULL;
6059

I
Ingo Molnar 已提交
6060
	for ( ; ; ) {
6061 6062 6063 6064 6065
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
6066
			break;
6067

6068
		next = pick_next_task(rq);
6069
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
6070
		next->sched_class->put_prev_task(rq, next);
6071

6072 6073 6074 6075 6076 6077 6078
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
6079
	}
6080

6081
	rq->stop = stop;
6082
}
6083

L
Linus Torvalds 已提交
6084 6085
#endif /* CONFIG_HOTPLUG_CPU */

6086 6087 6088
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6089 6090
	{
		.procname	= "sched_domain",
6091
		.mode		= 0555,
6092
	},
6093
	{}
6094 6095 6096
};

static struct ctl_table sd_ctl_root[] = {
6097 6098
	{
		.procname	= "kernel",
6099
		.mode		= 0555,
6100 6101
		.child		= sd_ctl_dir,
	},
6102
	{}
6103 6104 6105 6106 6107
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6108
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6109 6110 6111 6112

	return entry;
}

6113 6114
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6115
	struct ctl_table *entry;
6116

6117 6118 6119
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6120
	 * will always be set. In the lowest directory the names are
6121 6122 6123
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6124 6125
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6126 6127 6128
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6129 6130 6131 6132 6133

	kfree(*tablep);
	*tablep = NULL;
}

6134
static void
6135
set_table_entry(struct ctl_table *entry,
6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6149
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6150

6151 6152 6153
	if (table == NULL)
		return NULL;

6154
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6155
		sizeof(long), 0644, proc_doulongvec_minmax);
6156
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6157
		sizeof(long), 0644, proc_doulongvec_minmax);
6158
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6159
		sizeof(int), 0644, proc_dointvec_minmax);
6160
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6161
		sizeof(int), 0644, proc_dointvec_minmax);
6162
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6163
		sizeof(int), 0644, proc_dointvec_minmax);
6164
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6165
		sizeof(int), 0644, proc_dointvec_minmax);
6166
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6167
		sizeof(int), 0644, proc_dointvec_minmax);
6168
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6169
		sizeof(int), 0644, proc_dointvec_minmax);
6170
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6171
		sizeof(int), 0644, proc_dointvec_minmax);
6172
	set_table_entry(&table[9], "cache_nice_tries",
6173 6174
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6175
	set_table_entry(&table[10], "flags", &sd->flags,
6176
		sizeof(int), 0644, proc_dointvec_minmax);
6177 6178 6179
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6180 6181 6182 6183

	return table;
}

6184
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6185 6186 6187 6188 6189 6190 6191 6192 6193
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6194 6195
	if (table == NULL)
		return NULL;
6196 6197 6198 6199 6200

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6201
		entry->mode = 0555;
6202 6203 6204 6205 6206 6207 6208 6209
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6210
static void register_sched_domain_sysctl(void)
6211
{
6212
	int i, cpu_num = num_possible_cpus();
6213 6214 6215
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6216 6217 6218
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6219 6220 6221
	if (entry == NULL)
		return;

6222
	for_each_possible_cpu(i) {
6223 6224
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6225
		entry->mode = 0555;
6226
		entry->child = sd_alloc_ctl_cpu_table(i);
6227
		entry++;
6228
	}
6229 6230

	WARN_ON(sd_sysctl_header);
6231 6232
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6233

6234
/* may be called multiple times per register */
6235 6236
static void unregister_sched_domain_sysctl(void)
{
6237 6238
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6239
	sd_sysctl_header = NULL;
6240 6241
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6242
}
6243
#else
6244 6245 6246 6247
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6248 6249 6250 6251
{
}
#endif

6252 6253 6254 6255 6256
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6257
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6277
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6278 6279 6280 6281
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6282 6283 6284 6285
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6286 6287
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6288
{
6289
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6290
	unsigned long flags;
6291
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6292

6293
	switch (action & ~CPU_TASKS_FROZEN) {
6294

L
Linus Torvalds 已提交
6295
	case CPU_UP_PREPARE:
6296
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
6297
		break;
6298

L
Linus Torvalds 已提交
6299
	case CPU_ONLINE:
6300
		/* Update our root-domain */
6301
		raw_spin_lock_irqsave(&rq->lock, flags);
6302
		if (rq->rd) {
6303
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6304 6305

			set_rq_online(rq);
6306
		}
6307
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6308
		break;
6309

L
Linus Torvalds 已提交
6310
#ifdef CONFIG_HOTPLUG_CPU
6311
	case CPU_DYING:
G
Gregory Haskins 已提交
6312
		/* Update our root-domain */
6313
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6314
		if (rq->rd) {
6315
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6316
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6317
		}
6318 6319
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
6320
		raw_spin_unlock_irqrestore(&rq->lock, flags);
6321 6322 6323

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
6324
		break;
L
Linus Torvalds 已提交
6325 6326 6327 6328 6329
#endif
	}
	return NOTIFY_OK;
}

6330 6331 6332
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
6333
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
6334
 */
6335
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6336
	.notifier_call = migration_call,
6337
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
6338 6339
};

6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

6365
static int __init migration_init(void)
L
Linus Torvalds 已提交
6366 6367
{
	void *cpu = (void *)(long)smp_processor_id();
6368
	int err;
6369

6370
	/* Initialize migration for the boot CPU */
6371 6372
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6373 6374
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6375

6376 6377 6378 6379
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

6380
	return 0;
L
Linus Torvalds 已提交
6381
}
6382
early_initcall(migration_init);
L
Linus Torvalds 已提交
6383 6384 6385
#endif

#ifdef CONFIG_SMP
6386

6387
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6388

6389 6390 6391 6392 6393 6394 6395 6396 6397 6398
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6399
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6400
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6401
{
I
Ingo Molnar 已提交
6402
	struct sched_group *group = sd->groups;
6403
	char str[256];
L
Linus Torvalds 已提交
6404

R
Rusty Russell 已提交
6405
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6406
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6407 6408 6409 6410

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6411
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6412
		if (sd->parent)
P
Peter Zijlstra 已提交
6413 6414
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6415
		return -1;
N
Nick Piggin 已提交
6416 6417
	}

P
Peter Zijlstra 已提交
6418
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6419

6420
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6421 6422
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6423
	}
6424
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6425 6426
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6427
	}
L
Linus Torvalds 已提交
6428

I
Ingo Molnar 已提交
6429
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6430
	do {
I
Ingo Molnar 已提交
6431
		if (!group) {
P
Peter Zijlstra 已提交
6432 6433
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6434 6435 6436
			break;
		}

6437
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6438 6439 6440
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6441 6442
			break;
		}
L
Linus Torvalds 已提交
6443

6444
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6445 6446
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6447 6448
			break;
		}
L
Linus Torvalds 已提交
6449

6450
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6451 6452
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6453 6454
			break;
		}
L
Linus Torvalds 已提交
6455

6456
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6457

R
Rusty Russell 已提交
6458
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6459

P
Peter Zijlstra 已提交
6460
		printk(KERN_CONT " %s", str);
6461
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6462 6463
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6464
		}
L
Linus Torvalds 已提交
6465

I
Ingo Molnar 已提交
6466 6467
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6468
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6469

6470
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6471
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6472

6473 6474
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6475 6476
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6477 6478
	return 0;
}
L
Linus Torvalds 已提交
6479

I
Ingo Molnar 已提交
6480 6481
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6482
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6483
	int level = 0;
L
Linus Torvalds 已提交
6484

6485 6486 6487
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6488 6489 6490 6491
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6492

I
Ingo Molnar 已提交
6493 6494
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6495
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6496 6497 6498 6499
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6500
	for (;;) {
6501
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6502
			break;
L
Linus Torvalds 已提交
6503 6504
		level++;
		sd = sd->parent;
6505
		if (!sd)
I
Ingo Molnar 已提交
6506 6507
			break;
	}
6508
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6509
}
6510
#else /* !CONFIG_SCHED_DEBUG */
6511
# define sched_domain_debug(sd, cpu) do { } while (0)
6512
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6513

6514
static int sd_degenerate(struct sched_domain *sd)
6515
{
6516
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6517 6518 6519 6520 6521 6522
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6523 6524 6525
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6526 6527 6528 6529 6530
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6531
	if (sd->flags & (SD_WAKE_AFFINE))
6532 6533 6534 6535 6536
		return 0;

	return 1;
}

6537 6538
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6539 6540 6541 6542 6543 6544
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6545
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6546 6547 6548 6549 6550 6551 6552
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6553 6554 6555
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6556 6557
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6558 6559 6560 6561 6562 6563 6564
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6565 6566
static void free_rootdomain(struct root_domain *rd)
{
6567 6568
	synchronize_sched();

6569 6570
	cpupri_cleanup(&rd->cpupri);

6571 6572 6573 6574 6575 6576
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6577 6578
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6579
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6580 6581
	unsigned long flags;

6582
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6583 6584

	if (rq->rd) {
I
Ingo Molnar 已提交
6585
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6586

6587
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6588
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6589

6590
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6591

I
Ingo Molnar 已提交
6592 6593 6594 6595 6596 6597 6598
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6599 6600 6601 6602 6603
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6604
	cpumask_set_cpu(rq->cpu, rd->span);
6605
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6606
		set_rq_online(rq);
G
Gregory Haskins 已提交
6607

6608
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6609 6610 6611

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6612 6613
}

6614
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6615 6616 6617
{
	memset(rd, 0, sizeof(*rd));

6618
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6619
		goto out;
6620
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6621
		goto free_span;
6622
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6623
		goto free_online;
6624

6625
	if (cpupri_init(&rd->cpupri) != 0)
6626
		goto free_rto_mask;
6627
	return 0;
6628

6629 6630
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6631 6632 6633 6634
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6635
out:
6636
	return -ENOMEM;
G
Gregory Haskins 已提交
6637 6638 6639 6640
}

static void init_defrootdomain(void)
{
6641
	init_rootdomain(&def_root_domain);
6642

G
Gregory Haskins 已提交
6643 6644 6645
	atomic_set(&def_root_domain.refcount, 1);
}

6646
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6647 6648 6649 6650 6651 6652 6653
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6654
	if (init_rootdomain(rd) != 0) {
6655 6656 6657
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6658 6659 6660 6661

	return rd;
}

L
Linus Torvalds 已提交
6662
/*
I
Ingo Molnar 已提交
6663
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6664 6665
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6666 6667
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6668
{
6669
	struct rq *rq = cpu_rq(cpu);
6670 6671
	struct sched_domain *tmp;

6672 6673 6674
	for (tmp = sd; tmp; tmp = tmp->parent)
		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));

6675
	/* Remove the sched domains which do not contribute to scheduling. */
6676
	for (tmp = sd; tmp; ) {
6677 6678 6679
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6680

6681
		if (sd_parent_degenerate(tmp, parent)) {
6682
			tmp->parent = parent->parent;
6683 6684
			if (parent->parent)
				parent->parent->child = tmp;
6685 6686
		} else
			tmp = tmp->parent;
6687 6688
	}

6689
	if (sd && sd_degenerate(sd)) {
6690
		sd = sd->parent;
6691 6692 6693
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6694 6695 6696

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6697
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6698
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6699 6700 6701
}

/* cpus with isolated domains */
6702
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6703 6704 6705 6706

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6707
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6708
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6709 6710 6711
	return 1;
}

I
Ingo Molnar 已提交
6712
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6713 6714

/*
6715 6716
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6717 6718
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6719 6720 6721 6722 6723
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6724
static void
6725 6726 6727
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6728
					struct sched_group **sg,
6729 6730
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6731 6732 6733 6734
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6735
	cpumask_clear(covered);
6736

6737
	for_each_cpu(i, span) {
6738
		struct sched_group *sg;
6739
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6740 6741
		int j;

6742
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6743 6744
			continue;

6745
		cpumask_clear(sched_group_cpus(sg));
6746
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6747

6748
		for_each_cpu(j, span) {
6749
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6750 6751
				continue;

6752
			cpumask_set_cpu(j, covered);
6753
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6754 6755 6756 6757 6758 6759 6760 6761 6762 6763
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6764
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6765

6766
#ifdef CONFIG_NUMA
6767

6768 6769 6770 6771 6772
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6773
 * Find the next node to include in a given scheduling domain. Simply
6774 6775 6776 6777
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6778
static int find_next_best_node(int node, nodemask_t *used_nodes)
6779 6780 6781 6782 6783
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6784
	for (i = 0; i < nr_node_ids; i++) {
6785
		/* Start at @node */
6786
		n = (node + i) % nr_node_ids;
6787 6788 6789 6790 6791

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6792
		if (node_isset(n, *used_nodes))
6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6804
	node_set(best_node, *used_nodes);
6805 6806 6807 6808 6809 6810
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6811
 * @span: resulting cpumask
6812
 *
I
Ingo Molnar 已提交
6813
 * Given a node, construct a good cpumask for its sched_domain to span. It
6814 6815 6816
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6817
static void sched_domain_node_span(int node, struct cpumask *span)
6818
{
6819
	nodemask_t used_nodes;
6820
	int i;
6821

6822
	cpumask_clear(span);
6823
	nodes_clear(used_nodes);
6824

6825
	cpumask_or(span, span, cpumask_of_node(node));
6826
	node_set(node, used_nodes);
6827 6828

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6829
		int next_node = find_next_best_node(node, &used_nodes);
6830

6831
		cpumask_or(span, span, cpumask_of_node(next_node));
6832 6833
	}
}
6834
#endif /* CONFIG_NUMA */
6835

6836
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6837

6838 6839
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6840 6841 6842
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6854 6855 6856 6857 6858 6859 6860 6861 6862 6863
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
6864
	cpumask_var_t		this_book_map;
6865 6866 6867 6868 6869 6870
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6871 6872 6873 6874 6875
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
6876
	sa_this_book_map,
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6889
/*
6890
 * SMT sched-domains:
6891
 */
L
Linus Torvalds 已提交
6892
#ifdef CONFIG_SCHED_SMT
6893
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6894
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6895

I
Ingo Molnar 已提交
6896
static int
6897 6898
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6899
{
6900
	if (sg)
6901
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6902 6903
	return cpu;
}
6904
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6905

6906 6907 6908
/*
 * multi-core sched-domains:
 */
6909
#ifdef CONFIG_SCHED_MC
6910 6911
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6912

I
Ingo Molnar 已提交
6913
static int
6914 6915
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6916
{
6917
	int group;
6918
#ifdef CONFIG_SCHED_SMT
6919
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6920
	group = cpumask_first(mask);
6921 6922 6923
#else
	group = cpu;
#endif
6924
	if (sg)
6925
		*sg = &per_cpu(sched_group_core, group).sg;
6926
	return group;
6927
}
6928
#endif /* CONFIG_SCHED_MC */
6929

6930 6931 6932 6933 6934 6935 6936
/*
 * book sched-domains:
 */
#ifdef CONFIG_SCHED_BOOK
static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);

I
Ingo Molnar 已提交
6937
static int
6938 6939
cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6940
{
6941 6942 6943 6944 6945 6946 6947 6948
	int group = cpu;
#ifdef CONFIG_SCHED_MC
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_SMT)
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
	group = cpumask_first(mask);
#endif
6949
	if (sg)
6950 6951
		*sg = &per_cpu(sched_group_book, group).sg;
	return group;
6952
}
6953
#endif /* CONFIG_SCHED_BOOK */
6954

6955 6956
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6957

I
Ingo Molnar 已提交
6958
static int
6959 6960
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6961
{
6962
	int group;
6963 6964 6965 6966
#ifdef CONFIG_SCHED_BOOK
	cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_MC)
6967
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6968
	group = cpumask_first(mask);
6969
#elif defined(CONFIG_SCHED_SMT)
6970
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6971
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6972
#else
6973
	group = cpu;
L
Linus Torvalds 已提交
6974
#endif
6975
	if (sg)
6976
		*sg = &per_cpu(sched_group_phys, group).sg;
6977
	return group;
L
Linus Torvalds 已提交
6978 6979 6980 6981
}

#ifdef CONFIG_NUMA
/*
6982 6983 6984
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6985
 */
6986
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6987
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6988

6989
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6990
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6991

6992 6993 6994
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6995
{
6996 6997
	int group;

6998
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6999
	group = cpumask_first(nodemask);
7000 7001

	if (sg)
7002
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7003
	return group;
L
Linus Torvalds 已提交
7004
}
7005

7006 7007 7008 7009 7010 7011 7012
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7013
	do {
7014
		for_each_cpu(j, sched_group_cpus(sg)) {
7015
			struct sched_domain *sd;
7016

7017
			sd = &per_cpu(phys_domains, j).sd;
7018
			if (j != group_first_cpu(sd->groups)) {
7019 7020 7021 7022 7023 7024
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7025

7026
			sg->cpu_power += sd->groups->cpu_power;
7027 7028 7029
		}
		sg = sg->next;
	} while (sg != group_head);
7030
}
7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
7052 7053
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
7054 7055 7056 7057 7058 7059 7060 7061 7062
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

7063
	sg->cpu_power = 0;
7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
7082 7083
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
7084 7085
			return -ENOMEM;
		}
7086
		sg->cpu_power = 0;
7087 7088 7089 7090 7091 7092 7093 7094 7095
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
7096
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7097

7098
#ifdef CONFIG_NUMA
7099
/* Free memory allocated for various sched_group structures */
7100 7101
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7102
{
7103
	int cpu, i;
7104

7105
	for_each_cpu(cpu, cpu_map) {
7106 7107 7108 7109 7110 7111
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7112
		for (i = 0; i < nr_node_ids; i++) {
7113 7114
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7115
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7116
			if (cpumask_empty(nodemask))
7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7133
#else /* !CONFIG_NUMA */
7134 7135
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7136 7137
{
}
7138
#endif /* CONFIG_NUMA */
7139

7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
7154 7155
	long power;
	int weight;
7156 7157 7158

	WARN_ON(!sd || !sd->groups);

7159
	if (cpu != group_first_cpu(sd->groups))
7160 7161
		return;

7162 7163
	sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));

7164 7165
	child = sd->child;

7166
	sd->groups->cpu_power = 0;
7167

7168 7169 7170 7171 7172
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
7173 7174 7175
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
7176
		 */
P
Peter Zijlstra 已提交
7177 7178
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
7179
			power /= weight;
P
Peter Zijlstra 已提交
7180 7181
			power >>= SCHED_LOAD_SHIFT;
		}
7182
		sd->groups->cpu_power += power;
7183 7184 7185 7186
		return;
	}

	/*
7187
	 * Add cpu_power of each child group to this groups cpu_power.
7188 7189 7190
	 */
	group = child->groups;
	do {
7191
		sd->groups->cpu_power += group->cpu_power;
7192 7193 7194 7195
		group = group->next;
	} while (group != child->groups);
}

7196 7197 7198 7199 7200
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7201 7202 7203 7204 7205 7206
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7207
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7208

7209 7210 7211 7212 7213
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7214
	sd->level = SD_LV_##type;				\
7215
	SD_INIT_NAME(sd, type);					\
7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
7229 7230 7231
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
7232

7233 7234 7235 7236
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7237 7238 7239 7240 7241 7242
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
7261
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7262 7263
	} else {
		/* turn on idle balance on this domain */
7264
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7265 7266 7267
	}
}

7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
7281 7282
	case sa_this_book_map:
		free_cpumask_var(d->this_book_map); /* fall through */
7283 7284 7285 7286 7287 7288 7289
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
7290
#ifdef CONFIG_NUMA
7291 7292 7293 7294 7295 7296 7297
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
7298
#endif
7299 7300 7301 7302
	case sa_none:
		break;
	}
}
7303

7304 7305 7306
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
7307
#ifdef CONFIG_NUMA
7308 7309 7310 7311 7312 7313 7314 7315 7316 7317
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
7318
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7319
		return sa_notcovered;
7320
	}
7321
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7322
#endif
7323 7324 7325 7326 7327 7328
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
7329
	if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7330
		return sa_this_core_map;
7331 7332
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_book_map;
7333 7334 7335 7336
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
7337
		printk(KERN_WARNING "Cannot alloc root domain\n");
7338
		return sa_tmpmask;
G
Gregory Haskins 已提交
7339
	}
7340 7341
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
7342

7343 7344 7345 7346
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
7347
#ifdef CONFIG_NUMA
7348
	struct sched_domain *parent;
L
Linus Torvalds 已提交
7349

7350 7351 7352 7353 7354
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
7355
		set_domain_attribute(sd, attr);
7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7370
#endif
7371 7372
	return sd;
}
L
Linus Torvalds 已提交
7373

7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
7389

7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406
static struct sched_domain *__build_book_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
#ifdef CONFIG_SCHED_BOOK
	sd = &per_cpu(book_domains, i).sd;
	SD_INIT(sd, BOOK);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
#endif
	return sd;
}

7407 7408 7409 7410 7411
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
7412
#ifdef CONFIG_SCHED_MC
7413 7414 7415 7416 7417 7418 7419
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7420
#endif
7421 7422
	return sd;
}
7423

7424 7425 7426 7427 7428
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
7429
#ifdef CONFIG_SCHED_SMT
7430 7431 7432 7433 7434 7435 7436
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
7437
#endif
7438 7439
	return sd;
}
L
Linus Torvalds 已提交
7440

7441 7442 7443 7444
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
7445
#ifdef CONFIG_SCHED_SMT
7446 7447 7448 7449 7450 7451 7452 7453
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7454
#endif
7455
#ifdef CONFIG_SCHED_MC
7456 7457 7458 7459 7460 7461 7462
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
7463 7464 7465 7466 7467 7468 7469 7470 7471
#endif
#ifdef CONFIG_SCHED_BOOK
	case SD_LV_BOOK: /* set up book groups */
		cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
		if (cpu == cpumask_first(d->this_book_map))
			init_sched_build_groups(d->this_book_map, cpu_map,
						&cpu_to_book_group,
						d->send_covered, d->tmpmask);
		break;
7472
#endif
7473 7474 7475 7476 7477 7478 7479
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7480
#ifdef CONFIG_NUMA
7481 7482 7483 7484 7485
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
7486 7487
	default:
		break;
7488
	}
7489
}
7490

7491 7492 7493 7494 7495 7496 7497 7498 7499
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7500
	struct sched_domain *sd;
7501
	int i;
7502
#ifdef CONFIG_NUMA
7503
	d.sd_allnodes = 0;
7504
#endif
7505

7506 7507 7508 7509
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7510

L
Linus Torvalds 已提交
7511
	/*
7512
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7513
	 */
7514
	for_each_cpu(i, cpu_map) {
7515 7516
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7517

7518
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7519
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7520
		sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7521
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7522
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7523
	}
7524

7525
	for_each_cpu(i, cpu_map) {
7526
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7527
		build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7528
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7529
	}
7530

L
Linus Torvalds 已提交
7531
	/* Set up physical groups */
7532 7533
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7534

L
Linus Torvalds 已提交
7535 7536
#ifdef CONFIG_NUMA
	/* Set up node groups */
7537 7538
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7539

7540 7541
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7542
			goto error;
L
Linus Torvalds 已提交
7543 7544 7545
#endif

	/* Calculate CPU power for physical packages and nodes */
7546
#ifdef CONFIG_SCHED_SMT
7547
	for_each_cpu(i, cpu_map) {
7548
		sd = &per_cpu(cpu_domains, i).sd;
7549
		init_sched_groups_power(i, sd);
7550
	}
L
Linus Torvalds 已提交
7551
#endif
7552
#ifdef CONFIG_SCHED_MC
7553
	for_each_cpu(i, cpu_map) {
7554
		sd = &per_cpu(core_domains, i).sd;
7555
		init_sched_groups_power(i, sd);
7556 7557
	}
#endif
7558 7559 7560 7561 7562 7563
#ifdef CONFIG_SCHED_BOOK
	for_each_cpu(i, cpu_map) {
		sd = &per_cpu(book_domains, i).sd;
		init_sched_groups_power(i, sd);
	}
#endif
7564

7565
	for_each_cpu(i, cpu_map) {
7566
		sd = &per_cpu(phys_domains, i).sd;
7567
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7568 7569
	}

7570
#ifdef CONFIG_NUMA
7571
	for (i = 0; i < nr_node_ids; i++)
7572
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7573

7574
	if (d.sd_allnodes) {
7575
		struct sched_group *sg;
7576

7577
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7578
								d.tmpmask);
7579 7580
		init_numa_sched_groups_power(sg);
	}
7581 7582
#endif

L
Linus Torvalds 已提交
7583
	/* Attach the domains */
7584
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7585
#ifdef CONFIG_SCHED_SMT
7586
		sd = &per_cpu(cpu_domains, i).sd;
7587
#elif defined(CONFIG_SCHED_MC)
7588
		sd = &per_cpu(core_domains, i).sd;
7589 7590
#elif defined(CONFIG_SCHED_BOOK)
		sd = &per_cpu(book_domains, i).sd;
L
Linus Torvalds 已提交
7591
#else
7592
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7593
#endif
7594
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7595
	}
7596

7597 7598 7599
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7600 7601

error:
7602 7603
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7604
}
P
Paul Jackson 已提交
7605

7606
static int build_sched_domains(const struct cpumask *cpu_map)
7607 7608 7609 7610
{
	return __build_sched_domains(cpu_map, NULL);
}

7611
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7612
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7613 7614
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7615 7616 7617

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7618 7619
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7620
 */
7621
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7622

7623 7624 7625 7626 7627 7628
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7629
{
7630
	return 0;
7631 7632
}

7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7658
/*
I
Ingo Molnar 已提交
7659
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7660 7661
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7662
 */
7663
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7664
{
7665 7666
	int err;

7667
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7668
	ndoms_cur = 1;
7669
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7670
	if (!doms_cur)
7671 7672
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7673
	dattr_cur = NULL;
7674
	err = build_sched_domains(doms_cur[0]);
7675
	register_sched_domain_sysctl();
7676 7677

	return err;
7678 7679
}

7680 7681
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7682
{
7683
	free_sched_groups(cpu_map, tmpmask);
7684
}
L
Linus Torvalds 已提交
7685

7686 7687 7688 7689
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7690
static void detach_destroy_domains(const struct cpumask *cpu_map)
7691
{
7692 7693
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7694 7695
	int i;

7696
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7697
		cpu_attach_domain(NULL, &def_root_domain, i);
7698
	synchronize_sched();
7699
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7700 7701
}

7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7718 7719
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7720
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7721 7722 7723
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7724
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7725 7726 7727
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7728 7729 7730
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7731 7732 7733 7734 7735 7736
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7737
 *
7738
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7739 7740
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7741
 *
P
Paul Jackson 已提交
7742 7743
 * Call with hotplug lock held
 */
7744
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7745
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7746
{
7747
	int i, j, n;
7748
	int new_topology;
P
Paul Jackson 已提交
7749

7750
	mutex_lock(&sched_domains_mutex);
7751

7752 7753 7754
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7755 7756 7757
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7758
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7759 7760 7761

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7762
		for (j = 0; j < n && !new_topology; j++) {
7763
			if (cpumask_equal(doms_cur[i], doms_new[j])
7764
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7765 7766 7767
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7768
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7769 7770 7771 7772
match1:
		;
	}

7773 7774
	if (doms_new == NULL) {
		ndoms_cur = 0;
7775
		doms_new = &fallback_doms;
7776
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7777
		WARN_ON_ONCE(dattr_new);
7778 7779
	}

P
Paul Jackson 已提交
7780 7781
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7782
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7783
			if (cpumask_equal(doms_new[i], doms_cur[j])
7784
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7785 7786 7787
				goto match2;
		}
		/* no match - add a new doms_new */
7788
		__build_sched_domains(doms_new[i],
7789
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7790 7791 7792 7793 7794
match2:
		;
	}

	/* Remember the new sched domains */
7795 7796
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7797
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7798
	doms_cur = doms_new;
7799
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7800
	ndoms_cur = ndoms_new;
7801 7802

	register_sched_domain_sysctl();
7803

7804
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7805 7806
}

7807
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7808
static void arch_reinit_sched_domains(void)
7809
{
7810
	get_online_cpus();
7811 7812 7813 7814

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7815
	rebuild_sched_domains();
7816
	put_online_cpus();
7817 7818 7819 7820
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7821
	unsigned int level = 0;
7822

7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7834 7835 7836
		return -EINVAL;

	if (smt)
7837
		sched_smt_power_savings = level;
7838
	else
7839
		sched_mc_power_savings = level;
7840

7841
	arch_reinit_sched_domains();
7842

7843
	return count;
7844 7845 7846
}

#ifdef CONFIG_SCHED_MC
7847
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7848
					   struct sysdev_class_attribute *attr,
7849
					   char *page)
7850 7851 7852
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7853
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7854
					    struct sysdev_class_attribute *attr,
7855
					    const char *buf, size_t count)
7856 7857 7858
{
	return sched_power_savings_store(buf, count, 0);
}
7859 7860 7861
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7862 7863 7864
#endif

#ifdef CONFIG_SCHED_SMT
7865
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7866
					    struct sysdev_class_attribute *attr,
7867
					    char *page)
7868 7869 7870
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7871
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7872
					     struct sysdev_class_attribute *attr,
7873
					     const char *buf, size_t count)
7874 7875 7876
{
	return sched_power_savings_store(buf, count, 1);
}
7877 7878
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7879 7880 7881
		   sched_smt_power_savings_store);
#endif

7882
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7898
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7899

L
Linus Torvalds 已提交
7900
/*
7901 7902 7903
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7904
 */
7905 7906
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7907
{
7908
	switch (action & ~CPU_TASKS_FROZEN) {
7909
	case CPU_ONLINE:
7910
	case CPU_DOWN_FAILED:
7911
		cpuset_update_active_cpus();
7912
		return NOTIFY_OK;
7913 7914 7915 7916
	default:
		return NOTIFY_DONE;
	}
}
7917

7918 7919
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7920 7921 7922 7923 7924
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
7925 7926 7927 7928 7929 7930 7931
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7932
{
P
Peter Zijlstra 已提交
7933 7934
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7935 7936
	switch (action) {
	case CPU_DOWN_PREPARE:
7937
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7938
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7939 7940 7941
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7942
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7943
	case CPU_ONLINE:
7944
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7945
		enable_runtime(cpu_rq(cpu));
7946 7947
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7948 7949 7950 7951 7952 7953 7954
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7955 7956 7957
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7958
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7959

7960 7961 7962 7963 7964
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7965
	get_online_cpus();
7966
	mutex_lock(&sched_domains_mutex);
7967
	arch_init_sched_domains(cpu_active_mask);
7968 7969 7970
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7971
	mutex_unlock(&sched_domains_mutex);
7972
	put_online_cpus();
7973

7974 7975
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7976 7977 7978 7979

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7980
	init_hrtick();
7981 7982

	/* Move init over to a non-isolated CPU */
7983
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7984
		BUG();
I
Ingo Molnar 已提交
7985
	sched_init_granularity();
7986
	free_cpumask_var(non_isolated_cpus);
7987

7988
	init_sched_rt_class();
L
Linus Torvalds 已提交
7989 7990 7991 7992
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7993
	sched_init_granularity();
L
Linus Torvalds 已提交
7994 7995 7996
}
#endif /* CONFIG_SMP */

7997 7998
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7999 8000 8001 8002 8003 8004 8005
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8006
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8007 8008
{
	cfs_rq->tasks_timeline = RB_ROOT;
8009
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8010 8011
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
8012
	/* allow initial update_cfs_load() to truncate */
8013
#ifdef CONFIG_SMP
8014
	cfs_rq->load_stamp = 1;
8015
#endif
I
Ingo Molnar 已提交
8016
#endif
P
Peter Zijlstra 已提交
8017
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8018 8019
}

P
Peter Zijlstra 已提交
8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8033
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8034
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
8035
#ifdef CONFIG_SMP
8036
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
8037 8038
#endif
#endif
P
Peter Zijlstra 已提交
8039 8040 8041
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
8042
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
8043 8044 8045 8046
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8047
	rt_rq->rt_runtime = 0;
8048
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8049

8050
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8051
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8052 8053
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8054 8055
}

P
Peter Zijlstra 已提交
8056
#ifdef CONFIG_FAIR_GROUP_SCHED
8057
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8058
				struct sched_entity *se, int cpu,
8059
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8060
{
8061
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8062 8063 8064 8065 8066
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;

	tg->se[cpu] = se;
8067
	/* se could be NULL for root_task_group */
D
Dhaval Giani 已提交
8068 8069 8070
	if (!se)
		return;

8071 8072 8073 8074 8075
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8076
	se->my_q = cfs_rq;
8077
	update_load_set(&se->load, 0);
8078
	se->parent = parent;
P
Peter Zijlstra 已提交
8079
}
8080
#endif
P
Peter Zijlstra 已提交
8081

8082
#ifdef CONFIG_RT_GROUP_SCHED
8083
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8084
		struct sched_rt_entity *rt_se, int cpu,
8085
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8086
{
8087 8088
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8089 8090 8091
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
8092
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8093 8094

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8095 8096 8097
	if (!rt_se)
		return;

8098 8099 8100 8101 8102
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8103
	rt_se->my_q = rt_rq;
8104
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8105 8106 8107 8108
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8109 8110
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8111
	int i, j;
8112 8113 8114 8115 8116 8117 8118
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8119
#endif
8120
#ifdef CONFIG_CPUMASK_OFFSTACK
8121
	alloc_size += num_possible_cpus() * cpumask_size();
8122 8123
#endif
	if (alloc_size) {
8124
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8125 8126

#ifdef CONFIG_FAIR_GROUP_SCHED
8127
		root_task_group.se = (struct sched_entity **)ptr;
8128 8129
		ptr += nr_cpu_ids * sizeof(void **);

8130
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8131
		ptr += nr_cpu_ids * sizeof(void **);
8132

8133
#endif /* CONFIG_FAIR_GROUP_SCHED */
8134
#ifdef CONFIG_RT_GROUP_SCHED
8135
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8136 8137
		ptr += nr_cpu_ids * sizeof(void **);

8138
		root_task_group.rt_rq = (struct rt_rq **)ptr;
8139 8140
		ptr += nr_cpu_ids * sizeof(void **);

8141
#endif /* CONFIG_RT_GROUP_SCHED */
8142 8143 8144 8145 8146 8147
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
8148
	}
I
Ingo Molnar 已提交
8149

G
Gregory Haskins 已提交
8150 8151 8152 8153
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8154 8155 8156 8157
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
8158
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8159
			global_rt_period(), global_rt_runtime());
8160
#endif /* CONFIG_RT_GROUP_SCHED */
8161

D
Dhaval Giani 已提交
8162
#ifdef CONFIG_CGROUP_SCHED
8163 8164
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
8165
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
8166
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
8167

8168
	for_each_possible_cpu(i) {
8169
		struct rq *rq;
L
Linus Torvalds 已提交
8170 8171

		rq = cpu_rq(i);
8172
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8173
		rq->nr_running = 0;
8174 8175
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
8176
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8177
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8178
#ifdef CONFIG_FAIR_GROUP_SCHED
8179
		root_task_group.shares = root_task_group_load;
P
Peter Zijlstra 已提交
8180
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8181
		/*
8182
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
8183 8184 8185 8186
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
8187
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
8188 8189 8190
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
8191
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
8192 8193 8194
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
8195
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
8196
		 *
8197 8198
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
8199
		 */
8200
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
8201 8202 8203
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8204
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8205
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8206
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
8207
#endif
L
Linus Torvalds 已提交
8208

I
Ingo Molnar 已提交
8209 8210
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
8211 8212 8213

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
8214
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8215
		rq->sd = NULL;
G
Gregory Haskins 已提交
8216
		rq->rd = NULL;
8217
		rq->cpu_power = SCHED_LOAD_SCALE;
8218
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
8219
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8220
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8221
		rq->push_cpu = 0;
8222
		rq->cpu = i;
8223
		rq->online = 0;
8224 8225
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
8226
		rq_attach_root(rq, &def_root_domain);
8227 8228 8229 8230
#ifdef CONFIG_NO_HZ
		rq->nohz_balance_kick = 0;
		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
#endif
L
Linus Torvalds 已提交
8231
#endif
P
Peter Zijlstra 已提交
8232
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8233 8234 8235
		atomic_set(&rq->nr_iowait, 0);
	}

8236
	set_load_weight(&init_task);
8237

8238 8239 8240 8241
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8242
#ifdef CONFIG_SMP
8243
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8244 8245
#endif

8246
#ifdef CONFIG_RT_MUTEXES
8247
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8248 8249
#endif

L
Linus Torvalds 已提交
8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
8263 8264 8265

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
8266 8267 8268 8269
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8270

8271
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8272
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8273
#ifdef CONFIG_SMP
8274
#ifdef CONFIG_NO_HZ
8275 8276 8277 8278 8279
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
	atomic_set(&nohz.load_balancer, nr_cpu_ids);
	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8280
#endif
R
Rusty Russell 已提交
8281 8282 8283
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8284
#endif /* SMP */
8285

8286
	scheduler_running = 1;
L
Linus Torvalds 已提交
8287 8288 8289
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8290 8291
static inline int preempt_count_equals(int preempt_offset)
{
8292
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8293 8294 8295 8296

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

8297
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
8298
{
8299
#ifdef in_atomic
L
Linus Torvalds 已提交
8300 8301
	static unsigned long prev_jiffy;	/* ratelimiting */

8302 8303
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
8304 8305 8306 8307 8308
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
8309 8310 8311 8312 8313 8314 8315
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
8316 8317 8318 8319 8320

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8321 8322 8323 8324 8325 8326
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8327 8328
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
8329 8330
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
8331
	int on_rq;
8332

8333 8334 8335 8336 8337 8338 8339 8340
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
8341 8342

	check_class_changed(rq, p, prev_class, old_prio);
8343 8344
}

L
Linus Torvalds 已提交
8345 8346
void normalize_rt_tasks(void)
{
8347
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8348
	unsigned long flags;
8349
	struct rq *rq;
L
Linus Torvalds 已提交
8350

8351
	read_lock_irqsave(&tasklist_lock, flags);
8352
	do_each_thread(g, p) {
8353 8354 8355 8356 8357 8358
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8359 8360
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
8361 8362 8363
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
8364
#endif
I
Ingo Molnar 已提交
8365 8366 8367 8368 8369 8370 8371 8372

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8373
			continue;
I
Ingo Molnar 已提交
8374
		}
L
Linus Torvalds 已提交
8375

8376
		raw_spin_lock(&p->pi_lock);
8377
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8378

8379
		normalize_task(rq, p);
8380

8381
		__task_rq_unlock(rq);
8382
		raw_spin_unlock(&p->pi_lock);
8383 8384
	} while_each_thread(g, p);

8385
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8386 8387 8388
}

#endif /* CONFIG_MAGIC_SYSRQ */
8389

8390
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8391
/*
8392
 * These functions are only useful for the IA64 MCA handling, or kdb.
8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8407
struct task_struct *curr_task(int cpu)
8408 8409 8410 8411
{
	return cpu_curr(cpu);
}

8412 8413 8414
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
8415 8416 8417 8418 8419 8420
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8421 8422
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8423 8424 8425 8426 8427 8428 8429
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8430
void set_curr_task(int cpu, struct task_struct *p)
8431 8432 8433 8434 8435
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8436

8437 8438
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8453 8454
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8455 8456
{
	struct cfs_rq *cfs_rq;
8457
	struct sched_entity *se;
8458
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8459 8460
	int i;

8461
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8462 8463
	if (!tg->cfs_rq)
		goto err;
8464
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8465 8466
	if (!tg->se)
		goto err;
8467 8468

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8469 8470

	for_each_possible_cpu(i) {
8471
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8472

8473 8474
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8475 8476 8477
		if (!cfs_rq)
			goto err;

8478 8479
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8480
		if (!se)
8481
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8482

8483
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8484 8485 8486 8487
	}

	return 1;

P
Peter Zijlstra 已提交
8488
err_free_rq:
8489
	kfree(cfs_rq);
P
Peter Zijlstra 已提交
8490
err:
8491 8492 8493 8494 8495
	return 0;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
8507
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8508
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8509
}
8510
#else /* !CONFG_FAIR_GROUP_SCHED */
8511 8512 8513 8514
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8515 8516
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8517 8518 8519 8520 8521 8522 8523
{
	return 1;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8524
#endif /* CONFIG_FAIR_GROUP_SCHED */
8525 8526

#ifdef CONFIG_RT_GROUP_SCHED
8527 8528 8529 8530
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8531 8532
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8544 8545
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8546 8547
{
	struct rt_rq *rt_rq;
8548
	struct sched_rt_entity *rt_se;
8549 8550 8551
	struct rq *rq;
	int i;

8552
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8553 8554
	if (!tg->rt_rq)
		goto err;
8555
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8556 8557 8558
	if (!tg->rt_se)
		goto err;

8559 8560
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8561 8562 8563 8564

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8565 8566
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8567 8568
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8569

8570 8571
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8572
		if (!rt_se)
8573
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8574

8575
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8576 8577
	}

8578 8579
	return 1;

P
Peter Zijlstra 已提交
8580
err_free_rq:
8581
	kfree(rt_rq);
P
Peter Zijlstra 已提交
8582
err:
8583 8584
	return 0;
}
8585
#else /* !CONFIG_RT_GROUP_SCHED */
8586 8587 8588 8589
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8590 8591
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8592 8593 8594
{
	return 1;
}
8595
#endif /* CONFIG_RT_GROUP_SCHED */
8596

D
Dhaval Giani 已提交
8597
#ifdef CONFIG_CGROUP_SCHED
8598 8599 8600 8601
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
8602
	autogroup_free(tg);
8603 8604 8605 8606
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8607
struct task_group *sched_create_group(struct task_group *parent)
8608 8609 8610 8611 8612 8613 8614 8615
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8616
	if (!alloc_fair_sched_group(tg, parent))
8617 8618
		goto err;

8619
	if (!alloc_rt_sched_group(tg, parent))
8620 8621
		goto err;

8622
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8623
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8624 8625 8626 8627 8628

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8629
	list_add_rcu(&tg->siblings, &parent->children);
8630
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8631

8632
	return tg;
S
Srivatsa Vaddagiri 已提交
8633 8634

err:
P
Peter Zijlstra 已提交
8635
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8636 8637 8638
	return ERR_PTR(-ENOMEM);
}

8639
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8640
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8641 8642
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8643
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8644 8645
}

8646
/* Destroy runqueue etc associated with a task group */
8647
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8648
{
8649
	unsigned long flags;
8650
	int i;
S
Srivatsa Vaddagiri 已提交
8651

8652 8653
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
8654
		unregister_fair_sched_group(tg, i);
8655 8656

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8657
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8658
	list_del_rcu(&tg->siblings);
8659
	spin_unlock_irqrestore(&task_group_lock, flags);
8660 8661

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8662
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8663 8664
}

8665
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8666 8667 8668
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8669 8670
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8671 8672 8673 8674 8675 8676 8677
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8678
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8679 8680
	on_rq = tsk->se.on_rq;

8681
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8682
		dequeue_task(rq, tsk, 0);
8683 8684
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8685

P
Peter Zijlstra 已提交
8686
#ifdef CONFIG_FAIR_GROUP_SCHED
8687 8688 8689
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
8690
#endif
8691
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
8692

8693 8694 8695
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8696
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8697 8698 8699

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8700
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8701

8702
#ifdef CONFIG_FAIR_GROUP_SCHED
8703 8704
static DEFINE_MUTEX(shares_mutex);

8705
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8706 8707
{
	int i;
8708
	unsigned long flags;
8709

8710 8711 8712 8713 8714 8715
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8716 8717
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8718 8719
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8720

8721
	mutex_lock(&shares_mutex);
8722
	if (tg->shares == shares)
8723
		goto done;
S
Srivatsa Vaddagiri 已提交
8724

8725
	tg->shares = shares;
8726
	for_each_possible_cpu(i) {
8727 8728 8729 8730 8731 8732 8733
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
8734
			update_cfs_shares(group_cfs_rq(se));
8735
		raw_spin_unlock_irqrestore(&rq->lock, flags);
8736
	}
S
Srivatsa Vaddagiri 已提交
8737

8738
done:
8739
	mutex_unlock(&shares_mutex);
8740
	return 0;
S
Srivatsa Vaddagiri 已提交
8741 8742
}

8743 8744 8745 8746
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8747
#endif
8748

8749
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8750
/*
P
Peter Zijlstra 已提交
8751
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8752
 */
P
Peter Zijlstra 已提交
8753 8754 8755 8756 8757
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8758
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8759

P
Peter Zijlstra 已提交
8760
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8761 8762
}

P
Peter Zijlstra 已提交
8763 8764
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8765
{
P
Peter Zijlstra 已提交
8766
	struct task_struct *g, *p;
8767

P
Peter Zijlstra 已提交
8768 8769 8770 8771
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8772

P
Peter Zijlstra 已提交
8773 8774
	return 0;
}
8775

P
Peter Zijlstra 已提交
8776 8777 8778 8779 8780
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8781

P
Peter Zijlstra 已提交
8782 8783 8784 8785 8786 8787
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8788

P
Peter Zijlstra 已提交
8789 8790
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8791

P
Peter Zijlstra 已提交
8792 8793 8794
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8795 8796
	}

8797 8798 8799 8800 8801
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8802

8803 8804 8805
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8806 8807
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8808

P
Peter Zijlstra 已提交
8809
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8810

8811 8812 8813 8814 8815
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8816

8817 8818 8819
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8820 8821 8822
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8823

P
Peter Zijlstra 已提交
8824 8825 8826 8827
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8828

P
Peter Zijlstra 已提交
8829
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8830
	}
P
Peter Zijlstra 已提交
8831

P
Peter Zijlstra 已提交
8832 8833 8834 8835
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8836 8837
}

P
Peter Zijlstra 已提交
8838
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8839
{
P
Peter Zijlstra 已提交
8840 8841 8842 8843 8844 8845 8846
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8847 8848
}

8849 8850
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8851
{
P
Peter Zijlstra 已提交
8852
	int i, err = 0;
P
Peter Zijlstra 已提交
8853 8854

	mutex_lock(&rt_constraints_mutex);
8855
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8856 8857
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8858
		goto unlock;
P
Peter Zijlstra 已提交
8859

8860
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8861 8862
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8863 8864 8865 8866

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8867
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8868
		rt_rq->rt_runtime = rt_runtime;
8869
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8870
	}
8871
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8872
unlock:
8873
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8874 8875 8876
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8877 8878
}

8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8891 8892 8893 8894
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8895
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8896 8897
		return -1;

8898
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8899 8900 8901
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8902 8903 8904 8905 8906 8907 8908 8909

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8910 8911 8912
	if (rt_period == 0)
		return -EINVAL;

8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8927
	u64 runtime, period;
8928 8929
	int ret = 0;

8930 8931 8932
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8933 8934 8935 8936 8937 8938 8939 8940
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8941

8942
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8943
	read_lock(&tasklist_lock);
8944
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8945
	read_unlock(&tasklist_lock);
8946 8947 8948 8949
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8950 8951 8952 8953 8954 8955 8956 8957 8958 8959

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8960
#else /* !CONFIG_RT_GROUP_SCHED */
8961 8962
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8963 8964 8965
	unsigned long flags;
	int i;

8966 8967 8968
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8969 8970 8971 8972 8973 8974 8975
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8976
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8977 8978 8979
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8980
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8981
		rt_rq->rt_runtime = global_rt_runtime();
8982
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8983
	}
8984
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8985

8986 8987
	return 0;
}
8988
#endif /* CONFIG_RT_GROUP_SCHED */
8989 8990

int sched_rt_handler(struct ctl_table *table, int write,
8991
		void __user *buffer, size_t *lenp,
8992 8993 8994 8995 8996 8997 8998 8999 9000 9001
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

9002
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9019

9020
#ifdef CONFIG_CGROUP_SCHED
9021 9022

/* return corresponding task_group object of a cgroup */
9023
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9024
{
9025 9026
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9027 9028 9029
}

static struct cgroup_subsys_state *
9030
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9031
{
9032
	struct task_group *tg, *parent;
9033

9034
	if (!cgrp->parent) {
9035
		/* This is early initialization for the top cgroup */
9036
		return &root_task_group.css;
9037 9038
	}

9039 9040
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9041 9042 9043 9044 9045 9046
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9047 9048
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9049
{
9050
	struct task_group *tg = cgroup_tg(cgrp);
9051 9052 9053 9054

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9055
static int
9056
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9057
{
9058
#ifdef CONFIG_RT_GROUP_SCHED
9059
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9060 9061
		return -EINVAL;
#else
9062 9063 9064
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9065
#endif
9066 9067
	return 0;
}
9068

9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
9088 9089 9090 9091
	return 0;
}

static void
9092
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9093 9094
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
9095 9096
{
	sched_move_task(tsk);
9097 9098 9099 9100 9101 9102 9103 9104
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
9105 9106
}

9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120
static void
cpu_cgroup_exit(struct cgroup_subsys *ss, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

9121
#ifdef CONFIG_FAIR_GROUP_SCHED
9122
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9123
				u64 shareval)
9124
{
9125
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9126 9127
}

9128
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9129
{
9130
	struct task_group *tg = cgroup_tg(cgrp);
9131 9132 9133

	return (u64) tg->shares;
}
9134
#endif /* CONFIG_FAIR_GROUP_SCHED */
9135

9136
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9137
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9138
				s64 val)
P
Peter Zijlstra 已提交
9139
{
9140
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9141 9142
}

9143
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9144
{
9145
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9146
}
9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9158
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9159

9160
static struct cftype cpu_files[] = {
9161
#ifdef CONFIG_FAIR_GROUP_SCHED
9162 9163
	{
		.name = "shares",
9164 9165
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9166
	},
9167 9168
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9169
	{
P
Peter Zijlstra 已提交
9170
		.name = "rt_runtime_us",
9171 9172
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9173
	},
9174 9175
	{
		.name = "rt_period_us",
9176 9177
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9178
	},
9179
#endif
9180 9181 9182 9183
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9184
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9185 9186 9187
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9188 9189 9190 9191 9192
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
9193
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
9194 9195
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9196 9197 9198
	.early_init	= 1,
};

9199
#endif	/* CONFIG_CGROUP_SCHED */
9200 9201 9202 9203 9204 9205 9206 9207 9208 9209

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9210
/* track cpu usage of a group of tasks and its child groups */
9211 9212 9213
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
9214
	u64 __percpu *cpuusage;
9215
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9216
	struct cpuacct *parent;
9217 9218 9219 9220 9221
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9222
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9223
{
9224
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9237
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9238 9239
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9240
	int i;
9241 9242

	if (!ca)
9243
		goto out;
9244 9245

	ca->cpuusage = alloc_percpu(u64);
9246 9247 9248 9249 9250 9251
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
9252

9253 9254 9255
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9256
	return &ca->css;
9257 9258 9259 9260 9261 9262 9263 9264 9265

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
9266 9267 9268
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9269
static void
9270
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9271
{
9272
	struct cpuacct *ca = cgroup_ca(cgrp);
9273
	int i;
9274

9275 9276
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
9277 9278 9279 9280
	free_percpu(ca->cpuusage);
	kfree(ca);
}

9281 9282
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
9283
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9284 9285 9286 9287 9288 9289
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
9290
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9291
	data = *cpuusage;
9292
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9293 9294 9295 9296 9297 9298 9299 9300 9301
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
9302
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9303 9304 9305 9306 9307

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
9308
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9309
	*cpuusage = val;
9310
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9311 9312 9313 9314 9315
#else
	*cpuusage = val;
#endif
}

9316
/* return total cpu usage (in nanoseconds) of a group */
9317
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9318
{
9319
	struct cpuacct *ca = cgroup_ca(cgrp);
9320 9321 9322
	u64 totalcpuusage = 0;
	int i;

9323 9324
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9325 9326 9327 9328

	return totalcpuusage;
}

9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9341 9342
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9343 9344 9345 9346 9347

out:
	return err;
}

9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

9382 9383 9384
static struct cftype files[] = {
	{
		.name = "usage",
9385 9386
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9387
	},
9388 9389 9390 9391
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9392 9393 9394 9395
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9396 9397
};

9398
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9399
{
9400
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9401 9402 9403 9404 9405 9406 9407 9408 9409 9410
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9411
	int cpu;
9412

L
Li Zefan 已提交
9413
	if (unlikely(!cpuacct_subsys.active))
9414 9415
		return;

9416
	cpu = task_cpu(tsk);
9417 9418 9419

	rcu_read_lock();

9420 9421
	ca = task_ca(tsk);

9422
	for (; ca; ca = ca->parent) {
9423
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9424 9425
		*cpuusage += cputime;
	}
9426 9427

	rcu_read_unlock();
9428 9429
}

9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9447 9448 9449 9450 9451 9452 9453
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9454
	int batch = CPUACCT_BATCH;
9455 9456 9457 9458 9459 9460 9461 9462

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9463
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9464 9465 9466 9467 9468
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9469 9470 9471 9472 9473 9474 9475 9476
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9477