sched.c 269.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28
 */

J
Joe Perches 已提交
29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
31 32 33 34
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
35
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
36 37 38 39
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
40
#include <linux/capability.h>
L
Linus Torvalds 已提交
41 42
#include <linux/completion.h>
#include <linux/kernel_stat.h>
43
#include <linux/debug_locks.h>
44
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
45 46 47
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
48
#include <linux/freezer.h>
49
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
50 51
#include <linux/blkdev.h>
#include <linux/delay.h>
52
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
53 54 55 56 57 58 59 60
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
61
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
62
#include <linux/seq_file.h>
63
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
64 65
#include <linux/syscalls.h>
#include <linux/times.h>
66
#include <linux/tsacct_kern.h>
67
#include <linux/kprobes.h>
68
#include <linux/delayacct.h>
69
#include <linux/unistd.h>
J
Jens Axboe 已提交
70
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
71
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
72
#include <linux/tick.h>
P
Peter Zijlstra 已提交
73 74
#include <linux/debugfs.h>
#include <linux/ctype.h>
75
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

82
#define CREATE_TRACE_POINTS
83
#include <trace/events/sched.h>
84

L
Linus Torvalds 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
104
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
105
 */
106
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
107

I
Ingo Molnar 已提交
108 109 110
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
111 112 113
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
114
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
115 116 117
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
118

119 120 121 122 123
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

124 125
static inline int rt_policy(int policy)
{
126
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 128 129 130 131 132 133 134 135
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
136
/*
I
Ingo Molnar 已提交
137
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
138
 */
I
Ingo Molnar 已提交
139 140 141 142 143
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

144
struct rt_bandwidth {
I
Ingo Molnar 已提交
145
	/* nests inside the rq lock: */
146
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
147 148 149
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

183
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
184

185 186 187 188 189
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

190 191 192
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
193 194 195 196 197 198
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

199
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 201 202 203 204
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

205
	raw_spin_lock(&rt_b->rt_runtime_lock);
206
	for (;;) {
207 208 209
		unsigned long delta;
		ktime_t soft, hard;

210 211 212 213 214
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215 216 217 218 219

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220
				HRTIMER_MODE_ABS_PINNED, 0);
221
	}
222
	raw_spin_unlock(&rt_b->rt_runtime_lock);
223 224 225 226 227 228 229 230 231
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

232 233 234 235 236 237
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

238
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
239

240 241
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
242 243
struct cfs_rq;

P
Peter Zijlstra 已提交
244 245
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
246
/* task group related information */
247
struct task_group {
248
#ifdef CONFIG_CGROUP_SCHED
249 250
	struct cgroup_subsys_state css;
#endif
251

252 253 254 255
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

256
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
257 258 259 260 261
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
262 263 264 265 266 267
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

268
	struct rt_bandwidth rt_bandwidth;
269
#endif
270

271
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
272
	struct list_head list;
P
Peter Zijlstra 已提交
273 274 275 276

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
277 278
};

D
Dhaval Giani 已提交
279
#ifdef CONFIG_USER_SCHED
280

281 282 283 284 285 286
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

287 288
/*
 * Root task group.
289 290
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
291 292 293
 */
struct task_group root_task_group;

294
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
295 296 297
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
298
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
299
#endif /* CONFIG_FAIR_GROUP_SCHED */
300 301 302

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
303
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
304
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
305
#else /* !CONFIG_USER_SCHED */
306
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
307
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
308

309
/* task_group_lock serializes add/remove of task groups and also changes to
310 311
 * a task group's cpu shares.
 */
312
static DEFINE_SPINLOCK(task_group_lock);
313

314 315
#ifdef CONFIG_FAIR_GROUP_SCHED

316 317 318 319 320 321 322
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

323 324
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
325
#else /* !CONFIG_USER_SCHED */
326
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
327
#endif /* CONFIG_USER_SCHED */
328

329
/*
330 331 332 333
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
334 335 336
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
337
#define MIN_SHARES	2
338
#define MAX_SHARES	(1UL << 18)
339

340 341 342
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
343
/* Default task group.
I
Ingo Molnar 已提交
344
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
345
 */
346
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
347 348

/* return group to which a task belongs */
349
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
350
{
351
	struct task_group *tg;
352

353
#ifdef CONFIG_USER_SCHED
354 355 356
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
357
#elif defined(CONFIG_CGROUP_SCHED)
358 359
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
360
#else
I
Ingo Molnar 已提交
361
	tg = &init_task_group;
362
#endif
363
	return tg;
S
Srivatsa Vaddagiri 已提交
364 365 366
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
367
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
368
{
369
#ifdef CONFIG_FAIR_GROUP_SCHED
370 371
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
372
#endif
P
Peter Zijlstra 已提交
373

374
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
375 376
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
377
#endif
S
Srivatsa Vaddagiri 已提交
378 379 380 381
}

#else

P
Peter Zijlstra 已提交
382
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
383 384 385 386
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
387

388
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
389

I
Ingo Molnar 已提交
390 391 392 393 394 395
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
396
	u64 min_vruntime;
I
Ingo Molnar 已提交
397 398 399

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
400 401 402 403 404 405

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
406 407
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
408
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
409

P
Peter Zijlstra 已提交
410
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
411

412
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
413 414
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
415 416
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
417 418 419 420 421 422
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
423 424
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
425 426 427

#ifdef CONFIG_SMP
	/*
428
	 * the part of load.weight contributed by tasks
429
	 */
430
	unsigned long task_weight;
431

432 433 434 435 436 437 438
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
439

440 441 442 443
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
444 445 446 447 448

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
449
#endif
I
Ingo Molnar 已提交
450 451
#endif
};
L
Linus Torvalds 已提交
452

I
Ingo Molnar 已提交
453 454 455
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
456
	unsigned long rt_nr_running;
457
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
458 459
	struct {
		int curr; /* highest queued rt task prio */
460
#ifdef CONFIG_SMP
461
		int next; /* next highest */
462
#endif
463
	} highest_prio;
P
Peter Zijlstra 已提交
464
#endif
P
Peter Zijlstra 已提交
465
#ifdef CONFIG_SMP
466
	unsigned long rt_nr_migratory;
467
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
468
	int overloaded;
469
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
470
#endif
P
Peter Zijlstra 已提交
471
	int rt_throttled;
P
Peter Zijlstra 已提交
472
	u64 rt_time;
P
Peter Zijlstra 已提交
473
	u64 rt_runtime;
I
Ingo Molnar 已提交
474
	/* Nests inside the rq lock: */
475
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
476

477
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
478 479
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
480 481 482 483 484
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
485 486
};

G
Gregory Haskins 已提交
487 488 489 490
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
491 492
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
493 494 495 496 497 498
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
499 500
	cpumask_var_t span;
	cpumask_var_t online;
501

I
Ingo Molnar 已提交
502
	/*
503 504 505
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
506
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
507
	atomic_t rto_count;
508 509 510
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
511 512
};

513 514 515 516
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
517 518 519 520
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
521 522 523 524 525 526 527
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
528
struct rq {
529
	/* runqueue lock: */
530
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
531 532 533 534 535 536

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
537 538
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
539 540 541
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
542 543
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
544 545 546 547
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
548 549
	struct rt_rq rt;

I
Ingo Molnar 已提交
550
#ifdef CONFIG_FAIR_GROUP_SCHED
551 552
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
553 554
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
555
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
556 557 558 559 560 561 562 563 564 565
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

566
	struct task_struct *curr, *idle;
567
	unsigned long next_balance;
L
Linus Torvalds 已提交
568
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
569

570
	u64 clock;
I
Ingo Molnar 已提交
571

L
Linus Torvalds 已提交
572 573 574
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
575
	struct root_domain *rd;
L
Linus Torvalds 已提交
576 577
	struct sched_domain *sd;

578
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
579
	/* For active balancing */
580
	int post_schedule;
L
Linus Torvalds 已提交
581 582
	int active_balance;
	int push_cpu;
583 584
	/* cpu of this runqueue: */
	int cpu;
585
	int online;
L
Linus Torvalds 已提交
586

587
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
588

589
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
590
	struct list_head migration_queue;
591 592 593

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
594 595
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
596 597
#endif

598 599 600 601
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
602
#ifdef CONFIG_SCHED_HRTICK
603 604 605 606
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
607 608 609
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
610 611 612
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
613 614
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
615 616

	/* sys_sched_yield() stats */
617
	unsigned int yld_count;
L
Linus Torvalds 已提交
618 619

	/* schedule() stats */
620 621 622
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
623 624

	/* try_to_wake_up() stats */
625 626
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
627 628

	/* BKL stats */
629
	unsigned int bkl_count;
L
Linus Torvalds 已提交
630 631 632
#endif
};

633
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
634

P
Peter Zijlstra 已提交
635 636
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
637
{
P
Peter Zijlstra 已提交
638
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
639 640
}

641 642 643 644 645 646 647 648 649
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
650 651
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
652
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
653 654 655 656
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
657 658
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
659 660 661 662 663

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
664
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
665

I
Ingo Molnar 已提交
666
inline void update_rq_clock(struct rq *rq)
667 668 669 670
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
671 672 673 674 675 676 677 678 679
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
680 681
/**
 * runqueue_is_locked
682
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
683 684 685 686 687
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
688
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
689
{
690
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
691 692
}

I
Ingo Molnar 已提交
693 694 695
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
696 697 698 699

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
700
enum {
P
Peter Zijlstra 已提交
701
#include "sched_features.h"
I
Ingo Molnar 已提交
702 703
};

P
Peter Zijlstra 已提交
704 705 706 707 708
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
709
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
710 711 712 713 714 715 716 717 718
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

719
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
720 721 722 723 724 725
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
726
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
727 728 729 730
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
731 732 733
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
734
	}
L
Li Zefan 已提交
735
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
736

L
Li Zefan 已提交
737
	return 0;
P
Peter Zijlstra 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
757
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

777
	*ppos += cnt;
P
Peter Zijlstra 已提交
778 779 780 781

	return cnt;
}

L
Li Zefan 已提交
782 783 784 785 786
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

787
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
788 789 790 791 792
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
807

808 809 810 811 812 813
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
814 815
/*
 * ratelimit for updating the group shares.
816
 * default: 0.25ms
P
Peter Zijlstra 已提交
817
 */
818
unsigned int sysctl_sched_shares_ratelimit = 250000;
819
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
820

821 822 823 824 825 826 827
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

828 829 830 831 832 833 834 835
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
836
/*
P
Peter Zijlstra 已提交
837
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
838 839
 * default: 1s
 */
P
Peter Zijlstra 已提交
840
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
841

842 843
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
844 845 846 847 848
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
849

850 851 852 853 854 855 856
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
857
	if (sysctl_sched_rt_runtime < 0)
858 859 860 861
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
862

L
Linus Torvalds 已提交
863
#ifndef prepare_arch_switch
864 865 866 867 868 869
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

870 871 872 873 874
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

875
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
876
static inline int task_running(struct rq *rq, struct task_struct *p)
877
{
878
	return task_current(rq, p);
879 880
}

881
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
882 883 884
{
}

885
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
886
{
887 888 889 890
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
891 892 893 894 895 896 897
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

898
	raw_spin_unlock_irq(&rq->lock);
899 900 901
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
902
static inline int task_running(struct rq *rq, struct task_struct *p)
903 904 905 906
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
907
	return task_current(rq, p);
908 909 910
#endif
}

911
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
912 913 914 915 916 917 918 919 920 921
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922
	raw_spin_unlock_irq(&rq->lock);
923
#else
924
	raw_spin_unlock(&rq->lock);
925 926 927
#endif
}

928
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
929 930 931 932 933 934 935 936 937 938 939 940
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
941
#endif
942 943
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
944

945 946 947 948
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
949
static inline struct rq *__task_rq_lock(struct task_struct *p)
950 951
	__acquires(rq->lock)
{
952 953
	for (;;) {
		struct rq *rq = task_rq(p);
954
		raw_spin_lock(&rq->lock);
955 956
		if (likely(rq == task_rq(p)))
			return rq;
957
		raw_spin_unlock(&rq->lock);
958 959 960
	}
}

L
Linus Torvalds 已提交
961 962
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
963
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
964 965
 * explicitly disabling preemption.
 */
966
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
967 968
	__acquires(rq->lock)
{
969
	struct rq *rq;
L
Linus Torvalds 已提交
970

971 972 973
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
974
		raw_spin_lock(&rq->lock);
975 976
		if (likely(rq == task_rq(p)))
			return rq;
977
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
978 979 980
	}
}

981 982 983 984 985
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
986
	raw_spin_unlock_wait(&rq->lock);
987 988
}

A
Alexey Dobriyan 已提交
989
static void __task_rq_unlock(struct rq *rq)
990 991
	__releases(rq->lock)
{
992
	raw_spin_unlock(&rq->lock);
993 994
}

995
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
996 997
	__releases(rq->lock)
{
998
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
999 1000 1001
}

/*
1002
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1003
 */
A
Alexey Dobriyan 已提交
1004
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1005 1006
	__acquires(rq->lock)
{
1007
	struct rq *rq;
L
Linus Torvalds 已提交
1008 1009 1010

	local_irq_disable();
	rq = this_rq();
1011
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
1012 1013 1014 1015

	return rq;
}

P
Peter Zijlstra 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1037
	if (!cpu_active(cpu_of(rq)))
1038
		return 0;
P
Peter Zijlstra 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1058
	raw_spin_lock(&rq->lock);
1059
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1060
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1061
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1062 1063 1064 1065

	return HRTIMER_NORESTART;
}

1066
#ifdef CONFIG_SMP
1067 1068 1069 1070
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1071
{
1072
	struct rq *rq = arg;
1073

1074
	raw_spin_lock(&rq->lock);
1075 1076
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1077
	raw_spin_unlock(&rq->lock);
1078 1079
}

1080 1081 1082 1083 1084 1085
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1086
{
1087 1088
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1089

1090
	hrtimer_set_expires(timer, time);
1091 1092 1093 1094

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1095
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1096 1097
		rq->hrtick_csd_pending = 1;
	}
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1112
		hrtick_clear(cpu_rq(cpu));
1113 1114 1115 1116 1117 1118
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1119
static __init void init_hrtick(void)
1120 1121 1122
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1123 1124 1125 1126 1127 1128 1129 1130
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1131
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1132
			HRTIMER_MODE_REL_PINNED, 0);
1133
}
1134

A
Andrew Morton 已提交
1135
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1136 1137
{
}
1138
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1139

1140
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1141
{
1142 1143
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1144

1145 1146 1147 1148
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1149

1150 1151
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1152
}
A
Andrew Morton 已提交
1153
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1154 1155 1156 1157 1158 1159 1160 1161
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1162 1163 1164
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1165
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1166

I
Ingo Molnar 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1180
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1181 1182 1183
{
	int cpu;

1184
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1185

1186
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1187 1188
		return;

1189
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1206
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1207 1208
		return;
	resched_task(cpu_curr(cpu));
1209
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1210
}
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1245
	set_tsk_need_resched(rq->idle);
1246 1247 1248 1249 1250 1251

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1252
#endif /* CONFIG_NO_HZ */
1253

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1275
#else /* !CONFIG_SMP */
1276
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1277
{
1278
	assert_raw_spin_locked(&task_rq(p)->lock);
1279
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1280
}
1281 1282 1283 1284

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1285
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1286

1287 1288 1289 1290 1291 1292 1293 1294
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1295 1296 1297
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1298
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1299

1300 1301 1302
/*
 * delta *= weight / lw
 */
1303
static unsigned long
1304 1305 1306 1307 1308
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1309 1310 1311 1312 1313 1314 1315
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1316 1317 1318 1319 1320

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1321
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1322
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1323 1324
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1325
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1326

1327
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1328 1329
}

1330
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1331 1332
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1333
	lw->inv_weight = 0;
1334 1335
}

1336
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1337 1338
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1339
	lw->inv_weight = 0;
1340 1341
}

1342 1343 1344 1345
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1346
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 1348 1349 1350
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1351 1352
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 1363 1364
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1365 1366
 */
static const int prio_to_weight[40] = {
1367 1368 1369 1370 1371 1372 1373 1374
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1375 1376
};

1377 1378 1379 1380 1381 1382 1383
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1384
static const u32 prio_to_wmult[40] = {
1385 1386 1387 1388 1389 1390 1391 1392
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1393
};
1394

I
Ingo Molnar 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1420

1421 1422 1423 1424 1425 1426 1427 1428
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1429 1430
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431 1432
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1433 1434
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1435 1436
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1437 1438
#endif

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1449
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1450
typedef int (*tg_visitor)(struct task_group *, void *);
1451 1452 1453 1454 1455

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1456
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1457 1458
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1459
	int ret;
1460 1461 1462 1463

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1464 1465 1466
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1467 1468 1469 1470 1471 1472 1473
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1474 1475 1476
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1477 1478 1479 1480 1481

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1482
out_unlock:
1483
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1484 1485

	return ret;
1486 1487
}

P
Peter Zijlstra 已提交
1488 1489 1490
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1491
}
P
Peter Zijlstra 已提交
1492 1493 1494
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1554 1555 1556 1557 1558
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1559
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1560

1561 1562
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1563 1564
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1565 1566 1567 1568 1569

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1570

1571
static __read_mostly unsigned long *update_shares_data;
1572

1573 1574 1575 1576 1577
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1578 1579 1580
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1581
				    unsigned long *usd_rq_weight)
1582
{
1583
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1584
	int boost = 0;
1585

1586
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1587 1588 1589 1590
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1591

1592
	/*
P
Peter Zijlstra 已提交
1593 1594 1595
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1596
	 */
1597
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1598
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1599

1600 1601 1602 1603
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1604

1605
		raw_spin_lock_irqsave(&rq->lock, flags);
1606
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1607
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1608
		__set_se_shares(tg->se[cpu], shares);
1609
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1610
	}
1611
}
1612 1613

/*
1614 1615 1616
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1617
 */
P
Peter Zijlstra 已提交
1618
static int tg_shares_up(struct task_group *tg, void *data)
1619
{
1620
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1621
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1622
	struct sched_domain *sd = data;
1623
	unsigned long flags;
1624
	int i;
1625

1626 1627 1628 1629
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1630
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1631

1632
	for_each_cpu(i, sched_domain_span(sd)) {
1633
		weight = tg->cfs_rq[i]->load.weight;
1634
		usd_rq_weight[i] = weight;
1635

1636
		rq_weight += weight;
1637 1638 1639 1640 1641 1642 1643 1644
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1645
		sum_weight += weight;
1646
		shares += tg->cfs_rq[i]->shares;
1647 1648
	}

1649 1650 1651
	if (!rq_weight)
		rq_weight = sum_weight;

1652 1653 1654 1655 1656
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1657

1658
	for_each_cpu(i, sched_domain_span(sd))
1659
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1660 1661

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1662 1663

	return 0;
1664 1665 1666
}

/*
1667 1668 1669
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1670
 */
P
Peter Zijlstra 已提交
1671
static int tg_load_down(struct task_group *tg, void *data)
1672
{
1673
	unsigned long load;
P
Peter Zijlstra 已提交
1674
	long cpu = (long)data;
1675

1676 1677 1678 1679 1680 1681 1682
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1683

1684
	tg->cfs_rq[cpu]->h_load = load;
1685

P
Peter Zijlstra 已提交
1686
	return 0;
1687 1688
}

1689
static void update_shares(struct sched_domain *sd)
1690
{
1691 1692 1693 1694 1695 1696 1697 1698
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1699 1700 1701

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1702
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1703
	}
1704 1705
}

1706 1707
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1708 1709 1710
	if (root_task_group_empty())
		return;

1711
	raw_spin_unlock(&rq->lock);
1712
	update_shares(sd);
1713
	raw_spin_lock(&rq->lock);
1714 1715
}

P
Peter Zijlstra 已提交
1716
static void update_h_load(long cpu)
1717
{
1718 1719 1720
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1721
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1722 1723 1724 1725
}

#else

1726
static inline void update_shares(struct sched_domain *sd)
1727 1728 1729
{
}

1730 1731 1732 1733
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1734 1735
#endif

1736 1737
#ifdef CONFIG_PREEMPT

1738 1739
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1740
/*
1741 1742 1743 1744 1745 1746
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1747
 */
1748 1749 1750 1751 1752
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1753
	raw_spin_unlock(&this_rq->lock);
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1768 1769 1770 1771 1772 1773
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1774
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1775
		if (busiest < this_rq) {
1776 1777 1778 1779
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1780 1781
			ret = 1;
		} else
1782 1783
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1784 1785 1786 1787
	}
	return ret;
}

1788 1789 1790 1791 1792 1793 1794 1795 1796
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1797
		raw_spin_unlock(&this_rq->lock);
1798 1799 1800 1801 1802 1803
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1804 1805 1806
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1807
	raw_spin_unlock(&busiest->lock);
1808 1809
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1810 1811
#endif

V
Vegard Nossum 已提交
1812
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1813 1814
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1815
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1816 1817 1818
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1819
#endif
1820

1821
static void calc_load_account_active(struct rq *this_rq);
1822
static void update_sysctl(void);
1823
static int get_update_sysctl_factor(void);
1824

P
Peter Zijlstra 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1838

I
Ingo Molnar 已提交
1839 1840
#include "sched_stats.h"
#include "sched_idletask.c"
1841 1842
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1843 1844 1845 1846 1847
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1848 1849
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1850

1851
static void inc_nr_running(struct rq *rq)
1852 1853 1854 1855
{
	rq->nr_running++;
}

1856
static void dec_nr_running(struct rq *rq)
1857 1858 1859 1860
{
	rq->nr_running--;
}

1861 1862 1863
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1864 1865 1866 1867
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1868

I
Ingo Molnar 已提交
1869 1870 1871 1872 1873 1874 1875 1876
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1877

I
Ingo Molnar 已提交
1878 1879
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1880 1881
}

1882 1883 1884 1885 1886 1887
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1888
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1889
{
P
Peter Zijlstra 已提交
1890 1891 1892
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1893
	sched_info_queued(p);
1894
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1895
	p->se.on_rq = 1;
1896 1897
}

1898
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1899
{
P
Peter Zijlstra 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1909 1910
	}

1911
	sched_info_dequeued(p);
1912
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1913
	p->se.on_rq = 0;
1914 1915
}

1916
/*
I
Ingo Molnar 已提交
1917
 * __normal_prio - return the priority that is based on the static prio
1918 1919 1920
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1921
	return p->static_prio;
1922 1923
}

1924 1925 1926 1927 1928 1929 1930
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1931
static inline int normal_prio(struct task_struct *p)
1932 1933 1934
{
	int prio;

1935
	if (task_has_rt_policy(p))
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1949
static int effective_prio(struct task_struct *p)
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1962
/*
I
Ingo Molnar 已提交
1963
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1964
 */
I
Ingo Molnar 已提交
1965
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1966
{
1967
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1968
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1969

1970
	enqueue_task(rq, p, wakeup);
1971
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1972 1973 1974 1975 1976
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1977
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1978
{
1979
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1980 1981
		rq->nr_uninterruptible++;

1982
	dequeue_task(rq, p, sleep);
1983
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1984 1985 1986 1987 1988 1989
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1990
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1991 1992 1993 1994
{
	return cpu_curr(task_cpu(p)) == p;
}

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
2007
#ifdef CONFIG_SMP
2008 2009 2010
/*
 * Is this task likely cache-hot:
 */
2011
static int
2012 2013 2014 2015
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2016 2017 2018
	if (p->sched_class != &fair_sched_class)
		return 0;

2019 2020 2021
	/*
	 * Buddy candidates are cache hot:
	 */
2022
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2023 2024
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2025 2026
		return 1;

2027 2028 2029 2030 2031
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2032 2033 2034 2035 2036
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2037
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2038
{
2039 2040 2041 2042 2043
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
I
Ingo Molnar 已提交
2044
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING);
2045 2046
#endif

2047
	trace_sched_migrate_task(p, new_cpu);
2048

P
Peter Zijlstra 已提交
2049 2050 2051 2052 2053
	if (task_cpu(p) == new_cpu)
		return;

	p->se.nr_migrations++;
	perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
I
Ingo Molnar 已提交
2054 2055

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2056 2057
}

2058
struct migration_req {
L
Linus Torvalds 已提交
2059 2060
	struct list_head list;

2061
	struct task_struct *task;
L
Linus Torvalds 已提交
2062 2063 2064
	int dest_cpu;

	struct completion done;
2065
};
L
Linus Torvalds 已提交
2066 2067 2068 2069 2070

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2071
static int
2072
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2073
{
2074
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2075 2076 2077

	/*
	 * If the task is not on a runqueue (and not running), then
2078
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2079
	 */
2080
	if (!p->se.on_rq && !task_running(rq, p))
L
Linus Torvalds 已提交
2081 2082 2083 2084 2085 2086
		return 0;

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2087

L
Linus Torvalds 已提交
2088 2089 2090
	return 1;
}

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2134 2135 2136
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2137 2138 2139 2140 2141 2142 2143
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2144 2145 2146 2147 2148 2149
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2150
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2151 2152
{
	unsigned long flags;
I
Ingo Molnar 已提交
2153
	int running, on_rq;
R
Roland McGrath 已提交
2154
	unsigned long ncsw;
2155
	struct rq *rq;
L
Linus Torvalds 已提交
2156

2157 2158 2159 2160 2161 2162 2163 2164
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2165

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2177 2178 2179
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2180
			cpu_relax();
R
Roland McGrath 已提交
2181
		}
2182

2183 2184 2185 2186 2187 2188
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2189
		trace_sched_wait_task(rq, p);
2190 2191
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2192
		ncsw = 0;
2193
		if (!match_state || p->state == match_state)
2194
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2195
		task_rq_unlock(rq, &flags);
2196

R
Roland McGrath 已提交
2197 2198 2199 2200 2201 2202
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2213

2214 2215 2216 2217 2218
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2219
		 * So if it was still runnable (but just not actively
2220 2221 2222 2223 2224 2225 2226
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2227

2228 2229 2230 2231 2232 2233 2234
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2235 2236

	return ncsw;
L
Linus Torvalds 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2252
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2262
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2263
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2264

T
Thomas Gleixner 已提交
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2286
#ifdef CONFIG_SMP
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		rcu_read_lock();
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		rcu_read_unlock();
		dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2324 2325 2326 2327 2328
/*
 * Called from:
 *
 *  - fork, @p is stable because it isn't on the tasklist yet
 *
P
Peter Zijlstra 已提交
2329
 *  - exec, @p is unstable, retry loop
2330 2331 2332 2333
 *
 *  - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
 *             we should be good.
 */
2334 2335 2336
static inline
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
{
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2350 2351
		     !cpu_active(cpu)))
		cpu = select_fallback_rq(task_cpu(p), p);
2352 2353

	return cpu;
2354 2355 2356
}
#endif

L
Linus Torvalds 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2371 2372
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2373
{
2374
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2375
	unsigned long flags;
2376
	struct rq *rq, *orig_rq;
L
Linus Torvalds 已提交
2377

2378
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2379
		wake_flags &= ~WF_SYNC;
P
Peter Zijlstra 已提交
2380

P
Peter Zijlstra 已提交
2381
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2382

2383
	smp_wmb();
2384
	rq = orig_rq = task_rq_lock(p, &flags);
2385
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2386
	if (!(p->state & state))
L
Linus Torvalds 已提交
2387 2388
		goto out;

I
Ingo Molnar 已提交
2389
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2390 2391 2392
		goto out_running;

	cpu = task_cpu(p);
2393
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2394 2395 2396 2397 2398

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2399 2400 2401
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2402 2403
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2404
	 */
2405 2406
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2407
	p->state = TASK_WAKING;
2408 2409 2410 2411

	if (p->sched_class->task_waking)
		p->sched_class->task_waking(rq, p);

P
Peter Zijlstra 已提交
2412
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2413

2414
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
P
Peter Zijlstra 已提交
2415
	if (cpu != orig_cpu)
2416
		set_task_cpu(p, cpu);
P
Peter Zijlstra 已提交
2417 2418 2419

	rq = __task_rq_lock(p);
	update_rq_clock(rq);
2420

P
Peter Zijlstra 已提交
2421 2422
	WARN_ON(p->state != TASK_WAKING);
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
2423

2424 2425 2426 2427 2428 2429 2430
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2431
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2432 2433 2434 2435 2436
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2437
#endif /* CONFIG_SCHEDSTATS */
2438

L
Linus Torvalds 已提交
2439 2440
out_activate:
#endif /* CONFIG_SMP */
2441
	schedstat_inc(p, se.nr_wakeups);
P
Peter Zijlstra 已提交
2442
	if (wake_flags & WF_SYNC)
2443 2444 2445 2446 2447 2448 2449
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2450
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2451 2452
	success = 1;

P
Peter Zijlstra 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2469
out_running:
2470
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2471
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2472

L
Linus Torvalds 已提交
2473
	p->state = TASK_RUNNING;
2474
#ifdef CONFIG_SMP
2475 2476
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2488
#endif
L
Linus Torvalds 已提交
2489 2490
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2491
	put_cpu();
L
Linus Torvalds 已提交
2492 2493 2494 2495

	return success;
}

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2507
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2508
{
2509
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2510 2511 2512
}
EXPORT_SYMBOL(wake_up_process);

2513
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2514 2515 2516 2517 2518 2519 2520
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2521 2522 2523 2524 2525 2526 2527
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2528
	p->se.prev_sum_exec_runtime	= 0;
2529
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2530 2531
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2532 2533
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2534 2535

#ifdef CONFIG_SCHEDSTATS
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2566
#endif
N
Nick Piggin 已提交
2567

P
Peter Zijlstra 已提交
2568
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2569
	p->se.on_rq = 0;
2570
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2571

2572 2573 2574
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2585 2586 2587 2588 2589 2590
	/*
	 * We mark the process as waking here. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_WAKING;
I
Ingo Molnar 已提交
2591

2592 2593 2594 2595
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2596
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2597
			p->policy = SCHED_NORMAL;
2598 2599
			p->normal_prio = p->static_prio;
		}
2600

2601 2602
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2603
			p->normal_prio = p->static_prio;
2604 2605 2606
			set_load_weight(p);
		}

2607 2608 2609 2610 2611 2612
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2613

2614 2615 2616 2617 2618
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2619 2620
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2621

P
Peter Zijlstra 已提交
2622 2623 2624
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2625
#ifdef CONFIG_SMP
2626
	cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2627 2628 2629
#endif
	set_task_cpu(p, cpu);

2630
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2631
	if (likely(sched_info_on()))
2632
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2633
#endif
2634
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2635 2636
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2637
#ifdef CONFIG_PREEMPT
2638
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2639
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2640
#endif
2641 2642
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2643
	put_cpu();
L
Linus Torvalds 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2653
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2654 2655
{
	unsigned long flags;
I
Ingo Molnar 已提交
2656
	struct rq *rq;
L
Linus Torvalds 已提交
2657 2658

	rq = task_rq_lock(p, &flags);
2659 2660
	BUG_ON(p->state != TASK_WAKING);
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2661
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2662
	activate_task(rq, p, 0);
2663
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2664
	check_preempt_curr(rq, p, WF_FORK);
2665
#ifdef CONFIG_SMP
2666 2667
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2668
#endif
I
Ingo Molnar 已提交
2669
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2670 2671
}

2672 2673 2674
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2675
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2676
 * @notifier: notifier struct to register
2677 2678 2679 2680 2681 2682 2683 2684 2685
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2686
 * @notifier: notifier struct to unregister
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2716
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2728
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2729

2730 2731 2732
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2733
 * @prev: the current task that is being switched out
2734 2735 2736 2737 2738 2739 2740 2741 2742
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2743 2744 2745
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2746
{
2747
	fire_sched_out_preempt_notifiers(prev, next);
2748 2749 2750 2751
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2752 2753
/**
 * finish_task_switch - clean up after a task-switch
2754
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2755 2756
 * @prev: the thread we just switched away from.
 *
2757 2758 2759 2760
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2761 2762
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2763
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2764 2765 2766
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2767
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2768 2769 2770
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2771
	long prev_state;
L
Linus Torvalds 已提交
2772 2773 2774 2775 2776

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2777
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2778 2779
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2780
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2781 2782 2783 2784 2785
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2786
	prev_state = prev->state;
2787
	finish_arch_switch(prev);
2788
	perf_event_task_sched_in(current, cpu_of(rq));
2789
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2790

2791
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2792 2793
	if (mm)
		mmdrop(mm);
2794
	if (unlikely(prev_state == TASK_DEAD)) {
2795 2796 2797
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2798
		 */
2799
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2800
		put_task_struct(prev);
2801
	}
L
Linus Torvalds 已提交
2802 2803
}

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2819
		raw_spin_lock_irqsave(&rq->lock, flags);
2820 2821
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2822
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2823 2824 2825 2826 2827 2828

		rq->post_schedule = 0;
	}
}

#else
2829

2830 2831 2832 2833 2834 2835
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2836 2837
}

2838 2839
#endif

L
Linus Torvalds 已提交
2840 2841 2842 2843
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2844
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2845 2846
	__releases(rq->lock)
{
2847 2848
	struct rq *rq = this_rq();

2849
	finish_task_switch(rq, prev);
2850

2851 2852 2853 2854 2855
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2856

2857 2858 2859 2860
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2861
	if (current->set_child_tid)
2862
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2863 2864 2865 2866 2867 2868
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2869
static inline void
2870
context_switch(struct rq *rq, struct task_struct *prev,
2871
	       struct task_struct *next)
L
Linus Torvalds 已提交
2872
{
I
Ingo Molnar 已提交
2873
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2874

2875
	prepare_task_switch(rq, prev, next);
2876
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2877 2878
	mm = next->mm;
	oldmm = prev->active_mm;
2879 2880 2881 2882 2883
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2884
	arch_start_context_switch(prev);
2885

2886
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2887 2888 2889 2890 2891 2892
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2893
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2894 2895 2896
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2897 2898 2899 2900 2901 2902 2903
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2904
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2905
#endif
L
Linus Torvalds 已提交
2906 2907 2908 2909

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2910 2911 2912 2913 2914 2915 2916
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2940
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2955 2956
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2957

2958
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2959 2960 2961 2962 2963 2964 2965 2966 2967
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2968
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2969 2970 2971 2972 2973
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}

unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}


2987 2988 2989 2990 2991 2992
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

3008 3009
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3010
{
3011 3012 3013 3014
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3015

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
3027

3028 3029
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
3030

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3053 3054
}

3055
/*
I
Ingo Molnar 已提交
3056 3057
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3058
 */
I
Ingo Molnar 已提交
3059
static void update_cpu_load(struct rq *this_rq)
3060
{
3061
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3074 3075 3076 3077 3078 3079 3080
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3081 3082
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3083 3084 3085 3086 3087

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3088 3089
}

I
Ingo Molnar 已提交
3090 3091
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3092 3093 3094 3095 3096 3097
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3098
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3099 3100 3101
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3102
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3103
	if (rq1 == rq2) {
3104
		raw_spin_lock(&rq1->lock);
L
Linus Torvalds 已提交
3105 3106
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3107
		if (rq1 < rq2) {
3108 3109
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3110
		} else {
3111 3112
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3113 3114
		}
	}
3115 3116
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3117 3118 3119 3120 3121 3122 3123 3124
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3125
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3126 3127 3128
	__releases(rq1->lock)
	__releases(rq2->lock)
{
3129
	raw_spin_unlock(&rq1->lock);
L
Linus Torvalds 已提交
3130
	if (rq1 != rq2)
3131
		raw_spin_unlock(&rq2->lock);
L
Linus Torvalds 已提交
3132 3133 3134 3135 3136
	else
		__release(rq2->lock);
}

/*
P
Peter Zijlstra 已提交
3137 3138
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3139
 */
P
Peter Zijlstra 已提交
3140
void sched_exec(void)
L
Linus Torvalds 已提交
3141
{
P
Peter Zijlstra 已提交
3142
	struct task_struct *p = current;
3143
	struct migration_req req;
P
Peter Zijlstra 已提交
3144
	int dest_cpu, this_cpu;
L
Linus Torvalds 已提交
3145
	unsigned long flags;
3146
	struct rq *rq;
L
Linus Torvalds 已提交
3147

P
Peter Zijlstra 已提交
3148 3149 3150 3151 3152 3153 3154 3155
again:
	this_cpu = get_cpu();
	dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == this_cpu) {
		put_cpu();
		return;
	}

L
Linus Torvalds 已提交
3156
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
3157 3158 3159 3160 3161
	put_cpu();

	/*
	 * select_task_rq() can race against ->cpus_allowed
	 */
3162
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
P
Peter Zijlstra 已提交
3163 3164 3165 3166
	    || unlikely(!cpu_active(dest_cpu))) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
L
Linus Torvalds 已提交
3167 3168 3169 3170 3171

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3172

L
Linus Torvalds 已提交
3173 3174 3175 3176 3177
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3178

L
Linus Torvalds 已提交
3179 3180 3181 3182 3183 3184 3185 3186 3187
		return;
	}
	task_rq_unlock(rq, &flags);
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3188 3189
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3190
{
3191
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3192
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3193
	activate_task(this_rq, p, 0);
3194
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3195 3196 3197 3198 3199
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3200
static
3201
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3202
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3203
		     int *all_pinned)
L
Linus Torvalds 已提交
3204
{
3205
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3206 3207 3208 3209 3210 3211
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3212
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3213
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3214
		return 0;
3215
	}
3216 3217
	*all_pinned = 0;

3218 3219
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3220
		return 0;
3221
	}
L
Linus Torvalds 已提交
3222

3223 3224 3225 3226 3227 3228
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3229 3230 3231
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3232
#ifdef CONFIG_SCHEDSTATS
3233
		if (tsk_cache_hot) {
3234
			schedstat_inc(sd, lb_hot_gained[idle]);
3235 3236
			schedstat_inc(p, se.nr_forced_migrations);
		}
3237 3238 3239 3240
#endif
		return 1;
	}

3241
	if (tsk_cache_hot) {
3242
		schedstat_inc(p, se.nr_failed_migrations_hot);
3243
		return 0;
3244
	}
L
Linus Torvalds 已提交
3245 3246 3247
	return 1;
}

3248 3249 3250 3251 3252
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3253
{
3254
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3255 3256
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3257

3258
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3259 3260
		goto out;

3261 3262
	pinned = 1;

L
Linus Torvalds 已提交
3263
	/*
I
Ingo Molnar 已提交
3264
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3265
	 */
I
Ingo Molnar 已提交
3266 3267
	p = iterator->start(iterator->arg);
next:
3268
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3269
		goto out;
3270 3271

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3272 3273 3274
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3275 3276
	}

I
Ingo Molnar 已提交
3277
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3278
	pulled++;
I
Ingo Molnar 已提交
3279
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3280

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3291
	/*
3292
	 * We only want to steal up to the prescribed amount of weighted load.
3293
	 */
3294
	if (rem_load_move > 0) {
3295 3296
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3297 3298
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3299 3300 3301
	}
out:
	/*
3302
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3303 3304 3305 3306
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3307 3308 3309

	if (all_pinned)
		*all_pinned = pinned;
3310 3311

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3312 3313
}

I
Ingo Molnar 已提交
3314
/*
P
Peter Williams 已提交
3315 3316 3317
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3318 3319 3320 3321
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3322
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3323 3324 3325
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3326
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3327
	unsigned long total_load_moved = 0;
3328
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3329 3330

	do {
P
Peter Williams 已提交
3331 3332
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3333
				max_load_move - total_load_moved,
3334
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3335
		class = class->next;
3336

3337 3338 3339 3340 3341 3342
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3343 3344
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3345
#endif
P
Peter Williams 已提交
3346
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3347

P
Peter Williams 已提交
3348 3349 3350
	return total_load_moved > 0;
}

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3387
	const struct sched_class *class;
P
Peter Williams 已提交
3388

3389
	for_each_class(class) {
3390
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3391
			return 1;
3392
	}
P
Peter Williams 已提交
3393 3394

	return 0;
I
Ingo Molnar 已提交
3395
}
3396
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3397
/*
3398 3399
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3400
 */
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3419
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3420 3421 3422 3423 3424 3425
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3426
#endif
3427
};
L
Linus Torvalds 已提交
3428

3429
/*
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3440

3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3462
		load_idx = sd->busy_idx;
3463 3464 3465
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3466
		load_idx = sd->newidle_idx;
3467 3468
		break;
	default:
N
Nick Piggin 已提交
3469
		load_idx = sd->idle_idx;
3470 3471
		break;
	}
L
Linus Torvalds 已提交
3472

3473 3474
	return load_idx;
}
L
Linus Torvalds 已提交
3475 3476


3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3501

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3515

3516 3517
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3518

3519 3520 3521 3522 3523 3524 3525
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3526

3527 3528 3529 3530 3531 3532 3533 3534
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3535

3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3549

3550 3551 3552 3553 3554
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
3555
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3556
		return;
L
Linus Torvalds 已提交
3557

3558 3559 3560 3561 3562 3563 3564
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3565

3566
/**
3567
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3568 3569 3570 3571 3572
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3573 3574 3575 3576 3577
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3578 3579 3580 3581 3582 3583 3584 3585
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3586

3587 3588 3589
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3590

3591 3592
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3593

3594
	return 1;
L
Linus Torvalds 已提交
3595

3596 3597 3598 3599 3600 3601 3602
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3603

3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_LOAD_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3629 3630 3631 3632 3633 3634 3635 3636 3637
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

3638 3639 3640 3641 3642
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

3661 3662 3663 3664 3665 3666
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

3667 3668 3669 3670 3671
	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3672
	power >>= SCHED_LOAD_SHIFT;
3673 3674

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3675 3676 3677 3678 3679
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3680 3681 3682
		power >>= SCHED_LOAD_SHIFT;
	}

3683 3684 3685 3686 3687
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;
3688

3689
	sdg->cpu_power = power;
3690 3691 3692
}

static void update_group_power(struct sched_domain *sd, int cpu)
3693 3694 3695
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
3696
	unsigned long power;
3697 3698

	if (!child) {
3699
		update_cpu_power(sd, cpu);
3700 3701 3702
		return;
	}

3703
	power = 0;
3704 3705 3706

	group = child->groups;
	do {
3707
		power += group->cpu_power;
3708 3709
		group = group->next;
	} while (group != child->groups);
3710 3711

	sdg->cpu_power = power;
3712
}
3713

3714 3715
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3716
 * @sd: The sched_domain whose statistics are to be updated.
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3727 3728
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3739
	if (local_group) {
3740
		balance_cpu = group_first_cpu(group);
3741
		if (balance_cpu == this_cpu)
3742
			update_group_power(sd, this_cpu);
3743
	}
3744 3745 3746 3747 3748

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3749

3750 3751
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3752

3753 3754
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3755

3756
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3757
		if (local_group) {
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3770
		}
3771

3772 3773 3774
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3775

3776 3777
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3778

3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3790

3791
	/* Adjust by relative CPU power of the group */
3792
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3793

3794 3795 3796 3797 3798 3799 3800 3801 3802 3803

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3804 3805
	avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
		group->cpu_power;
3806 3807 3808 3809

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

3810
	sgs->group_capacity =
3811
		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3812
}
I
Ingo Molnar 已提交
3813

3814 3815 3816 3817 3818 3819 3820 3821 3822
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3823
 */
3824 3825 3826 3827
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3828
{
P
Peter Zijlstra 已提交
3829
	struct sched_domain *child = sd->child;
3830
	struct sched_group *group = sd->groups;
3831
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3832 3833 3834 3835
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3836

3837
	init_sd_power_savings_stats(sd, sds, idle);
3838
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3839 3840 3841 3842

	do {
		int local_group;

3843 3844
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3845
		memset(&sgs, 0, sizeof(sgs));
3846
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3847
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3848

3849 3850
		if (local_group && balance && !(*balance))
			return;
3851

3852
		sds->total_load += sgs.group_load;
3853
		sds->total_pwr += group->cpu_power;
L
Linus Torvalds 已提交
3854

P
Peter Zijlstra 已提交
3855 3856 3857 3858 3859 3860
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
3861
			sgs.group_capacity = min(sgs.group_capacity, 1UL);
L
Linus Torvalds 已提交
3862 3863

		if (local_group) {
3864 3865 3866 3867 3868
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3869 3870
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3871 3872 3873 3874 3875
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3876
		}
3877

3878
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3879 3880
		group = group->next;
	} while (group != sd->groups);
3881
}
L
Linus Torvalds 已提交
3882

3883 3884
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3885 3886
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3905

3906 3907 3908 3909 3910
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3911

L
Linus Torvalds 已提交
3912
	/*
3913 3914 3915
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3916
	 */
3917

3918
	pwr_now += sds->busiest->cpu_power *
3919
			min(sds->busiest_load_per_task, sds->max_load);
3920
	pwr_now += sds->this->cpu_power *
3921 3922 3923 3924
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
3925 3926
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
3927
	if (sds->max_load > tmp)
3928
		pwr_move += sds->busiest->cpu_power *
3929 3930 3931
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
3932
	if (sds->max_load * sds->busiest->cpu_power <
3933
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3934 3935
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
3936
	else
3937 3938 3939
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
3940 3941 3942 3943 3944 3945 3946
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3959 3960 3961 3962 3963
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3964
	if (sds->max_load < sds->avg_load) {
3965
		*imbalance = 0;
3966
		return fix_small_imbalance(sds, this_cpu, imbalance);
3967
	}
3968 3969

	/* Don't want to pull so many tasks that a group would go idle */
3970 3971
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3972

L
Linus Torvalds 已提交
3973
	/* How much load to actually move to equalise the imbalance */
3974 3975
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
L
Linus Torvalds 已提交
3976 3977
			/ SCHED_LOAD_SCALE;

3978 3979 3980 3981 3982 3983
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3984 3985
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3986

3987
}
3988
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3989

3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
4014 4015 4016 4017 4018 4019 4020
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
4021

4022
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
4023

4024 4025 4026 4027 4028 4029 4030
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
4041 4042
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
4043

4044 4045
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
4046

4047
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
4048 4049
		goto out_balanced;

4050
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
4051

4052 4053 4054 4055
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
4056 4057
		goto out_balanced;

4058 4059 4060 4061
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
4062

L
Linus Torvalds 已提交
4063 4064 4065 4066 4067 4068 4069 4070
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4071
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4072 4073
	 * appear as very large values with unsigned longs.
	 */
4074
	if (sds.max_load <= sds.busiest_load_per_task)
4075 4076
		goto out_balanced;

4077 4078
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4079
	return sds.busiest;
L
Linus Torvalds 已提交
4080 4081

out_balanced:
4082 4083 4084 4085 4086 4087
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4088
ret:
L
Linus Torvalds 已提交
4089 4090 4091 4092 4093 4094 4095
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4096
static struct rq *
I
Ingo Molnar 已提交
4097
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4098
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4099
{
4100
	struct rq *busiest = NULL, *rq;
4101
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4102 4103
	int i;

4104
	for_each_cpu(i, sched_group_cpus(group)) {
4105 4106
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
I
Ingo Molnar 已提交
4107
		unsigned long wl;
4108

4109
		if (!cpumask_test_cpu(i, cpus))
4110 4111
			continue;

4112
		rq = cpu_rq(i);
4113 4114
		wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
		wl /= power;
4115

4116
		if (capacity && rq->nr_running == 1 && wl > imbalance)
4117
			continue;
L
Linus Torvalds 已提交
4118

I
Ingo Molnar 已提交
4119 4120
		if (wl > max_load) {
			max_load = wl;
4121
			busiest = rq;
L
Linus Torvalds 已提交
4122 4123 4124 4125 4126 4127
		}
	}

	return busiest;
}

4128 4129 4130 4131 4132 4133
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4134 4135 4136
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4137 4138 4139 4140
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4141
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4142
			struct sched_domain *sd, enum cpu_idle_type idle,
4143
			int *balance)
L
Linus Torvalds 已提交
4144
{
P
Peter Williams 已提交
4145
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4146 4147
	struct sched_group *group;
	unsigned long imbalance;
4148
	struct rq *busiest;
4149
	unsigned long flags;
4150
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4151

4152
	cpumask_copy(cpus, cpu_active_mask);
4153

4154 4155 4156
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4157
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4158
	 * portraying it as CPU_NOT_IDLE.
4159
	 */
I
Ingo Molnar 已提交
4160
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4161
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4162
		sd_idle = 1;
L
Linus Torvalds 已提交
4163

4164
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4165

4166
redo:
4167
	update_shares(sd);
4168
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4169
				   cpus, balance);
4170

4171
	if (*balance == 0)
4172 4173
		goto out_balanced;

L
Linus Torvalds 已提交
4174 4175 4176 4177 4178
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4179
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4180 4181 4182 4183 4184
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4185
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4186 4187 4188

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4189
	ld_moved = 0;
L
Linus Torvalds 已提交
4190 4191 4192 4193
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4194
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4195 4196
		 * correctly treated as an imbalance.
		 */
4197
		local_irq_save(flags);
N
Nick Piggin 已提交
4198
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4199
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4200
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4201
		double_rq_unlock(this_rq, busiest);
4202
		local_irq_restore(flags);
4203

4204 4205 4206
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4207
		if (ld_moved && this_cpu != smp_processor_id())
4208 4209
			resched_cpu(this_cpu);

4210
		/* All tasks on this runqueue were pinned by CPU affinity */
4211
		if (unlikely(all_pinned)) {
4212 4213
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4214
				goto redo;
4215
			goto out_balanced;
4216
		}
L
Linus Torvalds 已提交
4217
	}
4218

P
Peter Williams 已提交
4219
	if (!ld_moved) {
L
Linus Torvalds 已提交
4220 4221 4222 4223 4224
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4225
			raw_spin_lock_irqsave(&busiest->lock, flags);
4226 4227 4228 4229

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4230 4231
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4232 4233
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
4234 4235 4236 4237
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4238 4239 4240
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4241
				active_balance = 1;
L
Linus Torvalds 已提交
4242
			}
4243
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
4244
			if (active_balance)
L
Linus Torvalds 已提交
4245 4246 4247 4248 4249 4250
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4251
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4252
		}
4253
	} else
L
Linus Torvalds 已提交
4254 4255
		sd->nr_balance_failed = 0;

4256
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4257 4258
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4259 4260 4261 4262 4263 4264 4265 4266 4267
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4268 4269
	}

P
Peter Williams 已提交
4270
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4271
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4272 4273 4274
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4275 4276 4277 4278

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4279
	sd->nr_balance_failed = 0;
4280 4281

out_one_pinned:
L
Linus Torvalds 已提交
4282
	/* tune up the balancing interval */
4283 4284
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4285 4286
		sd->balance_interval *= 2;

4287
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4288
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4289 4290 4291 4292
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4293 4294
	if (ld_moved)
		update_shares(sd);
4295
	return ld_moved;
L
Linus Torvalds 已提交
4296 4297 4298 4299 4300 4301
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4302
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4303 4304
 * this_rq is locked.
 */
4305
static int
4306
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4307 4308
{
	struct sched_group *group;
4309
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4310
	unsigned long imbalance;
P
Peter Williams 已提交
4311
	int ld_moved = 0;
N
Nick Piggin 已提交
4312
	int sd_idle = 0;
4313
	int all_pinned = 0;
4314
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4315

4316
	cpumask_copy(cpus, cpu_active_mask);
N
Nick Piggin 已提交
4317

4318 4319 4320 4321
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4322
	 * portraying it as CPU_NOT_IDLE.
4323 4324 4325
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4326
		sd_idle = 1;
L
Linus Torvalds 已提交
4327

4328
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4329
redo:
4330
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4331
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4332
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4333
	if (!group) {
I
Ingo Molnar 已提交
4334
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4335
		goto out_balanced;
L
Linus Torvalds 已提交
4336 4337
	}

4338
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4339
	if (!busiest) {
I
Ingo Molnar 已提交
4340
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4341
		goto out_balanced;
L
Linus Torvalds 已提交
4342 4343
	}

N
Nick Piggin 已提交
4344 4345
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4346
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4347

P
Peter Williams 已提交
4348
	ld_moved = 0;
4349 4350 4351
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4352 4353
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4354
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4355 4356
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4357
		double_unlock_balance(this_rq, busiest);
4358

4359
		if (unlikely(all_pinned)) {
4360 4361
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4362 4363
				goto redo;
		}
4364 4365
	}

P
Peter Williams 已提交
4366
	if (!ld_moved) {
4367
		int active_balance = 0;
4368

I
Ingo Molnar 已提交
4369
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4370 4371
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4372
			return -1;
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4409
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4422 4423 4424
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
4425
		raw_spin_unlock(&this_rq->lock);
4426 4427
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4428
		raw_spin_lock(&this_rq->lock);
4429

N
Nick Piggin 已提交
4430
	} else
4431
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4432

4433
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4434
	return ld_moved;
4435 4436

out_balanced:
I
Ingo Molnar 已提交
4437
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4438
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4439
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4440
		return -1;
4441
	sd->nr_balance_failed = 0;
4442

4443
	return 0;
L
Linus Torvalds 已提交
4444 4445 4446 4447 4448 4449
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4450
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4451 4452
{
	struct sched_domain *sd;
4453
	int pulled_task = 0;
I
Ingo Molnar 已提交
4454
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4455

M
Mike Galbraith 已提交
4456 4457 4458 4459 4460
	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

L
Linus Torvalds 已提交
4461
	for_each_domain(this_cpu, sd) {
4462 4463 4464 4465 4466 4467
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4468
			/* If we've pulled tasks over stop searching: */
4469
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4470
							   sd);
4471 4472 4473 4474

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
M
Mike Galbraith 已提交
4475 4476
		if (pulled_task) {
			this_rq->idle_stamp = 0;
4477
			break;
M
Mike Galbraith 已提交
4478
		}
L
Linus Torvalds 已提交
4479
	}
I
Ingo Molnar 已提交
4480
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4481 4482 4483 4484 4485
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4486
	}
L
Linus Torvalds 已提交
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4497
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4498
{
4499
	int target_cpu = busiest_rq->push_cpu;
4500 4501
	struct sched_domain *sd;
	struct rq *target_rq;
4502

4503
	/* Is there any task to move? */
4504 4505 4506 4507
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4508 4509

	/*
4510
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4511
	 * we need to fix it. Originally reported by
4512
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4513
	 */
4514
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4515

4516 4517
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4518 4519
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4520 4521

	/* Search for an sd spanning us and the target CPU. */
4522
	for_each_domain(target_cpu, sd) {
4523
		if ((sd->flags & SD_LOAD_BALANCE) &&
4524
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4525
				break;
4526
	}
4527

4528
	if (likely(sd)) {
4529
		schedstat_inc(sd, alb_count);
4530

P
Peter Williams 已提交
4531 4532
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4533 4534 4535 4536
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4537
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4538 4539
}

4540 4541 4542
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4543
	cpumask_var_t cpu_mask;
4544
	cpumask_var_t ilb_grp_nohz_mask;
4545 4546 4547 4548
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4549 4550 4551 4552 4553
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4665
	return cpumask_first(nohz.cpu_mask);
4666 4667 4668
}
#endif

4669
/*
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4680
 *
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4696 4697 4698 4699 4700 4701 4702 4703
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4704 4705
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4706

4707 4708 4709
			return 0;
		}

4710 4711
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4712
		/* time for ilb owner also to sleep */
4713
		if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4714 4715 4716 4717 4718 4719 4720 4721 4722
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4739
			return 1;
4740
		}
4741
	} else {
4742
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4743 4744
			return 0;

4745
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4758 4759 4760 4761 4762
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4763
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4764
{
4765 4766
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4767 4768
	unsigned long interval;
	struct sched_domain *sd;
4769
	/* Earliest time when we have to do rebalance again */
4770
	unsigned long next_balance = jiffies + 60*HZ;
4771
	int update_next_balance = 0;
4772
	int need_serialize;
L
Linus Torvalds 已提交
4773

4774
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4775 4776 4777 4778
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4779
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4780 4781 4782 4783 4784 4785
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4786 4787 4788
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4789
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4790

4791
		if (need_serialize) {
4792 4793 4794 4795
			if (!spin_trylock(&balancing))
				goto out;
		}

4796
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4797
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4798 4799
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4800 4801 4802
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4803
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4804
			}
4805
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4806
		}
4807
		if (need_serialize)
4808 4809
			spin_unlock(&balancing);
out:
4810
		if (time_after(next_balance, sd->last_balance + interval)) {
4811
			next_balance = sd->last_balance + interval;
4812 4813
			update_next_balance = 1;
		}
4814 4815 4816 4817 4818 4819 4820 4821

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4822
	}
4823 4824 4825 4826 4827 4828 4829 4830

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4831 4832 4833 4834 4835 4836 4837 4838 4839
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4840 4841 4842 4843
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4844

I
Ingo Molnar 已提交
4845
	rebalance_domains(this_cpu, idle);
4846 4847 4848 4849 4850 4851 4852

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4853 4854
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4855 4856 4857
		struct rq *rq;
		int balance_cpu;

4858 4859 4860 4861
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4862 4863 4864 4865 4866 4867 4868 4869
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4870
			rebalance_domains(balance_cpu, CPU_IDLE);
4871 4872

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4873 4874
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4875 4876 4877 4878 4879
		}
	}
#endif
}

4880 4881 4882 4883 4884
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4885 4886 4887 4888 4889 4890 4891
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4892
static inline void trigger_load_balance(struct rq *rq, int cpu)
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4904
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4905 4906 4907 4908
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4909
			int ilb = find_new_ilb(cpu);
4910

4911
			if (ilb < nr_cpu_ids)
4912 4913 4914 4915 4916 4917 4918 4919 4920
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4921
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4922 4923 4924 4925 4926 4927 4928 4929 4930
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4931
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4932 4933
		return;
#endif
4934 4935 4936
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4937
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4938
}
I
Ingo Molnar 已提交
4939 4940 4941

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4942 4943 4944
/*
 * on UP we do not need to balance between CPUs:
 */
4945
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4946 4947
{
}
I
Ingo Molnar 已提交
4948

L
Linus Torvalds 已提交
4949 4950 4951 4952 4953 4954 4955
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4956
 * Return any ns on the sched_clock that have not yet been accounted in
4957
 * @p in case that task is currently running.
4958 4959
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4960
 */
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4975
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4976 4977
{
	unsigned long flags;
4978
	struct rq *rq;
4979
	u64 ns = 0;
4980

4981
	rq = task_rq_lock(p, &flags);
4982 4983
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4984

4985 4986
	return ns;
}
4987

4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
5005

5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5025
	task_rq_unlock(rq, &flags);
5026

L
Linus Torvalds 已提交
5027 5028 5029 5030 5031 5032 5033
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
5034
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5035
 */
5036 5037
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5038 5039 5040 5041
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5042
	/* Add user time to process. */
L
Linus Torvalds 已提交
5043
	p->utime = cputime_add(p->utime, cputime);
5044
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5045
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
5046 5047 5048 5049 5050 5051 5052

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
5053 5054

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5055 5056
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
5057 5058
}

5059 5060 5061 5062
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
5063
 * @cputime_scaled: cputime scaled by cpu frequency
5064
 */
5065 5066
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
5067 5068 5069 5070 5071 5072
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5073
	/* Add guest time to process. */
5074
	p->utime = cputime_add(p->utime, cputime);
5075
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5076
	account_group_user_time(p, cputime);
5077 5078
	p->gtime = cputime_add(p->gtime, cputime);

5079
	/* Add guest time to cpustat. */
5080 5081 5082 5083 5084 5085 5086
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
5087 5088
}

L
Linus Torvalds 已提交
5089 5090 5091 5092 5093
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5094
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5095 5096
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5097
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5098 5099 5100 5101
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5102
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5103
		account_guest_time(p, cputime, cputime_scaled);
5104 5105
		return;
	}
5106

5107
	/* Add system time to process. */
L
Linus Torvalds 已提交
5108
	p->stime = cputime_add(p->stime, cputime);
5109
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5110
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5111 5112 5113 5114 5115 5116 5117 5118

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5119 5120
		cpustat->system = cputime64_add(cpustat->system, tmp);

5121 5122
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5123 5124 5125 5126
	/* Account for system time used */
	acct_update_integrals(p);
}

5127
/*
L
Linus Torvalds 已提交
5128 5129
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5130
 */
5131
void account_steal_time(cputime_t cputime)
5132
{
5133 5134 5135 5136
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5137 5138
}

L
Linus Torvalds 已提交
5139
/*
5140 5141
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5142
 */
5143
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5144 5145
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5146
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5147
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5148

5149 5150 5151 5152
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5153 5154
}

5155 5156 5157 5158 5159 5160 5161 5162 5163
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
5164
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5165 5166 5167
	struct rq *rq = this_rq();

	if (user_tick)
5168
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5169
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5170
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5171 5172
				    one_jiffy_scaled);
	else
5173
		account_idle_time(cputime_one_jiffy);
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5193 5194
}

5195 5196
#endif

5197 5198 5199 5200
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5201
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5202
{
5203 5204
	*ut = p->utime;
	*st = p->stime;
5205 5206
}

5207
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5208
{
5209 5210 5211 5212 5213 5214
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
5215 5216
}
#else
5217 5218

#ifndef nsecs_to_cputime
5219
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
5220 5221
#endif

5222
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5223
{
5224
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5225 5226 5227 5228

	/*
	 * Use CFS's precise accounting:
	 */
5229
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5230 5231

	if (total) {
5232 5233 5234
		u64 temp;

		temp = (u64)(rtime * utime);
5235
		do_div(temp, total);
5236 5237 5238
		utime = (cputime_t)temp;
	} else
		utime = rtime;
5239

5240 5241 5242
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
5243
	p->prev_utime = max(p->prev_utime, utime);
5244
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5245

5246 5247
	*ut = p->prev_utime;
	*st = p->prev_stime;
5248 5249
}

5250 5251 5252 5253
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5254
{
5255 5256 5257
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
5258

5259
	thread_group_cputime(p, &cputime);
5260

5261 5262
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5263

5264 5265
	if (total) {
		u64 temp;
5266

5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
5279 5280 5281
}
#endif

5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5293
	struct task_struct *curr = rq->curr;
5294 5295

	sched_clock_tick();
I
Ingo Molnar 已提交
5296

5297
	raw_spin_lock(&rq->lock);
5298
	update_rq_clock(rq);
5299
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5300
	curr->sched_class->task_tick(rq, curr, 0);
5301
	raw_spin_unlock(&rq->lock);
5302

5303
	perf_event_task_tick(curr, cpu);
5304

5305
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5306 5307
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5308
#endif
L
Linus Torvalds 已提交
5309 5310
}

5311
notrace unsigned long get_parent_ip(unsigned long addr)
5312 5313 5314 5315 5316 5317 5318 5319
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5320

5321 5322 5323
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5324
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5325
{
5326
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5327 5328 5329
	/*
	 * Underflow?
	 */
5330 5331
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5332
#endif
L
Linus Torvalds 已提交
5333
	preempt_count() += val;
5334
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5335 5336 5337
	/*
	 * Spinlock count overflowing soon?
	 */
5338 5339
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5340 5341 5342
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5343 5344 5345
}
EXPORT_SYMBOL(add_preempt_count);

5346
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5347
{
5348
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5349 5350 5351
	/*
	 * Underflow?
	 */
5352
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5353
		return;
L
Linus Torvalds 已提交
5354 5355 5356
	/*
	 * Is the spinlock portion underflowing?
	 */
5357 5358 5359
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5360
#endif
5361

5362 5363
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5364 5365 5366 5367 5368 5369 5370
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5371
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5372
 */
I
Ingo Molnar 已提交
5373
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5374
{
5375 5376
	struct pt_regs *regs = get_irq_regs();

J
Joe Perches 已提交
5377 5378
	pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
	       prev->comm, prev->pid, preempt_count());
5379

I
Ingo Molnar 已提交
5380
	debug_show_held_locks(prev);
5381
	print_modules();
I
Ingo Molnar 已提交
5382 5383
	if (irqs_disabled())
		print_irqtrace_events(prev);
5384 5385 5386 5387 5388

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5389
}
L
Linus Torvalds 已提交
5390

I
Ingo Molnar 已提交
5391 5392 5393 5394 5395
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5396
	/*
I
Ingo Molnar 已提交
5397
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5398 5399 5400
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5401
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5402 5403
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5404 5405
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5406
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5407 5408
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5409 5410
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5411 5412
	}
#endif
I
Ingo Molnar 已提交
5413 5414
}

P
Peter Zijlstra 已提交
5415
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
5416
{
P
Peter Zijlstra 已提交
5417 5418
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;
M
Mike Galbraith 已提交
5419

P
Peter Zijlstra 已提交
5420 5421
		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
M
Mike Galbraith 已提交
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
P
Peter Zijlstra 已提交
5432
		update_avg(&prev->se.avg_overlap, runtime);
M
Mike Galbraith 已提交
5433
	}
P
Peter Zijlstra 已提交
5434
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
5435 5436
}

I
Ingo Molnar 已提交
5437 5438 5439 5440
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5441
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5442
{
5443
	const struct sched_class *class;
I
Ingo Molnar 已提交
5444
	struct task_struct *p;
L
Linus Torvalds 已提交
5445 5446

	/*
I
Ingo Molnar 已提交
5447 5448
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5449
	 */
I
Ingo Molnar 已提交
5450
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5451
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5452 5453
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5454 5455
	}

I
Ingo Molnar 已提交
5456 5457
	class = sched_class_highest;
	for ( ; ; ) {
5458
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5459 5460 5461 5462 5463 5464 5465 5466 5467
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5468

I
Ingo Molnar 已提交
5469 5470 5471
/*
 * schedule() is the main scheduler function.
 */
5472
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5473 5474
{
	struct task_struct *prev, *next;
5475
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5476
	struct rq *rq;
5477
	int cpu;
I
Ingo Molnar 已提交
5478

5479 5480
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5481 5482
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
5483
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
5484 5485 5486 5487 5488 5489 5490
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5491

5492
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5493
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5494

5495
	raw_spin_lock_irq(&rq->lock);
5496
	update_rq_clock(rq);
5497
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5498 5499

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5500
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5501
			prev->state = TASK_RUNNING;
5502
		else
5503
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5504
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5505 5506
	}

5507
	pre_schedule(rq, prev);
5508

I
Ingo Molnar 已提交
5509
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5510 5511
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5512
	put_prev_task(rq, prev);
5513
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5514 5515

	if (likely(prev != next)) {
5516
		sched_info_switch(prev, next);
5517
		perf_event_task_sched_out(prev, next, cpu);
5518

L
Linus Torvalds 已提交
5519 5520 5521 5522
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5523
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5524 5525 5526 5527 5528 5529
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5530
	} else
5531
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5532

5533
	post_schedule(rq);
L
Linus Torvalds 已提交
5534

P
Peter Zijlstra 已提交
5535
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5536
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5537

L
Linus Torvalds 已提交
5538
	preempt_enable_no_resched();
5539
	if (need_resched())
L
Linus Torvalds 已提交
5540 5541 5542 5543
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5544
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5605 5606
#ifdef CONFIG_PREEMPT
/*
5607
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5608
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5609 5610 5611 5612 5613
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5614

L
Linus Torvalds 已提交
5615 5616
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5617
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5618
	 */
N
Nick Piggin 已提交
5619
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5620 5621
		return;

5622 5623 5624 5625
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5626

5627 5628 5629 5630 5631
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5632
	} while (need_resched());
L
Linus Torvalds 已提交
5633 5634 5635 5636
}
EXPORT_SYMBOL(preempt_schedule);

/*
5637
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5638 5639 5640 5641 5642 5643 5644
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5645

5646
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5647 5648
	BUG_ON(ti->preempt_count || !irqs_disabled());

5649 5650 5651 5652 5653 5654
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5655

5656 5657 5658 5659 5660
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5661
	} while (need_resched());
L
Linus Torvalds 已提交
5662 5663 5664 5665
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
5666
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
5667
			  void *key)
L
Linus Torvalds 已提交
5668
{
P
Peter Zijlstra 已提交
5669
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
5670 5671 5672 5673
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5674 5675
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5676 5677 5678
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5679
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5680 5681
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5682
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
5683
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
5684
{
5685
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5686

5687
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5688 5689
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
5690
		if (curr->func(curr, mode, wake_flags, key) &&
5691
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5692 5693 5694 5695 5696 5697 5698 5699 5700
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5701
 * @key: is directly passed to the wakeup function
5702 5703 5704
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5705
 */
5706
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5707
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5720
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5721 5722 5723 5724
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5725 5726 5727 5728 5729
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5730
/**
5731
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5732 5733 5734
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5735
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5736 5737 5738 5739 5740 5741 5742
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5743 5744 5745
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5746
 */
5747 5748
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5749 5750
{
	unsigned long flags;
P
Peter Zijlstra 已提交
5751
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
5752 5753 5754 5755 5756

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
5757
		wake_flags = 0;
L
Linus Torvalds 已提交
5758 5759

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
5760
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
5761 5762
	spin_unlock_irqrestore(&q->lock, flags);
}
5763 5764 5765 5766 5767 5768 5769 5770 5771
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5772 5773
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5774 5775 5776 5777 5778 5779 5780 5781
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5782 5783 5784
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5785
 */
5786
void complete(struct completion *x)
L
Linus Torvalds 已提交
5787 5788 5789 5790 5791
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5792
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5793 5794 5795 5796
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5797 5798 5799 5800 5801
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5802 5803 5804
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5805
 */
5806
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5807 5808 5809 5810 5811
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5812
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5813 5814 5815 5816
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5817 5818
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5819 5820 5821 5822 5823 5824 5825
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5826
			if (signal_pending_state(state, current)) {
5827 5828
				timeout = -ERESTARTSYS;
				break;
5829 5830
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5831 5832 5833
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5834
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5835
		__remove_wait_queue(&x->wait, &wait);
5836 5837
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5838 5839
	}
	x->done--;
5840
	return timeout ?: 1;
L
Linus Torvalds 已提交
5841 5842
}

5843 5844
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5845 5846 5847 5848
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5849
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5850
	spin_unlock_irq(&x->wait.lock);
5851 5852
	return timeout;
}
L
Linus Torvalds 已提交
5853

5854 5855 5856 5857 5858 5859 5860 5861 5862 5863
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5864
void __sched wait_for_completion(struct completion *x)
5865 5866
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5867
}
5868
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5869

5870 5871 5872 5873 5874 5875 5876 5877 5878
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5879
unsigned long __sched
5880
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5881
{
5882
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5883
}
5884
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5885

5886 5887 5888 5889 5890 5891 5892
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5893
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5894
{
5895 5896 5897 5898
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5899
}
5900
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5901

5902 5903 5904 5905 5906 5907 5908 5909
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5910
unsigned long __sched
5911 5912
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5913
{
5914
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5915
}
5916
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5917

5918 5919 5920 5921 5922 5923 5924
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5925 5926 5927 5928 5929 5930 5931 5932 5933
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
5948
	unsigned long flags;
5949 5950
	int ret = 1;

5951
	spin_lock_irqsave(&x->wait.lock, flags);
5952 5953 5954 5955
	if (!x->done)
		ret = 0;
	else
		x->done--;
5956
	spin_unlock_irqrestore(&x->wait.lock, flags);
5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
5971
	unsigned long flags;
5972 5973
	int ret = 1;

5974
	spin_lock_irqsave(&x->wait.lock, flags);
5975 5976
	if (!x->done)
		ret = 0;
5977
	spin_unlock_irqrestore(&x->wait.lock, flags);
5978 5979 5980 5981
	return ret;
}
EXPORT_SYMBOL(completion_done);

5982 5983
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5984
{
I
Ingo Molnar 已提交
5985 5986 5987 5988
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5989

5990
	__set_current_state(state);
L
Linus Torvalds 已提交
5991

5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
6006 6007 6008
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
6009
long __sched
I
Ingo Molnar 已提交
6010
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
6011
{
6012
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
6013 6014 6015
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
6016
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
6017
{
6018
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
6019 6020 6021
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
6022
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
6023
{
6024
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
6025 6026 6027
}
EXPORT_SYMBOL(sleep_on_timeout);

6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
6040
void rt_mutex_setprio(struct task_struct *p, int prio)
6041 6042
{
	unsigned long flags;
6043
	int oldprio, on_rq, running;
6044
	struct rq *rq;
6045
	const struct sched_class *prev_class = p->sched_class;
6046 6047 6048 6049

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6050
	update_rq_clock(rq);
6051

6052
	oldprio = p->prio;
I
Ingo Molnar 已提交
6053
	on_rq = p->se.on_rq;
6054
	running = task_current(rq, p);
6055
	if (on_rq)
6056
		dequeue_task(rq, p, 0);
6057 6058
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
6059 6060 6061 6062 6063 6064

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

6065 6066
	p->prio = prio;

6067 6068
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6069
	if (on_rq) {
6070
		enqueue_task(rq, p, 0);
6071 6072

		check_class_changed(rq, p, prev_class, oldprio, running);
6073 6074 6075 6076 6077 6078
	}
	task_rq_unlock(rq, &flags);
}

#endif

6079
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
6080
{
I
Ingo Molnar 已提交
6081
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
6082
	unsigned long flags;
6083
	struct rq *rq;
L
Linus Torvalds 已提交
6084 6085 6086 6087 6088 6089 6090 6091

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6092
	update_rq_clock(rq);
L
Linus Torvalds 已提交
6093 6094 6095 6096
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
6097
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
6098
	 */
6099
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
6100 6101 6102
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6103
	on_rq = p->se.on_rq;
6104
	if (on_rq)
6105
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6106 6107

	p->static_prio = NICE_TO_PRIO(nice);
6108
	set_load_weight(p);
6109 6110 6111
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6112

I
Ingo Molnar 已提交
6113
	if (on_rq) {
6114
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6115
		/*
6116 6117
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6118
		 */
6119
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6120 6121 6122 6123 6124 6125 6126
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6127 6128 6129 6130 6131
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6132
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6133
{
6134 6135
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6136

M
Matt Mackall 已提交
6137 6138 6139 6140
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6141 6142 6143 6144 6145 6146 6147 6148 6149
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6150
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6151
{
6152
	long nice, retval;
L
Linus Torvalds 已提交
6153 6154 6155 6156 6157 6158

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6159 6160
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6161 6162 6163
	if (increment > 40)
		increment = 40;

6164
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6165 6166 6167 6168 6169
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6170 6171 6172
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6191
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6192 6193 6194 6195 6196 6197 6198 6199
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6200
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6201 6202 6203
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6204
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6219
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6220 6221 6222 6223 6224 6225 6226 6227
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6228
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6229
{
6230
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6231 6232 6233
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6234 6235
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6236
{
I
Ingo Molnar 已提交
6237
	BUG_ON(p->se.on_rq);
6238

L
Linus Torvalds 已提交
6239 6240
	p->policy = policy;
	p->rt_priority = prio;
6241 6242 6243
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6244 6245 6246 6247
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
6248
	set_load_weight(p);
L
Linus Torvalds 已提交
6249 6250
}

6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6267 6268
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6269
{
6270
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6271
	unsigned long flags;
6272
	const struct sched_class *prev_class = p->sched_class;
6273
	struct rq *rq;
6274
	int reset_on_fork;
L
Linus Torvalds 已提交
6275

6276 6277
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6278 6279
recheck:
	/* double check policy once rq lock held */
6280 6281
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6282
		policy = oldpolicy = p->policy;
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6293 6294
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6295 6296
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6297 6298
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6299
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6300
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6301
		return -EINVAL;
6302
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6303 6304
		return -EINVAL;

6305 6306 6307
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6308
	if (user && !capable(CAP_SYS_NICE)) {
6309
		if (rt_policy(policy)) {
6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6326 6327 6328 6329 6330 6331
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6332

6333
		/* can't change other user's priorities */
6334
		if (!check_same_owner(p))
6335
			return -EPERM;
6336 6337 6338 6339

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6340
	}
L
Linus Torvalds 已提交
6341

6342
	if (user) {
6343
#ifdef CONFIG_RT_GROUP_SCHED
6344 6345 6346 6347
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6348 6349
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6350
			return -EPERM;
6351 6352
#endif

6353 6354 6355 6356 6357
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6358 6359 6360 6361
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
6362
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6363 6364 6365 6366
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6367
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6368 6369 6370
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6371
		__task_rq_unlock(rq);
6372
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6373 6374
		goto recheck;
	}
I
Ingo Molnar 已提交
6375
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6376
	on_rq = p->se.on_rq;
6377
	running = task_current(rq, p);
6378
	if (on_rq)
6379
		deactivate_task(rq, p, 0);
6380 6381
	if (running)
		p->sched_class->put_prev_task(rq, p);
6382

6383 6384
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6385
	oldprio = p->prio;
I
Ingo Molnar 已提交
6386
	__setscheduler(rq, p, policy, param->sched_priority);
6387

6388 6389
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6390 6391
	if (on_rq) {
		activate_task(rq, p, 0);
6392 6393

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6394
	}
6395
	__task_rq_unlock(rq);
6396
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6397

6398 6399
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6400 6401
	return 0;
}
6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6416 6417
EXPORT_SYMBOL_GPL(sched_setscheduler);

6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6435 6436
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6437 6438 6439
{
	struct sched_param lparam;
	struct task_struct *p;
6440
	int retval;
L
Linus Torvalds 已提交
6441 6442 6443 6444 6445

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6446 6447 6448

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6449
	p = find_process_by_pid(pid);
6450 6451 6452
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6453

L
Linus Torvalds 已提交
6454 6455 6456 6457 6458 6459 6460 6461 6462
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6463 6464
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6465
{
6466 6467 6468 6469
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6470 6471 6472 6473 6474 6475 6476 6477
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6478
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6479 6480 6481 6482 6483 6484 6485 6486
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6487
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6488
{
6489
	struct task_struct *p;
6490
	int retval;
L
Linus Torvalds 已提交
6491 6492

	if (pid < 0)
6493
		return -EINVAL;
L
Linus Torvalds 已提交
6494 6495

	retval = -ESRCH;
6496
	rcu_read_lock();
L
Linus Torvalds 已提交
6497 6498 6499 6500
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6501 6502
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6503
	}
6504
	rcu_read_unlock();
L
Linus Torvalds 已提交
6505 6506 6507 6508
	return retval;
}

/**
6509
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6510 6511 6512
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6513
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6514 6515
{
	struct sched_param lp;
6516
	struct task_struct *p;
6517
	int retval;
L
Linus Torvalds 已提交
6518 6519

	if (!param || pid < 0)
6520
		return -EINVAL;
L
Linus Torvalds 已提交
6521

6522
	rcu_read_lock();
L
Linus Torvalds 已提交
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
6533
	rcu_read_unlock();
L
Linus Torvalds 已提交
6534 6535 6536 6537 6538 6539 6540 6541 6542

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
6543
	rcu_read_unlock();
L
Linus Torvalds 已提交
6544 6545 6546
	return retval;
}

6547
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6548
{
6549
	cpumask_var_t cpus_allowed, new_mask;
6550 6551
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6552

6553
	get_online_cpus();
6554
	rcu_read_lock();
L
Linus Torvalds 已提交
6555 6556 6557

	p = find_process_by_pid(pid);
	if (!p) {
6558
		rcu_read_unlock();
6559
		put_online_cpus();
L
Linus Torvalds 已提交
6560 6561 6562
		return -ESRCH;
	}

6563
	/* Prevent p going away */
L
Linus Torvalds 已提交
6564
	get_task_struct(p);
6565
	rcu_read_unlock();
L
Linus Torvalds 已提交
6566

6567 6568 6569 6570 6571 6572 6573 6574
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6575
	retval = -EPERM;
6576
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6577 6578
		goto out_unlock;

6579 6580 6581 6582
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6583 6584
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6585
 again:
6586
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6587

P
Paul Menage 已提交
6588
	if (!retval) {
6589 6590
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6591 6592 6593 6594 6595
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6596
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6597 6598 6599
			goto again;
		}
	}
L
Linus Torvalds 已提交
6600
out_unlock:
6601 6602 6603 6604
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6605
	put_task_struct(p);
6606
	put_online_cpus();
L
Linus Torvalds 已提交
6607 6608 6609 6610
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6611
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6612
{
6613 6614 6615 6616 6617
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6618 6619 6620 6621 6622 6623 6624 6625 6626
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6627 6628
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6629
{
6630
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6631 6632
	int retval;

6633 6634
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6635

6636 6637 6638 6639 6640
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6641 6642
}

6643
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6644
{
6645
	struct task_struct *p;
6646 6647
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
6648 6649
	int retval;

6650
	get_online_cpus();
6651
	rcu_read_lock();
L
Linus Torvalds 已提交
6652 6653 6654 6655 6656 6657

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6658 6659 6660 6661
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6662
	rq = task_rq_lock(p, &flags);
6663
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6664
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6665 6666

out_unlock:
6667
	rcu_read_unlock();
6668
	put_online_cpus();
L
Linus Torvalds 已提交
6669

6670
	return retval;
L
Linus Torvalds 已提交
6671 6672 6673 6674 6675 6676 6677 6678
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6679 6680
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6681 6682
{
	int ret;
6683
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6684

6685
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6686 6687
		return -EINVAL;

6688 6689
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6690

6691 6692 6693 6694 6695 6696 6697 6698
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6699

6700
	return ret;
L
Linus Torvalds 已提交
6701 6702 6703 6704 6705
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6706 6707
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6708
 */
6709
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6710
{
6711
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6712

6713
	schedstat_inc(rq, yld_count);
6714
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6715 6716 6717 6718 6719 6720

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6721
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6722
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
6723 6724 6725 6726 6727 6728 6729
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6730 6731 6732 6733 6734
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6735
static void __cond_resched(void)
L
Linus Torvalds 已提交
6736
{
6737 6738 6739
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6740 6741
}

6742
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6743
{
P
Peter Zijlstra 已提交
6744
	if (should_resched()) {
L
Linus Torvalds 已提交
6745 6746 6747 6748 6749
		__cond_resched();
		return 1;
	}
	return 0;
}
6750
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6751 6752

/*
6753
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6754 6755
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6756
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6757 6758 6759
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6760
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6761
{
P
Peter Zijlstra 已提交
6762
	int resched = should_resched();
J
Jan Kara 已提交
6763 6764
	int ret = 0;

6765 6766
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
6767
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6768
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6769
		if (resched)
N
Nick Piggin 已提交
6770 6771 6772
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6773
		ret = 1;
L
Linus Torvalds 已提交
6774 6775
		spin_lock(lock);
	}
J
Jan Kara 已提交
6776
	return ret;
L
Linus Torvalds 已提交
6777
}
6778
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6779

6780
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6781 6782 6783
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6784
	if (should_resched()) {
6785
		local_bh_enable();
L
Linus Torvalds 已提交
6786 6787 6788 6789 6790 6791
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6792
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6793 6794 6795 6796

/**
 * yield - yield the current processor to other threads.
 *
6797
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6808
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6809 6810 6811 6812
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
6813
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6814

6815
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6816
	atomic_inc(&rq->nr_iowait);
6817
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6818
	schedule();
6819
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6820
	atomic_dec(&rq->nr_iowait);
6821
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6822 6823 6824 6825 6826
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6827
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6828 6829
	long ret;

6830
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6831
	atomic_inc(&rq->nr_iowait);
6832
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6833
	ret = schedule_timeout(timeout);
6834
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6835
	atomic_dec(&rq->nr_iowait);
6836
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6837 6838 6839 6840 6841 6842 6843 6844 6845 6846
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6847
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6848 6849 6850 6851 6852 6853 6854 6855 6856
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6857
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6858
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6872
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6873 6874 6875 6876 6877 6878 6879 6880 6881
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6882
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6883
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6897
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6898
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6899
{
6900
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6901
	unsigned int time_slice;
6902 6903
	unsigned long flags;
	struct rq *rq;
6904
	int retval;
L
Linus Torvalds 已提交
6905 6906 6907
	struct timespec t;

	if (pid < 0)
6908
		return -EINVAL;
L
Linus Torvalds 已提交
6909 6910

	retval = -ESRCH;
6911
	rcu_read_lock();
L
Linus Torvalds 已提交
6912 6913 6914 6915 6916 6917 6918 6919
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6920 6921 6922
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
6923

6924
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
6925
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6926 6927
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6928

L
Linus Torvalds 已提交
6929
out_unlock:
6930
	rcu_read_unlock();
L
Linus Torvalds 已提交
6931 6932 6933
	return retval;
}

6934
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6935

6936
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6937 6938
{
	unsigned long free = 0;
6939
	unsigned state;
L
Linus Torvalds 已提交
6940 6941

	state = p->state ? __ffs(p->state) + 1 : 0;
J
Joe Perches 已提交
6942
	pr_info("%-13.13s %c", p->comm,
6943
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6944
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6945
	if (state == TASK_RUNNING)
J
Joe Perches 已提交
6946
		pr_cont(" running  ");
L
Linus Torvalds 已提交
6947
	else
J
Joe Perches 已提交
6948
		pr_cont(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6949 6950
#else
	if (state == TASK_RUNNING)
J
Joe Perches 已提交
6951
		pr_cont("  running task    ");
L
Linus Torvalds 已提交
6952
	else
J
Joe Perches 已提交
6953
		pr_cont(" %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6954 6955
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6956
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6957
#endif
J
Joe Perches 已提交
6958
	pr_cont("%5lu %5d %6d 0x%08lx\n", free,
6959 6960
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6961

6962
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6963 6964
}

I
Ingo Molnar 已提交
6965
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6966
{
6967
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6968

6969
#if BITS_PER_LONG == 32
J
Joe Perches 已提交
6970
	pr_info("  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6971
#else
J
Joe Perches 已提交
6972
	pr_info("  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6973 6974 6975 6976 6977 6978 6979 6980
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6981
		if (!state_filter || (p->state & state_filter))
6982
			sched_show_task(p);
L
Linus Torvalds 已提交
6983 6984
	} while_each_thread(g, p);

6985 6986
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6987 6988 6989
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6990
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6991 6992 6993
	/*
	 * Only show locks if all tasks are dumped:
	 */
6994
	if (!state_filter)
I
Ingo Molnar 已提交
6995
		debug_show_all_locks();
L
Linus Torvalds 已提交
6996 6997
}

I
Ingo Molnar 已提交
6998 6999
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
7000
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
7001 7002
}

7003 7004 7005 7006 7007 7008 7009 7010
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
7011
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
7012
{
7013
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
7014 7015
	unsigned long flags;

7016
	raw_spin_lock_irqsave(&rq->lock, flags);
7017

I
Ingo Molnar 已提交
7018
	__sched_fork(idle);
7019
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
7020 7021
	idle->se.exec_start = sched_clock();

7022
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
7023
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
7024 7025

	rq->curr = rq->idle = idle;
7026 7027 7028
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
7029
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7030 7031

	/* Set the preempt count _outside_ the spinlocks! */
7032 7033 7034
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
7035
	task_thread_info(idle)->preempt_count = 0;
7036
#endif
I
Ingo Molnar 已提交
7037 7038 7039 7040
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
7041
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
7042 7043 7044 7045 7046 7047 7048
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
7049
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
7050
 */
7051
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
7052

I
Ingo Molnar 已提交
7053 7054 7055 7056 7057 7058 7059 7060 7061
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
7062
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
7063
{
7064
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
7079

7080 7081
	return factor;
}
I
Ingo Molnar 已提交
7082

7083 7084 7085
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
7086

7087 7088 7089 7090 7091 7092 7093 7094
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
7095

7096 7097 7098
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
7099 7100
}

L
Linus Torvalds 已提交
7101 7102 7103 7104
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7105
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7124
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7125 7126
 * call is not atomic; no spinlocks may be held.
 */
7127
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7128
{
7129
	struct migration_req req;
L
Linus Torvalds 已提交
7130
	unsigned long flags;
7131
	struct rq *rq;
7132
	int ret = 0;
L
Linus Torvalds 已提交
7133

7134 7135 7136 7137 7138 7139 7140 7141 7142 7143
	/*
	 * Since we rely on wake-ups to migrate sleeping tasks, don't change
	 * the ->cpus_allowed mask from under waking tasks, which would be
	 * possible when we change rq->lock in ttwu(), so synchronize against
	 * TASK_WAKING to avoid that.
	 */
again:
	while (p->state == TASK_WAKING)
		cpu_relax();

L
Linus Torvalds 已提交
7144
	rq = task_rq_lock(p, &flags);
7145 7146 7147 7148 7149 7150

	if (p->state == TASK_WAKING) {
		task_rq_unlock(rq, &flags);
		goto again;
	}

7151
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
7152 7153 7154 7155
		ret = -EINVAL;
		goto out;
	}

7156
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7157
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7158 7159 7160 7161
		ret = -EINVAL;
		goto out;
	}

7162
	if (p->sched_class->set_cpus_allowed)
7163
		p->sched_class->set_cpus_allowed(p, new_mask);
7164
	else {
7165 7166
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7167 7168
	}

L
Linus Torvalds 已提交
7169
	/* Can the task run on the task's current CPU? If so, we're done */
7170
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7171 7172
		goto out;

7173
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7174
		/* Need help from migration thread: drop lock and wait. */
7175 7176 7177
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7178 7179
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7180
		put_task_struct(mt);
L
Linus Torvalds 已提交
7181 7182 7183 7184 7185 7186
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7187

L
Linus Torvalds 已提交
7188 7189
	return ret;
}
7190
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7191 7192

/*
I
Ingo Molnar 已提交
7193
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7194 7195 7196 7197 7198 7199
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7200 7201
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7202
 */
7203
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7204
{
7205
	struct rq *rq_dest, *rq_src;
7206
	int ret = 0;
L
Linus Torvalds 已提交
7207

7208
	if (unlikely(!cpu_active(dest_cpu)))
7209
		return ret;
L
Linus Torvalds 已提交
7210 7211 7212 7213 7214 7215 7216

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7217
		goto done;
L
Linus Torvalds 已提交
7218
	/* Affinity changed (again). */
7219
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7220
		goto fail;
L
Linus Torvalds 已提交
7221

7222 7223 7224 7225 7226
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
7227
		deactivate_task(rq_src, p, 0);
7228
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7229
		activate_task(rq_dest, p, 0);
7230
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7231
	}
L
Linus Torvalds 已提交
7232
done:
7233
	ret = 1;
L
Linus Torvalds 已提交
7234
fail:
L
Linus Torvalds 已提交
7235
	double_rq_unlock(rq_src, rq_dest);
7236
	return ret;
L
Linus Torvalds 已提交
7237 7238
}

7239 7240 7241 7242 7243
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
7244 7245 7246 7247 7248
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7249
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7250
{
7251
	int badcpu;
L
Linus Torvalds 已提交
7252
	int cpu = (long)data;
7253
	struct rq *rq;
L
Linus Torvalds 已提交
7254 7255 7256 7257 7258 7259

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7260
		struct migration_req *req;
L
Linus Torvalds 已提交
7261 7262
		struct list_head *head;

7263
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7264 7265

		if (cpu_is_offline(cpu)) {
7266
			raw_spin_unlock_irq(&rq->lock);
7267
			break;
L
Linus Torvalds 已提交
7268 7269 7270 7271 7272 7273 7274 7275 7276 7277
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
7278
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7279 7280 7281 7282
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7283
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7284 7285
		list_del_init(head->next);

7286
		if (req->task != NULL) {
7287
			raw_spin_unlock(&rq->lock);
7288 7289 7290
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
7291
			raw_spin_unlock(&rq->lock);
7292 7293
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7294
			raw_spin_unlock(&rq->lock);
7295 7296
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
7297
		local_irq_enable();
L
Linus Torvalds 已提交
7298 7299 7300 7301 7302 7303 7304 7305 7306

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7318
/*
7319
 * Figure out where task on dead CPU should go, use force if necessary.
7320
 */
7321
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7322
{
7323
	int dest_cpu;
7324 7325

again:
7326
	dest_cpu = select_fallback_rq(dead_cpu, p);
7327 7328 7329 7330

	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7331 7332 7333 7334 7335 7336 7337 7338 7339
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7340
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7341
{
7342
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7356
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7357

7358
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7359

7360 7361
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7362 7363
			continue;

7364 7365 7366
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7367

7368
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7369 7370
}

I
Ingo Molnar 已提交
7371 7372
/*
 * Schedules idle task to be the next runnable task on current CPU.
7373 7374
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7375 7376 7377
 */
void sched_idle_next(void)
{
7378
	int this_cpu = smp_processor_id();
7379
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7380 7381 7382 7383
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7384
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7385

7386 7387 7388
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7389
	 */
7390
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
7391

I
Ingo Molnar 已提交
7392
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7393

7394 7395
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7396

7397
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7398 7399
}

7400 7401
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7415
/* called under rq->lock with disabled interrupts */
7416
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7417
{
7418
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7419 7420

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7421
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7422 7423

	/* Cannot have done final schedule yet: would have vanished. */
7424
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7425

7426
	get_task_struct(p);
L
Linus Torvalds 已提交
7427 7428 7429

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7430
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7431 7432
	 * fine.
	 */
7433
	raw_spin_unlock_irq(&rq->lock);
7434
	move_task_off_dead_cpu(dead_cpu, p);
7435
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7436

7437
	put_task_struct(p);
L
Linus Torvalds 已提交
7438 7439 7440 7441 7442
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7443
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7444
	struct task_struct *next;
7445

I
Ingo Molnar 已提交
7446 7447 7448
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7449
		update_rq_clock(rq);
7450
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7451 7452
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7453
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7454
		migrate_dead(dead_cpu, next);
7455

L
Linus Torvalds 已提交
7456 7457
	}
}
7458 7459 7460 7461 7462 7463 7464

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7465
	rq->calc_load_active = 0;
7466
}
L
Linus Torvalds 已提交
7467 7468
#endif /* CONFIG_HOTPLUG_CPU */

7469 7470 7471
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7472 7473
	{
		.procname	= "sched_domain",
7474
		.mode		= 0555,
7475
	},
7476
	{}
7477 7478 7479
};

static struct ctl_table sd_ctl_root[] = {
7480 7481
	{
		.procname	= "kernel",
7482
		.mode		= 0555,
7483 7484
		.child		= sd_ctl_dir,
	},
7485
	{}
7486 7487 7488 7489 7490
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7491
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7492 7493 7494 7495

	return entry;
}

7496 7497
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7498
	struct ctl_table *entry;
7499

7500 7501 7502
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7503
	 * will always be set. In the lowest directory the names are
7504 7505 7506
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7507 7508
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7509 7510 7511
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7512 7513 7514 7515 7516

	kfree(*tablep);
	*tablep = NULL;
}

7517
static void
7518
set_table_entry(struct ctl_table *entry,
7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7532
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7533

7534 7535 7536
	if (table == NULL)
		return NULL;

7537
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7538
		sizeof(long), 0644, proc_doulongvec_minmax);
7539
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7540
		sizeof(long), 0644, proc_doulongvec_minmax);
7541
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7542
		sizeof(int), 0644, proc_dointvec_minmax);
7543
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7544
		sizeof(int), 0644, proc_dointvec_minmax);
7545
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7546
		sizeof(int), 0644, proc_dointvec_minmax);
7547
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7548
		sizeof(int), 0644, proc_dointvec_minmax);
7549
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7550
		sizeof(int), 0644, proc_dointvec_minmax);
7551
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7552
		sizeof(int), 0644, proc_dointvec_minmax);
7553
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7554
		sizeof(int), 0644, proc_dointvec_minmax);
7555
	set_table_entry(&table[9], "cache_nice_tries",
7556 7557
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7558
	set_table_entry(&table[10], "flags", &sd->flags,
7559
		sizeof(int), 0644, proc_dointvec_minmax);
7560 7561 7562
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7563 7564 7565 7566

	return table;
}

7567
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7568 7569 7570 7571 7572 7573 7574 7575 7576
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7577 7578
	if (table == NULL)
		return NULL;
7579 7580 7581 7582 7583

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7584
		entry->mode = 0555;
7585 7586 7587 7588 7589 7590 7591 7592
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7593
static void register_sched_domain_sysctl(void)
7594
{
7595
	int i, cpu_num = num_possible_cpus();
7596 7597 7598
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7599 7600 7601
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7602 7603 7604
	if (entry == NULL)
		return;

7605
	for_each_possible_cpu(i) {
7606 7607
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7608
		entry->mode = 0555;
7609
		entry->child = sd_alloc_ctl_cpu_table(i);
7610
		entry++;
7611
	}
7612 7613

	WARN_ON(sd_sysctl_header);
7614 7615
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7616

7617
/* may be called multiple times per register */
7618 7619
static void unregister_sched_domain_sysctl(void)
{
7620 7621
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7622
	sd_sysctl_header = NULL;
7623 7624
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7625
}
7626
#else
7627 7628 7629 7630
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7631 7632 7633 7634
{
}
#endif

7635 7636 7637 7638 7639
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7640
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7660
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7661 7662 7663 7664
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7665 7666 7667 7668
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7669 7670
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7671 7672
{
	struct task_struct *p;
7673
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7674
	unsigned long flags;
7675
	struct rq *rq;
L
Linus Torvalds 已提交
7676 7677

	switch (action) {
7678

L
Linus Torvalds 已提交
7679
	case CPU_UP_PREPARE:
7680
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7681
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7682 7683 7684 7685 7686
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7687
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7688
		task_rq_unlock(rq, &flags);
7689
		get_task_struct(p);
L
Linus Torvalds 已提交
7690
		cpu_rq(cpu)->migration_thread = p;
7691
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7692
		break;
7693

L
Linus Torvalds 已提交
7694
	case CPU_ONLINE:
7695
	case CPU_ONLINE_FROZEN:
7696
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7697
		wake_up_process(cpu_rq(cpu)->migration_thread);
7698 7699 7700

		/* Update our root-domain */
		rq = cpu_rq(cpu);
7701
		raw_spin_lock_irqsave(&rq->lock, flags);
7702
		if (rq->rd) {
7703
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7704 7705

			set_rq_online(rq);
7706
		}
7707
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7708
		break;
7709

L
Linus Torvalds 已提交
7710 7711
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7712
	case CPU_UP_CANCELED_FROZEN:
7713 7714
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7715
		/* Unbind it from offline cpu so it can run. Fall thru. */
7716
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7717
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7718
		kthread_stop(cpu_rq(cpu)->migration_thread);
7719
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7720 7721
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7722

L
Linus Torvalds 已提交
7723
	case CPU_DEAD:
7724
	case CPU_DEAD_FROZEN:
7725
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7726 7727 7728
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7729
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7730 7731
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7732
		raw_spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7733
		update_rq_clock(rq);
7734
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
7735 7736
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7737
		migrate_dead_tasks(cpu);
7738
		raw_spin_unlock_irq(&rq->lock);
7739
		cpuset_unlock();
L
Linus Torvalds 已提交
7740 7741
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7742
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7743 7744 7745 7746 7747
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
7748
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7749
		while (!list_empty(&rq->migration_queue)) {
7750 7751
			struct migration_req *req;

L
Linus Torvalds 已提交
7752
			req = list_entry(rq->migration_queue.next,
7753
					 struct migration_req, list);
L
Linus Torvalds 已提交
7754
			list_del_init(&req->list);
7755
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7756
			complete(&req->done);
7757
			raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7758
		}
7759
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7760
		break;
G
Gregory Haskins 已提交
7761

7762 7763
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7764 7765
		/* Update our root-domain */
		rq = cpu_rq(cpu);
7766
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
7767
		if (rq->rd) {
7768
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7769
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7770
		}
7771
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
7772
		break;
L
Linus Torvalds 已提交
7773 7774 7775 7776 7777
#endif
	}
	return NOTIFY_OK;
}

7778 7779 7780
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
7781
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
7782
 */
7783
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7784 7785 7786 7787
	.notifier_call = migration_call,
	.priority = 10
};

7788
static int __init migration_init(void)
L
Linus Torvalds 已提交
7789 7790
{
	void *cpu = (void *)(long)smp_processor_id();
7791
	int err;
7792 7793

	/* Start one for the boot CPU: */
7794 7795
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7796 7797
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7798

7799
	return 0;
L
Linus Torvalds 已提交
7800
}
7801
early_initcall(migration_init);
L
Linus Torvalds 已提交
7802 7803 7804
#endif

#ifdef CONFIG_SMP
7805

7806
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7807

7808 7809 7810 7811 7812 7813 7814 7815 7816 7817
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

7818
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7819
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7820
{
I
Ingo Molnar 已提交
7821
	struct sched_group *group = sd->groups;
7822
	char str[256];
L
Linus Torvalds 已提交
7823

R
Rusty Russell 已提交
7824
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7825
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7826 7827 7828 7829

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
J
Joe Perches 已提交
7830
		pr_cont("does not load-balance\n");
I
Ingo Molnar 已提交
7831
		if (sd->parent)
J
Joe Perches 已提交
7832
			pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
I
Ingo Molnar 已提交
7833
		return -1;
N
Nick Piggin 已提交
7834 7835
	}

J
Joe Perches 已提交
7836
	pr_cont("span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7837

7838
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
J
Joe Perches 已提交
7839
		pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
I
Ingo Molnar 已提交
7840
	}
7841
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
J
Joe Perches 已提交
7842
		pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
I
Ingo Molnar 已提交
7843
	}
L
Linus Torvalds 已提交
7844

I
Ingo Molnar 已提交
7845
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7846
	do {
I
Ingo Molnar 已提交
7847
		if (!group) {
J
Joe Perches 已提交
7848 7849
			pr_cont("\n");
			pr_err("ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7850 7851 7852
			break;
		}

7853
		if (!group->cpu_power) {
J
Joe Perches 已提交
7854 7855
			pr_cont("\n");
			pr_err("ERROR: domain->cpu_power not set\n");
I
Ingo Molnar 已提交
7856 7857
			break;
		}
L
Linus Torvalds 已提交
7858

7859
		if (!cpumask_weight(sched_group_cpus(group))) {
J
Joe Perches 已提交
7860 7861
			pr_cont("\n");
			pr_err("ERROR: empty group\n");
I
Ingo Molnar 已提交
7862 7863
			break;
		}
L
Linus Torvalds 已提交
7864

7865
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
J
Joe Perches 已提交
7866 7867
			pr_cont("\n");
			pr_err("ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
7868 7869
			break;
		}
L
Linus Torvalds 已提交
7870

7871
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7872

R
Rusty Russell 已提交
7873
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7874

J
Joe Perches 已提交
7875
		pr_cont(" %s", str);
7876
		if (group->cpu_power != SCHED_LOAD_SCALE) {
J
Joe Perches 已提交
7877
			pr_cont(" (cpu_power = %d)", group->cpu_power);
7878
		}
L
Linus Torvalds 已提交
7879

I
Ingo Molnar 已提交
7880 7881
		group = group->next;
	} while (group != sd->groups);
J
Joe Perches 已提交
7882
	pr_cont("\n");
L
Linus Torvalds 已提交
7883

7884
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
J
Joe Perches 已提交
7885
		pr_err("ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7886

7887 7888
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
J
Joe Perches 已提交
7889
		pr_err("ERROR: parent span is not a superset of domain->span\n");
I
Ingo Molnar 已提交
7890 7891
	return 0;
}
L
Linus Torvalds 已提交
7892

I
Ingo Molnar 已提交
7893 7894
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7895
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7896
	int level = 0;
L
Linus Torvalds 已提交
7897

7898 7899 7900
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
7901 7902 7903 7904
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7905

I
Ingo Molnar 已提交
7906 7907
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7908
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7909 7910 7911 7912
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7913
	for (;;) {
7914
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7915
			break;
L
Linus Torvalds 已提交
7916 7917
		level++;
		sd = sd->parent;
7918
		if (!sd)
I
Ingo Molnar 已提交
7919 7920
			break;
	}
7921
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7922
}
7923
#else /* !CONFIG_SCHED_DEBUG */
7924
# define sched_domain_debug(sd, cpu) do { } while (0)
7925
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7926

7927
static int sd_degenerate(struct sched_domain *sd)
7928
{
7929
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7930 7931 7932 7933 7934 7935
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7936 7937 7938
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7939 7940 7941 7942 7943
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
7944
	if (sd->flags & (SD_WAKE_AFFINE))
7945 7946 7947 7948 7949
		return 0;

	return 1;
}

7950 7951
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7952 7953 7954 7955 7956 7957
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7958
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7959 7960 7961 7962 7963 7964 7965
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7966 7967 7968
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7969 7970
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7971 7972 7973 7974 7975 7976 7977
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7978 7979
static void free_rootdomain(struct root_domain *rd)
{
7980 7981
	synchronize_sched();

7982 7983
	cpupri_cleanup(&rd->cpupri);

7984 7985 7986 7987 7988 7989
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7990 7991
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7992
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7993 7994
	unsigned long flags;

7995
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
7996 7997

	if (rq->rd) {
I
Ingo Molnar 已提交
7998
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7999

8000
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
8001
			set_rq_offline(rq);
G
Gregory Haskins 已提交
8002

8003
		cpumask_clear_cpu(rq->cpu, old_rd->span);
8004

I
Ingo Molnar 已提交
8005 8006 8007 8008 8009 8010 8011
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
8012 8013 8014 8015 8016
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

8017
	cpumask_set_cpu(rq->cpu, rd->span);
8018
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8019
		set_rq_online(rq);
G
Gregory Haskins 已提交
8020

8021
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
8022 8023 8024

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
8025 8026
}

L
Li Zefan 已提交
8027
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
8028
{
8029 8030
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
8031 8032
	memset(rd, 0, sizeof(*rd));

8033 8034
	if (bootmem)
		gfp = GFP_NOWAIT;
8035

8036
	if (!alloc_cpumask_var(&rd->span, gfp))
8037
		goto out;
8038
	if (!alloc_cpumask_var(&rd->online, gfp))
8039
		goto free_span;
8040
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8041
		goto free_online;
8042

P
Pekka Enberg 已提交
8043
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
8044
		goto free_rto_mask;
8045
	return 0;
8046

8047 8048
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
8049 8050 8051 8052
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
8053
out:
8054
	return -ENOMEM;
G
Gregory Haskins 已提交
8055 8056 8057 8058
}

static void init_defrootdomain(void)
{
8059 8060
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
8061 8062 8063
	atomic_set(&def_root_domain.refcount, 1);
}

8064
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
8065 8066 8067 8068 8069 8070 8071
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

8072 8073 8074 8075
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
8076 8077 8078 8079

	return rd;
}

L
Linus Torvalds 已提交
8080
/*
I
Ingo Molnar 已提交
8081
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
8082 8083
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
8084 8085
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
8086
{
8087
	struct rq *rq = cpu_rq(cpu);
8088 8089 8090
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
8091
	for (tmp = sd; tmp; ) {
8092 8093 8094
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
8095

8096
		if (sd_parent_degenerate(tmp, parent)) {
8097
			tmp->parent = parent->parent;
8098 8099
			if (parent->parent)
				parent->parent->child = tmp;
8100 8101
		} else
			tmp = tmp->parent;
8102 8103
	}

8104
	if (sd && sd_degenerate(sd)) {
8105
		sd = sd->parent;
8106 8107 8108
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8109 8110 8111

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8112
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8113
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8114 8115 8116
}

/* cpus with isolated domains */
8117
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8118 8119 8120 8121

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8122
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
8123
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8124 8125 8126
	return 1;
}

I
Ingo Molnar 已提交
8127
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8128 8129

/*
8130 8131
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8132 8133
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8134 8135 8136 8137 8138
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8139
static void
8140 8141 8142
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8143
					struct sched_group **sg,
8144 8145
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8146 8147 8148 8149
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8150
	cpumask_clear(covered);
8151

8152
	for_each_cpu(i, span) {
8153
		struct sched_group *sg;
8154
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8155 8156
		int j;

8157
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8158 8159
			continue;

8160
		cpumask_clear(sched_group_cpus(sg));
8161
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
8162

8163
		for_each_cpu(j, span) {
8164
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8165 8166
				continue;

8167
			cpumask_set_cpu(j, covered);
8168
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8169 8170 8171 8172 8173 8174 8175 8176 8177 8178
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8179
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8180

8181
#ifdef CONFIG_NUMA
8182

8183 8184 8185 8186 8187
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8188
 * Find the next node to include in a given scheduling domain. Simply
8189 8190 8191 8192
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8193
static int find_next_best_node(int node, nodemask_t *used_nodes)
8194 8195 8196 8197 8198
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8199
	for (i = 0; i < nr_node_ids; i++) {
8200
		/* Start at @node */
8201
		n = (node + i) % nr_node_ids;
8202 8203 8204 8205 8206

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8207
		if (node_isset(n, *used_nodes))
8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8219
	node_set(best_node, *used_nodes);
8220 8221 8222 8223 8224 8225
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8226
 * @span: resulting cpumask
8227
 *
I
Ingo Molnar 已提交
8228
 * Given a node, construct a good cpumask for its sched_domain to span. It
8229 8230 8231
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8232
static void sched_domain_node_span(int node, struct cpumask *span)
8233
{
8234
	nodemask_t used_nodes;
8235
	int i;
8236

8237
	cpumask_clear(span);
8238
	nodes_clear(used_nodes);
8239

8240
	cpumask_or(span, span, cpumask_of_node(node));
8241
	node_set(node, used_nodes);
8242 8243

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8244
		int next_node = find_next_best_node(node, &used_nodes);
8245

8246
		cpumask_or(span, span, cpumask_of_node(next_node));
8247 8248
	}
}
8249
#endif /* CONFIG_NUMA */
8250

8251
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8252

8253 8254
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8255 8256 8257
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8302
/*
8303
 * SMT sched-domains:
8304
 */
L
Linus Torvalds 已提交
8305
#ifdef CONFIG_SCHED_SMT
8306
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8307
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
8308

I
Ingo Molnar 已提交
8309
static int
8310 8311
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8312
{
8313
	if (sg)
8314
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
8315 8316
	return cpu;
}
8317
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8318

8319 8320 8321
/*
 * multi-core sched-domains:
 */
8322
#ifdef CONFIG_SCHED_MC
8323 8324
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8325
#endif /* CONFIG_SCHED_MC */
8326 8327

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8328
static int
8329 8330
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8331
{
8332
	int group;
8333

8334
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8335
	group = cpumask_first(mask);
8336
	if (sg)
8337
		*sg = &per_cpu(sched_group_core, group).sg;
8338
	return group;
8339 8340
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8341
static int
8342 8343
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8344
{
8345
	if (sg)
8346
		*sg = &per_cpu(sched_group_core, cpu).sg;
8347 8348 8349 8350
	return cpu;
}
#endif

8351 8352
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8353

I
Ingo Molnar 已提交
8354
static int
8355 8356
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8357
{
8358
	int group;
8359
#ifdef CONFIG_SCHED_MC
8360
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8361
	group = cpumask_first(mask);
8362
#elif defined(CONFIG_SCHED_SMT)
8363
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8364
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8365
#else
8366
	group = cpu;
L
Linus Torvalds 已提交
8367
#endif
8368
	if (sg)
8369
		*sg = &per_cpu(sched_group_phys, group).sg;
8370
	return group;
L
Linus Torvalds 已提交
8371 8372 8373 8374
}

#ifdef CONFIG_NUMA
/*
8375 8376 8377
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8378
 */
8379
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8380
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8381

8382
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8383
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8384

8385 8386 8387
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8388
{
8389 8390
	int group;

8391
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8392
	group = cpumask_first(nodemask);
8393 8394

	if (sg)
8395
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8396
	return group;
L
Linus Torvalds 已提交
8397
}
8398

8399 8400 8401 8402 8403 8404 8405
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8406
	do {
8407
		for_each_cpu(j, sched_group_cpus(sg)) {
8408
			struct sched_domain *sd;
8409

8410
			sd = &per_cpu(phys_domains, j).sd;
8411
			if (j != group_first_cpu(sd->groups)) {
8412 8413 8414 8415 8416 8417
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8418

8419
			sg->cpu_power += sd->groups->cpu_power;
8420 8421 8422
		}
		sg = sg->next;
	} while (sg != group_head);
8423
}
8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
J
Joe Perches 已提交
8445
		pr_warning("Can not alloc domain group for node %d\n", num);
8446 8447 8448 8449 8450 8451 8452 8453 8454
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

8455
	sg->cpu_power = 0;
8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
J
Joe Perches 已提交
8474 8475
			pr_warning("Can not alloc domain group for node %d\n",
				   j);
8476 8477
			return -ENOMEM;
		}
8478
		sg->cpu_power = 0;
8479 8480 8481 8482 8483 8484 8485 8486 8487
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8488
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8489

8490
#ifdef CONFIG_NUMA
8491
/* Free memory allocated for various sched_group structures */
8492 8493
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8494
{
8495
	int cpu, i;
8496

8497
	for_each_cpu(cpu, cpu_map) {
8498 8499 8500 8501 8502 8503
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8504
		for (i = 0; i < nr_node_ids; i++) {
8505 8506
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8507
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8508
			if (cpumask_empty(nodemask))
8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8525
#else /* !CONFIG_NUMA */
8526 8527
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8528 8529
{
}
8530
#endif /* CONFIG_NUMA */
8531

8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8546 8547
	long power;
	int weight;
8548 8549 8550

	WARN_ON(!sd || !sd->groups);

8551
	if (cpu != group_first_cpu(sd->groups))
8552 8553 8554 8555
		return;

	child = sd->child;

8556
	sd->groups->cpu_power = 0;
8557

8558 8559 8560 8561 8562
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8563 8564 8565
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8566
		 */
P
Peter Zijlstra 已提交
8567 8568
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8569
			power /= weight;
P
Peter Zijlstra 已提交
8570 8571
			power >>= SCHED_LOAD_SHIFT;
		}
8572
		sd->groups->cpu_power += power;
8573 8574 8575 8576
		return;
	}

	/*
8577
	 * Add cpu_power of each child group to this groups cpu_power.
8578 8579 8580
	 */
	group = child->groups;
	do {
8581
		sd->groups->cpu_power += group->cpu_power;
8582 8583 8584 8585
		group = group->next;
	} while (group != child->groups);
}

8586 8587 8588 8589 8590
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8591 8592 8593 8594 8595 8596
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8597
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8598

8599 8600 8601 8602 8603
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8604
	sd->level = SD_LV_##type;				\
8605
	SD_INIT_NAME(sd, type);					\
8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8620 8621 8622 8623
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8624 8625 8626 8627 8628 8629
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
8648
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8649 8650
	} else {
		/* turn on idle balance on this domain */
8651
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8652 8653 8654
	}
}

8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8675
#ifdef CONFIG_NUMA
8676 8677 8678 8679 8680 8681 8682
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8683
#endif
8684 8685 8686 8687
	case sa_none:
		break;
	}
}
8688

8689 8690 8691
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8692
#ifdef CONFIG_NUMA
8693 8694 8695 8696 8697 8698 8699 8700 8701 8702
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
J
Joe Perches 已提交
8703
		pr_warning("Can not alloc sched group node list\n");
8704
		return sa_notcovered;
8705
	}
8706
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8707
#endif
8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
J
Joe Perches 已提交
8720
		pr_warning("Cannot alloc root domain\n");
8721
		return sa_tmpmask;
G
Gregory Haskins 已提交
8722
	}
8723 8724
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8725

8726 8727 8728 8729
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8730
#ifdef CONFIG_NUMA
8731
	struct sched_domain *parent;
L
Linus Torvalds 已提交
8732

8733 8734 8735 8736 8737
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8738
		set_domain_attribute(sd, attr);
8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8753
#endif
8754 8755
	return sd;
}
L
Linus Torvalds 已提交
8756

8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8772

8773 8774 8775 8776 8777
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8778
#ifdef CONFIG_SCHED_MC
8779 8780 8781 8782 8783 8784 8785
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8786
#endif
8787 8788
	return sd;
}
8789

8790 8791 8792 8793 8794
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8795
#ifdef CONFIG_SCHED_SMT
8796 8797 8798 8799 8800 8801 8802
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8803
#endif
8804 8805
	return sd;
}
L
Linus Torvalds 已提交
8806

8807 8808 8809 8810
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8811
#ifdef CONFIG_SCHED_SMT
8812 8813 8814 8815 8816 8817 8818 8819
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8820
#endif
8821
#ifdef CONFIG_SCHED_MC
8822 8823 8824 8825 8826 8827 8828
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8829
#endif
8830 8831 8832 8833 8834 8835 8836
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8837
#ifdef CONFIG_NUMA
8838 8839 8840 8841 8842
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8843 8844
	default:
		break;
8845
	}
8846
}
8847

8848 8849 8850 8851 8852 8853 8854 8855 8856
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8857
	struct sched_domain *sd;
8858
	int i;
8859
#ifdef CONFIG_NUMA
8860
	d.sd_allnodes = 0;
8861
#endif
8862

8863 8864 8865 8866
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8867

L
Linus Torvalds 已提交
8868
	/*
8869
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8870
	 */
8871
	for_each_cpu(i, cpu_map) {
8872 8873
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8874

8875
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8876
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8877
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8878
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8879
	}
8880

8881
	for_each_cpu(i, cpu_map) {
8882
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8883
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8884
	}
8885

L
Linus Torvalds 已提交
8886
	/* Set up physical groups */
8887 8888
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8889

L
Linus Torvalds 已提交
8890 8891
#ifdef CONFIG_NUMA
	/* Set up node groups */
8892 8893
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8894

8895 8896
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8897
			goto error;
L
Linus Torvalds 已提交
8898 8899 8900
#endif

	/* Calculate CPU power for physical packages and nodes */
8901
#ifdef CONFIG_SCHED_SMT
8902
	for_each_cpu(i, cpu_map) {
8903
		sd = &per_cpu(cpu_domains, i).sd;
8904
		init_sched_groups_power(i, sd);
8905
	}
L
Linus Torvalds 已提交
8906
#endif
8907
#ifdef CONFIG_SCHED_MC
8908
	for_each_cpu(i, cpu_map) {
8909
		sd = &per_cpu(core_domains, i).sd;
8910
		init_sched_groups_power(i, sd);
8911 8912
	}
#endif
8913

8914
	for_each_cpu(i, cpu_map) {
8915
		sd = &per_cpu(phys_domains, i).sd;
8916
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8917 8918
	}

8919
#ifdef CONFIG_NUMA
8920
	for (i = 0; i < nr_node_ids; i++)
8921
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8922

8923
	if (d.sd_allnodes) {
8924
		struct sched_group *sg;
8925

8926
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8927
								d.tmpmask);
8928 8929
		init_numa_sched_groups_power(sg);
	}
8930 8931
#endif

L
Linus Torvalds 已提交
8932
	/* Attach the domains */
8933
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8934
#ifdef CONFIG_SCHED_SMT
8935
		sd = &per_cpu(cpu_domains, i).sd;
8936
#elif defined(CONFIG_SCHED_MC)
8937
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8938
#else
8939
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8940
#endif
8941
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8942
	}
8943

8944 8945 8946
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8947 8948

error:
8949 8950
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8951
}
P
Paul Jackson 已提交
8952

8953
static int build_sched_domains(const struct cpumask *cpu_map)
8954 8955 8956 8957
{
	return __build_sched_domains(cpu_map, NULL);
}

8958
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8959
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8960 8961
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8962 8963 8964

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8965 8966
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8967
 */
8968
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8969

8970 8971 8972 8973 8974 8975
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8976
{
8977
	return 0;
8978 8979
}

8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

9005
/*
I
Ingo Molnar 已提交
9006
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
9007 9008
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
9009
 */
9010
static int arch_init_sched_domains(const struct cpumask *cpu_map)
9011
{
9012 9013
	int err;

9014
	arch_update_cpu_topology();
P
Paul Jackson 已提交
9015
	ndoms_cur = 1;
9016
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
9017
	if (!doms_cur)
9018 9019
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
9020
	dattr_cur = NULL;
9021
	err = build_sched_domains(doms_cur[0]);
9022
	register_sched_domain_sysctl();
9023 9024

	return err;
9025 9026
}

9027 9028
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
9029
{
9030
	free_sched_groups(cpu_map, tmpmask);
9031
}
L
Linus Torvalds 已提交
9032

9033 9034 9035 9036
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
9037
static void detach_destroy_domains(const struct cpumask *cpu_map)
9038
{
9039 9040
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9041 9042
	int i;

9043
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
9044
		cpu_attach_domain(NULL, &def_root_domain, i);
9045
	synchronize_sched();
9046
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9047 9048
}

9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
9065 9066
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
9067
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
9068 9069 9070
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
9071
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
9072 9073 9074
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
9075 9076 9077
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
9078 9079 9080 9081 9082 9083
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
9084
 *
9085
 * If doms_new == NULL it will be replaced with cpu_online_mask.
9086 9087
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
9088
 *
P
Paul Jackson 已提交
9089 9090
 * Call with hotplug lock held
 */
9091
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9092
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
9093
{
9094
	int i, j, n;
9095
	int new_topology;
P
Paul Jackson 已提交
9096

9097
	mutex_lock(&sched_domains_mutex);
9098

9099 9100 9101
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

9102 9103 9104
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

9105
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
9106 9107 9108

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
9109
		for (j = 0; j < n && !new_topology; j++) {
9110
			if (cpumask_equal(doms_cur[i], doms_new[j])
9111
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
9112 9113 9114
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
9115
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
9116 9117 9118 9119
match1:
		;
	}

9120 9121
	if (doms_new == NULL) {
		ndoms_cur = 0;
9122
		doms_new = &fallback_doms;
9123
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9124
		WARN_ON_ONCE(dattr_new);
9125 9126
	}

P
Paul Jackson 已提交
9127 9128
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9129
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9130
			if (cpumask_equal(doms_new[i], doms_cur[j])
9131
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9132 9133 9134
				goto match2;
		}
		/* no match - add a new doms_new */
9135
		__build_sched_domains(doms_new[i],
9136
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9137 9138 9139 9140 9141
match2:
		;
	}

	/* Remember the new sched domains */
9142 9143
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
9144
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9145
	doms_cur = doms_new;
9146
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9147
	ndoms_cur = ndoms_new;
9148 9149

	register_sched_domain_sysctl();
9150

9151
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9152 9153
}

9154
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9155
static void arch_reinit_sched_domains(void)
9156
{
9157
	get_online_cpus();
9158 9159 9160 9161

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9162
	rebuild_sched_domains();
9163
	put_online_cpus();
9164 9165 9166 9167
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9168
	unsigned int level = 0;
9169

9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9181 9182 9183
		return -EINVAL;

	if (smt)
9184
		sched_smt_power_savings = level;
9185
	else
9186
		sched_mc_power_savings = level;
9187

9188
	arch_reinit_sched_domains();
9189

9190
	return count;
9191 9192 9193
}

#ifdef CONFIG_SCHED_MC
9194 9195
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9196 9197 9198
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9199
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9200
					    const char *buf, size_t count)
9201 9202 9203
{
	return sched_power_savings_store(buf, count, 0);
}
9204 9205 9206
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9207 9208 9209
#endif

#ifdef CONFIG_SCHED_SMT
9210 9211
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9212 9213 9214
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9215
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9216
					     const char *buf, size_t count)
9217 9218 9219
{
	return sched_power_savings_store(buf, count, 1);
}
9220 9221
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9222 9223 9224
		   sched_smt_power_savings_store);
#endif

9225
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9241
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9242

9243
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9244
/*
9245 9246
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9247 9248 9249
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9250 9251 9252 9253
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
9254 9255 9256 9257
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
9258
		partition_sched_domains(1, NULL, NULL);
9259 9260 9261 9262 9263 9264 9265 9266 9267 9268
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9269
{
P
Peter Zijlstra 已提交
9270 9271
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9272 9273
	switch (action) {
	case CPU_DOWN_PREPARE:
9274
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9275
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9276 9277 9278
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9279
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9280
	case CPU_ONLINE:
9281
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9282
		enable_runtime(cpu_rq(cpu));
9283 9284
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9285 9286 9287 9288 9289 9290 9291
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9292 9293 9294
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9295
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9296

9297 9298 9299 9300 9301
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9302
	get_online_cpus();
9303
	mutex_lock(&sched_domains_mutex);
9304
	arch_init_sched_domains(cpu_active_mask);
9305 9306 9307
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9308
	mutex_unlock(&sched_domains_mutex);
9309
	put_online_cpus();
9310 9311

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9312 9313
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9314 9315 9316 9317 9318
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9319
	init_hrtick();
9320 9321

	/* Move init over to a non-isolated CPU */
9322
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9323
		BUG();
I
Ingo Molnar 已提交
9324
	sched_init_granularity();
9325
	free_cpumask_var(non_isolated_cpus);
9326

9327
	init_sched_rt_class();
L
Linus Torvalds 已提交
9328 9329 9330 9331
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9332
	sched_init_granularity();
L
Linus Torvalds 已提交
9333 9334 9335
}
#endif /* CONFIG_SMP */

9336 9337
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9338 9339 9340 9341 9342 9343 9344
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9345
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9346 9347
{
	cfs_rq->tasks_timeline = RB_ROOT;
9348
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9349 9350 9351
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9352
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9353 9354
}

P
Peter Zijlstra 已提交
9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9368
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9369
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9370
#ifdef CONFIG_SMP
9371
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9372 9373
#endif
#endif
P
Peter Zijlstra 已提交
9374 9375 9376
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9377
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9378 9379 9380 9381
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9382
	rt_rq->rt_runtime = 0;
9383
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9384

9385
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9386
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9387 9388
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9389 9390
}

P
Peter Zijlstra 已提交
9391
#ifdef CONFIG_FAIR_GROUP_SCHED
9392 9393 9394
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9395
{
9396
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9397 9398 9399 9400 9401 9402 9403
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9404 9405 9406 9407
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9408 9409 9410 9411 9412
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9413 9414
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9415
	se->load.inv_weight = 0;
9416
	se->parent = parent;
P
Peter Zijlstra 已提交
9417
}
9418
#endif
P
Peter Zijlstra 已提交
9419

9420
#ifdef CONFIG_RT_GROUP_SCHED
9421 9422 9423
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9424
{
9425 9426
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9427 9428 9429 9430
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9431
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9432 9433 9434 9435
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9436 9437 9438
	if (!rt_se)
		return;

9439 9440 9441 9442 9443
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9444
	rt_se->my_q = rt_rq;
9445
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9446 9447 9448 9449
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9450 9451
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9452
	int i, j;
9453 9454 9455 9456 9457 9458 9459
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9460 9461 9462
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9463 9464
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9465
	alloc_size += num_possible_cpus() * cpumask_size();
9466 9467
#endif
	if (alloc_size) {
9468
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9469 9470 9471 9472 9473 9474 9475

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9476 9477 9478 9479 9480 9481 9482

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9483 9484
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9485 9486 9487 9488 9489
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9490 9491 9492 9493 9494 9495 9496 9497
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9498 9499
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9500 9501 9502 9503 9504 9505
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9506
	}
I
Ingo Molnar 已提交
9507

G
Gregory Haskins 已提交
9508 9509 9510 9511
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9512 9513 9514 9515 9516 9517
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9518 9519 9520
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9521 9522
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9523

9524
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9525
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9526 9527 9528 9529 9530 9531
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9532 9533
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9534

9535 9536 9537 9538
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
9539
	for_each_possible_cpu(i) {
9540
		struct rq *rq;
L
Linus Torvalds 已提交
9541 9542

		rq = cpu_rq(i);
9543
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9544
		rq->nr_running = 0;
9545 9546
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9547
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9548
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9549
#ifdef CONFIG_FAIR_GROUP_SCHED
9550
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9551
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9567
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9568 9569 9570 9571
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9572
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9573
#elif defined CONFIG_USER_SCHED
9574 9575
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9576 9577 9578 9579 9580 9581 9582 9583
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9584
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9585 9586
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9587
		init_tg_cfs_entry(&init_task_group,
9588
				&per_cpu(init_tg_cfs_rq, i),
9589 9590
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9591

9592
#endif
D
Dhaval Giani 已提交
9593 9594 9595
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9596
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9597
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9598
#ifdef CONFIG_CGROUP_SCHED
9599
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9600
#elif defined CONFIG_USER_SCHED
9601
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9602
		init_tg_rt_entry(&init_task_group,
9603
				&per_cpu(init_rt_rq_var, i),
9604 9605
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9606
#endif
I
Ingo Molnar 已提交
9607
#endif
L
Linus Torvalds 已提交
9608

I
Ingo Molnar 已提交
9609 9610
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9611
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9612
		rq->sd = NULL;
G
Gregory Haskins 已提交
9613
		rq->rd = NULL;
9614
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9615
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9616
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9617
		rq->push_cpu = 0;
9618
		rq->cpu = i;
9619
		rq->online = 0;
L
Linus Torvalds 已提交
9620
		rq->migration_thread = NULL;
9621 9622
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
9623
		INIT_LIST_HEAD(&rq->migration_queue);
9624
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9625
#endif
P
Peter Zijlstra 已提交
9626
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9627 9628 9629
		atomic_set(&rq->nr_iowait, 0);
	}

9630
	set_load_weight(&init_task);
9631

9632 9633 9634 9635
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9636
#ifdef CONFIG_SMP
9637
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9638 9639
#endif

9640
#ifdef CONFIG_RT_MUTEXES
9641
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
9642 9643
#endif

L
Linus Torvalds 已提交
9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9657 9658 9659

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9660 9661 9662 9663
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9664

9665
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9666
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9667
#ifdef CONFIG_SMP
9668
#ifdef CONFIG_NO_HZ
9669
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9670
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9671
#endif
R
Rusty Russell 已提交
9672 9673 9674
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9675
#endif /* SMP */
9676

9677
	perf_event_init();
9678

9679
	scheduler_running = 1;
L
Linus Torvalds 已提交
9680 9681 9682
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9683 9684
static inline int preempt_count_equals(int preempt_offset)
{
9685
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
9686 9687 9688 9689 9690

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9691
{
9692
#ifdef in_atomic
L
Linus Torvalds 已提交
9693 9694
	static unsigned long prev_jiffy;	/* ratelimiting */

9695 9696
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9697 9698 9699 9700 9701
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

J
Joe Perches 已提交
9702 9703 9704 9705 9706
	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
	       file, line);
	pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
	       in_atomic(), irqs_disabled(),
	       current->pid, current->comm);
I
Ingo Molnar 已提交
9707 9708 9709 9710 9711

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9712 9713 9714 9715 9716 9717
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9718 9719 9720
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9721

9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9733 9734
void normalize_rt_tasks(void)
{
9735
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9736
	unsigned long flags;
9737
	struct rq *rq;
L
Linus Torvalds 已提交
9738

9739
	read_lock_irqsave(&tasklist_lock, flags);
9740
	do_each_thread(g, p) {
9741 9742 9743 9744 9745 9746
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9747 9748
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9749 9750 9751
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9752
#endif
I
Ingo Molnar 已提交
9753 9754 9755 9756 9757 9758 9759 9760

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9761
			continue;
I
Ingo Molnar 已提交
9762
		}
L
Linus Torvalds 已提交
9763

9764
		raw_spin_lock(&p->pi_lock);
9765
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9766

9767
		normalize_task(rq, p);
9768

9769
		__task_rq_unlock(rq);
9770
		raw_spin_unlock(&p->pi_lock);
9771 9772
	} while_each_thread(g, p);

9773
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9774 9775 9776
}

#endif /* CONFIG_MAGIC_SYSRQ */
9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9795
struct task_struct *curr_task(int cpu)
9796 9797 9798 9799 9800 9801 9802 9803 9804 9805
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9806 9807
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9808 9809 9810 9811 9812 9813 9814
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9815
void set_curr_task(int cpu, struct task_struct *p)
9816 9817 9818 9819 9820
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9821

9822 9823
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9838 9839
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9840 9841
{
	struct cfs_rq *cfs_rq;
9842
	struct sched_entity *se;
9843
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9844 9845
	int i;

9846
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9847 9848
	if (!tg->cfs_rq)
		goto err;
9849
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9850 9851
	if (!tg->se)
		goto err;
9852 9853

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9854 9855

	for_each_possible_cpu(i) {
9856
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9857

9858 9859
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9860 9861 9862
		if (!cfs_rq)
			goto err;

9863 9864
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9865
		if (!se)
9866
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
9867

9868
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9869 9870 9871 9872
	}

	return 1;

9873 9874
 err_free_rq:
	kfree(cfs_rq);
9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9889
#else /* !CONFG_FAIR_GROUP_SCHED */
9890 9891 9892 9893
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9894 9895
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9907
#endif /* CONFIG_FAIR_GROUP_SCHED */
9908 9909

#ifdef CONFIG_RT_GROUP_SCHED
9910 9911 9912 9913
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9914 9915
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9927 9928
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9929 9930
{
	struct rt_rq *rt_rq;
9931
	struct sched_rt_entity *rt_se;
9932 9933 9934
	struct rq *rq;
	int i;

9935
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9936 9937
	if (!tg->rt_rq)
		goto err;
9938
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9939 9940 9941
	if (!tg->rt_se)
		goto err;

9942 9943
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9944 9945 9946 9947

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9948 9949
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9950 9951
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9952

9953 9954
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9955
		if (!rt_se)
9956
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
9957

9958
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9959 9960
	}

9961 9962
	return 1;

9963 9964
 err_free_rq:
	kfree(rt_rq);
9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9979
#else /* !CONFIG_RT_GROUP_SCHED */
9980 9981 9982 9983
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9984 9985
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9997
#endif /* CONFIG_RT_GROUP_SCHED */
9998

9999
#ifdef CONFIG_GROUP_SCHED
10000 10001 10002 10003 10004 10005 10006 10007
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
10008
struct task_group *sched_create_group(struct task_group *parent)
10009 10010 10011 10012 10013 10014 10015 10016 10017
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

10018
	if (!alloc_fair_sched_group(tg, parent))
10019 10020
		goto err;

10021
	if (!alloc_rt_sched_group(tg, parent))
10022 10023
		goto err;

10024
	spin_lock_irqsave(&task_group_lock, flags);
10025
	for_each_possible_cpu(i) {
10026 10027
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
10028
	}
P
Peter Zijlstra 已提交
10029
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
10030 10031 10032 10033 10034

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
10035
	list_add_rcu(&tg->siblings, &parent->children);
10036
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
10037

10038
	return tg;
S
Srivatsa Vaddagiri 已提交
10039 10040

err:
P
Peter Zijlstra 已提交
10041
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
10042 10043 10044
	return ERR_PTR(-ENOMEM);
}

10045
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
10046
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
10047 10048
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
10049
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
10050 10051
}

10052
/* Destroy runqueue etc associated with a task group */
10053
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
10054
{
10055
	unsigned long flags;
10056
	int i;
S
Srivatsa Vaddagiri 已提交
10057

10058
	spin_lock_irqsave(&task_group_lock, flags);
10059
	for_each_possible_cpu(i) {
10060 10061
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
10062
	}
P
Peter Zijlstra 已提交
10063
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
10064
	list_del_rcu(&tg->siblings);
10065
	spin_unlock_irqrestore(&task_group_lock, flags);
10066 10067

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
10068
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
10069 10070
}

10071
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
10072 10073 10074
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
10075 10076
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
10077 10078 10079 10080 10081 10082 10083 10084 10085
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

10086
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10087 10088
	on_rq = tsk->se.on_rq;

10089
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10090
		dequeue_task(rq, tsk, 0);
10091 10092
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10093

P
Peter Zijlstra 已提交
10094
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
10095

P
Peter Zijlstra 已提交
10096 10097
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
10098
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
10099 10100
#endif

10101 10102 10103
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
10104
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
10105 10106 10107

	task_rq_unlock(rq, &flags);
}
10108
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
10109

10110
#ifdef CONFIG_FAIR_GROUP_SCHED
10111
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10112 10113 10114 10115 10116
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
10117
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10118 10119 10120
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
10121
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
10122

10123
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10124
		enqueue_entity(cfs_rq, se, 0);
10125
}
10126

10127 10128 10129 10130 10131 10132
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

10133
	raw_spin_lock_irqsave(&rq->lock, flags);
10134
	__set_se_shares(se, shares);
10135
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
10136 10137
}

10138 10139
static DEFINE_MUTEX(shares_mutex);

10140
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10141 10142
{
	int i;
10143
	unsigned long flags;
10144

10145 10146 10147 10148 10149 10150
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10151 10152
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10153 10154
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10155

10156
	mutex_lock(&shares_mutex);
10157
	if (tg->shares == shares)
10158
		goto done;
S
Srivatsa Vaddagiri 已提交
10159

10160
	spin_lock_irqsave(&task_group_lock, flags);
10161 10162
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10163
	list_del_rcu(&tg->siblings);
10164
	spin_unlock_irqrestore(&task_group_lock, flags);
10165 10166 10167 10168 10169 10170 10171 10172

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10173
	tg->shares = shares;
10174 10175 10176 10177 10178
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10179
		set_se_shares(tg->se[i], shares);
10180
	}
S
Srivatsa Vaddagiri 已提交
10181

10182 10183 10184 10185
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10186
	spin_lock_irqsave(&task_group_lock, flags);
10187 10188
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10189
	list_add_rcu(&tg->siblings, &tg->parent->children);
10190
	spin_unlock_irqrestore(&task_group_lock, flags);
10191
done:
10192
	mutex_unlock(&shares_mutex);
10193
	return 0;
S
Srivatsa Vaddagiri 已提交
10194 10195
}

10196 10197 10198 10199
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10200
#endif
10201

10202
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10203
/*
P
Peter Zijlstra 已提交
10204
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10205
 */
P
Peter Zijlstra 已提交
10206 10207 10208 10209 10210
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10211
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10212

P
Peter Zijlstra 已提交
10213
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10214 10215
}

P
Peter Zijlstra 已提交
10216 10217
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10218
{
P
Peter Zijlstra 已提交
10219
	struct task_struct *g, *p;
10220

P
Peter Zijlstra 已提交
10221 10222 10223 10224
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10225

P
Peter Zijlstra 已提交
10226 10227
	return 0;
}
10228

P
Peter Zijlstra 已提交
10229 10230 10231 10232 10233
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10234

P
Peter Zijlstra 已提交
10235 10236 10237 10238 10239 10240
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10241

P
Peter Zijlstra 已提交
10242 10243
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10244

P
Peter Zijlstra 已提交
10245 10246 10247
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10248 10249
	}

10250 10251 10252 10253 10254 10255 10256
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10257 10258 10259 10260 10261
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10262

10263 10264 10265
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10266 10267
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10268

P
Peter Zijlstra 已提交
10269
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10270

10271 10272 10273 10274 10275
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10276

10277 10278 10279
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10280 10281 10282
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10283

P
Peter Zijlstra 已提交
10284 10285 10286 10287
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10288

P
Peter Zijlstra 已提交
10289
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10290
	}
P
Peter Zijlstra 已提交
10291

P
Peter Zijlstra 已提交
10292 10293 10294 10295
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10296 10297
}

P
Peter Zijlstra 已提交
10298
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10299
{
P
Peter Zijlstra 已提交
10300 10301 10302 10303 10304 10305 10306
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10307 10308
}

10309 10310
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10311
{
P
Peter Zijlstra 已提交
10312
	int i, err = 0;
P
Peter Zijlstra 已提交
10313 10314

	mutex_lock(&rt_constraints_mutex);
10315
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10316 10317
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10318
		goto unlock;
P
Peter Zijlstra 已提交
10319

10320
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10321 10322
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10323 10324 10325 10326

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

10327
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
10328
		rt_rq->rt_runtime = rt_runtime;
10329
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
10330
	}
10331
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10332
 unlock:
10333
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10334 10335 10336
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10337 10338
}

10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10351 10352 10353 10354
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10355
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10356 10357
		return -1;

10358
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10359 10360 10361
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10362 10363 10364 10365 10366 10367 10368 10369

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10370 10371 10372
	if (rt_period == 0)
		return -EINVAL;

10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10387
	u64 runtime, period;
10388 10389
	int ret = 0;

10390 10391 10392
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10393 10394 10395 10396 10397 10398 10399 10400
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10401

10402
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10403
	read_lock(&tasklist_lock);
10404
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10405
	read_unlock(&tasklist_lock);
10406 10407 10408 10409
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10410 10411 10412 10413 10414 10415 10416 10417 10418 10419

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10420
#else /* !CONFIG_RT_GROUP_SCHED */
10421 10422
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10423 10424 10425
	unsigned long flags;
	int i;

10426 10427 10428
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10429 10430 10431 10432 10433 10434 10435
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

10436
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
10437 10438 10439
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

10440
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
10441
		rt_rq->rt_runtime = global_rt_runtime();
10442
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
10443
	}
10444
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
10445

10446 10447
	return 0;
}
10448
#endif /* CONFIG_RT_GROUP_SCHED */
10449 10450

int sched_rt_handler(struct ctl_table *table, int write,
10451
		void __user *buffer, size_t *lenp,
10452 10453 10454 10455 10456 10457 10458 10459 10460 10461
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

10462
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10479

10480
#ifdef CONFIG_CGROUP_SCHED
10481 10482

/* return corresponding task_group object of a cgroup */
10483
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10484
{
10485 10486
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10487 10488 10489
}

static struct cgroup_subsys_state *
10490
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10491
{
10492
	struct task_group *tg, *parent;
10493

10494
	if (!cgrp->parent) {
10495 10496 10497 10498
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10499 10500
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10501 10502 10503 10504 10505 10506
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10507 10508
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10509
{
10510
	struct task_group *tg = cgroup_tg(cgrp);
10511 10512 10513 10514

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10515
static int
10516
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10517
{
10518
#ifdef CONFIG_RT_GROUP_SCHED
10519
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10520 10521
		return -EINVAL;
#else
10522 10523 10524
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10525
#endif
10526 10527
	return 0;
}
10528

10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
10548 10549 10550 10551
	return 0;
}

static void
10552
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10553 10554
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
10555 10556
{
	sched_move_task(tsk);
10557 10558 10559 10560 10561 10562 10563 10564
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
10565 10566
}

10567
#ifdef CONFIG_FAIR_GROUP_SCHED
10568
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10569
				u64 shareval)
10570
{
10571
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10572 10573
}

10574
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10575
{
10576
	struct task_group *tg = cgroup_tg(cgrp);
10577 10578 10579

	return (u64) tg->shares;
}
10580
#endif /* CONFIG_FAIR_GROUP_SCHED */
10581

10582
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10583
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10584
				s64 val)
P
Peter Zijlstra 已提交
10585
{
10586
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10587 10588
}

10589
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10590
{
10591
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10592
}
10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10604
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10605

10606
static struct cftype cpu_files[] = {
10607
#ifdef CONFIG_FAIR_GROUP_SCHED
10608 10609
	{
		.name = "shares",
10610 10611
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10612
	},
10613 10614
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10615
	{
P
Peter Zijlstra 已提交
10616
		.name = "rt_runtime_us",
10617 10618
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10619
	},
10620 10621
	{
		.name = "rt_period_us",
10622 10623
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10624
	},
10625
#endif
10626 10627 10628 10629
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10630
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10631 10632 10633
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10634 10635 10636 10637 10638 10639 10640
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10641 10642 10643
	.early_init	= 1,
};

10644
#endif	/* CONFIG_CGROUP_SCHED */
10645 10646 10647 10648 10649 10650 10651 10652 10653 10654

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10655
/* track cpu usage of a group of tasks and its child groups */
10656 10657 10658 10659
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10660
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10661
	struct cpuacct *parent;
10662 10663 10664 10665 10666
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10667
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10668
{
10669
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10682
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10683 10684
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10685
	int i;
10686 10687

	if (!ca)
10688
		goto out;
10689 10690

	ca->cpuusage = alloc_percpu(u64);
10691 10692 10693 10694 10695 10696
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10697

10698 10699 10700
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10701
	return &ca->css;
10702 10703 10704 10705 10706 10707 10708 10709 10710

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10711 10712 10713
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10714
static void
10715
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10716
{
10717
	struct cpuacct *ca = cgroup_ca(cgrp);
10718
	int i;
10719

10720 10721
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10722 10723 10724 10725
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10726 10727
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10728
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10729 10730 10731 10732 10733 10734
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
10735
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10736
	data = *cpuusage;
10737
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10738 10739 10740 10741 10742 10743 10744 10745 10746
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10747
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10748 10749 10750 10751 10752

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
10753
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10754
	*cpuusage = val;
10755
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10756 10757 10758 10759 10760
#else
	*cpuusage = val;
#endif
}

10761
/* return total cpu usage (in nanoseconds) of a group */
10762
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10763
{
10764
	struct cpuacct *ca = cgroup_ca(cgrp);
10765 10766 10767
	u64 totalcpuusage = 0;
	int i;

10768 10769
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10770 10771 10772 10773

	return totalcpuusage;
}

10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10786 10787
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10788 10789 10790 10791 10792

out:
	return err;
}

10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10827 10828 10829
static struct cftype files[] = {
	{
		.name = "usage",
10830 10831
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10832
	},
10833 10834 10835 10836
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10837 10838 10839 10840
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10841 10842
};

10843
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10844
{
10845
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10846 10847 10848 10849 10850 10851 10852 10853 10854 10855
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10856
	int cpu;
10857

L
Li Zefan 已提交
10858
	if (unlikely(!cpuacct_subsys.active))
10859 10860
		return;

10861
	cpu = task_cpu(tsk);
10862 10863 10864

	rcu_read_lock();

10865 10866
	ca = task_ca(tsk);

10867
	for (; ca; ca = ca->parent) {
10868
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10869 10870
		*cpuusage += cputime;
	}
10871 10872

	rcu_read_unlock();
10873 10874
}

10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10896 10897 10898 10899 10900 10901 10902 10903
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
10989
		raw_spin_lock_irqsave(&rq->lock, flags);
10990
		list_add(&req->list, &rq->migration_queue);
10991
		raw_spin_unlock_irqrestore(&rq->lock, flags);
10992 10993 10994 10995 10996 10997 10998
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
10999
		raw_spin_lock_irqsave(&rq->lock, flags);
11000 11001 11002
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
11003
		raw_spin_unlock_irqrestore(&rq->lock, flags);
11004 11005
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11006
	synchronize_sched_expedited_count++;
11007 11008 11009 11010 11011 11012 11013 11014
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */