timekeeping.c 66.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/nmi.h>
18
#include <linux/sched.h>
19
#include <linux/sched/loadavg.h>
20
#include <linux/syscore_ops.h>
21 22 23 24
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
25
#include <linux/stop_machine.h>
26
#include <linux/pvclock_gtod.h>
27
#include <linux/compiler.h>
28

29
#include "tick-internal.h"
30
#include "ntp_internal.h"
31
#include "timekeeping_internal.h"
32

33 34
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
35
#define TK_CLOCK_WAS_SET	(1 << 2)
36

37 38 39 40 41 42 43 44 45
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

46
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47
static struct timekeeper shadow_timekeeper;
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/* Suspend-time cycles value for halted fast timekeeper. */
static u64 cycles_at_suspend;

static u64 dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

static struct clocksource dummy_clock = {
	.read = dummy_clock_read,
};

static struct tk_fast tk_fast_mono ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};

static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};
84

85 86 87
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

88 89
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
90 91
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
92 93
		tk->xtime_sec++;
	}
94 95 96 97
	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
		tk->raw_sec++;
	}
98 99
}

100 101 102 103 104
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
105
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
106 107 108
	return ts;
}

109
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
110 111
{
	tk->xtime_sec = ts->tv_sec;
112
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
113 114
}

115
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
116 117
{
	tk->xtime_sec += ts->tv_sec;
118
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
119
	tk_normalize_xtime(tk);
120
}
121

122
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
123
{
124
	struct timespec64 tmp;
125 126 127 128 129

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
130
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
131
					-tk->wall_to_monotonic.tv_nsec);
T
Thomas Gleixner 已提交
132
	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
133
	tk->wall_to_monotonic = wtm;
134 135
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
136
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
137 138
}

139
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
140
{
141
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
142 143 144

	/* Accumulate time spent in suspend */
	tk->time_suspended += delta;
145 146
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * tk_clock_read - atomic clocksource read() helper
 *
 * This helper is necessary to use in the read paths because, while the
 * seqlock ensures we don't return a bad value while structures are updated,
 * it doesn't protect from potential crashes. There is the possibility that
 * the tkr's clocksource may change between the read reference, and the
 * clock reference passed to the read function.  This can cause crashes if
 * the wrong clocksource is passed to the wrong read function.
 * This isn't necessary to use when holding the timekeeper_lock or doing
 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 * and update logic).
 */
static inline u64 tk_clock_read(struct tk_read_base *tkr)
{
	struct clocksource *clock = READ_ONCE(tkr->clock);

	return clock->read(clock);
}

167
#ifdef CONFIG_DEBUG_TIMEKEEPING
168 169
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

170
static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
171 172
{

173
	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
174
	const char *name = tk->tkr_mono.clock->name;
175 176

	if (offset > max_cycles) {
177
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
178
				offset, name, max_cycles);
179
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
180 181
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
182
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
183 184 185 186
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
187

188 189
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
190 191 192
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
193
			tk->last_warning = jiffies;
194
		}
195
		tk->underflow_seen = 0;
196 197
	}

198 199
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
200 201 202
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
203
			tk->last_warning = jiffies;
204
		}
205
		tk->overflow_seen = 0;
206
	}
207
}
208

209
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
210
{
211
	struct timekeeper *tk = &tk_core.timekeeper;
212
	u64 now, last, mask, max, delta;
213
	unsigned int seq;
214

215 216 217 218 219 220 221 222 223
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
224
		now = tk_clock_read(tkr);
225 226 227 228
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
229

230
	delta = clocksource_delta(now, last, mask);
231

232 233 234 235
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
236
	if (unlikely((~delta & mask) < (mask >> 3))) {
237
		tk->underflow_seen = 1;
238
		delta = 0;
239
	}
240

241
	/* Cap delta value to the max_cycles values to avoid mult overflows */
242
	if (unlikely(delta > max)) {
243
		tk->overflow_seen = 1;
244
		delta = tkr->clock->max_cycles;
245
	}
246 247 248

	return delta;
}
249
#else
250
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
251 252
{
}
253
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
254
{
255
	u64 cycle_now, delta;
256 257

	/* read clocksource */
258
	cycle_now = tk_clock_read(tkr);
259 260 261 262 263 264

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
265 266
#endif

267
/**
268
 * tk_setup_internals - Set up internals to use clocksource clock.
269
 *
270
 * @tk:		The target timekeeper to setup.
271 272 273 274 275 276 277
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
278
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
279
{
280
	u64 interval;
281
	u64 tmp, ntpinterval;
282
	struct clocksource *old_clock;
283

284
	++tk->cs_was_changed_seq;
285 286 287
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.mask = clock->mask;
288
	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
289

P
Peter Zijlstra 已提交
290 291 292 293
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

294 295 296
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
297
	ntpinterval = tmp;
298 299
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
300 301 302
	if (tmp == 0)
		tmp = 1;

303
	interval = (u64) tmp;
304
	tk->cycle_interval = interval;
305 306

	/* Go back from cycles -> shifted ns */
307
	tk->xtime_interval = interval * clock->mult;
308
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
309
	tk->raw_interval = interval * clock->mult;
310

311 312 313
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
314
		if (shift_change < 0) {
315
			tk->tkr_mono.xtime_nsec >>= -shift_change;
316 317
			tk->tkr_raw.xtime_nsec >>= -shift_change;
		} else {
318
			tk->tkr_mono.xtime_nsec <<= shift_change;
319 320
			tk->tkr_raw.xtime_nsec <<= shift_change;
		}
321
	}
P
Peter Zijlstra 已提交
322

323
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
324
	tk->tkr_raw.shift = clock->shift;
325

326 327
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
328
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
329 330 331 332 333 334

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
335
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
336
	tk->tkr_raw.mult = clock->mult;
337
	tk->ntp_err_mult = 0;
338
	tk->skip_second_overflow = 0;
339
}
340

341
/* Timekeeper helper functions. */
342 343

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
344 345
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
346
#else
347
static inline u32 arch_gettimeoffset(void) { return 0; }
348 349
#endif

350
static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
351
{
352
	u64 nsec;
353 354 355 356 357 358 359 360

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

361
static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
362
{
363
	u64 delta;
364

365
	delta = timekeeping_get_delta(tkr);
366 367
	return timekeeping_delta_to_ns(tkr, delta);
}
368

369
static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
370
{
371
	u64 delta;
372

373 374 375
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
376 377
}

378 379
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
380
 * @tkr: Timekeeping readout base from which we take the update
381 382 383 384
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
385
 * Employ the latch technique; see @raw_write_seqcount_latch.
386 387 388 389 390 391
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
392
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
393
{
394
	struct tk_read_base *base = tkf->base;
395 396

	/* Force readers off to base[1] */
397
	raw_write_seqcount_latch(&tkf->seq);
398 399

	/* Update base[0] */
400
	memcpy(base, tkr, sizeof(*base));
401 402

	/* Force readers back to base[0] */
403
	raw_write_seqcount_latch(&tkf->seq);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
441
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
442 443 444 445 446 447
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
448
		seq = raw_read_seqcount_latch(&tkf->seq);
449
		tkr = tkf->base + (seq & 0x01);
450 451
		now = ktime_to_ns(tkr->base);

452 453
		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
454
					tk_clock_read(tkr),
455 456
					tkr->cycle_last,
					tkr->mask));
457
	} while (read_seqcount_retry(&tkf->seq, seq));
458 459 460

	return now;
}
461 462 463 464 465

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
466 467
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
468 469 470 471 472 473
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
/**
 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 *
 * To keep it NMI safe since we're accessing from tracing, we're not using a
 * separate timekeeper with updates to monotonic clock and boot offset
 * protected with seqlocks. This has the following minor side effects:
 *
 * (1) Its possible that a timestamp be taken after the boot offset is updated
 * but before the timekeeper is updated. If this happens, the new boot offset
 * is added to the old timekeeping making the clock appear to update slightly
 * earlier:
 *    CPU 0                                        CPU 1
 *    timekeeping_inject_sleeptime64()
 *    __timekeeping_inject_sleeptime(tk, delta);
 *                                                 timestamp();
 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 *
 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 * partially updated.  Since the tk->offs_boot update is a rare event, this
 * should be a rare occurrence which postprocessing should be able to handle.
 */
u64 notrace ktime_get_boot_fast_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

/*
 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
 */
static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount_latch(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_real);

		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
					tk_clock_read(tkr),
					tkr->cycle_last,
					tkr->mask));
	} while (read_seqcount_retry(&tkf->seq, seq));

	return now;
}

/**
 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 */
u64 ktime_get_real_fast_ns(void)
{
	return __ktime_get_real_fast_ns(&tk_fast_mono);
}
535
EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
536

537 538 539 540 541 542 543 544 545 546 547 548 549
/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
550
	struct tk_read_base *tkr = &tk->tkr_mono;
551 552

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
553 554
	cycles_at_suspend = tk_clock_read(tkr);
	tkr_dummy.clock = &dummy_clock;
555
	tkr_dummy.base_real = tkr->base + tk->offs_real;
556
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
557 558 559

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
560
	tkr_dummy.clock = &dummy_clock;
P
Peter Zijlstra 已提交
561
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
562 563
}

564 565
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

566
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
567
{
568
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
569 570 571 572 573 574 575
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
576
	struct timekeeper *tk = &tk_core.timekeeper;
577 578 579
	unsigned long flags;
	int ret;

580
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
581
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
582
	update_pvclock_gtod(tk, true);
583
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
584 585 586 587 588 589 590 591 592 593 594 595 596 597

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

598
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
599
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
600
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
601 602 603 604 605

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

606 607 608 609 610 611
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
T
Thomas Gleixner 已提交
612
	if (tk->next_leap_ktime != KTIME_MAX)
613 614 615 616
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

617 618 619 620 621
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
622 623
	u64 seconds;
	u32 nsec;
624 625 626 627 628 629 630 631

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
632 633
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
634
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
635

636 637 638 639 640
	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
641
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
642 643 644
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
645 646

	/* Update the monotonic raw base */
647
	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
648 649
}

650
/* must hold timekeeper_lock */
651
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
652
{
653
	if (action & TK_CLEAR_NTP) {
654
		tk->ntp_error = 0;
655 656
		ntp_clear();
	}
657

658
	tk_update_leap_state(tk);
659 660
	tk_update_ktime_data(tk);

661 662 663
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

664
	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
665
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
666
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
667 668 669

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
670 671 672 673 674 675 676 677
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
678 679
}

680
/**
681
 * timekeeping_forward_now - update clock to the current time
682
 *
683 684 685
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
686
 */
687
static void timekeeping_forward_now(struct timekeeper *tk)
688
{
689
	u64 cycle_now, delta;
690

691
	cycle_now = tk_clock_read(&tk->tkr_mono);
692 693
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
694
	tk->tkr_raw.cycle_last  = cycle_now;
695

696
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
697

698
	/* If arch requires, add in get_arch_timeoffset() */
699
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
700

701

702 703 704 705 706 707
	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;

	/* If arch requires, add in get_arch_timeoffset() */
	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;

	tk_normalize_xtime(tk);
708 709 710
}

/**
711
 * __getnstimeofday64 - Returns the time of day in a timespec64.
712 713
 * @ts:		pointer to the timespec to be set
 *
714 715
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
716
 */
717
int __getnstimeofday64(struct timespec64 *ts)
718
{
719
	struct timekeeper *tk = &tk_core.timekeeper;
720
	unsigned long seq;
721
	u64 nsecs;
722 723

	do {
724
		seq = read_seqcount_begin(&tk_core.seq);
725

726
		ts->tv_sec = tk->xtime_sec;
727
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
728

729
	} while (read_seqcount_retry(&tk_core.seq, seq));
730

731
	ts->tv_nsec = 0;
732
	timespec64_add_ns(ts, nsecs);
733 734 735 736 737 738 739 740 741

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
742
EXPORT_SYMBOL(__getnstimeofday64);
743 744

/**
745
 * getnstimeofday64 - Returns the time of day in a timespec64.
746
 * @ts:		pointer to the timespec64 to be set
747
 *
748
 * Returns the time of day in a timespec64 (WARN if suspended).
749
 */
750
void getnstimeofday64(struct timespec64 *ts)
751
{
752
	WARN_ON(__getnstimeofday64(ts));
753
}
754
EXPORT_SYMBOL(getnstimeofday64);
755

756 757
ktime_t ktime_get(void)
{
758
	struct timekeeper *tk = &tk_core.timekeeper;
759
	unsigned int seq;
760
	ktime_t base;
761
	u64 nsecs;
762 763 764 765

	WARN_ON(timekeeping_suspended);

	do {
766
		seq = read_seqcount_begin(&tk_core.seq);
767 768
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
769

770
	} while (read_seqcount_retry(&tk_core.seq, seq));
771

772
	return ktime_add_ns(base, nsecs);
773 774 775
}
EXPORT_SYMBOL_GPL(ktime_get);

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

793 794 795 796 797 798 799 800 801 802 803
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
804
	u64 nsecs;
805 806 807 808 809

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
810 811
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
812 813 814 815 816 817 818 819

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

840 841 842 843 844 845 846 847
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
848
	u64 nsecs;
849 850 851

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
852 853
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
854 855 856 857 858 859 860

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

861
/**
862
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
863 864 865 866
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
867
 * in normalized timespec64 format in the variable pointed to by @ts.
868
 */
869
void ktime_get_ts64(struct timespec64 *ts)
870
{
871
	struct timekeeper *tk = &tk_core.timekeeper;
872
	struct timespec64 tomono;
873
	unsigned int seq;
874
	u64 nsec;
875 876 877 878

	WARN_ON(timekeeping_suspended);

	do {
879
		seq = read_seqcount_begin(&tk_core.seq);
880
		ts->tv_sec = tk->xtime_sec;
881
		nsec = timekeeping_get_ns(&tk->tkr_mono);
882
		tomono = tk->wall_to_monotonic;
883

884
	} while (read_seqcount_retry(&tk_core.seq, seq));
885

886 887 888
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
889
}
890
EXPORT_SYMBOL_GPL(ktime_get_ts64);
891

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
/**
 * ktime_get_active_ts64 - Get the active non-suspended monotonic clock
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime clock and
 * the wall_to_monotonic offset, subtracts the accumulated suspend time and
 * stores the result in normalized timespec64 format in the variable
 * pointed to by @ts.
 */
void ktime_get_active_ts64(struct timespec64 *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	struct timespec64 tomono, tsusp;
	u64 nsec, nssusp;
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		ts->tv_sec = tk->xtime_sec;
		nsec = timekeeping_get_ns(&tk->tkr_mono);
		tomono = tk->wall_to_monotonic;
		nssusp = tk->time_suspended;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
	tsusp = ns_to_timespec64(nssusp);
	*ts = timespec64_sub(*ts, tsusp);
}

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

973 974 975 976 977 978 979 980 981 982 983 984
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

985 986 987 988 989 990 991 992 993 994
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
995 996
	u64 nsec_raw;
	u64 nsec_real;
997
	u64 now;
998

999 1000
	WARN_ON_ONCE(timekeeping_suspended);

1001 1002
	do {
		seq = read_seqcount_begin(&tk_core.seq);
1003
		now = tk_clock_read(&tk->tkr_mono);
1004 1005
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1018

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1055 1056
					 u64 partial_history_cycles,
					 u64 total_history_cycles,
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
1069
	interp_forward = partial_history_cycles > total_history_cycles / 2;
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
1119
static bool cycle_between(u64 before, u64 test, u64 after)
1120 1121 1122 1123 1124 1125 1126 1127
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1128 1129
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1130
 * @get_time_fn:	Callback to get simultaneous device time and
1131
 *	system counter from the device driver
1132 1133 1134
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1135 1136 1137 1138 1139 1140 1141 1142 1143
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1144
				  struct system_time_snapshot *history_begin,
1145 1146 1147 1148
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1149
	u64 cycles, now, interval_start;
1150
	unsigned int clock_was_set_seq = 0;
1151
	ktime_t base_real, base_raw;
1152
	u64 nsec_real, nsec_raw;
1153
	u8 cs_was_changed_seq;
1154
	unsigned long seq;
1155
	bool do_interp;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1175 1176 1177 1178 1179 1180
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
1181
		now = tk_clock_read(&tk->tkr_mono);
1182 1183 1184 1185 1186 1187 1188 1189 1190
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1204 1205 1206 1207 1208 1209

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
1210
		u64 partial_history_cycles, total_history_cycles;
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1236 1237 1238 1239
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1240 1241 1242 1243
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
1244
 * NOTE: Users should be converted to using getnstimeofday()
1245 1246 1247
 */
void do_gettimeofday(struct timeval *tv)
{
1248
	struct timespec64 now;
1249

1250
	getnstimeofday64(&now);
1251 1252 1253 1254
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
1255

1256
/**
1257 1258
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1259 1260 1261
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1262
int do_settimeofday64(const struct timespec64 *ts)
1263
{
1264
	struct timekeeper *tk = &tk_core.timekeeper;
1265
	struct timespec64 ts_delta, xt;
1266
	unsigned long flags;
1267
	int ret = 0;
1268

1269
	if (!timespec64_valid_strict(ts))
1270 1271
		return -EINVAL;

1272
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1273
	write_seqcount_begin(&tk_core.seq);
1274

1275
	timekeeping_forward_now(tk);
1276

1277
	xt = tk_xtime(tk);
1278 1279
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1280

1281 1282 1283 1284 1285
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1286
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1287

1288
	tk_set_xtime(tk, ts);
1289
out:
1290
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1291

1292
	write_seqcount_end(&tk_core.seq);
1293
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1294 1295 1296 1297

	/* signal hrtimers about time change */
	clock_was_set();

1298
	return ret;
1299
}
1300
EXPORT_SYMBOL(do_settimeofday64);
1301

1302 1303 1304 1305 1306 1307
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
1308
static int timekeeping_inject_offset(struct timespec64 *ts)
1309
{
1310
	struct timekeeper *tk = &tk_core.timekeeper;
1311
	unsigned long flags;
1312
	struct timespec64 tmp;
1313
	int ret = 0;
1314

1315
	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1316 1317
		return -EINVAL;

1318
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1319
	write_seqcount_begin(&tk_core.seq);
1320

1321
	timekeeping_forward_now(tk);
1322

1323
	/* Make sure the proposed value is valid */
1324 1325
	tmp = timespec64_add(tk_xtime(tk), *ts);
	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1326
	    !timespec64_valid_strict(&tmp)) {
1327 1328 1329
		ret = -EINVAL;
		goto error;
	}
1330

1331 1332
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1333

1334
error: /* even if we error out, we forwarded the time, so call update */
1335
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1336

1337
	write_seqcount_end(&tk_core.seq);
1338
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1339 1340 1341 1342

	/* signal hrtimers about time change */
	clock_was_set();

1343
	return ret;
1344
}
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
 *
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
 * confusion if the program gets run more than once; it would also be
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
 *						- TYT, 1992-01-01
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
void timekeeping_warp_clock(void)
{
	if (sys_tz.tz_minuteswest != 0) {
1371
		struct timespec64 adjust;
1372 1373 1374 1375 1376 1377 1378

		persistent_clock_is_local = 1;
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
	}
}
1379

1380
/**
1381
 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1382 1383
 *
 */
1384
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1385 1386
{
	tk->tai_offset = tai_offset;
1387
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1388 1389
}

1390 1391 1392 1393 1394
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1395
static int change_clocksource(void *data)
1396
{
1397
	struct timekeeper *tk = &tk_core.timekeeper;
1398
	struct clocksource *new, *old;
1399
	unsigned long flags;
1400

1401
	new = (struct clocksource *) data;
1402

1403
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1404
	write_seqcount_begin(&tk_core.seq);
1405

1406
	timekeeping_forward_now(tk);
1407 1408 1409 1410 1411 1412
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1413
			old = tk->tkr_mono.clock;
1414 1415 1416 1417 1418 1419 1420
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1421
	}
1422
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1423

1424
	write_seqcount_end(&tk_core.seq);
1425
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1426

1427 1428
	return 0;
}
1429

1430 1431 1432 1433 1434 1435 1436
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1437
int timekeeping_notify(struct clocksource *clock)
1438
{
1439
	struct timekeeper *tk = &tk_core.timekeeper;
1440

1441
	if (tk->tkr_mono.clock == clock)
1442
		return 0;
1443
	stop_machine(change_clocksource, clock, NULL);
1444
	tick_clock_notify();
1445
	return tk->tkr_mono.clock == clock ? 0 : -1;
1446
}
1447

1448
/**
1449 1450
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1451 1452 1453
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1454
void getrawmonotonic64(struct timespec64 *ts)
1455
{
1456
	struct timekeeper *tk = &tk_core.timekeeper;
1457
	unsigned long seq;
1458
	u64 nsecs;
1459 1460

	do {
1461
		seq = read_seqcount_begin(&tk_core.seq);
1462
		ts->tv_sec = tk->raw_sec;
P
Peter Zijlstra 已提交
1463
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1464

1465
	} while (read_seqcount_retry(&tk_core.seq, seq));
1466

1467 1468
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsecs);
1469
}
1470 1471
EXPORT_SYMBOL(getrawmonotonic64);

1472

1473
/**
1474
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1475
 */
1476
int timekeeping_valid_for_hres(void)
1477
{
1478
	struct timekeeper *tk = &tk_core.timekeeper;
1479 1480 1481 1482
	unsigned long seq;
	int ret;

	do {
1483
		seq = read_seqcount_begin(&tk_core.seq);
1484

1485
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1486

1487
	} while (read_seqcount_retry(&tk_core.seq, seq));
1488 1489 1490 1491

	return ret;
}

1492 1493 1494 1495 1496
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1497
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1498 1499
	unsigned long seq;
	u64 ret;
1500

J
John Stultz 已提交
1501
	do {
1502
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1503

1504
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1505

1506
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1507 1508

	return ret;
1509 1510
}

1511
/**
1512
 * read_persistent_clock -  Return time from the persistent clock.
1513 1514
 *
 * Weak dummy function for arches that do not yet support it.
1515 1516
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1517 1518 1519
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1520
void __weak read_persistent_clock(struct timespec *ts)
1521
{
1522 1523
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1524 1525
}

1526 1527 1528 1529 1530 1531 1532 1533
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1534
/**
X
Xunlei Pang 已提交
1535
 * read_boot_clock64 -  Return time of the system start.
1536 1537 1538
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1539
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1540 1541 1542
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1543
void __weak read_boot_clock64(struct timespec64 *ts)
1544 1545 1546 1547 1548
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1549 1550 1551 1552 1553 1554
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1555 1556 1557 1558 1559
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1560
	struct timekeeper *tk = &tk_core.timekeeper;
1561
	struct clocksource *clock;
1562
	unsigned long flags;
1563
	struct timespec64 now, boot, tmp;
1564

1565
	read_persistent_clock64(&now);
1566
	if (!timespec64_valid_strict(&now)) {
1567 1568 1569 1570
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1571
	} else if (now.tv_sec || now.tv_nsec)
1572
		persistent_clock_exists = true;
1573

1574
	read_boot_clock64(&boot);
1575
	if (!timespec64_valid_strict(&boot)) {
1576 1577 1578 1579 1580
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1581

1582
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1583
	write_seqcount_begin(&tk_core.seq);
1584 1585
	ntp_init();

1586
	clock = clocksource_default_clock();
1587 1588
	if (clock->enable)
		clock->enable(clock);
1589
	tk_setup_internals(tk, clock);
1590

1591
	tk_set_xtime(tk, &now);
1592
	tk->raw_sec = 0;
1593
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1594
		boot = tk_xtime(tk);
1595

1596
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1597
	tk_set_wall_to_mono(tk, tmp);
1598

1599
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1600

1601
	write_seqcount_end(&tk_core.seq);
1602
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1603 1604
}

1605
/* time in seconds when suspend began for persistent clock */
1606
static struct timespec64 timekeeping_suspend_time;
1607

1608 1609 1610 1611 1612 1613 1614
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1615
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1616
					   struct timespec64 *delta)
1617
{
1618
	if (!timespec64_valid_strict(delta)) {
1619 1620 1621
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1622 1623
		return;
	}
1624
	tk_xtime_add(tk, delta);
1625
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1626
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1627
	tk_debug_account_sleep_time(delta);
1628 1629
}

1630
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1666
/**
1667 1668
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1669
 *
1670
 * This hook is for architectures that cannot support read_persistent_clock64
1671
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1672
 * and also don't have an effective nonstop clocksource.
1673 1674 1675 1676
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1677
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1678
{
1679
	struct timekeeper *tk = &tk_core.timekeeper;
1680
	unsigned long flags;
1681

1682
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1683
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1684

1685
	timekeeping_forward_now(tk);
1686

1687
	__timekeeping_inject_sleeptime(tk, delta);
1688

1689
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1690

1691
	write_seqcount_end(&tk_core.seq);
1692
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1693 1694 1695 1696

	/* signal hrtimers about time change */
	clock_was_set();
}
1697
#endif
1698

1699 1700 1701
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1702
void timekeeping_resume(void)
1703
{
1704
	struct timekeeper *tk = &tk_core.timekeeper;
1705
	struct clocksource *clock = tk->tkr_mono.clock;
1706
	unsigned long flags;
1707
	struct timespec64 ts_new, ts_delta;
1708
	u64 cycle_now;
1709

1710
	sleeptime_injected = false;
1711
	read_persistent_clock64(&ts_new);
1712

1713
	clockevents_resume();
1714 1715
	clocksource_resume();

1716
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1717
	write_seqcount_begin(&tk_core.seq);
1718

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1731
	cycle_now = tk_clock_read(&tk->tkr_mono);
1732
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1733
		cycle_now > tk->tkr_mono.cycle_last) {
1734
		u64 nsec, cyc_delta;
1735

1736 1737 1738
		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
					      tk->tkr_mono.mask);
		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1739
		ts_delta = ns_to_timespec64(nsec);
1740
		sleeptime_injected = true;
1741 1742
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1743
		sleeptime_injected = true;
1744
	}
1745

1746
	if (sleeptime_injected)
1747 1748 1749
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1750
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1751 1752
	tk->tkr_raw.cycle_last  = cycle_now;

1753
	tk->ntp_error = 0;
1754
	timekeeping_suspended = 0;
1755
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1756
	write_seqcount_end(&tk_core.seq);
1757
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1758 1759 1760

	touch_softlockup_watchdog();

1761
	tick_resume();
1762
	hrtimers_resume();
1763 1764
}

1765
int timekeeping_suspend(void)
1766
{
1767
	struct timekeeper *tk = &tk_core.timekeeper;
1768
	unsigned long flags;
1769 1770
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1771

1772
	read_persistent_clock64(&timekeeping_suspend_time);
1773

1774 1775 1776 1777 1778 1779
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1780
		persistent_clock_exists = true;
1781

1782
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1783
	write_seqcount_begin(&tk_core.seq);
1784
	timekeeping_forward_now(tk);
1785
	timekeeping_suspended = 1;
1786

1787
	if (persistent_clock_exists) {
1788
		/*
1789 1790 1791 1792
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1793
		 */
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1807
	}
1808 1809

	timekeeping_update(tk, TK_MIRROR);
1810
	halt_fast_timekeeper(tk);
1811
	write_seqcount_end(&tk_core.seq);
1812
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1813

1814
	tick_suspend();
M
Magnus Damm 已提交
1815
	clocksource_suspend();
1816
	clockevents_suspend();
1817 1818 1819 1820 1821

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1822
static struct syscore_ops timekeeping_syscore_ops = {
1823 1824 1825 1826
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1827
static int __init timekeeping_init_ops(void)
1828
{
1829 1830
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1831
}
1832
device_initcall(timekeeping_init_ops);
1833 1834

/*
1835
 * Apply a multiplier adjustment to the timekeeper
1836
 */
1837 1838
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
1839
							 s32 mult_adj)
1840
{
1841
	s64 interval = tk->cycle_interval;
1842

1843 1844 1845
	if (mult_adj == 0) {
		return;
	} else if (mult_adj == -1) {
1846
		interval = -interval;
1847 1848 1849 1850
		offset = -offset;
	} else if (mult_adj != 1) {
		interval *= mult_adj;
		offset *= mult_adj;
1851
	}
1852

1853 1854 1855
	/*
	 * So the following can be confusing.
	 *
1856
	 * To keep things simple, lets assume mult_adj == 1 for now.
1857
	 *
1858
	 * When mult_adj != 1, remember that the interval and offset values
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 */
1900
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1901 1902 1903 1904 1905
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1906
	tk->tkr_mono.mult += mult_adj;
1907
	tk->xtime_interval += interval;
1908
	tk->tkr_mono.xtime_nsec -= offset;
1909 1910 1911
}

/*
1912 1913
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
1914
 */
1915
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1916
{
1917
	u32 mult;
1918

1919
	/*
1920 1921
	 * Determine the multiplier from the current NTP tick length.
	 * Avoid expensive division when the tick length doesn't change.
1922
	 */
1923 1924 1925 1926 1927 1928
	if (likely(tk->ntp_tick == ntp_tick_length())) {
		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
	} else {
		tk->ntp_tick = ntp_tick_length();
		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
				 tk->xtime_remainder, tk->cycle_interval);
1929
	}
1930

1931 1932 1933 1934 1935 1936 1937 1938
	/*
	 * If the clock is behind the NTP time, increase the multiplier by 1
	 * to catch up with it. If it's ahead and there was a remainder in the
	 * tick division, the clock will slow down. Otherwise it will stay
	 * ahead until the tick length changes to a non-divisible value.
	 */
	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
	mult += tk->ntp_err_mult;
1939

1940
	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1941

1942 1943 1944
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1945 1946
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1947 1948
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1949
	}
1950 1951 1952 1953 1954 1955 1956

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
1957 1958 1959
	 * Now, since we have already accumulated the second and the NTP
	 * subsystem has been notified via second_overflow(), we need to skip
	 * the next update.
1960
	 */
1961
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1962 1963 1964 1965
		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
							tk->tkr_mono.shift;
		tk->xtime_sec--;
		tk->skip_second_overflow = 1;
1966
	}
1967 1968
}

1969 1970 1971
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1972
 * Helper function that accumulates the nsecs greater than a second
1973 1974 1975 1976
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1977
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1978
{
1979
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1980
	unsigned int clock_set = 0;
1981

1982
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1983 1984
		int leap;

1985
		tk->tkr_mono.xtime_nsec -= nsecps;
1986 1987
		tk->xtime_sec++;

1988 1989 1990 1991 1992 1993 1994 1995 1996
		/*
		 * Skip NTP update if this second was accumulated before,
		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
		 */
		if (unlikely(tk->skip_second_overflow)) {
			tk->skip_second_overflow = 0;
			continue;
		}

1997 1998
		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1999
		if (unlikely(leap)) {
2000
			struct timespec64 ts;
2001 2002

			tk->xtime_sec += leap;
2003

2004 2005 2006
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
2007
				timespec64_sub(tk->wall_to_monotonic, ts));
2008

2009 2010
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

2011
			clock_set = TK_CLOCK_WAS_SET;
2012
		}
2013
	}
2014
	return clock_set;
2015 2016
}

2017 2018 2019 2020 2021 2022 2023 2024 2025
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
2026 2027
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
				    u32 shift, unsigned int *clock_set)
2028
{
2029
	u64 interval = tk->cycle_interval << shift;
2030
	u64 snsec_per_sec;
2031

Z
Zhen Lei 已提交
2032
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
2033
	if (offset < interval)
2034 2035 2036
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
2037
	offset -= interval;
2038
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
2039
	tk->tkr_raw.cycle_last  += interval;
2040

2041
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2042
	*clock_set |= accumulate_nsecs_to_secs(tk);
2043

2044
	/* Accumulate raw time */
2045 2046 2047 2048
	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2049
		tk->raw_sec++;
2050 2051 2052
	}

	/* Accumulate error between NTP and clock interval */
2053
	tk->ntp_error += tk->ntp_tick << shift;
2054 2055
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2056 2057 2058 2059

	return offset;
}

2060 2061 2062 2063
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
2064
void update_wall_time(void)
2065
{
2066
	struct timekeeper *real_tk = &tk_core.timekeeper;
2067
	struct timekeeper *tk = &shadow_timekeeper;
2068
	u64 offset;
2069
	int shift = 0, maxshift;
2070
	unsigned int clock_set = 0;
J
John Stultz 已提交
2071 2072
	unsigned long flags;

2073
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2074 2075 2076

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2077
		goto out;
2078

J
John Stultz 已提交
2079
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2080
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
2081
#else
2082
	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2083
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2084 2085
#endif

2086
	/* Check if there's really nothing to do */
2087
	if (offset < real_tk->cycle_interval)
2088 2089
		goto out;

2090
	/* Do some additional sanity checking */
2091
	timekeeping_check_update(tk, offset);
2092

2093 2094 2095 2096
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2097
	 * that is smaller than the offset.  We then accumulate that
2098 2099
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2100
	 */
2101
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2102
	shift = max(0, shift);
2103
	/* Bound shift to one less than what overflows tick_length */
2104
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2105
	shift = min(shift, maxshift);
2106
	while (offset >= tk->cycle_interval) {
2107 2108
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2109
		if (offset < tk->cycle_interval<<shift)
2110
			shift--;
2111 2112
	}

2113
	/* Adjust the multiplier to correct NTP error */
2114
	timekeeping_adjust(tk, offset);
2115

J
John Stultz 已提交
2116 2117
	/*
	 * Finally, make sure that after the rounding
2118
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2119
	 */
2120
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2121

2122
	write_seqcount_begin(&tk_core.seq);
2123 2124 2125 2126 2127 2128 2129
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2130
	 * memcpy under the tk_core.seq against one before we start
2131 2132
	 * updating.
	 */
2133
	timekeeping_update(tk, clock_set);
2134
	memcpy(real_tk, tk, sizeof(*tk));
2135
	/* The memcpy must come last. Do not put anything here! */
2136
	write_seqcount_end(&tk_core.seq);
2137
out:
2138
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2139
	if (clock_set)
2140 2141
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2142
}
T
Tomas Janousek 已提交
2143 2144

/**
2145 2146
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2147
 *
2148
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2149 2150 2151 2152 2153 2154
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2155
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2156
{
2157
	struct timekeeper *tk = &tk_core.timekeeper;
2158 2159
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

2160
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2161
}
2162
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2163

2164 2165
unsigned long get_seconds(void)
{
2166
	struct timekeeper *tk = &tk_core.timekeeper;
2167 2168

	return tk->xtime_sec;
2169 2170 2171
}
EXPORT_SYMBOL(get_seconds);

2172 2173
struct timespec __current_kernel_time(void)
{
2174
	struct timekeeper *tk = &tk_core.timekeeper;
2175

2176
	return timespec64_to_timespec(tk_xtime(tk));
2177
}
2178

2179
struct timespec64 current_kernel_time64(void)
2180
{
2181
	struct timekeeper *tk = &tk_core.timekeeper;
2182
	struct timespec64 now;
2183 2184 2185
	unsigned long seq;

	do {
2186
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2187

2188
		now = tk_xtime(tk);
2189
	} while (read_seqcount_retry(&tk_core.seq, seq));
2190

2191
	return now;
2192
}
2193
EXPORT_SYMBOL(current_kernel_time64);
2194

2195
struct timespec64 get_monotonic_coarse64(void)
2196
{
2197
	struct timekeeper *tk = &tk_core.timekeeper;
2198
	struct timespec64 now, mono;
2199 2200 2201
	unsigned long seq;

	do {
2202
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2203

2204 2205
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2206
	} while (read_seqcount_retry(&tk_core.seq, seq));
2207

2208
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2209
				now.tv_nsec + mono.tv_nsec);
2210

2211
	return now;
2212
}
2213
EXPORT_SYMBOL(get_monotonic_coarse64);
2214 2215

/*
2216
 * Must hold jiffies_lock
2217 2218 2219 2220 2221 2222
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2223

2224
/**
2225
 * ktime_get_update_offsets_now - hrtimer helper
2226
 * @cwsseq:	pointer to check and store the clock was set sequence number
2227 2228
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2229
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2230
 *
2231 2232 2233 2234
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2235
 * Called from hrtimer_interrupt() or retrigger_next_event()
2236
 */
2237 2238
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
2239
{
2240
	struct timekeeper *tk = &tk_core.timekeeper;
2241
	unsigned int seq;
2242 2243
	ktime_t base;
	u64 nsecs;
2244 2245

	do {
2246
		seq = read_seqcount_begin(&tk_core.seq);
2247

2248 2249
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2250 2251
		base = ktime_add_ns(base, nsecs);

2252 2253 2254 2255 2256 2257
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
2258 2259

		/* Handle leapsecond insertion adjustments */
T
Thomas Gleixner 已提交
2260
		if (unlikely(base >= tk->next_leap_ktime))
2261 2262
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2263
	} while (read_seqcount_retry(&tk_core.seq, seq));
2264

2265
	return base;
2266 2267
}

2268
/**
2269
 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2270
 */
2271
static int timekeeping_validate_timex(struct timex *txc)
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
{
	if (txc->modes & ADJ_ADJTIME) {
		/* singleshot must not be used with any other mode bits */
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
			return -EINVAL;
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
			return -EINVAL;
	}

	if (txc->modes & ADJ_SETOFFSET) {
		/* In order to inject time, you gotta be super-user! */
		if (!capable(CAP_SYS_TIME))
			return -EPERM;

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
		/*
		 * Validate if a timespec/timeval used to inject a time
		 * offset is valid.  Offsets can be postive or negative, so
		 * we don't check tv_sec. The value of the timeval/timespec
		 * is the sum of its fields,but *NOTE*:
		 * The field tv_usec/tv_nsec must always be non-negative and
		 * we can't have more nanoseconds/microseconds than a second.
		 */
		if (txc->time.tv_usec < 0)
			return -EINVAL;
2309

2310 2311
		if (txc->modes & ADJ_NANO) {
			if (txc->time.tv_usec >= NSEC_PER_SEC)
2312 2313
				return -EINVAL;
		} else {
2314
			if (txc->time.tv_usec >= USEC_PER_SEC)
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
				return -EINVAL;
		}
	}

	/*
	 * Check for potential multiplication overflows that can
	 * only happen on 64-bit systems:
	 */
	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
		if (LLONG_MIN / PPM_SCALE > txc->freq)
			return -EINVAL;
		if (LLONG_MAX / PPM_SCALE < txc->freq)
			return -EINVAL;
	}

	return 0;
}


2334 2335 2336 2337 2338
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2339
	struct timekeeper *tk = &tk_core.timekeeper;
2340
	unsigned long flags;
2341
	struct timespec64 ts;
2342
	s32 orig_tai, tai;
2343 2344 2345
	int ret;

	/* Validate the data before disabling interrupts */
2346
	ret = timekeeping_validate_timex(txc);
2347 2348 2349
	if (ret)
		return ret;

2350
	if (txc->modes & ADJ_SETOFFSET) {
2351
		struct timespec64 delta;
2352 2353 2354 2355 2356 2357 2358 2359 2360
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2361
	getnstimeofday64(&ts);
2362

2363
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2364
	write_seqcount_begin(&tk_core.seq);
2365

2366
	orig_tai = tai = tk->tai_offset;
2367
	ret = __do_adjtimex(txc, &ts, &tai);
2368

2369 2370
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2371
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2372
	}
2373 2374
	tk_update_leap_state(tk);

2375
	write_seqcount_end(&tk_core.seq);
2376 2377
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2378 2379 2380
	if (tai != orig_tai)
		clock_was_set();

2381 2382
	ntp_notify_cmos_timer();

2383 2384
	return ret;
}
2385 2386 2387 2388 2389

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2390
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2391
{
2392 2393 2394
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2395
	write_seqcount_begin(&tk_core.seq);
2396

2397
	__hardpps(phase_ts, raw_ts);
2398

2399
	write_seqcount_end(&tk_core.seq);
2400
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2401 2402
}
EXPORT_SYMBOL(hardpps);
2403
#endif /* CONFIG_NTP_PPS */
2404

T
Torben Hohn 已提交
2405 2406 2407 2408 2409 2410 2411 2412
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2413
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2414
	do_timer(ticks);
2415
	write_sequnlock(&jiffies_lock);
2416
	update_wall_time();
T
Torben Hohn 已提交
2417
}