sched.c 226.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/stop_machine.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <linux/slab.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
78
#include <asm/mutex.h>
L
Linus Torvalds 已提交
79

80
#include "sched_cpupri.h"
T
Tejun Heo 已提交
81
#include "workqueue_sched.h"
82
#include "sched_autogroup.h"
83

84
#define CREATE_TRACE_POINTS
85
#include <trace/events/sched.h>
86

L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
106
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
107
 */
108
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
109

I
Ingo Molnar 已提交
110 111 112
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
113 114 115
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
116
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
117 118 119
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
120

121 122 123 124 125
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

126 127
static inline int rt_policy(int policy)
{
128
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
129 130 131 132 133 134 135 136 137
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
138
/*
I
Ingo Molnar 已提交
139
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
140
 */
I
Ingo Molnar 已提交
141 142 143 144 145
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

146
struct rt_bandwidth {
I
Ingo Molnar 已提交
147
	/* nests inside the rq lock: */
148
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
149 150 151
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

185
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
186

187 188 189 190 191
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

192 193 194
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
195 196 197 198 199 200
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

201
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
202 203 204 205 206
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

207
	raw_spin_lock(&rt_b->rt_runtime_lock);
208
	for (;;) {
209 210 211
		unsigned long delta;
		ktime_t soft, hard;

212 213 214 215 216
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
217 218 219 220 221

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
222
				HRTIMER_MODE_ABS_PINNED, 0);
223
	}
224
	raw_spin_unlock(&rt_b->rt_runtime_lock);
225 226 227 228 229 230 231 232 233
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

234 235 236 237 238 239
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
240
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
241

242 243
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
244 245
struct cfs_rq;

P
Peter Zijlstra 已提交
246 247
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
248
/* task group related information */
249
struct task_group {
250
	struct cgroup_subsys_state css;
251

252
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
253 254 255 256 257
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
P
Peter Zijlstra 已提交
258 259

	atomic_t load_weight;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
275 276 277 278

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif
S
Srivatsa Vaddagiri 已提交
279 280
};

281
/* task_group_lock serializes the addition/removal of task groups */
282
static DEFINE_SPINLOCK(task_group_lock);
283

284 285
#ifdef CONFIG_FAIR_GROUP_SCHED

286
# define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
287

288
/*
289 290 291 292
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
293 294 295
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
296
#define MIN_SHARES	2
297
#define MAX_SHARES	(1UL << 18)
298

299
static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
300 301
#endif

S
Srivatsa Vaddagiri 已提交
302
/* Default task group.
I
Ingo Molnar 已提交
303
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
304
 */
305
struct task_group root_task_group;
S
Srivatsa Vaddagiri 已提交
306

D
Dhaval Giani 已提交
307
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
308

I
Ingo Molnar 已提交
309 310 311 312 313 314
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
315
	u64 min_vruntime;
I
Ingo Molnar 已提交
316 317 318

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
319 320 321 322 323 324

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
325 326
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
327
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
328

P
Peter Zijlstra 已提交
329
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
330

331
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
332 333
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
334 335
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
336 337 338 339 340 341
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
342
	int on_list;
I
Ingo Molnar 已提交
343 344
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
345 346 347

#ifdef CONFIG_SMP
	/*
348
	 * the part of load.weight contributed by tasks
349
	 */
350
	unsigned long task_weight;
351

352 353 354 355 356 357 358
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
359

360
	/*
361 362 363 364 365
	 * Maintaining per-cpu shares distribution for group scheduling
	 *
	 * load_stamp is the last time we updated the load average
	 * load_last is the last time we updated the load average and saw load
	 * load_unacc_exec_time is currently unaccounted execution time
366
	 */
P
Peter Zijlstra 已提交
367 368
	u64 load_avg;
	u64 load_period;
369
	u64 load_stamp, load_last, load_unacc_exec_time;
370

P
Peter Zijlstra 已提交
371
	unsigned long load_contribution;
372
#endif
I
Ingo Molnar 已提交
373 374
#endif
};
L
Linus Torvalds 已提交
375

I
Ingo Molnar 已提交
376 377 378
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
379
	unsigned long rt_nr_running;
380
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
381 382
	struct {
		int curr; /* highest queued rt task prio */
383
#ifdef CONFIG_SMP
384
		int next; /* next highest */
385
#endif
386
	} highest_prio;
P
Peter Zijlstra 已提交
387
#endif
P
Peter Zijlstra 已提交
388
#ifdef CONFIG_SMP
389
	unsigned long rt_nr_migratory;
390
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
391
	int overloaded;
392
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
393
#endif
P
Peter Zijlstra 已提交
394
	int rt_throttled;
P
Peter Zijlstra 已提交
395
	u64 rt_time;
P
Peter Zijlstra 已提交
396
	u64 rt_runtime;
I
Ingo Molnar 已提交
397
	/* Nests inside the rq lock: */
398
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
399

400
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
401 402
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
403 404 405 406
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
407 408
};

G
Gregory Haskins 已提交
409 410 411 412
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
413 414
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
415 416 417 418 419 420
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
421 422
	cpumask_var_t span;
	cpumask_var_t online;
423

I
Ingo Molnar 已提交
424
	/*
425 426 427
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
428
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
429
	atomic_t rto_count;
430
	struct cpupri cpupri;
G
Gregory Haskins 已提交
431 432
};

433 434 435 436
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
437 438
static struct root_domain def_root_domain;

439
#endif /* CONFIG_SMP */
G
Gregory Haskins 已提交
440

L
Linus Torvalds 已提交
441 442 443 444 445 446 447
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
448
struct rq {
449
	/* runqueue lock: */
450
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
451 452 453 454 455 456

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
457 458
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
459
	unsigned long last_load_update_tick;
460
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
461
	u64 nohz_stamp;
462
	unsigned char nohz_balance_kick;
463
#endif
464 465
	unsigned int skip_clock_update;

466 467
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
468 469 470 471
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
472 473
	struct rt_rq rt;

I
Ingo Molnar 已提交
474
#ifdef CONFIG_FAIR_GROUP_SCHED
475 476
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
477 478
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
479
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
480 481 482 483 484 485 486 487 488 489
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

490
	struct task_struct *curr, *idle, *stop;
491
	unsigned long next_balance;
L
Linus Torvalds 已提交
492
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
493

494
	u64 clock;
495
	u64 clock_task;
I
Ingo Molnar 已提交
496

L
Linus Torvalds 已提交
497 498 499
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
500
	struct root_domain *rd;
L
Linus Torvalds 已提交
501 502
	struct sched_domain *sd;

503 504
	unsigned long cpu_power;

505
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
506
	/* For active balancing */
507
	int post_schedule;
L
Linus Torvalds 已提交
508 509
	int active_balance;
	int push_cpu;
510
	struct cpu_stop_work active_balance_work;
511 512
	/* cpu of this runqueue: */
	int cpu;
513
	int online;
L
Linus Torvalds 已提交
514

515
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
516

517 518
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
519 520
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
521 522
#endif

523 524 525 526
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64 prev_irq_time;
#endif

527 528 529 530
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
531
#ifdef CONFIG_SCHED_HRTICK
532 533 534 535
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
536 537 538
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
539 540 541
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
542 543
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
544 545

	/* sys_sched_yield() stats */
546
	unsigned int yld_count;
L
Linus Torvalds 已提交
547 548

	/* schedule() stats */
549 550 551
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
552 553

	/* try_to_wake_up() stats */
554 555
	unsigned int ttwu_count;
	unsigned int ttwu_local;
L
Linus Torvalds 已提交
556 557 558
#endif
};

559
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
560

561

562
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
I
Ingo Molnar 已提交
563

564 565 566 567 568 569 570 571 572
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

573
#define rcu_dereference_check_sched_domain(p) \
574 575 576 577
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
578 579
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
580
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
581 582 583 584
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
585
#define for_each_domain(cpu, __sd) \
586
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
587 588 589 590 591

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
592
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
593

594 595 596 597 598 599 600 601 602 603 604 605
#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
 * We use task_subsys_state_check() and extend the RCU verification
 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
 * holds that lock for each task it moves into the cgroup. Therefore
 * by holding that lock, we pin the task to the current cgroup.
 */
static inline struct task_group *task_group(struct task_struct *p)
{
606
	struct task_group *tg;
607 608
	struct cgroup_subsys_state *css;

609 610 611
	if (p->flags & PF_EXITING)
		return &root_task_group;

612 613
	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
			lockdep_is_held(&task_rq(p)->lock));
614 615 616
	tg = container_of(css, struct task_group, css);

	return autogroup_task_group(p, tg);
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

643
static void update_rq_clock_task(struct rq *rq, s64 delta);
644

645
static void update_rq_clock(struct rq *rq)
646
{
647
	s64 delta;
648

649 650
	if (rq->skip_clock_update)
		return;
651

652 653 654
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
655 656
}

I
Ingo Molnar 已提交
657 658 659 660 661 662 663 664 665
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
666 667
/**
 * runqueue_is_locked
668
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
669 670 671 672 673
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
674
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
675
{
676
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
677 678
}

I
Ingo Molnar 已提交
679 680 681
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
682 683 684 685

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
686
enum {
P
Peter Zijlstra 已提交
687
#include "sched_features.h"
I
Ingo Molnar 已提交
688 689
};

P
Peter Zijlstra 已提交
690 691 692 693 694
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
695
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
696 697 698 699 700 701 702 703 704
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

705
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
706 707 708 709 710 711
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
712
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
713 714 715 716
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
717 718 719
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
720
	}
L
Li Zefan 已提交
721
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
722

L
Li Zefan 已提交
723
	return 0;
P
Peter Zijlstra 已提交
724 725 726 727 728 729 730
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
731
	char *cmp;
P
Peter Zijlstra 已提交
732 733 734 735 736 737 738 739 740 741
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
742
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
743

H
Hillf Danton 已提交
744
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
745 746 747 748 749
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
750
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
P
Peter Zijlstra 已提交
751 752 753 754 755 756 757 758 759 760 761
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

762
	*ppos += cnt;
P
Peter Zijlstra 已提交
763 764 765 766

	return cnt;
}

L
Li Zefan 已提交
767 768 769 770 771
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

772
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
773 774 775 776 777
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
792

793 794 795 796 797 798
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

799 800 801 802 803 804 805 806
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
807
/*
P
Peter Zijlstra 已提交
808
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
809 810
 * default: 1s
 */
P
Peter Zijlstra 已提交
811
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
812

813 814
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
815 816 817 818 819
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
820

821 822 823 824 825 826 827
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
828
	if (sysctl_sched_rt_runtime < 0)
829 830 831 832
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
833

L
Linus Torvalds 已提交
834
#ifndef prepare_arch_switch
835 836 837 838 839 840
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

841 842 843 844 845
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

846
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
847
static inline int task_running(struct rq *rq, struct task_struct *p)
848
{
849
	return task_current(rq, p);
850 851
}

852
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 854 855
{
}

856
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857
{
858 859 860 861
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
862 863 864 865 866 867 868
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

869
	raw_spin_unlock_irq(&rq->lock);
870 871 872
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
873
static inline int task_running(struct rq *rq, struct task_struct *p)
874 875 876 877
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
878
	return task_current(rq, p);
879 880 881
#endif
}

882
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 884 885 886 887 888 889 890 891 892
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893
	raw_spin_unlock_irq(&rq->lock);
894
#else
895
	raw_spin_unlock(&rq->lock);
896 897 898
#endif
}

899
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 901 902 903 904 905 906 907 908 909 910 911
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
912
#endif
913 914
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
915

916
/*
P
Peter Zijlstra 已提交
917 918
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
919 920 921
 */
static inline int task_is_waking(struct task_struct *p)
{
922
	return unlikely(p->state == TASK_WAKING);
923 924
}

925 926 927 928
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
929
static inline struct rq *__task_rq_lock(struct task_struct *p)
930 931
	__acquires(rq->lock)
{
932 933
	struct rq *rq;

934
	for (;;) {
935
		rq = task_rq(p);
936
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
937
		if (likely(rq == task_rq(p)))
938
			return rq;
939
		raw_spin_unlock(&rq->lock);
940 941 942
	}
}

L
Linus Torvalds 已提交
943 944
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
945
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
946 947
 * explicitly disabling preemption.
 */
948
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
949 950
	__acquires(rq->lock)
{
951
	struct rq *rq;
L
Linus Torvalds 已提交
952

953 954 955
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
956
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
957
		if (likely(rq == task_rq(p)))
958
			return rq;
959
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
960 961 962
	}
}

A
Alexey Dobriyan 已提交
963
static void __task_rq_unlock(struct rq *rq)
964 965
	__releases(rq->lock)
{
966
	raw_spin_unlock(&rq->lock);
967 968
}

969
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
970 971
	__releases(rq->lock)
{
972
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
973 974 975
}

/*
976
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
977
 */
A
Alexey Dobriyan 已提交
978
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
979 980
	__acquires(rq->lock)
{
981
	struct rq *rq;
L
Linus Torvalds 已提交
982 983 984

	local_irq_disable();
	rq = this_rq();
985
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
986 987 988 989

	return rq;
}

P
Peter Zijlstra 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1011
	if (!cpu_active(cpu_of(rq)))
1012
		return 0;
P
Peter Zijlstra 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1032
	raw_spin_lock(&rq->lock);
1033
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1034
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1035
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1036 1037 1038 1039

	return HRTIMER_NORESTART;
}

1040
#ifdef CONFIG_SMP
1041 1042 1043 1044
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1045
{
1046
	struct rq *rq = arg;
1047

1048
	raw_spin_lock(&rq->lock);
1049 1050
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1051
	raw_spin_unlock(&rq->lock);
1052 1053
}

1054 1055 1056 1057 1058 1059
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1060
{
1061 1062
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1063

1064
	hrtimer_set_expires(timer, time);
1065 1066 1067 1068

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1069
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1070 1071
		rq->hrtick_csd_pending = 1;
	}
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1086
		hrtick_clear(cpu_rq(cpu));
1087 1088 1089 1090 1091 1092
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1093
static __init void init_hrtick(void)
1094 1095 1096
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1097 1098 1099 1100 1101 1102 1103 1104
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1105
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1106
			HRTIMER_MODE_REL_PINNED, 0);
1107
}
1108

A
Andrew Morton 已提交
1109
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1110 1111
{
}
1112
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1113

1114
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1115
{
1116 1117
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1118

1119 1120 1121 1122
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1123

1124 1125
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1126
}
A
Andrew Morton 已提交
1127
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1128 1129 1130 1131 1132 1133 1134 1135
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1136 1137 1138
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1139
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1140

I
Ingo Molnar 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1154
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1155 1156 1157
{
	int cpu;

1158
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1159

1160
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1161 1162
		return;

1163
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1180
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1181 1182
		return;
	resched_task(cpu_curr(cpu));
1183
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1184
}
1185 1186

#ifdef CONFIG_NO_HZ
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		for_each_cpu(i, sched_domain_span(sd))
			if (!idle_cpu(i))
				return i;
	}
	return cpu;
}
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1240
	set_tsk_need_resched(rq->idle);
1241 1242 1243 1244 1245 1246

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1247

1248
#endif /* CONFIG_NO_HZ */
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
1260 1261 1262 1263 1264 1265
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1277
#else /* !CONFIG_SMP */
1278
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1279
{
1280
	assert_raw_spin_locked(&task_rq(p)->lock);
1281
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1282
}
1283 1284 1285 1286

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1287 1288 1289 1290

static void sched_avg_update(struct rq *rq)
{
}
1291
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1292

1293 1294 1295 1296 1297 1298 1299 1300
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1301 1302 1303
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1304
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1305

1306 1307 1308
/*
 * delta *= weight / lw
 */
1309
static unsigned long
1310 1311 1312 1313 1314
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1315 1316 1317 1318 1319 1320 1321
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1322 1323 1324 1325 1326

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1327
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1328
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1329 1330
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1331
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1332

1333
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1334 1335
}

1336
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1337 1338
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1339
	lw->inv_weight = 0;
1340 1341
}

1342
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1343 1344
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1345
	lw->inv_weight = 0;
1346 1347
}

P
Peter Zijlstra 已提交
1348 1349 1350 1351 1352 1353
static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

1354 1355 1356 1357
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1358
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1359 1360 1361 1362
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1363 1364
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1374 1375 1376
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1377 1378
 */
static const int prio_to_weight[40] = {
1379 1380 1381 1382 1383 1384 1385 1386
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1387 1388
};

1389 1390 1391 1392 1393 1394 1395
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1396
static const u32 prio_to_wmult[40] = {
1397 1398 1399 1400 1401 1402 1403 1404
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1405
};
1406

1407 1408 1409 1410 1411 1412 1413 1414
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1415 1416
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1417 1418
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1419 1420
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1421 1422
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1423 1424
#endif

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1435
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1436
typedef int (*tg_visitor)(struct task_group *, void *);
1437 1438 1439 1440 1441

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1442
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1443 1444
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1445
	int ret;
1446 1447 1448 1449

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1450 1451 1452
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1453 1454 1455 1456 1457 1458 1459
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1460 1461 1462
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1463 1464 1465 1466 1467

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1468
out_unlock:
1469
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1470 1471

	return ret;
1472 1473
}

P
Peter Zijlstra 已提交
1474 1475 1476
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1477
}
P
Peter Zijlstra 已提交
1478 1479 1480
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1520 1521
static unsigned long power_of(int cpu)
{
1522
	return cpu_rq(cpu)->cpu_power;
1523 1524
}

P
Peter Zijlstra 已提交
1525 1526 1527 1528 1529
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1530
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1531

1532 1533
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1534 1535
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1536 1537 1538 1539 1540

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1541 1542

/*
1543 1544 1545
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1546
 */
P
Peter Zijlstra 已提交
1547
static int tg_load_down(struct task_group *tg, void *data)
1548
{
1549
	unsigned long load;
P
Peter Zijlstra 已提交
1550
	long cpu = (long)data;
1551

1552 1553 1554 1555
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
P
Peter Zijlstra 已提交
1556
		load *= tg->se[cpu]->load.weight;
1557 1558
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1559

1560
	tg->cfs_rq[cpu]->h_load = load;
1561

P
Peter Zijlstra 已提交
1562
	return 0;
1563 1564
}

P
Peter Zijlstra 已提交
1565
static void update_h_load(long cpu)
1566
{
P
Peter Zijlstra 已提交
1567
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1568 1569
}

1570 1571
#endif

1572 1573
#ifdef CONFIG_PREEMPT

1574 1575
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1576
/*
1577 1578 1579 1580 1581 1582
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1583
 */
1584 1585 1586 1587 1588
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1589
	raw_spin_unlock(&this_rq->lock);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1604 1605 1606 1607 1608 1609
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1610
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1611
		if (busiest < this_rq) {
1612 1613 1614 1615
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1616 1617
			ret = 1;
		} else
1618 1619
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1620 1621 1622 1623
	}
	return ret;
}

1624 1625 1626 1627 1628 1629 1630 1631 1632
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1633
		raw_spin_unlock(&this_rq->lock);
1634 1635 1636 1637 1638 1639
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1640 1641 1642
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1643
	raw_spin_unlock(&busiest->lock);
1644 1645
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1689 1690
#endif

1691
static void calc_load_account_idle(struct rq *this_rq);
1692
static void update_sysctl(void);
1693
static int get_update_sysctl_factor(void);
1694
static void update_cpu_load(struct rq *this_rq);
1695

P
Peter Zijlstra 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1709

1710
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1711

1712
#define sched_class_highest (&stop_sched_class)
1713 1714
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1715

1716 1717
#include "sched_stats.h"

1718
static void inc_nr_running(struct rq *rq)
1719 1720 1721 1722
{
	rq->nr_running++;
}

1723
static void dec_nr_running(struct rq *rq)
1724 1725 1726 1727
{
	rq->nr_running--;
}

1728 1729
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
1730 1731 1732 1733 1734 1735 1736 1737
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1738

I
Ingo Molnar 已提交
1739 1740
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1741 1742
}

1743
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1744
{
1745
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1746
	sched_info_queued(p);
1747
	p->sched_class->enqueue_task(rq, p, flags);
I
Ingo Molnar 已提交
1748
	p->se.on_rq = 1;
1749 1750
}

1751
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1752
{
1753
	update_rq_clock(rq);
1754
	sched_info_dequeued(p);
1755
	p->sched_class->dequeue_task(rq, p, flags);
I
Ingo Molnar 已提交
1756
	p->se.on_rq = 0;
1757 1758
}

1759 1760 1761
/*
 * activate_task - move a task to the runqueue.
 */
1762
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1763 1764 1765 1766
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1767
	enqueue_task(rq, p, flags);
1768 1769 1770 1771 1772 1773
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1774
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1775 1776 1777 1778
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1779
	dequeue_task(rq, p, flags);
1780 1781 1782
	dec_nr_running(rq);
}

1783 1784
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

1785 1786 1787 1788 1789 1790 1791
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
1792 1793 1794
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
1795
 */
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
1850 1851 1852
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
1853
#endif /* CONFIG_64BIT */
1854

1855 1856 1857 1858
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
1859 1860 1861
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
1862
	s64 delta;
1863 1864 1865 1866 1867 1868 1869 1870
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
1871 1872 1873
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

1874
	irq_time_write_begin();
1875 1876 1877 1878 1879 1880 1881
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
1882
		__this_cpu_add(cpu_hardirq_time, delta);
1883
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1884
		__this_cpu_add(cpu_softirq_time, delta);
1885

1886
	irq_time_write_end();
1887 1888
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
1889
EXPORT_SYMBOL_GPL(account_system_vtime);
1890

1891
static void update_rq_clock_task(struct rq *rq, s64 delta)
1892
{
1893 1894
	s64 irq_delta;

1895
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
	rq->clock_task += delta;

	if (irq_delta && sched_feat(NONIRQ_POWER))
		sched_rt_avg_update(rq, irq_delta);
1921 1922
}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
static int irqtime_account_hi_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

1953
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
1954

1955 1956
#define sched_clock_irqtime	(0)

1957
static void update_rq_clock_task(struct rq *rq, s64 delta)
1958
{
1959
	rq->clock_task += delta;
1960 1961
}

1962
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1963

1964 1965 1966
#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
1967
#include "sched_autogroup.c"
1968
#include "sched_stoptask.c"
1969 1970 1971 1972
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

2003
/*
I
Ingo Molnar 已提交
2004
 * __normal_prio - return the priority that is based on the static prio
2005 2006 2007
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
2008
	return p->static_prio;
2009 2010
}

2011 2012 2013 2014 2015 2016 2017
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
2018
static inline int normal_prio(struct task_struct *p)
2019 2020 2021
{
	int prio;

2022
	if (task_has_rt_policy(p))
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
2036
static int effective_prio(struct task_struct *p)
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
2049 2050 2051 2052
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
2053
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
2054 2055 2056 2057
{
	return cpu_curr(task_cpu(p)) == p;
}

2058 2059
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
2060
				       int oldprio)
2061 2062 2063
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
2064 2065 2066 2067
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
2068 2069
}

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
2091
	if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2092 2093 2094
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
2095
#ifdef CONFIG_SMP
2096 2097 2098
/*
 * Is this task likely cache-hot:
 */
2099
static int
2100 2101 2102 2103
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2104 2105 2106
	if (p->sched_class != &fair_sched_class)
		return 0;

2107 2108 2109
	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

2110 2111 2112
	/*
	 * Buddy candidates are cache hot:
	 */
2113
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2114 2115
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2116 2117
		return 1;

2118 2119 2120 2121 2122
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2123 2124 2125 2126 2127
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2128
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2129
{
2130 2131 2132 2133 2134
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2135 2136
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2137 2138
#endif

2139
	trace_sched_migrate_task(p, new_cpu);
2140

2141 2142 2143 2144
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2145 2146

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2147 2148
}

2149
struct migration_arg {
2150
	struct task_struct *task;
L
Linus Torvalds 已提交
2151
	int dest_cpu;
2152
};
L
Linus Torvalds 已提交
2153

2154 2155
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2156 2157 2158 2159
/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2160
static bool migrate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
2161 2162 2163
{
	/*
	 * If the task is not on a runqueue (and not running), then
2164
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2165
	 */
2166
	return p->se.on_rq || task_running(rq, p);
L
Linus Torvalds 已提交
2167 2168 2169 2170 2171
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2172 2173 2174 2175 2176 2177 2178
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2179 2180 2181 2182 2183 2184
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2185
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2186 2187
{
	unsigned long flags;
I
Ingo Molnar 已提交
2188
	int running, on_rq;
R
Roland McGrath 已提交
2189
	unsigned long ncsw;
2190
	struct rq *rq;
L
Linus Torvalds 已提交
2191

2192 2193 2194 2195 2196 2197 2198 2199
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2200

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2212 2213 2214
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2215
			cpu_relax();
R
Roland McGrath 已提交
2216
		}
2217

2218 2219 2220 2221 2222 2223
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2224
		trace_sched_wait_task(p);
2225 2226
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2227
		ncsw = 0;
2228
		if (!match_state || p->state == match_state)
2229
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2230
		task_rq_unlock(rq, &flags);
2231

R
Roland McGrath 已提交
2232 2233 2234 2235 2236 2237
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2248

2249 2250 2251 2252 2253
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2254
		 * So if it was still runnable (but just not actively
2255 2256 2257 2258 2259 2260 2261
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2262

2263 2264 2265 2266 2267 2268 2269
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2270 2271

	return ncsw;
L
Linus Torvalds 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2287
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2297
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2298
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2299

T
Thomas Gleixner 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2321
#ifdef CONFIG_SMP
2322 2323 2324
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2341 2342 2343 2344 2345 2346 2347 2348 2349
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
2350 2351 2352 2353 2354
	}

	return dest_cpu;
}

2355
/*
2356
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2357
 */
2358
static inline
2359
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2360
{
2361
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2374
		     !cpu_online(cpu)))
2375
		cpu = select_fallback_rq(task_cpu(p), p);
2376 2377

	return cpu;
2378
}
2379 2380 2381 2382 2383 2384

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2385 2386
#endif

T
Tejun Heo 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
				 bool is_sync, bool is_migrate, bool is_local,
				 unsigned long en_flags)
{
	schedstat_inc(p, se.statistics.nr_wakeups);
	if (is_sync)
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
	if (is_migrate)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
	if (is_local)
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	else
		schedstat_inc(p, se.statistics.nr_wakeups_remote);

	activate_task(rq, p, en_flags);
}

static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
					int wake_flags, bool success)
{
	trace_sched_wakeup(p, success);
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
T
Tejun Heo 已提交
2426 2427 2428
	/* if a worker is waking up, notify workqueue */
	if ((p->flags & PF_WQ_WORKER) && success)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2429 2430 2431
}

/**
L
Linus Torvalds 已提交
2432
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2433
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2434
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2435
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2436 2437 2438 2439 2440 2441 2442
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2443 2444
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2445
 */
P
Peter Zijlstra 已提交
2446 2447
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2448
{
2449
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2450
	unsigned long flags;
2451
	unsigned long en_flags = ENQUEUE_WAKEUP;
2452
	struct rq *rq;
L
Linus Torvalds 已提交
2453

P
Peter Zijlstra 已提交
2454
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2455

2456
	smp_wmb();
2457
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2458
	if (!(p->state & state))
L
Linus Torvalds 已提交
2459 2460
		goto out;

I
Ingo Molnar 已提交
2461
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2462 2463 2464
		goto out_running;

	cpu = task_cpu(p);
2465
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2466 2467 2468 2469 2470

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2471 2472 2473
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2474 2475
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2476
	 */
2477 2478 2479 2480 2481 2482
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2483
	p->state = TASK_WAKING;
2484

2485
	if (p->sched_class->task_waking) {
2486
		p->sched_class->task_waking(rq, p);
2487 2488
		en_flags |= ENQUEUE_WAKING;
	}
2489

2490 2491
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2492
		set_task_cpu(p, cpu);
2493
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2494

2495 2496
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2497

2498 2499 2500 2501 2502 2503 2504
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2505
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2506

2507 2508 2509 2510 2511 2512 2513
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2514
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2515 2516 2517 2518 2519
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2520
#endif /* CONFIG_SCHEDSTATS */
2521

L
Linus Torvalds 已提交
2522 2523
out_activate:
#endif /* CONFIG_SMP */
T
Tejun Heo 已提交
2524 2525
	ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
		      cpu == this_cpu, en_flags);
L
Linus Torvalds 已提交
2526 2527
	success = 1;
out_running:
T
Tejun Heo 已提交
2528
	ttwu_post_activation(p, rq, wake_flags, success);
L
Linus Torvalds 已提交
2529 2530
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2531
	put_cpu();
L
Linus Torvalds 已提交
2532 2533 2534 2535

	return success;
}

T
Tejun Heo 已提交
2536 2537 2538 2539
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
2540
 * Put @p on the run-queue if it's not already there.  The caller must
T
Tejun Heo 已提交
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
 * the current task.  this_rq() stays locked over invocation.
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);
	bool success = false;

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

	if (!(p->state & TASK_NORMAL))
		return;

	if (!p->se.on_rq) {
		if (likely(!task_running(rq, p))) {
			schedstat_inc(rq, ttwu_count);
			schedstat_inc(rq, ttwu_local);
		}
		ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
		success = true;
	}
	ttwu_post_activation(p, rq, 0, success);
}

2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2578
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2579
{
2580
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2581 2582 2583
}
EXPORT_SYMBOL(wake_up_process);

2584
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2585 2586 2587 2588 2589 2590 2591
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2592 2593 2594 2595 2596 2597 2598
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2599
	p->se.prev_sum_exec_runtime	= 0;
2600
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2601
	p->se.vruntime			= 0;
I
Ingo Molnar 已提交
2602 2603

#ifdef CONFIG_SCHEDSTATS
2604
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2605
#endif
N
Nick Piggin 已提交
2606

P
Peter Zijlstra 已提交
2607
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2608
	p->se.on_rq = 0;
2609
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2610

2611 2612 2613
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2624
	/*
2625
	 * We mark the process as running here. This guarantees that
2626 2627 2628
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2629
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2630

2631 2632 2633 2634
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2635
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2636
			p->policy = SCHED_NORMAL;
2637 2638
			p->normal_prio = p->static_prio;
		}
2639

2640 2641
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2642
			p->normal_prio = p->static_prio;
2643 2644 2645
			set_load_weight(p);
		}

2646 2647 2648 2649 2650 2651
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2652

2653 2654 2655 2656 2657
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2658 2659
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2660

P
Peter Zijlstra 已提交
2661 2662 2663
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2664 2665 2666 2667 2668 2669 2670 2671
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
	rcu_read_lock();
2672
	set_task_cpu(p, cpu);
2673
	rcu_read_unlock();
2674

2675
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2676
	if (likely(sched_info_on()))
2677
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2678
#endif
2679
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2680 2681
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2682
#ifdef CONFIG_PREEMPT
2683
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2684
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2685
#endif
2686
#ifdef CONFIG_SMP
2687
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2688
#endif
2689

N
Nick Piggin 已提交
2690
	put_cpu();
L
Linus Torvalds 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2700
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2701 2702
{
	unsigned long flags;
I
Ingo Molnar 已提交
2703
	struct rq *rq;
2704
	int cpu __maybe_unused = get_cpu();
2705 2706

#ifdef CONFIG_SMP
2707 2708 2709
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2710 2711 2712 2713 2714
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2715 2716
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2717
	 */
2718
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2719
	set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2720

2721
	p->state = TASK_RUNNING;
2722 2723 2724 2725
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2726
	activate_task(rq, p, 0);
2727
	trace_sched_wakeup_new(p, 1);
P
Peter Zijlstra 已提交
2728
	check_preempt_curr(rq, p, WF_FORK);
2729
#ifdef CONFIG_SMP
2730 2731
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2732
#endif
I
Ingo Molnar 已提交
2733
	task_rq_unlock(rq, &flags);
2734
	put_cpu();
L
Linus Torvalds 已提交
2735 2736
}

2737 2738 2739
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2740
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2741
 * @notifier: notifier struct to register
2742 2743 2744 2745 2746 2747 2748 2749 2750
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2751
 * @notifier: notifier struct to unregister
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2781
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2793
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2794

2795 2796 2797
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2798
 * @prev: the current task that is being switched out
2799 2800 2801 2802 2803 2804 2805 2806 2807
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2808 2809 2810
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2811
{
2812
	fire_sched_out_preempt_notifiers(prev, next);
2813 2814 2815 2816
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2817 2818
/**
 * finish_task_switch - clean up after a task-switch
2819
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2820 2821
 * @prev: the thread we just switched away from.
 *
2822 2823 2824 2825
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2826 2827
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2828
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2829 2830 2831
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2832
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2833 2834 2835
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2836
	long prev_state;
L
Linus Torvalds 已提交
2837 2838 2839 2840 2841

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2842
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2843 2844
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2845
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2846 2847 2848 2849 2850
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2851
	prev_state = prev->state;
2852
	finish_arch_switch(prev);
2853 2854 2855
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2856
	perf_event_task_sched_in(current);
2857 2858 2859
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2860
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2861

2862
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2863 2864
	if (mm)
		mmdrop(mm);
2865
	if (unlikely(prev_state == TASK_DEAD)) {
2866 2867 2868
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2869
		 */
2870
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2871
		put_task_struct(prev);
2872
	}
L
Linus Torvalds 已提交
2873 2874
}

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2890
		raw_spin_lock_irqsave(&rq->lock, flags);
2891 2892
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2893
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2894 2895 2896 2897 2898 2899

		rq->post_schedule = 0;
	}
}

#else
2900

2901 2902 2903 2904 2905 2906
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2907 2908
}

2909 2910
#endif

L
Linus Torvalds 已提交
2911 2912 2913 2914
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2915
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2916 2917
	__releases(rq->lock)
{
2918 2919
	struct rq *rq = this_rq();

2920
	finish_task_switch(rq, prev);
2921

2922 2923 2924 2925 2926
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2927

2928 2929 2930 2931
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2932
	if (current->set_child_tid)
2933
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2934 2935 2936 2937 2938 2939
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2940
static inline void
2941
context_switch(struct rq *rq, struct task_struct *prev,
2942
	       struct task_struct *next)
L
Linus Torvalds 已提交
2943
{
I
Ingo Molnar 已提交
2944
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2945

2946
	prepare_task_switch(rq, prev, next);
2947
	trace_sched_switch(prev, next);
I
Ingo Molnar 已提交
2948 2949
	mm = next->mm;
	oldmm = prev->active_mm;
2950 2951 2952 2953 2954
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2955
	arch_start_context_switch(prev);
2956

2957
	if (!mm) {
L
Linus Torvalds 已提交
2958 2959 2960 2961 2962 2963
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2964
	if (!prev->mm) {
L
Linus Torvalds 已提交
2965 2966 2967
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2968 2969 2970 2971 2972 2973 2974
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2975
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2976
#endif
L
Linus Torvalds 已提交
2977 2978 2979 2980

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2981 2982 2983 2984 2985 2986 2987
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
3005
}
L
Linus Torvalds 已提交
3006 3007

unsigned long nr_uninterruptible(void)
3008
{
L
Linus Torvalds 已提交
3009
	unsigned long i, sum = 0;
3010

3011
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3012
		sum += cpu_rq(i)->nr_uninterruptible;
3013 3014

	/*
L
Linus Torvalds 已提交
3015 3016
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
3017
	 */
L
Linus Torvalds 已提交
3018 3019
	if (unlikely((long)sum < 0))
		sum = 0;
3020

L
Linus Torvalds 已提交
3021
	return sum;
3022 3023
}

L
Linus Torvalds 已提交
3024
unsigned long long nr_context_switches(void)
3025
{
3026 3027
	int i;
	unsigned long long sum = 0;
3028

3029
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3030
		sum += cpu_rq(i)->nr_switches;
3031

L
Linus Torvalds 已提交
3032 3033
	return sum;
}
3034

L
Linus Torvalds 已提交
3035 3036 3037
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
3038

3039
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3040
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
3041

L
Linus Torvalds 已提交
3042 3043
	return sum;
}
3044

3045
unsigned long nr_iowait_cpu(int cpu)
3046
{
3047
	struct rq *this = cpu_rq(cpu);
3048 3049
	return atomic_read(&this->nr_iowait);
}
3050

3051 3052 3053 3054 3055
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
3056

3057

3058 3059 3060 3061 3062
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
3063

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

3079 3080 3081 3082 3083 3084 3085 3086 3087
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
3239 3240 3241 3242 3243 3244 3245 3246 3247
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
3248 3249 3250 3251

static void calc_global_nohz(unsigned long ticks)
{
}
3252 3253
#endif

3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3267 3268 3269
}

/*
3270 3271
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3272
 */
3273
void calc_global_load(unsigned long ticks)
3274
{
3275
	long active;
L
Linus Torvalds 已提交
3276

3277 3278 3279
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
3280
		return;
L
Linus Torvalds 已提交
3281

3282 3283
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3284

3285 3286 3287
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3288

3289 3290
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3291

3292
/*
3293 3294
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3295 3296 3297
 */
static void calc_load_account_active(struct rq *this_rq)
{
3298
	long delta;
3299

3300 3301
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3302

3303 3304 3305
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3306
		atomic_long_add(delta, &calc_load_tasks);
3307 3308

	this_rq->calc_load_update += LOAD_FREQ;
3309 3310
}

3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

3378
/*
I
Ingo Molnar 已提交
3379
 * Update rq->cpu_load[] statistics. This function is usually called every
3380 3381
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
3382
 */
I
Ingo Molnar 已提交
3383
static void update_cpu_load(struct rq *this_rq)
3384
{
3385
	unsigned long this_load = this_rq->load.weight;
3386 3387
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
3388
	int i, scale;
3389

I
Ingo Molnar 已提交
3390
	this_rq->nr_load_updates++;
3391

3392 3393 3394 3395 3396 3397 3398
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
3399
	/* Update our load: */
3400 3401
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
3402
		unsigned long old_load, new_load;
3403

I
Ingo Molnar 已提交
3404
		/* scale is effectively 1 << i now, and >> i divides by scale */
3405

I
Ingo Molnar 已提交
3406
		old_load = this_rq->cpu_load[i];
3407
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
3408
		new_load = this_load;
I
Ingo Molnar 已提交
3409 3410 3411 3412 3413 3414
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
3415 3416 3417
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
3418
	}
3419 3420

	sched_avg_update(this_rq);
3421 3422 3423 3424 3425
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
3426

3427
	calc_load_account_active(this_rq);
3428 3429
}

I
Ingo Molnar 已提交
3430
#ifdef CONFIG_SMP
3431

3432
/*
P
Peter Zijlstra 已提交
3433 3434
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3435
 */
P
Peter Zijlstra 已提交
3436
void sched_exec(void)
3437
{
P
Peter Zijlstra 已提交
3438
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3439
	unsigned long flags;
3440
	struct rq *rq;
3441
	int dest_cpu;
3442

L
Linus Torvalds 已提交
3443
	rq = task_rq_lock(p, &flags);
3444 3445 3446
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3447

3448
	/*
P
Peter Zijlstra 已提交
3449
	 * select_task_rq() can race against ->cpus_allowed
3450
	 */
3451
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3452
	    likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3453
		struct migration_arg arg = { p, dest_cpu };
3454

L
Linus Torvalds 已提交
3455
		task_rq_unlock(rq, &flags);
3456
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3457 3458
		return;
	}
3459
unlock:
L
Linus Torvalds 已提交
3460 3461
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3462

L
Linus Torvalds 已提交
3463 3464 3465 3466 3467 3468 3469
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3470
 * Return any ns on the sched_clock that have not yet been accounted in
3471
 * @p in case that task is currently running.
3472 3473
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3474
 */
3475 3476 3477 3478 3479 3480
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
3481
		ns = rq->clock_task - p->se.exec_start;
3482 3483 3484 3485 3486 3487 3488
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3489
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3490 3491
{
	unsigned long flags;
3492
	struct rq *rq;
3493
	u64 ns = 0;
3494

3495
	rq = task_rq_lock(p, &flags);
3496 3497
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3498

3499 3500
	return ns;
}
3501

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3519

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3539
	task_rq_unlock(rq, &flags);
3540

L
Linus Torvalds 已提交
3541 3542 3543 3544 3545 3546 3547
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3548
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3549
 */
3550 3551
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3552 3553 3554 3555
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3556
	/* Add user time to process. */
L
Linus Torvalds 已提交
3557
	p->utime = cputime_add(p->utime, cputime);
3558
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3559
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3560 3561 3562 3563 3564 3565 3566

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3567 3568

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3569 3570
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3571 3572
}

3573 3574 3575 3576
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3577
 * @cputime_scaled: cputime scaled by cpu frequency
3578
 */
3579 3580
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3581 3582 3583 3584 3585 3586
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3587
	/* Add guest time to process. */
3588
	p->utime = cputime_add(p->utime, cputime);
3589
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3590
	account_group_user_time(p, cputime);
3591 3592
	p->gtime = cputime_add(p->gtime, cputime);

3593
	/* Add guest time to cpustat. */
3594 3595 3596 3597 3598 3599 3600
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3601 3602
}

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
			cputime_t cputime_scaled, cputime64_t *target_cputime64)
{
	cputime64_t tmp = cputime_to_cputime64(cputime);

	/* Add system time to process. */
	p->stime = cputime_add(p->stime, cputime);
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
	*target_cputime64 = cputime64_add(*target_cputime64, tmp);
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
3629 3630 3631 3632 3633
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3634
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3635 3636
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3637
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3638 3639
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3640
	cputime64_t *target_cputime64;
L
Linus Torvalds 已提交
3641

3642
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3643
		account_guest_time(p, cputime, cputime_scaled);
3644 3645
		return;
	}
3646

L
Linus Torvalds 已提交
3647
	if (hardirq_count() - hardirq_offset)
3648
		target_cputime64 = &cpustat->irq;
3649
	else if (in_serving_softirq())
3650
		target_cputime64 = &cpustat->softirq;
L
Linus Torvalds 已提交
3651
	else
3652
		target_cputime64 = &cpustat->system;
3653

3654
	__account_system_time(p, cputime, cputime_scaled, target_cputime64);
L
Linus Torvalds 已提交
3655 3656
}

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
	cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	if (irqtime_account_hi_update()) {
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	} else if (irqtime_account_si_update()) {
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3690 3691 3692 3693 3694 3695 3696 3697
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->softirq);
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->system);
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
#else
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
#endif

3724
/*
L
Linus Torvalds 已提交
3725 3726
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3727
 */
3728
void account_steal_time(cputime_t cputime)
3729
{
3730 3731 3732 3733
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3734 3735
}

L
Linus Torvalds 已提交
3736
/*
3737 3738
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3739
 */
3740
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3741 3742
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3743
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3744
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3745

3746 3747 3748 3749
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3750 3751
}

3752 3753 3754 3755 3756 3757 3758 3759 3760
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3761
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3762 3763
	struct rq *rq = this_rq();

3764 3765 3766 3767 3768
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

3769
	if (user_tick)
3770
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3771
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3772
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3773 3774
				    one_jiffy_scaled);
	else
3775
		account_idle_time(cputime_one_jiffy);
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
3794 3795 3796 3797 3798 3799

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

3800
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3801 3802
}

3803 3804
#endif

3805 3806 3807 3808
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3809
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3810
{
3811 3812
	*ut = p->utime;
	*st = p->stime;
3813 3814
}

3815
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3816
{
3817 3818 3819 3820 3821 3822
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3823 3824
}
#else
3825 3826

#ifndef nsecs_to_cputime
3827
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3828 3829
#endif

3830
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3831
{
3832
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3833 3834 3835 3836

	/*
	 * Use CFS's precise accounting:
	 */
3837
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3838 3839

	if (total) {
3840
		u64 temp = rtime;
3841

3842
		temp *= utime;
3843
		do_div(temp, total);
3844 3845 3846
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3847

3848 3849 3850
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3851
	p->prev_utime = max(p->prev_utime, utime);
3852
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3853

3854 3855
	*ut = p->prev_utime;
	*st = p->prev_stime;
3856 3857
}

3858 3859 3860 3861
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3862
{
3863 3864 3865
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3866

3867
	thread_group_cputime(p, &cputime);
3868

3869 3870
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3871

3872
	if (total) {
3873
		u64 temp = rtime;
3874

3875
		temp *= cputime.utime;
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3887 3888 3889
}
#endif

3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3901
	struct task_struct *curr = rq->curr;
3902 3903

	sched_clock_tick();
I
Ingo Molnar 已提交
3904

3905
	raw_spin_lock(&rq->lock);
3906
	update_rq_clock(rq);
3907
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3908
	curr->sched_class->task_tick(rq, curr, 0);
3909
	raw_spin_unlock(&rq->lock);
3910

3911
	perf_event_task_tick();
3912

3913
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3914 3915
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3916
#endif
L
Linus Torvalds 已提交
3917 3918
}

3919
notrace unsigned long get_parent_ip(unsigned long addr)
3920 3921 3922 3923 3924 3925 3926 3927
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3928

3929 3930 3931
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3932
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3933
{
3934
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3935 3936 3937
	/*
	 * Underflow?
	 */
3938 3939
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3940
#endif
L
Linus Torvalds 已提交
3941
	preempt_count() += val;
3942
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3943 3944 3945
	/*
	 * Spinlock count overflowing soon?
	 */
3946 3947
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3948 3949 3950
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3951 3952 3953
}
EXPORT_SYMBOL(add_preempt_count);

3954
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3955
{
3956
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3957 3958 3959
	/*
	 * Underflow?
	 */
3960
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3961
		return;
L
Linus Torvalds 已提交
3962 3963 3964
	/*
	 * Is the spinlock portion underflowing?
	 */
3965 3966 3967
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3968
#endif
3969

3970 3971
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3972 3973 3974 3975 3976 3977 3978
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3979
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3980
 */
I
Ingo Molnar 已提交
3981
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3982
{
3983 3984
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3985 3986
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3987

I
Ingo Molnar 已提交
3988
	debug_show_held_locks(prev);
3989
	print_modules();
I
Ingo Molnar 已提交
3990 3991
	if (irqs_disabled())
		print_irqtrace_events(prev);
3992 3993 3994 3995 3996

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3997
}
L
Linus Torvalds 已提交
3998

I
Ingo Molnar 已提交
3999 4000 4001 4002 4003
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4004
	/*
I
Ingo Molnar 已提交
4005
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4006 4007 4008
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4009
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4010 4011
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4012 4013
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4014
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4015 4016
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4017
		schedstat_inc(this_rq(), rq_sched_info.bkl_count);
4018
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4019 4020
	}
#endif
I
Ingo Molnar 已提交
4021 4022
}

P
Peter Zijlstra 已提交
4023
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
4024
{
4025 4026
	if (prev->se.on_rq)
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
4027
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
4028 4029
}

I
Ingo Molnar 已提交
4030 4031 4032 4033
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4034
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
4035
{
4036
	const struct sched_class *class;
I
Ingo Molnar 已提交
4037
	struct task_struct *p;
L
Linus Torvalds 已提交
4038 4039

	/*
I
Ingo Molnar 已提交
4040 4041
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4042
	 */
I
Ingo Molnar 已提交
4043
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4044
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4045 4046
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4047 4048
	}

4049
	for_each_class(class) {
4050
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4051 4052 4053
		if (p)
			return p;
	}
4054 4055

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
4056
}
L
Linus Torvalds 已提交
4057

I
Ingo Molnar 已提交
4058 4059 4060
/*
 * schedule() is the main scheduler function.
 */
4061
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
4062 4063
{
	struct task_struct *prev, *next;
4064
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4065
	struct rq *rq;
4066
	int cpu;
I
Ingo Molnar 已提交
4067

4068 4069
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
4070 4071
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
4072
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
4073 4074 4075 4076 4077 4078
	prev = rq->curr;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4079

4080
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4081
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4082

4083
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
4084

4085
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
4086
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
4087
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
4088
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
		} else {
			/*
			 * If a worker is going to sleep, notify and
			 * ask workqueue whether it wants to wake up a
			 * task to maintain concurrency.  If so, wake
			 * up the task.
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
4103
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
T
Tejun Heo 已提交
4104
		}
I
Ingo Molnar 已提交
4105
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4106 4107
	}

4108
	pre_schedule(rq, prev);
4109

I
Ingo Molnar 已提交
4110
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4111 4112
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
4113
	put_prev_task(rq, prev);
4114
	next = pick_next_task(rq);
4115 4116
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
4117 4118

	if (likely(prev != next)) {
4119
		sched_info_switch(prev, next);
4120
		perf_event_task_sched_out(prev, next);
4121

L
Linus Torvalds 已提交
4122 4123 4124 4125
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4126
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4127
		/*
4128 4129 4130 4131
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
4132 4133 4134
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4135
	} else
4136
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
4137

4138
	post_schedule(rq);
L
Linus Torvalds 已提交
4139

4140
	if (unlikely(reacquire_kernel_lock(prev)))
L
Linus Torvalds 已提交
4141
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4142

L
Linus Torvalds 已提交
4143
	preempt_enable_no_resched();
4144
	if (need_resched())
L
Linus Torvalds 已提交
4145 4146 4147 4148
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

4149
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
4169
		return 0;
4170 4171 4172 4173 4174 4175 4176 4177 4178
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
4179
		return 0;
4180 4181 4182 4183 4184 4185

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
4186
		return 0;
4187 4188 4189 4190 4191 4192 4193

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
4194 4195 4196 4197 4198 4199 4200 4201
		if (lock->owner != owner) {
			/*
			 * If the lock has switched to a different owner,
			 * we likely have heavy contention. Return 0 to quit
			 * optimistic spinning and not contend further:
			 */
			if (lock->owner)
				return 0;
4202
			break;
4203
		}
4204 4205 4206 4207 4208 4209 4210

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

4211
		arch_mutex_cpu_relax();
4212
	}
4213

4214 4215 4216 4217
	return 1;
}
#endif

L
Linus Torvalds 已提交
4218 4219
#ifdef CONFIG_PREEMPT
/*
4220
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4221
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4222 4223
 * occur there and call schedule directly.
 */
4224
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
4225 4226
{
	struct thread_info *ti = current_thread_info();
4227

L
Linus Torvalds 已提交
4228 4229
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4230
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4231
	 */
N
Nick Piggin 已提交
4232
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4233 4234
		return;

4235
	do {
4236
		add_preempt_count_notrace(PREEMPT_ACTIVE);
4237
		schedule();
4238
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4239

4240 4241 4242 4243 4244
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4245
	} while (need_resched());
L
Linus Torvalds 已提交
4246 4247 4248 4249
}
EXPORT_SYMBOL(preempt_schedule);

/*
4250
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4251 4252 4253 4254 4255 4256 4257
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4258

4259
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4260 4261
	BUG_ON(ti->preempt_count || !irqs_disabled());

4262 4263 4264 4265 4266 4267
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4268

4269 4270 4271 4272 4273
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4274
	} while (need_resched());
L
Linus Torvalds 已提交
4275 4276 4277 4278
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
4279
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
4280
			  void *key)
L
Linus Torvalds 已提交
4281
{
P
Peter Zijlstra 已提交
4282
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
4283 4284 4285 4286
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4287 4288
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4289 4290 4291
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4292
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4293 4294
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4295
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
4296
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
4297
{
4298
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4299

4300
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4301 4302
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
4303
		if (curr->func(curr, mode, wake_flags, key) &&
4304
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4305 4306 4307 4308 4309 4310 4311 4312 4313
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4314
 * @key: is directly passed to the wakeup function
4315 4316 4317
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4318
 */
4319
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4320
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4333
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4334 4335 4336
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
4337
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
4338

4339 4340 4341 4342 4343
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
4344
/**
4345
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4346 4347 4348
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4349
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
4350 4351 4352 4353 4354 4355 4356
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
4357 4358 4359
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4360
 */
4361 4362
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4363 4364
{
	unsigned long flags;
P
Peter Zijlstra 已提交
4365
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
4366 4367 4368 4369 4370

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
4371
		wake_flags = 0;
L
Linus Torvalds 已提交
4372 4373

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
4374
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
4375 4376
	spin_unlock_irqrestore(&q->lock, flags);
}
4377 4378 4379 4380 4381 4382 4383 4384 4385
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4386 4387
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4388 4389 4390 4391 4392 4393 4394 4395
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4396 4397 4398
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4399
 */
4400
void complete(struct completion *x)
L
Linus Torvalds 已提交
4401 4402 4403 4404 4405
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4406
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4407 4408 4409 4410
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4411 4412 4413 4414 4415
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4416 4417 4418
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4419
 */
4420
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4421 4422 4423 4424 4425
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4426
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4427 4428 4429 4430
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4431 4432
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4433 4434 4435 4436
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
4437
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
4438
		do {
4439
			if (signal_pending_state(state, current)) {
4440 4441
				timeout = -ERESTARTSYS;
				break;
4442 4443
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4444 4445 4446
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4447
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4448
		__remove_wait_queue(&x->wait, &wait);
4449 4450
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4451 4452
	}
	x->done--;
4453
	return timeout ?: 1;
L
Linus Torvalds 已提交
4454 4455
}

4456 4457
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4458 4459 4460 4461
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4462
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4463
	spin_unlock_irq(&x->wait.lock);
4464 4465
	return timeout;
}
L
Linus Torvalds 已提交
4466

4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4477
void __sched wait_for_completion(struct completion *x)
4478 4479
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4480
}
4481
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4482

4483 4484 4485 4486 4487 4488 4489 4490 4491
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4492
unsigned long __sched
4493
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4494
{
4495
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4496
}
4497
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4498

4499 4500 4501 4502 4503 4504 4505
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4506
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4507
{
4508 4509 4510 4511
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4512
}
4513
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4514

4515 4516 4517 4518 4519 4520 4521 4522
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4523
long __sched
4524 4525
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4526
{
4527
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4528
}
4529
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4530

4531 4532 4533 4534 4535 4536 4537
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4538 4539 4540 4541 4542 4543 4544 4545 4546
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4547 4548 4549 4550 4551 4552 4553 4554 4555
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
4556
long __sched
4557 4558 4559 4560 4561 4562 4563
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4578
	unsigned long flags;
4579 4580
	int ret = 1;

4581
	spin_lock_irqsave(&x->wait.lock, flags);
4582 4583 4584 4585
	if (!x->done)
		ret = 0;
	else
		x->done--;
4586
	spin_unlock_irqrestore(&x->wait.lock, flags);
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4601
	unsigned long flags;
4602 4603
	int ret = 1;

4604
	spin_lock_irqsave(&x->wait.lock, flags);
4605 4606
	if (!x->done)
		ret = 0;
4607
	spin_unlock_irqrestore(&x->wait.lock, flags);
4608 4609 4610 4611
	return ret;
}
EXPORT_SYMBOL(completion_done);

4612 4613
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4614
{
I
Ingo Molnar 已提交
4615 4616 4617 4618
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4619

4620
	__set_current_state(state);
L
Linus Torvalds 已提交
4621

4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4636 4637 4638
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4639
long __sched
I
Ingo Molnar 已提交
4640
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4641
{
4642
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4643 4644 4645
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4646
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4647
{
4648
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4649 4650 4651
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4652
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4653
{
4654
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4655 4656 4657
}
EXPORT_SYMBOL(sleep_on_timeout);

4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4670
void rt_mutex_setprio(struct task_struct *p, int prio)
4671 4672
{
	unsigned long flags;
4673
	int oldprio, on_rq, running;
4674
	struct rq *rq;
4675
	const struct sched_class *prev_class;
4676 4677 4678 4679 4680

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4681
	trace_sched_pi_setprio(p, prio);
4682
	oldprio = p->prio;
4683
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4684
	on_rq = p->se.on_rq;
4685
	running = task_current(rq, p);
4686
	if (on_rq)
4687
		dequeue_task(rq, p, 0);
4688 4689
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4690 4691 4692 4693 4694 4695

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4696 4697
	p->prio = prio;

4698 4699
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4700
	if (on_rq)
4701
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4702

P
Peter Zijlstra 已提交
4703
	check_class_changed(rq, p, prev_class, oldprio);
4704 4705 4706 4707 4708
	task_rq_unlock(rq, &flags);
}

#endif

4709
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4710
{
I
Ingo Molnar 已提交
4711
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4712
	unsigned long flags;
4713
	struct rq *rq;
L
Linus Torvalds 已提交
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4726
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4727
	 */
4728
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4729 4730 4731
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4732
	on_rq = p->se.on_rq;
4733
	if (on_rq)
4734
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4735 4736

	p->static_prio = NICE_TO_PRIO(nice);
4737
	set_load_weight(p);
4738 4739 4740
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4741

I
Ingo Molnar 已提交
4742
	if (on_rq) {
4743
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4744
		/*
4745 4746
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4747
		 */
4748
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4749 4750 4751 4752 4753 4754 4755
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4756 4757 4758 4759 4760
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4761
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4762
{
4763 4764
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4765

4766
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4767 4768 4769
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4770 4771 4772 4773 4774 4775 4776 4777 4778
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4779
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4780
{
4781
	long nice, retval;
L
Linus Torvalds 已提交
4782 4783 4784 4785 4786 4787

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4788 4789
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4790 4791 4792
	if (increment > 40)
		increment = 40;

4793
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4794 4795 4796 4797 4798
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4799 4800 4801
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4820
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4821 4822 4823 4824 4825 4826 4827 4828
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4829
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4830 4831 4832
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4833
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4848
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4849 4850 4851 4852 4853 4854 4855 4856
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4857
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4858
{
4859
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4860 4861 4862
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4863 4864
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4865
{
I
Ingo Molnar 已提交
4866
	BUG_ON(p->se.on_rq);
4867

L
Linus Torvalds 已提交
4868 4869
	p->policy = policy;
	p->rt_priority = prio;
4870 4871 4872
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4873 4874 4875 4876
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4877
	set_load_weight(p);
L
Linus Torvalds 已提交
4878 4879
}

4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4896
static int __sched_setscheduler(struct task_struct *p, int policy,
4897
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4898
{
4899
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4900
	unsigned long flags;
4901
	const struct sched_class *prev_class;
4902
	struct rq *rq;
4903
	int reset_on_fork;
L
Linus Torvalds 已提交
4904

4905 4906
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4907 4908
recheck:
	/* double check policy once rq lock held */
4909 4910
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4911
		policy = oldpolicy = p->policy;
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4922 4923
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4924 4925
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4926 4927
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4928
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4929
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4930
		return -EINVAL;
4931
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4932 4933
		return -EINVAL;

4934 4935 4936
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4937
	if (user && !capable(CAP_SYS_NICE)) {
4938
		if (rt_policy(policy)) {
4939 4940
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4951 4952 4953 4954 4955 4956
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4957

4958
		/* can't change other user's priorities */
4959
		if (!check_same_owner(p))
4960
			return -EPERM;
4961 4962 4963 4964

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4965
	}
L
Linus Torvalds 已提交
4966

4967
	if (user) {
4968
		retval = security_task_setscheduler(p);
4969 4970 4971 4972
		if (retval)
			return retval;
	}

4973 4974 4975 4976
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4977
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4978 4979 4980 4981
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4982
	rq = __task_rq_lock(p);
4983

4984 4985 4986 4987 4988 4989 4990 4991 4992
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return -EINVAL;
	}

4993 4994 4995 4996 4997 4998 4999
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5000 5001
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
5002 5003 5004 5005 5006 5007 5008
			__task_rq_unlock(rq);
			raw_spin_unlock_irqrestore(&p->pi_lock, flags);
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
5009 5010 5011
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5012
		__task_rq_unlock(rq);
5013
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5014 5015
		goto recheck;
	}
I
Ingo Molnar 已提交
5016
	on_rq = p->se.on_rq;
5017
	running = task_current(rq, p);
5018
	if (on_rq)
5019
		deactivate_task(rq, p, 0);
5020 5021
	if (running)
		p->sched_class->put_prev_task(rq, p);
5022

5023 5024
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
5025
	oldprio = p->prio;
5026
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
5027
	__setscheduler(rq, p, policy, param->sched_priority);
5028

5029 5030
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
5031
	if (on_rq)
I
Ingo Molnar 已提交
5032
		activate_task(rq, p, 0);
5033

P
Peter Zijlstra 已提交
5034
	check_class_changed(rq, p, prev_class, oldprio);
5035
	__task_rq_unlock(rq);
5036
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5037

5038 5039
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5040 5041
	return 0;
}
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
5052
		       const struct sched_param *param)
5053 5054 5055
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5056 5057
EXPORT_SYMBOL_GPL(sched_setscheduler);

5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5070
			       const struct sched_param *param)
5071 5072 5073 5074
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5075 5076
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5077 5078 5079
{
	struct sched_param lparam;
	struct task_struct *p;
5080
	int retval;
L
Linus Torvalds 已提交
5081 5082 5083 5084 5085

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5086 5087 5088

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5089
	p = find_process_by_pid(pid);
5090 5091 5092
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5093

L
Linus Torvalds 已提交
5094 5095 5096 5097 5098 5099 5100 5101 5102
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5103 5104
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5105
{
5106 5107 5108 5109
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5110 5111 5112 5113 5114 5115 5116 5117
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5118
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5119 5120 5121 5122 5123 5124 5125 5126
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5127
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5128
{
5129
	struct task_struct *p;
5130
	int retval;
L
Linus Torvalds 已提交
5131 5132

	if (pid < 0)
5133
		return -EINVAL;
L
Linus Torvalds 已提交
5134 5135

	retval = -ESRCH;
5136
	rcu_read_lock();
L
Linus Torvalds 已提交
5137 5138 5139 5140
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
5141 5142
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
5143
	}
5144
	rcu_read_unlock();
L
Linus Torvalds 已提交
5145 5146 5147 5148
	return retval;
}

/**
5149
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
5150 5151 5152
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5153
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5154 5155
{
	struct sched_param lp;
5156
	struct task_struct *p;
5157
	int retval;
L
Linus Torvalds 已提交
5158 5159

	if (!param || pid < 0)
5160
		return -EINVAL;
L
Linus Torvalds 已提交
5161

5162
	rcu_read_lock();
L
Linus Torvalds 已提交
5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
5173
	rcu_read_unlock();
L
Linus Torvalds 已提交
5174 5175 5176 5177 5178 5179 5180 5181 5182

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
5183
	rcu_read_unlock();
L
Linus Torvalds 已提交
5184 5185 5186
	return retval;
}

5187
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5188
{
5189
	cpumask_var_t cpus_allowed, new_mask;
5190 5191
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5192

5193
	get_online_cpus();
5194
	rcu_read_lock();
L
Linus Torvalds 已提交
5195 5196 5197

	p = find_process_by_pid(pid);
	if (!p) {
5198
		rcu_read_unlock();
5199
		put_online_cpus();
L
Linus Torvalds 已提交
5200 5201 5202
		return -ESRCH;
	}

5203
	/* Prevent p going away */
L
Linus Torvalds 已提交
5204
	get_task_struct(p);
5205
	rcu_read_unlock();
L
Linus Torvalds 已提交
5206

5207 5208 5209 5210 5211 5212 5213 5214
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5215
	retval = -EPERM;
5216
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
5217 5218
		goto out_unlock;

5219
	retval = security_task_setscheduler(p);
5220 5221 5222
	if (retval)
		goto out_unlock;

5223 5224
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
5225
again:
5226
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5227

P
Paul Menage 已提交
5228
	if (!retval) {
5229 5230
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5231 5232 5233 5234 5235
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5236
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5237 5238 5239
			goto again;
		}
	}
L
Linus Torvalds 已提交
5240
out_unlock:
5241 5242 5243 5244
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5245
	put_task_struct(p);
5246
	put_online_cpus();
L
Linus Torvalds 已提交
5247 5248 5249 5250
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5251
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5252
{
5253 5254 5255 5256 5257
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5258 5259 5260 5261 5262 5263 5264 5265 5266
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5267 5268
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5269
{
5270
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5271 5272
	int retval;

5273 5274
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5275

5276 5277 5278 5279 5280
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5281 5282
}

5283
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5284
{
5285
	struct task_struct *p;
5286 5287
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
5288 5289
	int retval;

5290
	get_online_cpus();
5291
	rcu_read_lock();
L
Linus Torvalds 已提交
5292 5293 5294 5295 5296 5297

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5298 5299 5300 5301
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5302
	rq = task_rq_lock(p, &flags);
5303
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5304
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5305 5306

out_unlock:
5307
	rcu_read_unlock();
5308
	put_online_cpus();
L
Linus Torvalds 已提交
5309

5310
	return retval;
L
Linus Torvalds 已提交
5311 5312 5313 5314 5315 5316 5317 5318
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5319 5320
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5321 5322
{
	int ret;
5323
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5324

A
Anton Blanchard 已提交
5325
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5326 5327
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
5328 5329
		return -EINVAL;

5330 5331
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5332

5333 5334
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
5335
		size_t retlen = min_t(size_t, len, cpumask_size());
5336 5337

		if (copy_to_user(user_mask_ptr, mask, retlen))
5338 5339
			ret = -EFAULT;
		else
5340
			ret = retlen;
5341 5342
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5343

5344
	return ret;
L
Linus Torvalds 已提交
5345 5346 5347 5348 5349
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5350 5351
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5352
 */
5353
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5354
{
5355
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5356

5357
	schedstat_inc(rq, yld_count);
5358
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5359 5360 5361 5362 5363 5364

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5365
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5366
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
5367 5368 5369 5370 5371 5372 5373
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
5374 5375 5376 5377 5378
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
5379
static void __cond_resched(void)
L
Linus Torvalds 已提交
5380
{
5381 5382 5383
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5384 5385
}

5386
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5387
{
P
Peter Zijlstra 已提交
5388
	if (should_resched()) {
L
Linus Torvalds 已提交
5389 5390 5391 5392 5393
		__cond_resched();
		return 1;
	}
	return 0;
}
5394
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5395 5396

/*
5397
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5398 5399
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5400
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5401 5402 5403
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5404
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5405
{
P
Peter Zijlstra 已提交
5406
	int resched = should_resched();
J
Jan Kara 已提交
5407 5408
	int ret = 0;

5409 5410
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5411
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5412
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5413
		if (resched)
N
Nick Piggin 已提交
5414 5415 5416
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5417
		ret = 1;
L
Linus Torvalds 已提交
5418 5419
		spin_lock(lock);
	}
J
Jan Kara 已提交
5420
	return ret;
L
Linus Torvalds 已提交
5421
}
5422
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5423

5424
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5425 5426 5427
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5428
	if (should_resched()) {
5429
		local_bh_enable();
L
Linus Torvalds 已提交
5430 5431 5432 5433 5434 5435
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5436
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5437 5438 5439 5440

/**
 * yield - yield the current processor to other threads.
 *
5441
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5452
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5453 5454 5455 5456
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5457
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5458

5459
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5460
	atomic_inc(&rq->nr_iowait);
5461
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5462
	schedule();
5463
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5464
	atomic_dec(&rq->nr_iowait);
5465
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5466 5467 5468 5469 5470
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5471
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5472 5473
	long ret;

5474
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5475
	atomic_inc(&rq->nr_iowait);
5476
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5477
	ret = schedule_timeout(timeout);
5478
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5479
	atomic_dec(&rq->nr_iowait);
5480
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5491
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5492 5493 5494 5495 5496 5497 5498 5499 5500
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5501
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5502
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5516
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5517 5518 5519 5520 5521 5522 5523 5524 5525
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5526
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5527
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5541
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5542
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5543
{
5544
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5545
	unsigned int time_slice;
5546 5547
	unsigned long flags;
	struct rq *rq;
5548
	int retval;
L
Linus Torvalds 已提交
5549 5550 5551
	struct timespec t;

	if (pid < 0)
5552
		return -EINVAL;
L
Linus Torvalds 已提交
5553 5554

	retval = -ESRCH;
5555
	rcu_read_lock();
L
Linus Torvalds 已提交
5556 5557 5558 5559 5560 5561 5562 5563
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5564 5565 5566
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5567

5568
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5569
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5570 5571
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5572

L
Linus Torvalds 已提交
5573
out_unlock:
5574
	rcu_read_unlock();
L
Linus Torvalds 已提交
5575 5576 5577
	return retval;
}

5578
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5579

5580
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5581 5582
{
	unsigned long free = 0;
5583
	unsigned state;
L
Linus Torvalds 已提交
5584 5585

	state = p->state ? __ffs(p->state) + 1 : 0;
5586
	printk(KERN_INFO "%-15.15s %c", p->comm,
5587
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5588
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5589
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5590
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5591
	else
P
Peter Zijlstra 已提交
5592
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5593 5594
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5595
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5596
	else
P
Peter Zijlstra 已提交
5597
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5598 5599
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5600
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5601
#endif
P
Peter Zijlstra 已提交
5602
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5603 5604
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5605

5606
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5607 5608
}

I
Ingo Molnar 已提交
5609
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5610
{
5611
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5612

5613
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5614 5615
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5616
#else
P
Peter Zijlstra 已提交
5617 5618
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5619 5620 5621 5622 5623 5624 5625 5626
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5627
		if (!state_filter || (p->state & state_filter))
5628
			sched_show_task(p);
L
Linus Torvalds 已提交
5629 5630
	} while_each_thread(g, p);

5631 5632
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5633 5634 5635
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5636
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5637 5638 5639
	/*
	 * Only show locks if all tasks are dumped:
	 */
5640
	if (!state_filter)
I
Ingo Molnar 已提交
5641
		debug_show_all_locks();
L
Linus Torvalds 已提交
5642 5643
}

I
Ingo Molnar 已提交
5644 5645
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5646
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5647 5648
}

5649 5650 5651 5652 5653 5654 5655 5656
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5657
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5658
{
5659
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5660 5661
	unsigned long flags;

5662
	raw_spin_lock_irqsave(&rq->lock, flags);
5663

I
Ingo Molnar 已提交
5664
	__sched_fork(idle);
5665
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5666 5667
	idle->se.exec_start = sched_clock();

5668
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5680
	__set_task_cpu(idle, cpu);
5681
	rcu_read_unlock();
L
Linus Torvalds 已提交
5682 5683

	rq->curr = rq->idle = idle;
5684 5685 5686
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5687
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5688 5689

	/* Set the preempt count _outside_ the spinlocks! */
5690 5691 5692
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5693
	task_thread_info(idle)->preempt_count = 0;
5694
#endif
I
Ingo Molnar 已提交
5695 5696 5697 5698
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5699
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5700 5701 5702 5703 5704 5705 5706
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5707
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5708
 */
5709
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5710

I
Ingo Molnar 已提交
5711 5712 5713 5714 5715 5716 5717 5718 5719
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5720
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5721
{
5722
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5737

5738 5739
	return factor;
}
I
Ingo Molnar 已提交
5740

5741 5742 5743
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5744

5745 5746 5747 5748 5749 5750 5751
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}
5752

5753 5754 5755
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5756 5757
}

L
Linus Torvalds 已提交
5758 5759 5760 5761
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5762 5763 5764 5765 5766 5767
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5768
 *    it and puts it into the right queue.
5769 5770
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5771 5772 5773 5774 5775 5776 5777 5778
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5779
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5780 5781
 * call is not atomic; no spinlocks may be held.
 */
5782
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5783 5784
{
	unsigned long flags;
5785
	struct rq *rq;
5786
	unsigned int dest_cpu;
5787
	int ret = 0;
L
Linus Torvalds 已提交
5788

P
Peter Zijlstra 已提交
5789 5790 5791 5792 5793 5794 5795
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5796
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5797 5798 5799 5800
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5801

5802
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5803 5804 5805 5806
		ret = -EINVAL;
		goto out;
	}

5807
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5808
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5809 5810 5811 5812
		ret = -EINVAL;
		goto out;
	}

5813
	if (p->sched_class->set_cpus_allowed)
5814
		p->sched_class->set_cpus_allowed(p, new_mask);
5815
	else {
5816 5817
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5818 5819
	}

L
Linus Torvalds 已提交
5820
	/* Can the task run on the task's current CPU? If so, we're done */
5821
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5822 5823
		goto out;

5824
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5825
	if (migrate_task(p, rq)) {
5826
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5827 5828
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
5829
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5830 5831 5832 5833 5834
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5835

L
Linus Torvalds 已提交
5836 5837
	return ret;
}
5838
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5839 5840

/*
I
Ingo Molnar 已提交
5841
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5842 5843 5844 5845 5846 5847
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5848 5849
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5850
 */
5851
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5852
{
5853
	struct rq *rq_dest, *rq_src;
5854
	int ret = 0;
L
Linus Torvalds 已提交
5855

5856
	if (unlikely(!cpu_active(dest_cpu)))
5857
		return ret;
L
Linus Torvalds 已提交
5858 5859 5860 5861 5862 5863 5864

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5865
		goto done;
L
Linus Torvalds 已提交
5866
	/* Affinity changed (again). */
5867
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5868
		goto fail;
L
Linus Torvalds 已提交
5869

5870 5871 5872 5873 5874
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5875
		deactivate_task(rq_src, p, 0);
5876
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5877
		activate_task(rq_dest, p, 0);
5878
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5879
	}
L
Linus Torvalds 已提交
5880
done:
5881
	ret = 1;
L
Linus Torvalds 已提交
5882
fail:
L
Linus Torvalds 已提交
5883
	double_rq_unlock(rq_src, rq_dest);
5884
	return ret;
L
Linus Torvalds 已提交
5885 5886 5887
}

/*
5888 5889 5890
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5891
 */
5892
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5893
{
5894
	struct migration_arg *arg = data;
5895

5896 5897 5898 5899
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5900
	local_irq_disable();
5901
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5902
	local_irq_enable();
L
Linus Torvalds 已提交
5903
	return 0;
5904 5905
}

L
Linus Torvalds 已提交
5906
#ifdef CONFIG_HOTPLUG_CPU
5907

5908
/*
5909 5910
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5911
 */
5912
void idle_task_exit(void)
L
Linus Torvalds 已提交
5913
{
5914
	struct mm_struct *mm = current->active_mm;
5915

5916
	BUG_ON(cpu_online(smp_processor_id()));
5917

5918 5919 5920
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
5921 5922 5923 5924 5925 5926 5927 5928 5929
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5930
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5931
{
5932
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5933 5934 5935 5936 5937

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
5938
/*
5939
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
5940
 */
5941
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
5942
{
5943 5944
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
5945 5946
}

5947
/*
5948 5949 5950 5951 5952 5953
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5954
 */
5955
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5956
{
5957
	struct rq *rq = cpu_rq(dead_cpu);
5958 5959
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5960 5961

	/*
5962 5963 5964 5965 5966 5967 5968
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5969
	 */
5970
	rq->stop = NULL;
5971

I
Ingo Molnar 已提交
5972
	for ( ; ; ) {
5973 5974 5975 5976 5977
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5978
			break;
5979

5980
		next = pick_next_task(rq);
5981
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5982
		next->sched_class->put_prev_task(rq, next);
5983

5984 5985 5986 5987 5988 5989 5990
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5991
	}
5992

5993
	rq->stop = stop;
5994
}
5995

L
Linus Torvalds 已提交
5996 5997
#endif /* CONFIG_HOTPLUG_CPU */

5998 5999 6000
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6001 6002
	{
		.procname	= "sched_domain",
6003
		.mode		= 0555,
6004
	},
6005
	{}
6006 6007 6008
};

static struct ctl_table sd_ctl_root[] = {
6009 6010
	{
		.procname	= "kernel",
6011
		.mode		= 0555,
6012 6013
		.child		= sd_ctl_dir,
	},
6014
	{}
6015 6016 6017 6018 6019
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6020
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6021 6022 6023 6024

	return entry;
}

6025 6026
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6027
	struct ctl_table *entry;
6028

6029 6030 6031
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6032
	 * will always be set. In the lowest directory the names are
6033 6034 6035
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6036 6037
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6038 6039 6040
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6041 6042 6043 6044 6045

	kfree(*tablep);
	*tablep = NULL;
}

6046
static void
6047
set_table_entry(struct ctl_table *entry,
6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6061
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6062

6063 6064 6065
	if (table == NULL)
		return NULL;

6066
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6067
		sizeof(long), 0644, proc_doulongvec_minmax);
6068
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6069
		sizeof(long), 0644, proc_doulongvec_minmax);
6070
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6071
		sizeof(int), 0644, proc_dointvec_minmax);
6072
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6073
		sizeof(int), 0644, proc_dointvec_minmax);
6074
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6075
		sizeof(int), 0644, proc_dointvec_minmax);
6076
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6077
		sizeof(int), 0644, proc_dointvec_minmax);
6078
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6079
		sizeof(int), 0644, proc_dointvec_minmax);
6080
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6081
		sizeof(int), 0644, proc_dointvec_minmax);
6082
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6083
		sizeof(int), 0644, proc_dointvec_minmax);
6084
	set_table_entry(&table[9], "cache_nice_tries",
6085 6086
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6087
	set_table_entry(&table[10], "flags", &sd->flags,
6088
		sizeof(int), 0644, proc_dointvec_minmax);
6089 6090 6091
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6092 6093 6094 6095

	return table;
}

6096
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6097 6098 6099 6100 6101 6102 6103 6104 6105
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6106 6107
	if (table == NULL)
		return NULL;
6108 6109 6110 6111 6112

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6113
		entry->mode = 0555;
6114 6115 6116 6117 6118 6119 6120 6121
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6122
static void register_sched_domain_sysctl(void)
6123
{
6124
	int i, cpu_num = num_possible_cpus();
6125 6126 6127
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6128 6129 6130
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6131 6132 6133
	if (entry == NULL)
		return;

6134
	for_each_possible_cpu(i) {
6135 6136
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6137
		entry->mode = 0555;
6138
		entry->child = sd_alloc_ctl_cpu_table(i);
6139
		entry++;
6140
	}
6141 6142

	WARN_ON(sd_sysctl_header);
6143 6144
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6145

6146
/* may be called multiple times per register */
6147 6148
static void unregister_sched_domain_sysctl(void)
{
6149 6150
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6151
	sd_sysctl_header = NULL;
6152 6153
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6154
}
6155
#else
6156 6157 6158 6159
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6160 6161 6162 6163
{
}
#endif

6164 6165 6166 6167 6168
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6169
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6189
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6190 6191 6192 6193
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6194 6195 6196 6197
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6198 6199
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6200
{
6201
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6202
	unsigned long flags;
6203
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6204

6205
	switch (action & ~CPU_TASKS_FROZEN) {
6206

L
Linus Torvalds 已提交
6207
	case CPU_UP_PREPARE:
6208
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
6209
		break;
6210

L
Linus Torvalds 已提交
6211
	case CPU_ONLINE:
6212
		/* Update our root-domain */
6213
		raw_spin_lock_irqsave(&rq->lock, flags);
6214
		if (rq->rd) {
6215
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6216 6217

			set_rq_online(rq);
6218
		}
6219
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6220
		break;
6221

L
Linus Torvalds 已提交
6222
#ifdef CONFIG_HOTPLUG_CPU
6223
	case CPU_DYING:
G
Gregory Haskins 已提交
6224
		/* Update our root-domain */
6225
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6226
		if (rq->rd) {
6227
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6228
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6229
		}
6230 6231
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
6232
		raw_spin_unlock_irqrestore(&rq->lock, flags);
6233 6234 6235

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
6236
		break;
L
Linus Torvalds 已提交
6237 6238 6239 6240 6241
#endif
	}
	return NOTIFY_OK;
}

6242 6243 6244
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
6245
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
6246
 */
6247
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6248
	.notifier_call = migration_call,
6249
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
6250 6251
};

6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

6277
static int __init migration_init(void)
L
Linus Torvalds 已提交
6278 6279
{
	void *cpu = (void *)(long)smp_processor_id();
6280
	int err;
6281

6282
	/* Initialize migration for the boot CPU */
6283 6284
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6285 6286
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6287

6288 6289 6290 6291
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

6292
	return 0;
L
Linus Torvalds 已提交
6293
}
6294
early_initcall(migration_init);
L
Linus Torvalds 已提交
6295 6296 6297
#endif

#ifdef CONFIG_SMP
6298

6299
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6300

6301 6302 6303 6304 6305 6306 6307 6308 6309 6310
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6311
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6312
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6313
{
I
Ingo Molnar 已提交
6314
	struct sched_group *group = sd->groups;
6315
	char str[256];
L
Linus Torvalds 已提交
6316

R
Rusty Russell 已提交
6317
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6318
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6319 6320 6321 6322

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6323
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6324
		if (sd->parent)
P
Peter Zijlstra 已提交
6325 6326
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6327
		return -1;
N
Nick Piggin 已提交
6328 6329
	}

P
Peter Zijlstra 已提交
6330
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6331

6332
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6333 6334
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6335
	}
6336
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6337 6338
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6339
	}
L
Linus Torvalds 已提交
6340

I
Ingo Molnar 已提交
6341
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6342
	do {
I
Ingo Molnar 已提交
6343
		if (!group) {
P
Peter Zijlstra 已提交
6344 6345
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6346 6347 6348
			break;
		}

6349
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6350 6351 6352
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6353 6354
			break;
		}
L
Linus Torvalds 已提交
6355

6356
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6357 6358
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6359 6360
			break;
		}
L
Linus Torvalds 已提交
6361

6362
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6363 6364
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6365 6366
			break;
		}
L
Linus Torvalds 已提交
6367

6368
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6369

R
Rusty Russell 已提交
6370
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6371

P
Peter Zijlstra 已提交
6372
		printk(KERN_CONT " %s", str);
6373
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6374 6375
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6376
		}
L
Linus Torvalds 已提交
6377

I
Ingo Molnar 已提交
6378 6379
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6380
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6381

6382
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6383
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6384

6385 6386
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6387 6388
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6389 6390
	return 0;
}
L
Linus Torvalds 已提交
6391

I
Ingo Molnar 已提交
6392 6393
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6394
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6395
	int level = 0;
L
Linus Torvalds 已提交
6396

6397 6398 6399
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6400 6401 6402 6403
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6404

I
Ingo Molnar 已提交
6405 6406
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6407
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6408 6409 6410 6411
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6412
	for (;;) {
6413
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6414
			break;
L
Linus Torvalds 已提交
6415 6416
		level++;
		sd = sd->parent;
6417
		if (!sd)
I
Ingo Molnar 已提交
6418 6419
			break;
	}
6420
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6421
}
6422
#else /* !CONFIG_SCHED_DEBUG */
6423
# define sched_domain_debug(sd, cpu) do { } while (0)
6424
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6425

6426
static int sd_degenerate(struct sched_domain *sd)
6427
{
6428
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6429 6430 6431 6432 6433 6434
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6435 6436 6437
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6438 6439 6440 6441 6442
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6443
	if (sd->flags & (SD_WAKE_AFFINE))
6444 6445 6446 6447 6448
		return 0;

	return 1;
}

6449 6450
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6451 6452 6453 6454 6455 6456
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6457
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6458 6459 6460 6461 6462 6463 6464
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6465 6466 6467
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6468 6469
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6470 6471 6472 6473 6474 6475 6476
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6477 6478
static void free_rootdomain(struct root_domain *rd)
{
6479 6480
	synchronize_sched();

6481 6482
	cpupri_cleanup(&rd->cpupri);

6483 6484 6485 6486 6487 6488
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6489 6490
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6491
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6492 6493
	unsigned long flags;

6494
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6495 6496

	if (rq->rd) {
I
Ingo Molnar 已提交
6497
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6498

6499
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6500
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6501

6502
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6503

I
Ingo Molnar 已提交
6504 6505 6506 6507 6508 6509 6510
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6511 6512 6513 6514 6515
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6516
	cpumask_set_cpu(rq->cpu, rd->span);
6517
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6518
		set_rq_online(rq);
G
Gregory Haskins 已提交
6519

6520
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6521 6522 6523

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6524 6525
}

6526
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6527 6528 6529
{
	memset(rd, 0, sizeof(*rd));

6530
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6531
		goto out;
6532
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6533
		goto free_span;
6534
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6535
		goto free_online;
6536

6537
	if (cpupri_init(&rd->cpupri) != 0)
6538
		goto free_rto_mask;
6539
	return 0;
6540

6541 6542
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6543 6544 6545 6546
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6547
out:
6548
	return -ENOMEM;
G
Gregory Haskins 已提交
6549 6550 6551 6552
}

static void init_defrootdomain(void)
{
6553
	init_rootdomain(&def_root_domain);
6554

G
Gregory Haskins 已提交
6555 6556 6557
	atomic_set(&def_root_domain.refcount, 1);
}

6558
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6559 6560 6561 6562 6563 6564 6565
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6566
	if (init_rootdomain(rd) != 0) {
6567 6568 6569
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6570 6571 6572 6573

	return rd;
}

L
Linus Torvalds 已提交
6574
/*
I
Ingo Molnar 已提交
6575
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6576 6577
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6578 6579
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6580
{
6581
	struct rq *rq = cpu_rq(cpu);
6582 6583
	struct sched_domain *tmp;

6584 6585 6586
	for (tmp = sd; tmp; tmp = tmp->parent)
		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));

6587
	/* Remove the sched domains which do not contribute to scheduling. */
6588
	for (tmp = sd; tmp; ) {
6589 6590 6591
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6592

6593
		if (sd_parent_degenerate(tmp, parent)) {
6594
			tmp->parent = parent->parent;
6595 6596
			if (parent->parent)
				parent->parent->child = tmp;
6597 6598
		} else
			tmp = tmp->parent;
6599 6600
	}

6601
	if (sd && sd_degenerate(sd)) {
6602
		sd = sd->parent;
6603 6604 6605
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6606 6607 6608

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6609
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6610
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6611 6612 6613
}

/* cpus with isolated domains */
6614
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6615 6616 6617 6618

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6619
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6620
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6621 6622 6623
	return 1;
}

I
Ingo Molnar 已提交
6624
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6625 6626

/*
6627 6628
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6629 6630
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6631 6632 6633 6634 6635
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6636
static void
6637 6638 6639
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6640
					struct sched_group **sg,
6641 6642
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6643 6644 6645 6646
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6647
	cpumask_clear(covered);
6648

6649
	for_each_cpu(i, span) {
6650
		struct sched_group *sg;
6651
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6652 6653
		int j;

6654
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6655 6656
			continue;

6657
		cpumask_clear(sched_group_cpus(sg));
6658
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6659

6660
		for_each_cpu(j, span) {
6661
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6662 6663
				continue;

6664
			cpumask_set_cpu(j, covered);
6665
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6666 6667 6668 6669 6670 6671 6672 6673 6674 6675
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6676
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6677

6678
#ifdef CONFIG_NUMA
6679

6680 6681 6682 6683 6684
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6685
 * Find the next node to include in a given scheduling domain. Simply
6686 6687 6688 6689
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6690
static int find_next_best_node(int node, nodemask_t *used_nodes)
6691 6692 6693 6694 6695
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6696
	for (i = 0; i < nr_node_ids; i++) {
6697
		/* Start at @node */
6698
		n = (node + i) % nr_node_ids;
6699 6700 6701 6702 6703

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6704
		if (node_isset(n, *used_nodes))
6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6716
	node_set(best_node, *used_nodes);
6717 6718 6719 6720 6721 6722
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6723
 * @span: resulting cpumask
6724
 *
I
Ingo Molnar 已提交
6725
 * Given a node, construct a good cpumask for its sched_domain to span. It
6726 6727 6728
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6729
static void sched_domain_node_span(int node, struct cpumask *span)
6730
{
6731
	nodemask_t used_nodes;
6732
	int i;
6733

6734
	cpumask_clear(span);
6735
	nodes_clear(used_nodes);
6736

6737
	cpumask_or(span, span, cpumask_of_node(node));
6738
	node_set(node, used_nodes);
6739 6740

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6741
		int next_node = find_next_best_node(node, &used_nodes);
6742

6743
		cpumask_or(span, span, cpumask_of_node(next_node));
6744 6745
	}
}
6746
#endif /* CONFIG_NUMA */
6747

6748
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6749

6750 6751
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6752 6753 6754
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
6776
	cpumask_var_t		this_book_map;
6777 6778 6779 6780 6781 6782
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6783 6784 6785 6786 6787
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
6788
	sa_this_book_map,
6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6801
/*
6802
 * SMT sched-domains:
6803
 */
L
Linus Torvalds 已提交
6804
#ifdef CONFIG_SCHED_SMT
6805
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6806
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6807

I
Ingo Molnar 已提交
6808
static int
6809 6810
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6811
{
6812
	if (sg)
6813
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6814 6815
	return cpu;
}
6816
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6817

6818 6819 6820
/*
 * multi-core sched-domains:
 */
6821
#ifdef CONFIG_SCHED_MC
6822 6823
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6824

I
Ingo Molnar 已提交
6825
static int
6826 6827
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6828
{
6829
	int group;
6830
#ifdef CONFIG_SCHED_SMT
6831
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6832
	group = cpumask_first(mask);
6833 6834 6835
#else
	group = cpu;
#endif
6836
	if (sg)
6837
		*sg = &per_cpu(sched_group_core, group).sg;
6838
	return group;
6839
}
6840
#endif /* CONFIG_SCHED_MC */
6841

6842 6843 6844 6845 6846 6847 6848
/*
 * book sched-domains:
 */
#ifdef CONFIG_SCHED_BOOK
static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);

I
Ingo Molnar 已提交
6849
static int
6850 6851
cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6852
{
6853 6854 6855 6856 6857 6858 6859 6860
	int group = cpu;
#ifdef CONFIG_SCHED_MC
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_SMT)
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
	group = cpumask_first(mask);
#endif
6861
	if (sg)
6862 6863
		*sg = &per_cpu(sched_group_book, group).sg;
	return group;
6864
}
6865
#endif /* CONFIG_SCHED_BOOK */
6866

6867 6868
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6869

I
Ingo Molnar 已提交
6870
static int
6871 6872
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6873
{
6874
	int group;
6875 6876 6877 6878
#ifdef CONFIG_SCHED_BOOK
	cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_MC)
6879
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6880
	group = cpumask_first(mask);
6881
#elif defined(CONFIG_SCHED_SMT)
6882
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6883
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6884
#else
6885
	group = cpu;
L
Linus Torvalds 已提交
6886
#endif
6887
	if (sg)
6888
		*sg = &per_cpu(sched_group_phys, group).sg;
6889
	return group;
L
Linus Torvalds 已提交
6890 6891 6892 6893
}

#ifdef CONFIG_NUMA
/*
6894 6895 6896
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6897
 */
6898
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6899
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6900

6901
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6902
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6903

6904 6905 6906
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6907
{
6908 6909
	int group;

6910
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6911
	group = cpumask_first(nodemask);
6912 6913

	if (sg)
6914
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6915
	return group;
L
Linus Torvalds 已提交
6916
}
6917

6918 6919 6920 6921 6922 6923 6924
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6925
	do {
6926
		for_each_cpu(j, sched_group_cpus(sg)) {
6927
			struct sched_domain *sd;
6928

6929
			sd = &per_cpu(phys_domains, j).sd;
6930
			if (j != group_first_cpu(sd->groups)) {
6931 6932 6933 6934 6935 6936
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6937

6938
			sg->cpu_power += sd->groups->cpu_power;
6939 6940 6941
		}
		sg = sg->next;
	} while (sg != group_head);
6942
}
6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6964 6965
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6966 6967 6968 6969 6970 6971 6972 6973 6974
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6975
	sg->cpu_power = 0;
6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6994 6995
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6996 6997
			return -ENOMEM;
		}
6998
		sg->cpu_power = 0;
6999 7000 7001 7002 7003 7004 7005 7006 7007
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
7008
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7009

7010
#ifdef CONFIG_NUMA
7011
/* Free memory allocated for various sched_group structures */
7012 7013
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7014
{
7015
	int cpu, i;
7016

7017
	for_each_cpu(cpu, cpu_map) {
7018 7019 7020 7021 7022 7023
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7024
		for (i = 0; i < nr_node_ids; i++) {
7025 7026
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7027
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7028
			if (cpumask_empty(nodemask))
7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7045
#else /* !CONFIG_NUMA */
7046 7047
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7048 7049
{
}
7050
#endif /* CONFIG_NUMA */
7051

7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
7066 7067
	long power;
	int weight;
7068 7069 7070

	WARN_ON(!sd || !sd->groups);

7071
	if (cpu != group_first_cpu(sd->groups))
7072 7073
		return;

7074 7075
	sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));

7076 7077
	child = sd->child;

7078
	sd->groups->cpu_power = 0;
7079

7080 7081 7082 7083 7084
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
7085 7086 7087
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
7088
		 */
P
Peter Zijlstra 已提交
7089 7090
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
7091
			power /= weight;
P
Peter Zijlstra 已提交
7092 7093
			power >>= SCHED_LOAD_SHIFT;
		}
7094
		sd->groups->cpu_power += power;
7095 7096 7097 7098
		return;
	}

	/*
7099
	 * Add cpu_power of each child group to this groups cpu_power.
7100 7101 7102
	 */
	group = child->groups;
	do {
7103
		sd->groups->cpu_power += group->cpu_power;
7104 7105 7106 7107
		group = group->next;
	} while (group != child->groups);
}

7108 7109 7110 7111 7112
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7113 7114 7115 7116 7117 7118
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7119
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7120

7121 7122 7123 7124 7125
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7126
	sd->level = SD_LV_##type;				\
7127
	SD_INIT_NAME(sd, type);					\
7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
7141 7142 7143
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
7144

7145 7146 7147 7148
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7149 7150 7151 7152 7153 7154
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
7173
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7174 7175
	} else {
		/* turn on idle balance on this domain */
7176
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7177 7178 7179
	}
}

7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
7193 7194
	case sa_this_book_map:
		free_cpumask_var(d->this_book_map); /* fall through */
7195 7196 7197 7198 7199 7200 7201
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
7202
#ifdef CONFIG_NUMA
7203 7204 7205 7206 7207 7208 7209
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
7210
#endif
7211 7212 7213 7214
	case sa_none:
		break;
	}
}
7215

7216 7217 7218
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
7219
#ifdef CONFIG_NUMA
7220 7221 7222 7223 7224 7225 7226 7227 7228 7229
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
7230
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7231
		return sa_notcovered;
7232
	}
7233
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7234
#endif
7235 7236 7237 7238 7239 7240
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
7241
	if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7242
		return sa_this_core_map;
7243 7244
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_book_map;
7245 7246 7247 7248
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
7249
		printk(KERN_WARNING "Cannot alloc root domain\n");
7250
		return sa_tmpmask;
G
Gregory Haskins 已提交
7251
	}
7252 7253
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
7254

7255 7256 7257 7258
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
7259
#ifdef CONFIG_NUMA
7260
	struct sched_domain *parent;
L
Linus Torvalds 已提交
7261

7262 7263 7264 7265 7266
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
7267
		set_domain_attribute(sd, attr);
7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7282
#endif
7283 7284
	return sd;
}
L
Linus Torvalds 已提交
7285

7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
7301

7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318
static struct sched_domain *__build_book_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
#ifdef CONFIG_SCHED_BOOK
	sd = &per_cpu(book_domains, i).sd;
	SD_INIT(sd, BOOK);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
#endif
	return sd;
}

7319 7320 7321 7322 7323
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
7324
#ifdef CONFIG_SCHED_MC
7325 7326 7327 7328 7329 7330 7331
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7332
#endif
7333 7334
	return sd;
}
7335

7336 7337 7338 7339 7340
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
7341
#ifdef CONFIG_SCHED_SMT
7342 7343 7344 7345 7346 7347 7348
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
7349
#endif
7350 7351
	return sd;
}
L
Linus Torvalds 已提交
7352

7353 7354 7355 7356
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
7357
#ifdef CONFIG_SCHED_SMT
7358 7359 7360 7361 7362 7363 7364 7365
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7366
#endif
7367
#ifdef CONFIG_SCHED_MC
7368 7369 7370 7371 7372 7373 7374
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
7375 7376 7377 7378 7379 7380 7381 7382 7383
#endif
#ifdef CONFIG_SCHED_BOOK
	case SD_LV_BOOK: /* set up book groups */
		cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
		if (cpu == cpumask_first(d->this_book_map))
			init_sched_build_groups(d->this_book_map, cpu_map,
						&cpu_to_book_group,
						d->send_covered, d->tmpmask);
		break;
7384
#endif
7385 7386 7387 7388 7389 7390 7391
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7392
#ifdef CONFIG_NUMA
7393 7394 7395 7396 7397
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
7398 7399
	default:
		break;
7400
	}
7401
}
7402

7403 7404 7405 7406 7407 7408 7409 7410 7411
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7412
	struct sched_domain *sd;
7413
	int i;
7414
#ifdef CONFIG_NUMA
7415
	d.sd_allnodes = 0;
7416
#endif
7417

7418 7419 7420 7421
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7422

L
Linus Torvalds 已提交
7423
	/*
7424
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7425
	 */
7426
	for_each_cpu(i, cpu_map) {
7427 7428
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7429

7430
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7431
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7432
		sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7433
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7434
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7435
	}
7436

7437
	for_each_cpu(i, cpu_map) {
7438
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7439
		build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7440
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7441
	}
7442

L
Linus Torvalds 已提交
7443
	/* Set up physical groups */
7444 7445
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7446

L
Linus Torvalds 已提交
7447 7448
#ifdef CONFIG_NUMA
	/* Set up node groups */
7449 7450
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7451

7452 7453
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7454
			goto error;
L
Linus Torvalds 已提交
7455 7456 7457
#endif

	/* Calculate CPU power for physical packages and nodes */
7458
#ifdef CONFIG_SCHED_SMT
7459
	for_each_cpu(i, cpu_map) {
7460
		sd = &per_cpu(cpu_domains, i).sd;
7461
		init_sched_groups_power(i, sd);
7462
	}
L
Linus Torvalds 已提交
7463
#endif
7464
#ifdef CONFIG_SCHED_MC
7465
	for_each_cpu(i, cpu_map) {
7466
		sd = &per_cpu(core_domains, i).sd;
7467
		init_sched_groups_power(i, sd);
7468 7469
	}
#endif
7470 7471 7472 7473 7474 7475
#ifdef CONFIG_SCHED_BOOK
	for_each_cpu(i, cpu_map) {
		sd = &per_cpu(book_domains, i).sd;
		init_sched_groups_power(i, sd);
	}
#endif
7476

7477
	for_each_cpu(i, cpu_map) {
7478
		sd = &per_cpu(phys_domains, i).sd;
7479
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7480 7481
	}

7482
#ifdef CONFIG_NUMA
7483
	for (i = 0; i < nr_node_ids; i++)
7484
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7485

7486
	if (d.sd_allnodes) {
7487
		struct sched_group *sg;
7488

7489
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7490
								d.tmpmask);
7491 7492
		init_numa_sched_groups_power(sg);
	}
7493 7494
#endif

L
Linus Torvalds 已提交
7495
	/* Attach the domains */
7496
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7497
#ifdef CONFIG_SCHED_SMT
7498
		sd = &per_cpu(cpu_domains, i).sd;
7499
#elif defined(CONFIG_SCHED_MC)
7500
		sd = &per_cpu(core_domains, i).sd;
7501 7502
#elif defined(CONFIG_SCHED_BOOK)
		sd = &per_cpu(book_domains, i).sd;
L
Linus Torvalds 已提交
7503
#else
7504
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7505
#endif
7506
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7507
	}
7508

7509 7510 7511
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7512 7513

error:
7514 7515
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7516
}
P
Paul Jackson 已提交
7517

7518
static int build_sched_domains(const struct cpumask *cpu_map)
7519 7520 7521 7522
{
	return __build_sched_domains(cpu_map, NULL);
}

7523
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7524
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7525 7526
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7527 7528 7529

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7530 7531
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7532
 */
7533
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7534

7535 7536 7537 7538 7539 7540
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7541
{
7542
	return 0;
7543 7544
}

7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7570
/*
I
Ingo Molnar 已提交
7571
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7572 7573
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7574
 */
7575
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7576
{
7577 7578
	int err;

7579
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7580
	ndoms_cur = 1;
7581
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7582
	if (!doms_cur)
7583 7584
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7585
	dattr_cur = NULL;
7586
	err = build_sched_domains(doms_cur[0]);
7587
	register_sched_domain_sysctl();
7588 7589

	return err;
7590 7591
}

7592 7593
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7594
{
7595
	free_sched_groups(cpu_map, tmpmask);
7596
}
L
Linus Torvalds 已提交
7597

7598 7599 7600 7601
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7602
static void detach_destroy_domains(const struct cpumask *cpu_map)
7603
{
7604 7605
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7606 7607
	int i;

7608
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7609
		cpu_attach_domain(NULL, &def_root_domain, i);
7610
	synchronize_sched();
7611
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7612 7613
}

7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7630 7631
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7632
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7633 7634 7635
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7636
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7637 7638 7639
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7640 7641 7642
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7643 7644 7645 7646 7647 7648
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7649
 *
7650
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7651 7652
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7653
 *
P
Paul Jackson 已提交
7654 7655
 * Call with hotplug lock held
 */
7656
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7657
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7658
{
7659
	int i, j, n;
7660
	int new_topology;
P
Paul Jackson 已提交
7661

7662
	mutex_lock(&sched_domains_mutex);
7663

7664 7665 7666
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7667 7668 7669
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7670
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7671 7672 7673

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7674
		for (j = 0; j < n && !new_topology; j++) {
7675
			if (cpumask_equal(doms_cur[i], doms_new[j])
7676
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7677 7678 7679
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7680
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7681 7682 7683 7684
match1:
		;
	}

7685 7686
	if (doms_new == NULL) {
		ndoms_cur = 0;
7687
		doms_new = &fallback_doms;
7688
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7689
		WARN_ON_ONCE(dattr_new);
7690 7691
	}

P
Paul Jackson 已提交
7692 7693
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7694
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7695
			if (cpumask_equal(doms_new[i], doms_cur[j])
7696
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7697 7698 7699
				goto match2;
		}
		/* no match - add a new doms_new */
7700
		__build_sched_domains(doms_new[i],
7701
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7702 7703 7704 7705 7706
match2:
		;
	}

	/* Remember the new sched domains */
7707 7708
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7709
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7710
	doms_cur = doms_new;
7711
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7712
	ndoms_cur = ndoms_new;
7713 7714

	register_sched_domain_sysctl();
7715

7716
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7717 7718
}

7719
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7720
static void arch_reinit_sched_domains(void)
7721
{
7722
	get_online_cpus();
7723 7724 7725 7726

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7727
	rebuild_sched_domains();
7728
	put_online_cpus();
7729 7730 7731 7732
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7733
	unsigned int level = 0;
7734

7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7746 7747 7748
		return -EINVAL;

	if (smt)
7749
		sched_smt_power_savings = level;
7750
	else
7751
		sched_mc_power_savings = level;
7752

7753
	arch_reinit_sched_domains();
7754

7755
	return count;
7756 7757 7758
}

#ifdef CONFIG_SCHED_MC
7759
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7760
					   struct sysdev_class_attribute *attr,
7761
					   char *page)
7762 7763 7764
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7765
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7766
					    struct sysdev_class_attribute *attr,
7767
					    const char *buf, size_t count)
7768 7769 7770
{
	return sched_power_savings_store(buf, count, 0);
}
7771 7772 7773
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7774 7775 7776
#endif

#ifdef CONFIG_SCHED_SMT
7777
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7778
					    struct sysdev_class_attribute *attr,
7779
					    char *page)
7780 7781 7782
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7783
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7784
					     struct sysdev_class_attribute *attr,
7785
					     const char *buf, size_t count)
7786 7787 7788
{
	return sched_power_savings_store(buf, count, 1);
}
7789 7790
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7791 7792 7793
		   sched_smt_power_savings_store);
#endif

7794
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7810
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7811

L
Linus Torvalds 已提交
7812
/*
7813 7814 7815
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7816
 */
7817 7818
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7819
{
7820
	switch (action & ~CPU_TASKS_FROZEN) {
7821
	case CPU_ONLINE:
7822
	case CPU_DOWN_FAILED:
7823
		cpuset_update_active_cpus();
7824
		return NOTIFY_OK;
7825 7826 7827 7828
	default:
		return NOTIFY_DONE;
	}
}
7829

7830 7831
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7832 7833 7834 7835 7836
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
7837 7838 7839 7840 7841 7842 7843
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7844
{
P
Peter Zijlstra 已提交
7845 7846
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7847 7848
	switch (action) {
	case CPU_DOWN_PREPARE:
7849
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7850
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7851 7852 7853
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7854
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7855
	case CPU_ONLINE:
7856
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7857
		enable_runtime(cpu_rq(cpu));
7858 7859
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7860 7861 7862 7863 7864 7865 7866
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7867 7868 7869
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7870
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7871

7872 7873 7874 7875 7876
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7877
	get_online_cpus();
7878
	mutex_lock(&sched_domains_mutex);
7879
	arch_init_sched_domains(cpu_active_mask);
7880 7881 7882
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7883
	mutex_unlock(&sched_domains_mutex);
7884
	put_online_cpus();
7885

7886 7887
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7888 7889 7890 7891

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7892
	init_hrtick();
7893 7894

	/* Move init over to a non-isolated CPU */
7895
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7896
		BUG();
I
Ingo Molnar 已提交
7897
	sched_init_granularity();
7898
	free_cpumask_var(non_isolated_cpus);
7899

7900
	init_sched_rt_class();
L
Linus Torvalds 已提交
7901 7902 7903 7904
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7905
	sched_init_granularity();
L
Linus Torvalds 已提交
7906 7907 7908
}
#endif /* CONFIG_SMP */

7909 7910
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7911 7912 7913 7914 7915 7916 7917
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7918
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7919 7920
{
	cfs_rq->tasks_timeline = RB_ROOT;
7921
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7922 7923
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
7924 7925
	/* allow initial update_cfs_load() to truncate */
	cfs_rq->load_stamp = 1;
I
Ingo Molnar 已提交
7926
#endif
P
Peter Zijlstra 已提交
7927
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7928 7929
}

P
Peter Zijlstra 已提交
7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7943
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7944
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7945
#ifdef CONFIG_SMP
7946
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7947 7948
#endif
#endif
P
Peter Zijlstra 已提交
7949 7950 7951
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7952
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7953 7954 7955 7956
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7957
	rt_rq->rt_runtime = 0;
7958
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7959

7960
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7961
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7962 7963
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7964 7965
}

P
Peter Zijlstra 已提交
7966
#ifdef CONFIG_FAIR_GROUP_SCHED
7967
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7968
				struct sched_entity *se, int cpu,
7969
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7970
{
7971
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7972 7973 7974 7975 7976
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;

	tg->se[cpu] = se;
7977
	/* se could be NULL for root_task_group */
D
Dhaval Giani 已提交
7978 7979 7980
	if (!se)
		return;

7981 7982 7983 7984 7985
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7986
	se->my_q = cfs_rq;
7987
	update_load_set(&se->load, 0);
7988
	se->parent = parent;
P
Peter Zijlstra 已提交
7989
}
7990
#endif
P
Peter Zijlstra 已提交
7991

7992
#ifdef CONFIG_RT_GROUP_SCHED
7993
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7994
		struct sched_rt_entity *rt_se, int cpu,
7995
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7996
{
7997 7998
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7999 8000 8001
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
8002
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8003 8004

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8005 8006 8007
	if (!rt_se)
		return;

8008 8009 8010 8011 8012
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8013
	rt_se->my_q = rt_rq;
8014
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8015 8016 8017 8018
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8019 8020
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8021
	int i, j;
8022 8023 8024 8025 8026 8027 8028
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8029
#endif
8030
#ifdef CONFIG_CPUMASK_OFFSTACK
8031
	alloc_size += num_possible_cpus() * cpumask_size();
8032 8033
#endif
	if (alloc_size) {
8034
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8035 8036

#ifdef CONFIG_FAIR_GROUP_SCHED
8037
		root_task_group.se = (struct sched_entity **)ptr;
8038 8039
		ptr += nr_cpu_ids * sizeof(void **);

8040
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8041
		ptr += nr_cpu_ids * sizeof(void **);
8042

8043
#endif /* CONFIG_FAIR_GROUP_SCHED */
8044
#ifdef CONFIG_RT_GROUP_SCHED
8045
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8046 8047
		ptr += nr_cpu_ids * sizeof(void **);

8048
		root_task_group.rt_rq = (struct rt_rq **)ptr;
8049 8050
		ptr += nr_cpu_ids * sizeof(void **);

8051
#endif /* CONFIG_RT_GROUP_SCHED */
8052 8053 8054 8055 8056 8057
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
8058
	}
I
Ingo Molnar 已提交
8059

G
Gregory Haskins 已提交
8060 8061 8062 8063
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8064 8065 8066 8067
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
8068
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8069
			global_rt_period(), global_rt_runtime());
8070
#endif /* CONFIG_RT_GROUP_SCHED */
8071

D
Dhaval Giani 已提交
8072
#ifdef CONFIG_CGROUP_SCHED
8073 8074
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
8075
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
8076
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
8077

8078
	for_each_possible_cpu(i) {
8079
		struct rq *rq;
L
Linus Torvalds 已提交
8080 8081

		rq = cpu_rq(i);
8082
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8083
		rq->nr_running = 0;
8084 8085
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
8086
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8087
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8088
#ifdef CONFIG_FAIR_GROUP_SCHED
8089
		root_task_group.shares = root_task_group_load;
P
Peter Zijlstra 已提交
8090
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8091
		/*
8092
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
8093 8094 8095 8096
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
8097
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
8098 8099 8100
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
8101
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
8102 8103 8104
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
8105
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
8106
		 *
8107 8108
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
8109
		 */
8110
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
8111 8112 8113
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8114
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8115
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8116
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
8117
#endif
L
Linus Torvalds 已提交
8118

I
Ingo Molnar 已提交
8119 8120
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
8121 8122 8123

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
8124
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8125
		rq->sd = NULL;
G
Gregory Haskins 已提交
8126
		rq->rd = NULL;
8127
		rq->cpu_power = SCHED_LOAD_SCALE;
8128
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
8129
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8130
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8131
		rq->push_cpu = 0;
8132
		rq->cpu = i;
8133
		rq->online = 0;
8134 8135
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
8136
		rq_attach_root(rq, &def_root_domain);
8137 8138 8139 8140
#ifdef CONFIG_NO_HZ
		rq->nohz_balance_kick = 0;
		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
#endif
L
Linus Torvalds 已提交
8141
#endif
P
Peter Zijlstra 已提交
8142
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8143 8144 8145
		atomic_set(&rq->nr_iowait, 0);
	}

8146
	set_load_weight(&init_task);
8147

8148 8149 8150 8151
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8152
#ifdef CONFIG_SMP
8153
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8154 8155
#endif

8156
#ifdef CONFIG_RT_MUTEXES
8157
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8158 8159
#endif

L
Linus Torvalds 已提交
8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
8173 8174 8175

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
8176 8177 8178 8179
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8180

8181
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8182
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8183
#ifdef CONFIG_SMP
8184
#ifdef CONFIG_NO_HZ
8185 8186 8187 8188 8189
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
	atomic_set(&nohz.load_balancer, nr_cpu_ids);
	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8190
#endif
R
Rusty Russell 已提交
8191 8192 8193
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8194
#endif /* SMP */
8195

8196
	scheduler_running = 1;
L
Linus Torvalds 已提交
8197 8198 8199
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8200 8201
static inline int preempt_count_equals(int preempt_offset)
{
8202
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8203 8204 8205 8206

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

8207
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
8208
{
8209
#ifdef in_atomic
L
Linus Torvalds 已提交
8210 8211
	static unsigned long prev_jiffy;	/* ratelimiting */

8212 8213
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
8214 8215 8216 8217 8218
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
8219 8220 8221 8222 8223 8224 8225
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
8226 8227 8228 8229 8230

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8231 8232 8233 8234 8235 8236
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8237 8238
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
8239 8240
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
8241
	int on_rq;
8242

8243 8244 8245 8246 8247 8248 8249 8250
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
8251 8252

	check_class_changed(rq, p, prev_class, old_prio);
8253 8254
}

L
Linus Torvalds 已提交
8255 8256
void normalize_rt_tasks(void)
{
8257
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8258
	unsigned long flags;
8259
	struct rq *rq;
L
Linus Torvalds 已提交
8260

8261
	read_lock_irqsave(&tasklist_lock, flags);
8262
	do_each_thread(g, p) {
8263 8264 8265 8266 8267 8268
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8269 8270
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
8271 8272 8273
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
8274
#endif
I
Ingo Molnar 已提交
8275 8276 8277 8278 8279 8280 8281 8282

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8283
			continue;
I
Ingo Molnar 已提交
8284
		}
L
Linus Torvalds 已提交
8285

8286
		raw_spin_lock(&p->pi_lock);
8287
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8288

8289
		normalize_task(rq, p);
8290

8291
		__task_rq_unlock(rq);
8292
		raw_spin_unlock(&p->pi_lock);
8293 8294
	} while_each_thread(g, p);

8295
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8296 8297 8298
}

#endif /* CONFIG_MAGIC_SYSRQ */
8299

8300
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8301
/*
8302
 * These functions are only useful for the IA64 MCA handling, or kdb.
8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8317
struct task_struct *curr_task(int cpu)
8318 8319 8320 8321
{
	return cpu_curr(cpu);
}

8322 8323 8324
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
8325 8326 8327 8328 8329 8330
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8331 8332
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8333 8334 8335 8336 8337 8338 8339
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8340
void set_curr_task(int cpu, struct task_struct *p)
8341 8342 8343 8344 8345
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8346

8347 8348
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8363 8364
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8365 8366
{
	struct cfs_rq *cfs_rq;
8367
	struct sched_entity *se;
8368
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8369 8370
	int i;

8371
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8372 8373
	if (!tg->cfs_rq)
		goto err;
8374
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8375 8376
	if (!tg->se)
		goto err;
8377 8378

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8379 8380

	for_each_possible_cpu(i) {
8381
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8382

8383 8384
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8385 8386 8387
		if (!cfs_rq)
			goto err;

8388 8389
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8390
		if (!se)
8391
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8392

8393
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8394 8395 8396 8397
	}

	return 1;

P
Peter Zijlstra 已提交
8398
err_free_rq:
8399
	kfree(cfs_rq);
P
Peter Zijlstra 已提交
8400
err:
8401 8402 8403 8404 8405
	return 0;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
8417
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8418
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8419
}
8420
#else /* !CONFG_FAIR_GROUP_SCHED */
8421 8422 8423 8424
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8425 8426
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8427 8428 8429 8430 8431 8432 8433
{
	return 1;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8434
#endif /* CONFIG_FAIR_GROUP_SCHED */
8435 8436

#ifdef CONFIG_RT_GROUP_SCHED
8437 8438 8439 8440
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8441 8442
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8454 8455
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8456 8457
{
	struct rt_rq *rt_rq;
8458
	struct sched_rt_entity *rt_se;
8459 8460 8461
	struct rq *rq;
	int i;

8462
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8463 8464
	if (!tg->rt_rq)
		goto err;
8465
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8466 8467 8468
	if (!tg->rt_se)
		goto err;

8469 8470
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8471 8472 8473 8474

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8475 8476
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8477 8478
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8479

8480 8481
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8482
		if (!rt_se)
8483
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8484

8485
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8486 8487
	}

8488 8489
	return 1;

P
Peter Zijlstra 已提交
8490
err_free_rq:
8491
	kfree(rt_rq);
P
Peter Zijlstra 已提交
8492
err:
8493 8494
	return 0;
}
8495
#else /* !CONFIG_RT_GROUP_SCHED */
8496 8497 8498 8499
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8500 8501
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8502 8503 8504
{
	return 1;
}
8505
#endif /* CONFIG_RT_GROUP_SCHED */
8506

D
Dhaval Giani 已提交
8507
#ifdef CONFIG_CGROUP_SCHED
8508 8509 8510 8511
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
8512
	autogroup_free(tg);
8513 8514 8515 8516
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8517
struct task_group *sched_create_group(struct task_group *parent)
8518 8519 8520 8521 8522 8523 8524 8525
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8526
	if (!alloc_fair_sched_group(tg, parent))
8527 8528
		goto err;

8529
	if (!alloc_rt_sched_group(tg, parent))
8530 8531
		goto err;

8532
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8533
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8534 8535 8536 8537 8538

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8539
	list_add_rcu(&tg->siblings, &parent->children);
8540
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8541

8542
	return tg;
S
Srivatsa Vaddagiri 已提交
8543 8544

err:
P
Peter Zijlstra 已提交
8545
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8546 8547 8548
	return ERR_PTR(-ENOMEM);
}

8549
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8550
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8551 8552
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8553
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8554 8555
}

8556
/* Destroy runqueue etc associated with a task group */
8557
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8558
{
8559
	unsigned long flags;
8560
	int i;
S
Srivatsa Vaddagiri 已提交
8561

8562 8563
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
8564
		unregister_fair_sched_group(tg, i);
8565 8566

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8567
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8568
	list_del_rcu(&tg->siblings);
8569
	spin_unlock_irqrestore(&task_group_lock, flags);
8570 8571

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8572
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8573 8574
}

8575
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8576 8577 8578
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8579 8580
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8581 8582 8583 8584 8585 8586 8587
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8588
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8589 8590
	on_rq = tsk->se.on_rq;

8591
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8592
		dequeue_task(rq, tsk, 0);
8593 8594
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8595

P
Peter Zijlstra 已提交
8596
#ifdef CONFIG_FAIR_GROUP_SCHED
8597 8598 8599
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
8600
#endif
8601
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
8602

8603 8604 8605
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8606
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8607 8608 8609

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8610
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8611

8612
#ifdef CONFIG_FAIR_GROUP_SCHED
8613 8614
static DEFINE_MUTEX(shares_mutex);

8615
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8616 8617
{
	int i;
8618
	unsigned long flags;
8619

8620 8621 8622 8623 8624 8625
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8626 8627
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8628 8629
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8630

8631
	mutex_lock(&shares_mutex);
8632
	if (tg->shares == shares)
8633
		goto done;
S
Srivatsa Vaddagiri 已提交
8634

8635
	tg->shares = shares;
8636
	for_each_possible_cpu(i) {
8637 8638 8639 8640 8641 8642 8643
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
8644
			update_cfs_shares(group_cfs_rq(se));
8645
		raw_spin_unlock_irqrestore(&rq->lock, flags);
8646
	}
S
Srivatsa Vaddagiri 已提交
8647

8648
done:
8649
	mutex_unlock(&shares_mutex);
8650
	return 0;
S
Srivatsa Vaddagiri 已提交
8651 8652
}

8653 8654 8655 8656
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8657
#endif
8658

8659
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8660
/*
P
Peter Zijlstra 已提交
8661
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8662
 */
P
Peter Zijlstra 已提交
8663 8664 8665 8666 8667
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8668
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8669

P
Peter Zijlstra 已提交
8670
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8671 8672
}

P
Peter Zijlstra 已提交
8673 8674
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8675
{
P
Peter Zijlstra 已提交
8676
	struct task_struct *g, *p;
8677

P
Peter Zijlstra 已提交
8678 8679 8680 8681
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8682

P
Peter Zijlstra 已提交
8683 8684
	return 0;
}
8685

P
Peter Zijlstra 已提交
8686 8687 8688 8689 8690
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8691

P
Peter Zijlstra 已提交
8692 8693 8694 8695 8696 8697
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8698

P
Peter Zijlstra 已提交
8699 8700
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8701

P
Peter Zijlstra 已提交
8702 8703 8704
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8705 8706
	}

8707 8708 8709 8710 8711
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8712

8713 8714 8715
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8716 8717
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8718

P
Peter Zijlstra 已提交
8719
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8720

8721 8722 8723 8724 8725
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8726

8727 8728 8729
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8730 8731 8732
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8733

P
Peter Zijlstra 已提交
8734 8735 8736 8737
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8738

P
Peter Zijlstra 已提交
8739
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8740
	}
P
Peter Zijlstra 已提交
8741

P
Peter Zijlstra 已提交
8742 8743 8744 8745
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8746 8747
}

P
Peter Zijlstra 已提交
8748
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8749
{
P
Peter Zijlstra 已提交
8750 8751 8752 8753 8754 8755 8756
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8757 8758
}

8759 8760
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8761
{
P
Peter Zijlstra 已提交
8762
	int i, err = 0;
P
Peter Zijlstra 已提交
8763 8764

	mutex_lock(&rt_constraints_mutex);
8765
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8766 8767
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8768
		goto unlock;
P
Peter Zijlstra 已提交
8769

8770
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8771 8772
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8773 8774 8775 8776

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8777
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8778
		rt_rq->rt_runtime = rt_runtime;
8779
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8780
	}
8781
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8782
unlock:
8783
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8784 8785 8786
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8787 8788
}

8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8801 8802 8803 8804
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8805
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8806 8807
		return -1;

8808
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8809 8810 8811
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8812 8813 8814 8815 8816 8817 8818 8819

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8820 8821 8822
	if (rt_period == 0)
		return -EINVAL;

8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8837
	u64 runtime, period;
8838 8839
	int ret = 0;

8840 8841 8842
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8843 8844 8845 8846 8847 8848 8849 8850
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8851

8852
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8853
	read_lock(&tasklist_lock);
8854
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8855
	read_unlock(&tasklist_lock);
8856 8857 8858 8859
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8860 8861 8862 8863 8864 8865 8866 8867 8868 8869

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8870
#else /* !CONFIG_RT_GROUP_SCHED */
8871 8872
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8873 8874 8875
	unsigned long flags;
	int i;

8876 8877 8878
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8879 8880 8881 8882 8883 8884 8885
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8886
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8887 8888 8889
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8890
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8891
		rt_rq->rt_runtime = global_rt_runtime();
8892
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8893
	}
8894
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8895

8896 8897
	return 0;
}
8898
#endif /* CONFIG_RT_GROUP_SCHED */
8899 8900

int sched_rt_handler(struct ctl_table *table, int write,
8901
		void __user *buffer, size_t *lenp,
8902 8903 8904 8905 8906 8907 8908 8909 8910 8911
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8912
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8929

8930
#ifdef CONFIG_CGROUP_SCHED
8931 8932

/* return corresponding task_group object of a cgroup */
8933
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8934
{
8935 8936
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8937 8938 8939
}

static struct cgroup_subsys_state *
8940
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8941
{
8942
	struct task_group *tg, *parent;
8943

8944
	if (!cgrp->parent) {
8945
		/* This is early initialization for the top cgroup */
8946
		return &root_task_group.css;
8947 8948
	}

8949 8950
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8951 8952 8953 8954 8955 8956
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8957 8958
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8959
{
8960
	struct task_group *tg = cgroup_tg(cgrp);
8961 8962 8963 8964

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8965
static int
8966
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8967
{
8968
#ifdef CONFIG_RT_GROUP_SCHED
8969
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8970 8971
		return -EINVAL;
#else
8972 8973 8974
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8975
#endif
8976 8977
	return 0;
}
8978

8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8998 8999 9000 9001
	return 0;
}

static void
9002
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9003 9004
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
9005 9006
{
	sched_move_task(tsk);
9007 9008 9009 9010 9011 9012 9013 9014
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
9015 9016
}

9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030
static void
cpu_cgroup_exit(struct cgroup_subsys *ss, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

9031
#ifdef CONFIG_FAIR_GROUP_SCHED
9032
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9033
				u64 shareval)
9034
{
9035
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9036 9037
}

9038
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9039
{
9040
	struct task_group *tg = cgroup_tg(cgrp);
9041 9042 9043

	return (u64) tg->shares;
}
9044
#endif /* CONFIG_FAIR_GROUP_SCHED */
9045

9046
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9047
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9048
				s64 val)
P
Peter Zijlstra 已提交
9049
{
9050
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9051 9052
}

9053
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9054
{
9055
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9056
}
9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9068
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9069

9070
static struct cftype cpu_files[] = {
9071
#ifdef CONFIG_FAIR_GROUP_SCHED
9072 9073
	{
		.name = "shares",
9074 9075
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9076
	},
9077 9078
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9079
	{
P
Peter Zijlstra 已提交
9080
		.name = "rt_runtime_us",
9081 9082
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9083
	},
9084 9085
	{
		.name = "rt_period_us",
9086 9087
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9088
	},
9089
#endif
9090 9091 9092 9093
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9094
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9095 9096 9097
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9098 9099 9100 9101 9102
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
9103
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
9104 9105
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9106 9107 9108
	.early_init	= 1,
};

9109
#endif	/* CONFIG_CGROUP_SCHED */
9110 9111 9112 9113 9114 9115 9116 9117 9118 9119

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9120
/* track cpu usage of a group of tasks and its child groups */
9121 9122 9123
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
9124
	u64 __percpu *cpuusage;
9125
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9126
	struct cpuacct *parent;
9127 9128 9129 9130 9131
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9132
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9133
{
9134
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9147
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9148 9149
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9150
	int i;
9151 9152

	if (!ca)
9153
		goto out;
9154 9155

	ca->cpuusage = alloc_percpu(u64);
9156 9157 9158 9159 9160 9161
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
9162

9163 9164 9165
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9166
	return &ca->css;
9167 9168 9169 9170 9171 9172 9173 9174 9175

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
9176 9177 9178
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9179
static void
9180
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9181
{
9182
	struct cpuacct *ca = cgroup_ca(cgrp);
9183
	int i;
9184

9185 9186
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
9187 9188 9189 9190
	free_percpu(ca->cpuusage);
	kfree(ca);
}

9191 9192
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
9193
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9194 9195 9196 9197 9198 9199
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
9200
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9201
	data = *cpuusage;
9202
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9203 9204 9205 9206 9207 9208 9209 9210 9211
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
9212
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9213 9214 9215 9216 9217

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
9218
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9219
	*cpuusage = val;
9220
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9221 9222 9223 9224 9225
#else
	*cpuusage = val;
#endif
}

9226
/* return total cpu usage (in nanoseconds) of a group */
9227
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9228
{
9229
	struct cpuacct *ca = cgroup_ca(cgrp);
9230 9231 9232
	u64 totalcpuusage = 0;
	int i;

9233 9234
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9235 9236 9237 9238

	return totalcpuusage;
}

9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9251 9252
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9253 9254 9255 9256 9257

out:
	return err;
}

9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

9292 9293 9294
static struct cftype files[] = {
	{
		.name = "usage",
9295 9296
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9297
	},
9298 9299 9300 9301
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9302 9303 9304 9305
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9306 9307
};

9308
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9309
{
9310
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9311 9312 9313 9314 9315 9316 9317 9318 9319 9320
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9321
	int cpu;
9322

L
Li Zefan 已提交
9323
	if (unlikely(!cpuacct_subsys.active))
9324 9325
		return;

9326
	cpu = task_cpu(tsk);
9327 9328 9329

	rcu_read_lock();

9330 9331
	ca = task_ca(tsk);

9332
	for (; ca; ca = ca->parent) {
9333
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9334 9335
		*cpuusage += cputime;
	}
9336 9337

	rcu_read_unlock();
9338 9339
}

9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9357 9358 9359 9360 9361 9362 9363
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9364
	int batch = CPUACCT_BATCH;
9365 9366 9367 9368 9369 9370 9371 9372

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9373
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9374 9375 9376 9377 9378
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9379 9380 9381 9382 9383 9384 9385 9386
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9387