timekeeping.c 65.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/nmi.h>
18
#include <linux/sched.h>
19
#include <linux/sched/loadavg.h>
20
#include <linux/syscore_ops.h>
21 22 23 24
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
25
#include <linux/stop_machine.h>
26
#include <linux/pvclock_gtod.h>
27
#include <linux/compiler.h>
28

29
#include "tick-internal.h"
30
#include "ntp_internal.h"
31
#include "timekeeping_internal.h"
32

33 34
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
35
#define TK_CLOCK_WAS_SET	(1 << 2)
36

37 38 39 40 41 42 43 44 45
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

46
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47
static struct timekeeper shadow_timekeeper;
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/* Suspend-time cycles value for halted fast timekeeper. */
static u64 cycles_at_suspend;

static u64 dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

static struct clocksource dummy_clock = {
	.read = dummy_clock_read,
};

static struct tk_fast tk_fast_mono ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};

static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};
84

85 86 87
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

88 89
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
90 91
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
92 93
		tk->xtime_sec++;
	}
94 95 96 97
	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
		tk->raw_sec++;
	}
98 99
}

100 101 102 103 104
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
105
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
106 107 108
	return ts;
}

109
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
110 111
{
	tk->xtime_sec = ts->tv_sec;
112
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
113 114
}

115
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
116 117
{
	tk->xtime_sec += ts->tv_sec;
118
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
119
	tk_normalize_xtime(tk);
120
}
121

122
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
123
{
124
	struct timespec64 tmp;
125 126 127 128 129

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
130
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
131
					-tk->wall_to_monotonic.tv_nsec);
T
Thomas Gleixner 已提交
132
	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
133
	tk->wall_to_monotonic = wtm;
134 135
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
136
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
137 138
}

139
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
140
{
141
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
142 143
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/*
 * tk_clock_read - atomic clocksource read() helper
 *
 * This helper is necessary to use in the read paths because, while the
 * seqlock ensures we don't return a bad value while structures are updated,
 * it doesn't protect from potential crashes. There is the possibility that
 * the tkr's clocksource may change between the read reference, and the
 * clock reference passed to the read function.  This can cause crashes if
 * the wrong clocksource is passed to the wrong read function.
 * This isn't necessary to use when holding the timekeeper_lock or doing
 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 * and update logic).
 */
static inline u64 tk_clock_read(struct tk_read_base *tkr)
{
	struct clocksource *clock = READ_ONCE(tkr->clock);

	return clock->read(clock);
}

164
#ifdef CONFIG_DEBUG_TIMEKEEPING
165 166
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

167
static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
168 169
{

170
	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
171
	const char *name = tk->tkr_mono.clock->name;
172 173

	if (offset > max_cycles) {
174
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
175
				offset, name, max_cycles);
176
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
177 178
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
179
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
180 181 182 183
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
184

185 186
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
187 188 189
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
190
			tk->last_warning = jiffies;
191
		}
192
		tk->underflow_seen = 0;
193 194
	}

195 196
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
197 198 199
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
200
			tk->last_warning = jiffies;
201
		}
202
		tk->overflow_seen = 0;
203
	}
204
}
205

206
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
207
{
208
	struct timekeeper *tk = &tk_core.timekeeper;
209
	u64 now, last, mask, max, delta;
210
	unsigned int seq;
211

212 213 214 215 216 217 218 219 220
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
221
		now = tk_clock_read(tkr);
222 223 224 225
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
226

227
	delta = clocksource_delta(now, last, mask);
228

229 230 231 232
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
233
	if (unlikely((~delta & mask) < (mask >> 3))) {
234
		tk->underflow_seen = 1;
235
		delta = 0;
236
	}
237

238
	/* Cap delta value to the max_cycles values to avoid mult overflows */
239
	if (unlikely(delta > max)) {
240
		tk->overflow_seen = 1;
241
		delta = tkr->clock->max_cycles;
242
	}
243 244 245

	return delta;
}
246
#else
247
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
248 249
{
}
250
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
251
{
252
	u64 cycle_now, delta;
253 254

	/* read clocksource */
255
	cycle_now = tk_clock_read(tkr);
256 257 258 259 260 261

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
262 263
#endif

264
/**
265
 * tk_setup_internals - Set up internals to use clocksource clock.
266
 *
267
 * @tk:		The target timekeeper to setup.
268 269 270 271 272 273 274
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
275
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
276
{
277
	u64 interval;
278
	u64 tmp, ntpinterval;
279
	struct clocksource *old_clock;
280

281
	++tk->cs_was_changed_seq;
282 283 284
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.mask = clock->mask;
285
	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
286

P
Peter Zijlstra 已提交
287 288 289 290
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

291 292 293
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
294
	ntpinterval = tmp;
295 296
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
297 298 299
	if (tmp == 0)
		tmp = 1;

300
	interval = (u64) tmp;
301
	tk->cycle_interval = interval;
302 303

	/* Go back from cycles -> shifted ns */
304
	tk->xtime_interval = interval * clock->mult;
305
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
306
	tk->raw_interval = interval * clock->mult;
307

308 309 310
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
311
		if (shift_change < 0) {
312
			tk->tkr_mono.xtime_nsec >>= -shift_change;
313 314
			tk->tkr_raw.xtime_nsec >>= -shift_change;
		} else {
315
			tk->tkr_mono.xtime_nsec <<= shift_change;
316 317
			tk->tkr_raw.xtime_nsec <<= shift_change;
		}
318
	}
P
Peter Zijlstra 已提交
319

320
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
321
	tk->tkr_raw.shift = clock->shift;
322

323 324
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
325
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
326 327 328 329 330 331

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
332
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
333
	tk->tkr_raw.mult = clock->mult;
334
	tk->ntp_err_mult = 0;
335
	tk->skip_second_overflow = 0;
336
}
337

338
/* Timekeeper helper functions. */
339 340

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
341 342
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
343
#else
344
static inline u32 arch_gettimeoffset(void) { return 0; }
345 346
#endif

347
static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
348
{
349
	u64 nsec;
350 351 352 353 354 355 356 357

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

358
static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
359
{
360
	u64 delta;
361

362
	delta = timekeeping_get_delta(tkr);
363 364
	return timekeeping_delta_to_ns(tkr, delta);
}
365

366
static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
367
{
368
	u64 delta;
369

370 371 372
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
373 374
}

375 376
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
377
 * @tkr: Timekeeping readout base from which we take the update
378 379 380 381
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
382
 * Employ the latch technique; see @raw_write_seqcount_latch.
383 384 385 386 387 388
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
389
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
390
{
391
	struct tk_read_base *base = tkf->base;
392 393

	/* Force readers off to base[1] */
394
	raw_write_seqcount_latch(&tkf->seq);
395 396

	/* Update base[0] */
397
	memcpy(base, tkr, sizeof(*base));
398 399

	/* Force readers back to base[0] */
400
	raw_write_seqcount_latch(&tkf->seq);
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
438
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
439 440 441 442 443 444
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
445
		seq = raw_read_seqcount_latch(&tkf->seq);
446
		tkr = tkf->base + (seq & 0x01);
447 448
		now = ktime_to_ns(tkr->base);

449 450
		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
451
					tk_clock_read(tkr),
452 453
					tkr->cycle_last,
					tkr->mask));
454
	} while (read_seqcount_retry(&tkf->seq, seq));
455 456 457

	return now;
}
458 459 460 461 462

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
463 464
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
465 466 467 468 469 470
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
/**
 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 *
 * To keep it NMI safe since we're accessing from tracing, we're not using a
 * separate timekeeper with updates to monotonic clock and boot offset
 * protected with seqlocks. This has the following minor side effects:
 *
 * (1) Its possible that a timestamp be taken after the boot offset is updated
 * but before the timekeeper is updated. If this happens, the new boot offset
 * is added to the old timekeeping making the clock appear to update slightly
 * earlier:
 *    CPU 0                                        CPU 1
 *    timekeeping_inject_sleeptime64()
 *    __timekeeping_inject_sleeptime(tk, delta);
 *                                                 timestamp();
 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 *
 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 * partially updated.  Since the tk->offs_boot update is a rare event, this
 * should be a rare occurrence which postprocessing should be able to handle.
 */
u64 notrace ktime_get_boot_fast_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);


501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/*
 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
 */
static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount_latch(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_real);

		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
					tk_clock_read(tkr),
					tkr->cycle_last,
					tkr->mask));
	} while (read_seqcount_retry(&tkf->seq, seq));

	return now;
}

/**
 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 */
u64 ktime_get_real_fast_ns(void)
{
	return __ktime_get_real_fast_ns(&tk_fast_mono);
}
532
EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
533

534 535 536 537 538 539 540 541 542 543 544 545 546
/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
547
	struct tk_read_base *tkr = &tk->tkr_mono;
548 549

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
550 551
	cycles_at_suspend = tk_clock_read(tkr);
	tkr_dummy.clock = &dummy_clock;
552
	tkr_dummy.base_real = tkr->base + tk->offs_real;
553
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
554 555 556

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
557
	tkr_dummy.clock = &dummy_clock;
P
Peter Zijlstra 已提交
558
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
559 560
}

561 562
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

563
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
564
{
565
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
566 567 568 569 570 571 572
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
573
	struct timekeeper *tk = &tk_core.timekeeper;
574 575 576
	unsigned long flags;
	int ret;

577
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
578
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
579
	update_pvclock_gtod(tk, true);
580
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
581 582 583 584 585 586 587 588 589 590 591 592 593 594

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

595
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
596
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
597
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
598 599 600 601 602

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

603 604 605 606 607 608
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
T
Thomas Gleixner 已提交
609
	if (tk->next_leap_ktime != KTIME_MAX)
610 611 612 613
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

614 615 616 617 618
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
619 620
	u64 seconds;
	u32 nsec;
621 622 623 624 625 626 627 628

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
629 630
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
631
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
632

633 634 635 636 637
	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
638
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
639 640 641
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
642 643

	/* Update the monotonic raw base */
644
	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
645 646
}

647
/* must hold timekeeper_lock */
648
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
649
{
650
	if (action & TK_CLEAR_NTP) {
651
		tk->ntp_error = 0;
652 653
		ntp_clear();
	}
654

655
	tk_update_leap_state(tk);
656 657
	tk_update_ktime_data(tk);

658 659 660
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

661
	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
662
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
663
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
664 665 666

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
667 668 669 670 671 672 673 674
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
675 676
}

677
/**
678
 * timekeeping_forward_now - update clock to the current time
679
 *
680 681 682
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
683
 */
684
static void timekeeping_forward_now(struct timekeeper *tk)
685
{
686
	u64 cycle_now, delta;
687

688
	cycle_now = tk_clock_read(&tk->tkr_mono);
689 690
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
691
	tk->tkr_raw.cycle_last  = cycle_now;
692

693
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
694

695
	/* If arch requires, add in get_arch_timeoffset() */
696
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
697

698

699 700 701 702 703 704
	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;

	/* If arch requires, add in get_arch_timeoffset() */
	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;

	tk_normalize_xtime(tk);
705 706 707
}

/**
708
 * __getnstimeofday64 - Returns the time of day in a timespec64.
709 710
 * @ts:		pointer to the timespec to be set
 *
711 712
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
713
 */
714
int __getnstimeofday64(struct timespec64 *ts)
715
{
716
	struct timekeeper *tk = &tk_core.timekeeper;
717
	unsigned long seq;
718
	u64 nsecs;
719 720

	do {
721
		seq = read_seqcount_begin(&tk_core.seq);
722

723
		ts->tv_sec = tk->xtime_sec;
724
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
725

726
	} while (read_seqcount_retry(&tk_core.seq, seq));
727

728
	ts->tv_nsec = 0;
729
	timespec64_add_ns(ts, nsecs);
730 731 732 733 734 735 736 737 738

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
739
EXPORT_SYMBOL(__getnstimeofday64);
740 741

/**
742
 * getnstimeofday64 - Returns the time of day in a timespec64.
743
 * @ts:		pointer to the timespec64 to be set
744
 *
745
 * Returns the time of day in a timespec64 (WARN if suspended).
746
 */
747
void getnstimeofday64(struct timespec64 *ts)
748
{
749
	WARN_ON(__getnstimeofday64(ts));
750
}
751
EXPORT_SYMBOL(getnstimeofday64);
752

753 754
ktime_t ktime_get(void)
{
755
	struct timekeeper *tk = &tk_core.timekeeper;
756
	unsigned int seq;
757
	ktime_t base;
758
	u64 nsecs;
759 760 761 762

	WARN_ON(timekeeping_suspended);

	do {
763
		seq = read_seqcount_begin(&tk_core.seq);
764 765
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
766

767
	} while (read_seqcount_retry(&tk_core.seq, seq));
768

769
	return ktime_add_ns(base, nsecs);
770 771 772
}
EXPORT_SYMBOL_GPL(ktime_get);

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

790 791
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
792
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
793 794 795 796 797 798 799 800
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
801
	u64 nsecs;
802 803 804 805 806

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
807 808
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
809 810 811 812 813 814 815 816

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

837 838 839 840 841 842 843 844
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
845
	u64 nsecs;
846 847 848

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
849 850
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
851 852 853 854 855 856 857

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

858
/**
859
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
860 861 862 863
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
864
 * in normalized timespec64 format in the variable pointed to by @ts.
865
 */
866
void ktime_get_ts64(struct timespec64 *ts)
867
{
868
	struct timekeeper *tk = &tk_core.timekeeper;
869
	struct timespec64 tomono;
870
	unsigned int seq;
871
	u64 nsec;
872 873 874 875

	WARN_ON(timekeeping_suspended);

	do {
876
		seq = read_seqcount_begin(&tk_core.seq);
877
		ts->tv_sec = tk->xtime_sec;
878
		nsec = timekeeping_get_ns(&tk->tkr_mono);
879
		tomono = tk->wall_to_monotonic;
880

881
	} while (read_seqcount_retry(&tk_core.seq, seq));
882

883 884 885
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
886
}
887
EXPORT_SYMBOL_GPL(ktime_get_ts64);
888

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

937 938 939 940 941 942 943 944 945 946 947 948
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

949 950 951 952 953 954 955 956 957 958
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
959 960
	u64 nsec_raw;
	u64 nsec_real;
961
	u64 now;
962

963 964
	WARN_ON_ONCE(timekeeping_suspended);

965 966
	do {
		seq = read_seqcount_begin(&tk_core.seq);
967
		now = tk_clock_read(&tk->tkr_mono);
968 969
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
970 971 972 973 974 975 976 977 978 979 980 981
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1019 1020
					 u64 partial_history_cycles,
					 u64 total_history_cycles,
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
1033
	interp_forward = partial_history_cycles > total_history_cycles / 2;
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
1083
static bool cycle_between(u64 before, u64 test, u64 after)
1084 1085 1086 1087 1088 1089 1090 1091
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1092 1093
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1094
 * @get_time_fn:	Callback to get simultaneous device time and
1095
 *	system counter from the device driver
1096 1097 1098
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1099 1100 1101 1102 1103 1104 1105 1106 1107
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1108
				  struct system_time_snapshot *history_begin,
1109 1110 1111 1112
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1113
	u64 cycles, now, interval_start;
1114
	unsigned int clock_was_set_seq = 0;
1115
	ktime_t base_real, base_raw;
1116
	u64 nsec_real, nsec_raw;
1117
	u8 cs_was_changed_seq;
1118
	unsigned long seq;
1119
	bool do_interp;
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1139 1140 1141 1142 1143 1144
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
1145
		now = tk_clock_read(&tk->tkr_mono);
1146 1147 1148 1149 1150 1151 1152 1153 1154
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1168 1169 1170 1171 1172 1173

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
1174
		u64 partial_history_cycles, total_history_cycles;
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1200 1201 1202 1203
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1204 1205 1206 1207
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
1208
 * NOTE: Users should be converted to using getnstimeofday()
1209 1210 1211
 */
void do_gettimeofday(struct timeval *tv)
{
1212
	struct timespec64 now;
1213

1214
	getnstimeofday64(&now);
1215 1216 1217 1218
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
1219

1220
/**
1221 1222
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1223 1224 1225
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1226
int do_settimeofday64(const struct timespec64 *ts)
1227
{
1228
	struct timekeeper *tk = &tk_core.timekeeper;
1229
	struct timespec64 ts_delta, xt;
1230
	unsigned long flags;
1231
	int ret = 0;
1232

1233
	if (!timespec64_valid_strict(ts))
1234 1235
		return -EINVAL;

1236
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1237
	write_seqcount_begin(&tk_core.seq);
1238

1239
	timekeeping_forward_now(tk);
1240

1241
	xt = tk_xtime(tk);
1242 1243
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1244

1245 1246 1247 1248 1249
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1250
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1251

1252
	tk_set_xtime(tk, ts);
1253
out:
1254
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1255

1256
	write_seqcount_end(&tk_core.seq);
1257
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1258 1259 1260 1261

	/* signal hrtimers about time change */
	clock_was_set();

1262
	return ret;
1263
}
1264
EXPORT_SYMBOL(do_settimeofday64);
1265

1266 1267 1268 1269 1270 1271
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
1272
static int timekeeping_inject_offset(struct timespec64 *ts)
1273
{
1274
	struct timekeeper *tk = &tk_core.timekeeper;
1275
	unsigned long flags;
1276
	struct timespec64 tmp;
1277
	int ret = 0;
1278

1279
	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1280 1281
		return -EINVAL;

1282
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1283
	write_seqcount_begin(&tk_core.seq);
1284

1285
	timekeeping_forward_now(tk);
1286

1287
	/* Make sure the proposed value is valid */
1288 1289
	tmp = timespec64_add(tk_xtime(tk), *ts);
	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1290
	    !timespec64_valid_strict(&tmp)) {
1291 1292 1293
		ret = -EINVAL;
		goto error;
	}
1294

1295 1296
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1297

1298
error: /* even if we error out, we forwarded the time, so call update */
1299
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1300

1301
	write_seqcount_end(&tk_core.seq);
1302
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1303 1304 1305 1306

	/* signal hrtimers about time change */
	clock_was_set();

1307
	return ret;
1308
}
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
 *
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
 * confusion if the program gets run more than once; it would also be
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
 *						- TYT, 1992-01-01
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
void timekeeping_warp_clock(void)
{
	if (sys_tz.tz_minuteswest != 0) {
1335
		struct timespec64 adjust;
1336 1337 1338 1339 1340 1341 1342

		persistent_clock_is_local = 1;
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
	}
}
1343

1344
/**
1345
 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1346 1347
 *
 */
1348
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1349 1350
{
	tk->tai_offset = tai_offset;
1351
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1352 1353
}

1354 1355 1356 1357 1358
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1359
static int change_clocksource(void *data)
1360
{
1361
	struct timekeeper *tk = &tk_core.timekeeper;
1362
	struct clocksource *new, *old;
1363
	unsigned long flags;
1364

1365
	new = (struct clocksource *) data;
1366

1367
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1368
	write_seqcount_begin(&tk_core.seq);
1369

1370
	timekeeping_forward_now(tk);
1371 1372 1373 1374 1375 1376
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1377
			old = tk->tkr_mono.clock;
1378 1379 1380 1381 1382 1383 1384
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1385
	}
1386
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1387

1388
	write_seqcount_end(&tk_core.seq);
1389
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1390

1391 1392
	return 0;
}
1393

1394 1395 1396 1397 1398 1399 1400
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1401
int timekeeping_notify(struct clocksource *clock)
1402
{
1403
	struct timekeeper *tk = &tk_core.timekeeper;
1404

1405
	if (tk->tkr_mono.clock == clock)
1406
		return 0;
1407
	stop_machine(change_clocksource, clock, NULL);
1408
	tick_clock_notify();
1409
	return tk->tkr_mono.clock == clock ? 0 : -1;
1410
}
1411

1412
/**
1413 1414
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1415 1416 1417
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1418
void getrawmonotonic64(struct timespec64 *ts)
1419
{
1420
	struct timekeeper *tk = &tk_core.timekeeper;
1421
	unsigned long seq;
1422
	u64 nsecs;
1423 1424

	do {
1425
		seq = read_seqcount_begin(&tk_core.seq);
1426
		ts->tv_sec = tk->raw_sec;
P
Peter Zijlstra 已提交
1427
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1428

1429
	} while (read_seqcount_retry(&tk_core.seq, seq));
1430

1431 1432
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsecs);
1433
}
1434 1435
EXPORT_SYMBOL(getrawmonotonic64);

1436

1437
/**
1438
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1439
 */
1440
int timekeeping_valid_for_hres(void)
1441
{
1442
	struct timekeeper *tk = &tk_core.timekeeper;
1443 1444 1445 1446
	unsigned long seq;
	int ret;

	do {
1447
		seq = read_seqcount_begin(&tk_core.seq);
1448

1449
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1450

1451
	} while (read_seqcount_retry(&tk_core.seq, seq));
1452 1453 1454 1455

	return ret;
}

1456 1457 1458 1459 1460
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1461
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1462 1463
	unsigned long seq;
	u64 ret;
1464

J
John Stultz 已提交
1465
	do {
1466
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1467

1468
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1469

1470
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1471 1472

	return ret;
1473 1474
}

1475
/**
1476
 * read_persistent_clock -  Return time from the persistent clock.
1477 1478
 *
 * Weak dummy function for arches that do not yet support it.
1479 1480
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1481 1482 1483
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1484
void __weak read_persistent_clock(struct timespec *ts)
1485
{
1486 1487
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1488 1489
}

1490 1491 1492 1493 1494 1495 1496 1497
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1498
/**
X
Xunlei Pang 已提交
1499
 * read_boot_clock64 -  Return time of the system start.
1500 1501 1502
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1503
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1504 1505 1506
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1507
void __weak read_boot_clock64(struct timespec64 *ts)
1508 1509 1510 1511 1512
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1513 1514 1515 1516 1517 1518
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1519 1520 1521 1522 1523
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1524
	struct timekeeper *tk = &tk_core.timekeeper;
1525
	struct clocksource *clock;
1526
	unsigned long flags;
1527
	struct timespec64 now, boot, tmp;
1528

1529
	read_persistent_clock64(&now);
1530
	if (!timespec64_valid_strict(&now)) {
1531 1532 1533 1534
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1535
	} else if (now.tv_sec || now.tv_nsec)
1536
		persistent_clock_exists = true;
1537

1538
	read_boot_clock64(&boot);
1539
	if (!timespec64_valid_strict(&boot)) {
1540 1541 1542 1543 1544
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1545

1546
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1547
	write_seqcount_begin(&tk_core.seq);
1548 1549
	ntp_init();

1550
	clock = clocksource_default_clock();
1551 1552
	if (clock->enable)
		clock->enable(clock);
1553
	tk_setup_internals(tk, clock);
1554

1555
	tk_set_xtime(tk, &now);
1556
	tk->raw_sec = 0;
1557
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1558
		boot = tk_xtime(tk);
1559

1560
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1561
	tk_set_wall_to_mono(tk, tmp);
1562

1563
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1564

1565
	write_seqcount_end(&tk_core.seq);
1566
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1567 1568
}

1569
/* time in seconds when suspend began for persistent clock */
1570
static struct timespec64 timekeeping_suspend_time;
1571

1572 1573 1574 1575 1576 1577 1578
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1579
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1580
					   struct timespec64 *delta)
1581
{
1582
	if (!timespec64_valid_strict(delta)) {
1583 1584 1585
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1586 1587
		return;
	}
1588
	tk_xtime_add(tk, delta);
1589
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1590
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1591
	tk_debug_account_sleep_time(delta);
1592 1593
}

1594
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1630
/**
1631 1632
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1633
 *
1634
 * This hook is for architectures that cannot support read_persistent_clock64
1635
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1636
 * and also don't have an effective nonstop clocksource.
1637 1638 1639 1640
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1641
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1642
{
1643
	struct timekeeper *tk = &tk_core.timekeeper;
1644
	unsigned long flags;
1645

1646
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1647
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1648

1649
	timekeeping_forward_now(tk);
1650

1651
	__timekeeping_inject_sleeptime(tk, delta);
1652

1653
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1654

1655
	write_seqcount_end(&tk_core.seq);
1656
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1657 1658 1659 1660

	/* signal hrtimers about time change */
	clock_was_set();
}
1661
#endif
1662

1663 1664 1665
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1666
void timekeeping_resume(void)
1667
{
1668
	struct timekeeper *tk = &tk_core.timekeeper;
1669
	struct clocksource *clock = tk->tkr_mono.clock;
1670
	unsigned long flags;
1671
	struct timespec64 ts_new, ts_delta;
1672
	u64 cycle_now;
1673

1674
	sleeptime_injected = false;
1675
	read_persistent_clock64(&ts_new);
1676

1677
	clockevents_resume();
1678 1679
	clocksource_resume();

1680
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1681
	write_seqcount_begin(&tk_core.seq);
1682

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1695
	cycle_now = tk_clock_read(&tk->tkr_mono);
1696
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1697
		cycle_now > tk->tkr_mono.cycle_last) {
1698
		u64 nsec, cyc_delta;
1699

1700 1701 1702
		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
					      tk->tkr_mono.mask);
		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1703
		ts_delta = ns_to_timespec64(nsec);
1704
		sleeptime_injected = true;
1705 1706
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1707
		sleeptime_injected = true;
1708
	}
1709

1710
	if (sleeptime_injected)
1711 1712 1713
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1714
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1715 1716
	tk->tkr_raw.cycle_last  = cycle_now;

1717
	tk->ntp_error = 0;
1718
	timekeeping_suspended = 0;
1719
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1720
	write_seqcount_end(&tk_core.seq);
1721
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1722 1723 1724

	touch_softlockup_watchdog();

1725
	tick_resume();
1726
	hrtimers_resume();
1727 1728
}

1729
int timekeeping_suspend(void)
1730
{
1731
	struct timekeeper *tk = &tk_core.timekeeper;
1732
	unsigned long flags;
1733 1734
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1735

1736
	read_persistent_clock64(&timekeeping_suspend_time);
1737

1738 1739 1740 1741 1742 1743
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1744
		persistent_clock_exists = true;
1745

1746
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1747
	write_seqcount_begin(&tk_core.seq);
1748
	timekeeping_forward_now(tk);
1749
	timekeeping_suspended = 1;
1750

1751
	if (persistent_clock_exists) {
1752
		/*
1753 1754 1755 1756
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1757
		 */
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1771
	}
1772 1773

	timekeeping_update(tk, TK_MIRROR);
1774
	halt_fast_timekeeper(tk);
1775
	write_seqcount_end(&tk_core.seq);
1776
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1777

1778
	tick_suspend();
M
Magnus Damm 已提交
1779
	clocksource_suspend();
1780
	clockevents_suspend();
1781 1782 1783 1784 1785

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1786
static struct syscore_ops timekeeping_syscore_ops = {
1787 1788 1789 1790
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1791
static int __init timekeeping_init_ops(void)
1792
{
1793 1794
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1795
}
1796
device_initcall(timekeeping_init_ops);
1797 1798

/*
1799
 * Apply a multiplier adjustment to the timekeeper
1800
 */
1801 1802
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
1803
							 s32 mult_adj)
1804
{
1805
	s64 interval = tk->cycle_interval;
1806

1807 1808 1809
	if (mult_adj == 0) {
		return;
	} else if (mult_adj == -1) {
1810
		interval = -interval;
1811 1812 1813 1814
		offset = -offset;
	} else if (mult_adj != 1) {
		interval *= mult_adj;
		offset *= mult_adj;
1815
	}
1816

1817 1818 1819
	/*
	 * So the following can be confusing.
	 *
1820
	 * To keep things simple, lets assume mult_adj == 1 for now.
1821
	 *
1822
	 * When mult_adj != 1, remember that the interval and offset values
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 */
1864
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1865 1866 1867 1868 1869
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1870
	tk->tkr_mono.mult += mult_adj;
1871
	tk->xtime_interval += interval;
1872
	tk->tkr_mono.xtime_nsec -= offset;
1873 1874 1875
}

/*
1876 1877
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
1878
 */
1879
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1880
{
1881
	u32 mult;
1882

1883
	/*
1884 1885
	 * Determine the multiplier from the current NTP tick length.
	 * Avoid expensive division when the tick length doesn't change.
1886
	 */
1887 1888 1889 1890 1891 1892
	if (likely(tk->ntp_tick == ntp_tick_length())) {
		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
	} else {
		tk->ntp_tick = ntp_tick_length();
		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
				 tk->xtime_remainder, tk->cycle_interval);
1893
	}
1894

1895 1896 1897 1898 1899 1900 1901 1902
	/*
	 * If the clock is behind the NTP time, increase the multiplier by 1
	 * to catch up with it. If it's ahead and there was a remainder in the
	 * tick division, the clock will slow down. Otherwise it will stay
	 * ahead until the tick length changes to a non-divisible value.
	 */
	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
	mult += tk->ntp_err_mult;
1903

1904
	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1905

1906 1907 1908
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1909 1910
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1911 1912
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1913
	}
1914 1915 1916 1917 1918 1919 1920

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
1921 1922 1923
	 * Now, since we have already accumulated the second and the NTP
	 * subsystem has been notified via second_overflow(), we need to skip
	 * the next update.
1924
	 */
1925
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1926 1927 1928 1929
		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
							tk->tkr_mono.shift;
		tk->xtime_sec--;
		tk->skip_second_overflow = 1;
1930
	}
1931 1932
}

1933 1934 1935
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1936
 * Helper function that accumulates the nsecs greater than a second
1937 1938 1939 1940
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1941
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1942
{
1943
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1944
	unsigned int clock_set = 0;
1945

1946
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1947 1948
		int leap;

1949
		tk->tkr_mono.xtime_nsec -= nsecps;
1950 1951
		tk->xtime_sec++;

1952 1953 1954 1955 1956 1957 1958 1959 1960
		/*
		 * Skip NTP update if this second was accumulated before,
		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
		 */
		if (unlikely(tk->skip_second_overflow)) {
			tk->skip_second_overflow = 0;
			continue;
		}

1961 1962
		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1963
		if (unlikely(leap)) {
1964
			struct timespec64 ts;
1965 1966

			tk->xtime_sec += leap;
1967

1968 1969 1970
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1971
				timespec64_sub(tk->wall_to_monotonic, ts));
1972

1973 1974
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1975
			clock_set = TK_CLOCK_WAS_SET;
1976
		}
1977
	}
1978
	return clock_set;
1979 1980
}

1981 1982 1983 1984 1985 1986 1987 1988 1989
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1990 1991
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
				    u32 shift, unsigned int *clock_set)
1992
{
1993
	u64 interval = tk->cycle_interval << shift;
1994
	u64 snsec_per_sec;
1995

Z
Zhen Lei 已提交
1996
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1997
	if (offset < interval)
1998 1999 2000
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
2001
	offset -= interval;
2002
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
2003
	tk->tkr_raw.cycle_last  += interval;
2004

2005
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2006
	*clock_set |= accumulate_nsecs_to_secs(tk);
2007

2008
	/* Accumulate raw time */
2009 2010 2011 2012
	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2013
		tk->raw_sec++;
2014 2015 2016
	}

	/* Accumulate error between NTP and clock interval */
2017
	tk->ntp_error += tk->ntp_tick << shift;
2018 2019
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2020 2021 2022 2023

	return offset;
}

2024 2025 2026 2027
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
2028
void update_wall_time(void)
2029
{
2030
	struct timekeeper *real_tk = &tk_core.timekeeper;
2031
	struct timekeeper *tk = &shadow_timekeeper;
2032
	u64 offset;
2033
	int shift = 0, maxshift;
2034
	unsigned int clock_set = 0;
J
John Stultz 已提交
2035 2036
	unsigned long flags;

2037
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2038 2039 2040

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2041
		goto out;
2042

J
John Stultz 已提交
2043
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2044
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
2045
#else
2046
	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2047
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2048 2049
#endif

2050
	/* Check if there's really nothing to do */
2051
	if (offset < real_tk->cycle_interval)
2052 2053
		goto out;

2054
	/* Do some additional sanity checking */
2055
	timekeeping_check_update(tk, offset);
2056

2057 2058 2059 2060
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2061
	 * that is smaller than the offset.  We then accumulate that
2062 2063
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2064
	 */
2065
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2066
	shift = max(0, shift);
2067
	/* Bound shift to one less than what overflows tick_length */
2068
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2069
	shift = min(shift, maxshift);
2070
	while (offset >= tk->cycle_interval) {
2071 2072
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2073
		if (offset < tk->cycle_interval<<shift)
2074
			shift--;
2075 2076
	}

2077
	/* Adjust the multiplier to correct NTP error */
2078
	timekeeping_adjust(tk, offset);
2079

J
John Stultz 已提交
2080 2081
	/*
	 * Finally, make sure that after the rounding
2082
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2083
	 */
2084
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2085

2086
	write_seqcount_begin(&tk_core.seq);
2087 2088 2089 2090 2091 2092 2093
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2094
	 * memcpy under the tk_core.seq against one before we start
2095 2096
	 * updating.
	 */
2097
	timekeeping_update(tk, clock_set);
2098
	memcpy(real_tk, tk, sizeof(*tk));
2099
	/* The memcpy must come last. Do not put anything here! */
2100
	write_seqcount_end(&tk_core.seq);
2101
out:
2102
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2103
	if (clock_set)
2104 2105
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2106
}
T
Tomas Janousek 已提交
2107 2108

/**
2109 2110
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2111
 *
2112
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2113 2114 2115 2116 2117 2118
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2119
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2120
{
2121
	struct timekeeper *tk = &tk_core.timekeeper;
2122
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2123

2124
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2125
}
2126
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2127

2128 2129
unsigned long get_seconds(void)
{
2130
	struct timekeeper *tk = &tk_core.timekeeper;
2131 2132

	return tk->xtime_sec;
2133 2134 2135
}
EXPORT_SYMBOL(get_seconds);

2136
struct timespec64 current_kernel_time64(void)
2137
{
2138
	struct timekeeper *tk = &tk_core.timekeeper;
2139
	struct timespec64 now;
2140 2141 2142
	unsigned long seq;

	do {
2143
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2144

2145
		now = tk_xtime(tk);
2146
	} while (read_seqcount_retry(&tk_core.seq, seq));
2147

2148
	return now;
2149
}
2150
EXPORT_SYMBOL(current_kernel_time64);
2151

2152
struct timespec64 get_monotonic_coarse64(void)
2153
{
2154
	struct timekeeper *tk = &tk_core.timekeeper;
2155
	struct timespec64 now, mono;
2156 2157 2158
	unsigned long seq;

	do {
2159
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2160

2161 2162
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2163
	} while (read_seqcount_retry(&tk_core.seq, seq));
2164

2165
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2166
				now.tv_nsec + mono.tv_nsec);
2167

2168
	return now;
2169
}
2170
EXPORT_SYMBOL(get_monotonic_coarse64);
2171 2172

/*
2173
 * Must hold jiffies_lock
2174 2175 2176 2177 2178 2179
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2180

2181
/**
2182
 * ktime_get_update_offsets_now - hrtimer helper
2183
 * @cwsseq:	pointer to check and store the clock was set sequence number
2184
 * @offs_real:	pointer to storage for monotonic -> realtime offset
2185
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2186
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2187
 *
2188 2189 2190 2191
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2192
 * Called from hrtimer_interrupt() or retrigger_next_event()
2193
 */
2194
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2195
				     ktime_t *offs_boot, ktime_t *offs_tai)
2196
{
2197
	struct timekeeper *tk = &tk_core.timekeeper;
2198
	unsigned int seq;
2199 2200
	ktime_t base;
	u64 nsecs;
2201 2202

	do {
2203
		seq = read_seqcount_begin(&tk_core.seq);
2204

2205 2206
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2207 2208
		base = ktime_add_ns(base, nsecs);

2209 2210 2211
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
2212
			*offs_boot = tk->offs_boot;
2213 2214
			*offs_tai = tk->offs_tai;
		}
2215 2216

		/* Handle leapsecond insertion adjustments */
T
Thomas Gleixner 已提交
2217
		if (unlikely(base >= tk->next_leap_ktime))
2218 2219
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2220
	} while (read_seqcount_retry(&tk_core.seq, seq));
2221

2222
	return base;
2223 2224
}

2225
/**
2226
 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2227
 */
2228
static int timekeeping_validate_timex(struct timex *txc)
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
{
	if (txc->modes & ADJ_ADJTIME) {
		/* singleshot must not be used with any other mode bits */
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
			return -EINVAL;
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
			return -EINVAL;
	}

	if (txc->modes & ADJ_SETOFFSET) {
		/* In order to inject time, you gotta be super-user! */
		if (!capable(CAP_SYS_TIME))
			return -EPERM;

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
		/*
		 * Validate if a timespec/timeval used to inject a time
		 * offset is valid.  Offsets can be postive or negative, so
		 * we don't check tv_sec. The value of the timeval/timespec
		 * is the sum of its fields,but *NOTE*:
		 * The field tv_usec/tv_nsec must always be non-negative and
		 * we can't have more nanoseconds/microseconds than a second.
		 */
		if (txc->time.tv_usec < 0)
			return -EINVAL;
2266

2267 2268
		if (txc->modes & ADJ_NANO) {
			if (txc->time.tv_usec >= NSEC_PER_SEC)
2269 2270
				return -EINVAL;
		} else {
2271
			if (txc->time.tv_usec >= USEC_PER_SEC)
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
				return -EINVAL;
		}
	}

	/*
	 * Check for potential multiplication overflows that can
	 * only happen on 64-bit systems:
	 */
	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
		if (LLONG_MIN / PPM_SCALE > txc->freq)
			return -EINVAL;
		if (LLONG_MAX / PPM_SCALE < txc->freq)
			return -EINVAL;
	}

	return 0;
}


2291 2292 2293 2294 2295
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2296
	struct timekeeper *tk = &tk_core.timekeeper;
2297
	unsigned long flags;
2298
	struct timespec64 ts;
2299
	s32 orig_tai, tai;
2300 2301 2302
	int ret;

	/* Validate the data before disabling interrupts */
2303
	ret = timekeeping_validate_timex(txc);
2304 2305 2306
	if (ret)
		return ret;

2307
	if (txc->modes & ADJ_SETOFFSET) {
2308
		struct timespec64 delta;
2309 2310 2311 2312 2313 2314 2315 2316 2317
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2318
	getnstimeofday64(&ts);
2319

2320
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2321
	write_seqcount_begin(&tk_core.seq);
2322

2323
	orig_tai = tai = tk->tai_offset;
2324
	ret = __do_adjtimex(txc, &ts, &tai);
2325

2326 2327
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2328
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2329
	}
2330 2331
	tk_update_leap_state(tk);

2332
	write_seqcount_end(&tk_core.seq);
2333 2334
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2335 2336 2337
	if (tai != orig_tai)
		clock_was_set();

2338 2339
	ntp_notify_cmos_timer();

2340 2341
	return ret;
}
2342 2343 2344 2345 2346

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2347
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2348
{
2349 2350 2351
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2352
	write_seqcount_begin(&tk_core.seq);
2353

2354
	__hardpps(phase_ts, raw_ts);
2355

2356
	write_seqcount_end(&tk_core.seq);
2357
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2358 2359
}
EXPORT_SYMBOL(hardpps);
2360
#endif /* CONFIG_NTP_PPS */
2361

T
Torben Hohn 已提交
2362 2363 2364 2365 2366 2367 2368 2369
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2370
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2371
	do_timer(ticks);
2372
	write_sequnlock(&jiffies_lock);
2373
	update_wall_time();
T
Torben Hohn 已提交
2374
}