sched.c 222.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/stop_machine.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <linux/slab.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
78
#include <asm/mutex.h>
L
Linus Torvalds 已提交
79

80
#include "sched_cpupri.h"
T
Tejun Heo 已提交
81
#include "workqueue_sched.h"
82
#include "sched_autogroup.h"
83

84
#define CREATE_TRACE_POINTS
85
#include <trace/events/sched.h>
86

L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
106
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
107
 */
108
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
109

I
Ingo Molnar 已提交
110 111 112
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
113 114 115
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
116
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
117 118 119
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
120

121 122 123 124 125
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

126 127
static inline int rt_policy(int policy)
{
128
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
129 130 131 132 133 134 135 136 137
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
138
/*
I
Ingo Molnar 已提交
139
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
140
 */
I
Ingo Molnar 已提交
141 142 143 144 145
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

146
struct rt_bandwidth {
I
Ingo Molnar 已提交
147
	/* nests inside the rq lock: */
148
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
149 150 151
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

185
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
186

187 188 189 190 191
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

192 193 194
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
195 196 197 198 199 200
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

201
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
202 203 204 205 206
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

207
	raw_spin_lock(&rt_b->rt_runtime_lock);
208
	for (;;) {
209 210 211
		unsigned long delta;
		ktime_t soft, hard;

212 213 214 215 216
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
217 218 219 220 221

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
222
				HRTIMER_MODE_ABS_PINNED, 0);
223
	}
224
	raw_spin_unlock(&rt_b->rt_runtime_lock);
225 226 227 228 229 230 231 232 233
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

234 235 236 237 238 239
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
240
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
241

242 243
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
244 245
struct cfs_rq;

P
Peter Zijlstra 已提交
246 247
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
248
/* task group related information */
249
struct task_group {
250
	struct cgroup_subsys_state css;
251

252
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
253 254 255 256 257
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
P
Peter Zijlstra 已提交
258 259

	atomic_t load_weight;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
275 276 277 278

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif
S
Srivatsa Vaddagiri 已提交
279 280
};

281
/* task_group_lock serializes the addition/removal of task groups */
282
static DEFINE_SPINLOCK(task_group_lock);
283

284 285
#ifdef CONFIG_FAIR_GROUP_SCHED

286
# define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
287

288
/*
289 290 291 292
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
293 294 295
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
296
#define MIN_SHARES	2
297
#define MAX_SHARES	(1UL << 18)
298

299
static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
300 301
#endif

S
Srivatsa Vaddagiri 已提交
302
/* Default task group.
I
Ingo Molnar 已提交
303
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
304
 */
305
struct task_group root_task_group;
S
Srivatsa Vaddagiri 已提交
306

D
Dhaval Giani 已提交
307
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
308

I
Ingo Molnar 已提交
309 310 311 312 313 314
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
315
	u64 min_vruntime;
I
Ingo Molnar 已提交
316 317 318

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
319 320 321 322 323 324

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
325 326
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
327
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
328

P
Peter Zijlstra 已提交
329
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
330

331
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
332 333
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
334 335
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
336 337 338 339 340 341
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
342
	int on_list;
I
Ingo Molnar 已提交
343 344
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
345 346 347

#ifdef CONFIG_SMP
	/*
348
	 * the part of load.weight contributed by tasks
349
	 */
350
	unsigned long task_weight;
351

352 353 354 355 356 357 358
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
359

360
	/*
361 362 363 364 365
	 * Maintaining per-cpu shares distribution for group scheduling
	 *
	 * load_stamp is the last time we updated the load average
	 * load_last is the last time we updated the load average and saw load
	 * load_unacc_exec_time is currently unaccounted execution time
366
	 */
P
Peter Zijlstra 已提交
367 368
	u64 load_avg;
	u64 load_period;
369
	u64 load_stamp, load_last, load_unacc_exec_time;
370

P
Peter Zijlstra 已提交
371
	unsigned long load_contribution;
372
#endif
I
Ingo Molnar 已提交
373 374
#endif
};
L
Linus Torvalds 已提交
375

I
Ingo Molnar 已提交
376 377 378
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
379
	unsigned long rt_nr_running;
380
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
381 382
	struct {
		int curr; /* highest queued rt task prio */
383
#ifdef CONFIG_SMP
384
		int next; /* next highest */
385
#endif
386
	} highest_prio;
P
Peter Zijlstra 已提交
387
#endif
P
Peter Zijlstra 已提交
388
#ifdef CONFIG_SMP
389
	unsigned long rt_nr_migratory;
390
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
391
	int overloaded;
392
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
393
#endif
P
Peter Zijlstra 已提交
394
	int rt_throttled;
P
Peter Zijlstra 已提交
395
	u64 rt_time;
P
Peter Zijlstra 已提交
396
	u64 rt_runtime;
I
Ingo Molnar 已提交
397
	/* Nests inside the rq lock: */
398
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
399

400
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
401 402
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
403 404 405 406
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
407 408
};

G
Gregory Haskins 已提交
409 410 411 412
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
413 414
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
415 416 417 418 419 420
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
421 422
	cpumask_var_t span;
	cpumask_var_t online;
423

I
Ingo Molnar 已提交
424
	/*
425 426 427
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
428
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
429
	atomic_t rto_count;
430
	struct cpupri cpupri;
G
Gregory Haskins 已提交
431 432
};

433 434 435 436
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
437 438
static struct root_domain def_root_domain;

439
#endif /* CONFIG_SMP */
G
Gregory Haskins 已提交
440

L
Linus Torvalds 已提交
441 442 443 444 445 446 447
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
448
struct rq {
449
	/* runqueue lock: */
450
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
451 452 453 454 455 456

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
457 458
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
459
	unsigned long last_load_update_tick;
460
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
461
	u64 nohz_stamp;
462
	unsigned char nohz_balance_kick;
463
#endif
464 465
	unsigned int skip_clock_update;

466 467
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
468 469 470 471
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
472 473
	struct rt_rq rt;

I
Ingo Molnar 已提交
474
#ifdef CONFIG_FAIR_GROUP_SCHED
475 476
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
477 478
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
479
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
480 481 482 483 484 485 486 487 488 489
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

490
	struct task_struct *curr, *idle, *stop;
491
	unsigned long next_balance;
L
Linus Torvalds 已提交
492
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
493

494
	u64 clock;
495
	u64 clock_task;
I
Ingo Molnar 已提交
496

L
Linus Torvalds 已提交
497 498 499
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
500
	struct root_domain *rd;
L
Linus Torvalds 已提交
501 502
	struct sched_domain *sd;

503 504
	unsigned long cpu_power;

505
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
506
	/* For active balancing */
507
	int post_schedule;
L
Linus Torvalds 已提交
508 509
	int active_balance;
	int push_cpu;
510
	struct cpu_stop_work active_balance_work;
511 512
	/* cpu of this runqueue: */
	int cpu;
513
	int online;
L
Linus Torvalds 已提交
514

515
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
516

517 518
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
519 520
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
521 522
#endif

523 524 525 526
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64 prev_irq_time;
#endif

527 528 529 530
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
531
#ifdef CONFIG_SCHED_HRTICK
532 533 534 535
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
536 537 538
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
539 540 541
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
542 543
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
544 545

	/* sys_sched_yield() stats */
546
	unsigned int yld_count;
L
Linus Torvalds 已提交
547 548

	/* schedule() stats */
549 550 551
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
552 553

	/* try_to_wake_up() stats */
554 555
	unsigned int ttwu_count;
	unsigned int ttwu_local;
L
Linus Torvalds 已提交
556 557 558
#endif
};

559
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
560

561

562
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
I
Ingo Molnar 已提交
563

564 565 566 567 568 569 570 571 572
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

573
#define rcu_dereference_check_sched_domain(p) \
574 575 576 577
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
578 579
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
580
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
581 582 583 584
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
585
#define for_each_domain(cpu, __sd) \
586
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
587 588 589 590 591

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
592
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
593

594 595 596 597 598 599 600 601 602 603 604 605
#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
 * We use task_subsys_state_check() and extend the RCU verification
 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
 * holds that lock for each task it moves into the cgroup. Therefore
 * by holding that lock, we pin the task to the current cgroup.
 */
static inline struct task_group *task_group(struct task_struct *p)
{
606
	struct task_group *tg;
607 608 609 610
	struct cgroup_subsys_state *css;

	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
			lockdep_is_held(&task_rq(p)->lock));
611 612 613
	tg = container_of(css, struct task_group, css);

	return autogroup_task_group(p, tg);
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

640
static void update_rq_clock_task(struct rq *rq, s64 delta);
641

642
static void update_rq_clock(struct rq *rq)
643
{
644
	s64 delta;
645

646 647
	if (rq->skip_clock_update)
		return;
648

649 650 651
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
652 653
}

I
Ingo Molnar 已提交
654 655 656 657 658 659 660 661 662
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
663 664
/**
 * runqueue_is_locked
665
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
666 667 668 669 670
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
671
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
672
{
673
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
674 675
}

I
Ingo Molnar 已提交
676 677 678
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
679 680 681 682

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
683
enum {
P
Peter Zijlstra 已提交
684
#include "sched_features.h"
I
Ingo Molnar 已提交
685 686
};

P
Peter Zijlstra 已提交
687 688 689 690 691
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
692
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
693 694 695 696 697 698 699 700 701
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

702
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
703 704 705 706 707 708
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
709
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
710 711 712 713
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
714 715 716
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
717
	}
L
Li Zefan 已提交
718
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
719

L
Li Zefan 已提交
720
	return 0;
P
Peter Zijlstra 已提交
721 722 723 724 725 726 727
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
728
	char *cmp;
P
Peter Zijlstra 已提交
729 730 731 732 733 734 735 736 737 738
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
739
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
740

H
Hillf Danton 已提交
741
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
742 743 744 745 746
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
747
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
P
Peter Zijlstra 已提交
748 749 750 751 752 753 754 755 756 757 758
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

759
	*ppos += cnt;
P
Peter Zijlstra 已提交
760 761 762 763

	return cnt;
}

L
Li Zefan 已提交
764 765 766 767 768
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

769
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
770 771 772 773 774
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
789

790 791 792 793 794 795
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

796 797 798 799 800 801 802 803
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
804
/*
P
Peter Zijlstra 已提交
805
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
806 807
 * default: 1s
 */
P
Peter Zijlstra 已提交
808
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
809

810 811
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
812 813 814 815 816
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
817

818 819 820 821 822 823 824
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
825
	if (sysctl_sched_rt_runtime < 0)
826 827 828 829
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
830

L
Linus Torvalds 已提交
831
#ifndef prepare_arch_switch
832 833 834 835 836 837
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

838 839 840 841 842
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

843
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
844
static inline int task_running(struct rq *rq, struct task_struct *p)
845
{
846
	return task_current(rq, p);
847 848
}

849
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
850 851 852
{
}

853
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
854
{
855 856 857 858
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
859 860 861 862 863 864 865
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

866
	raw_spin_unlock_irq(&rq->lock);
867 868 869
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
870
static inline int task_running(struct rq *rq, struct task_struct *p)
871 872 873 874
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
875
	return task_current(rq, p);
876 877 878
#endif
}

879
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 881 882 883 884 885 886 887 888 889
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
890
	raw_spin_unlock_irq(&rq->lock);
891
#else
892
	raw_spin_unlock(&rq->lock);
893 894 895
#endif
}

896
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
897 898 899 900 901 902 903 904 905 906 907 908
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
909
#endif
910 911
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
912

913
/*
P
Peter Zijlstra 已提交
914 915
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
916 917 918
 */
static inline int task_is_waking(struct task_struct *p)
{
919
	return unlikely(p->state == TASK_WAKING);
920 921
}

922 923 924 925
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
926
static inline struct rq *__task_rq_lock(struct task_struct *p)
927 928
	__acquires(rq->lock)
{
929 930
	struct rq *rq;

931
	for (;;) {
932
		rq = task_rq(p);
933
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
934
		if (likely(rq == task_rq(p)))
935
			return rq;
936
		raw_spin_unlock(&rq->lock);
937 938 939
	}
}

L
Linus Torvalds 已提交
940 941
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
942
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
943 944
 * explicitly disabling preemption.
 */
945
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
946 947
	__acquires(rq->lock)
{
948
	struct rq *rq;
L
Linus Torvalds 已提交
949

950 951 952
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
953
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
954
		if (likely(rq == task_rq(p)))
955
			return rq;
956
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
957 958 959
	}
}

A
Alexey Dobriyan 已提交
960
static void __task_rq_unlock(struct rq *rq)
961 962
	__releases(rq->lock)
{
963
	raw_spin_unlock(&rq->lock);
964 965
}

966
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
967 968
	__releases(rq->lock)
{
969
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
970 971 972
}

/*
973
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
974
 */
A
Alexey Dobriyan 已提交
975
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
976 977
	__acquires(rq->lock)
{
978
	struct rq *rq;
L
Linus Torvalds 已提交
979 980 981

	local_irq_disable();
	rq = this_rq();
982
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
983 984 985 986

	return rq;
}

P
Peter Zijlstra 已提交
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1008
	if (!cpu_active(cpu_of(rq)))
1009
		return 0;
P
Peter Zijlstra 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1029
	raw_spin_lock(&rq->lock);
1030
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1031
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1032
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1033 1034 1035 1036

	return HRTIMER_NORESTART;
}

1037
#ifdef CONFIG_SMP
1038 1039 1040 1041
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1042
{
1043
	struct rq *rq = arg;
1044

1045
	raw_spin_lock(&rq->lock);
1046 1047
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1048
	raw_spin_unlock(&rq->lock);
1049 1050
}

1051 1052 1053 1054 1055 1056
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1057
{
1058 1059
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1060

1061
	hrtimer_set_expires(timer, time);
1062 1063 1064 1065

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1066
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1067 1068
		rq->hrtick_csd_pending = 1;
	}
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1083
		hrtick_clear(cpu_rq(cpu));
1084 1085 1086 1087 1088 1089
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1090
static __init void init_hrtick(void)
1091 1092 1093
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1094 1095 1096 1097 1098 1099 1100 1101
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1102
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1103
			HRTIMER_MODE_REL_PINNED, 0);
1104
}
1105

A
Andrew Morton 已提交
1106
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1107 1108
{
}
1109
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1110

1111
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1112
{
1113 1114
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1115

1116 1117 1118 1119
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1120

1121 1122
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1123
}
A
Andrew Morton 已提交
1124
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1125 1126 1127 1128 1129 1130 1131 1132
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1133 1134 1135
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1136
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1137

I
Ingo Molnar 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1151
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1152 1153 1154
{
	int cpu;

1155
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1156

1157
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1158 1159
		return;

1160
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1177
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1178 1179
		return;
	resched_task(cpu_curr(cpu));
1180
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1181
}
1182 1183

#ifdef CONFIG_NO_HZ
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		for_each_cpu(i, sched_domain_span(sd))
			if (!idle_cpu(i))
				return i;
	}
	return cpu;
}
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1237
	set_tsk_need_resched(rq->idle);
1238 1239 1240 1241 1242 1243

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1244

1245
#endif /* CONFIG_NO_HZ */
1246

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
1257 1258 1259 1260 1261 1262
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1274
#else /* !CONFIG_SMP */
1275
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1276
{
1277
	assert_raw_spin_locked(&task_rq(p)->lock);
1278
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1279
}
1280 1281 1282 1283

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1284 1285 1286 1287

static void sched_avg_update(struct rq *rq)
{
}
1288
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1289

1290 1291 1292 1293 1294 1295 1296 1297
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1298 1299 1300
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1301
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1302

1303 1304 1305
/*
 * delta *= weight / lw
 */
1306
static unsigned long
1307 1308 1309 1310 1311
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1312 1313 1314 1315 1316 1317 1318
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1319 1320 1321 1322 1323

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1324
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1325
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1326 1327
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1328
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1329

1330
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1331 1332
}

1333
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1334 1335
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1336
	lw->inv_weight = 0;
1337 1338
}

1339
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1340 1341
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1342
	lw->inv_weight = 0;
1343 1344
}

P
Peter Zijlstra 已提交
1345 1346 1347 1348 1349 1350
static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

1351 1352 1353 1354
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1355
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1356 1357 1358 1359
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1360 1361
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1371 1372 1373
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1374 1375
 */
static const int prio_to_weight[40] = {
1376 1377 1378 1379 1380 1381 1382 1383
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1384 1385
};

1386 1387 1388 1389 1390 1391 1392
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1393
static const u32 prio_to_wmult[40] = {
1394 1395 1396 1397 1398 1399 1400 1401
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1402
};
1403

1404 1405 1406 1407 1408 1409 1410 1411
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1412 1413
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1414 1415
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1416 1417
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1418 1419
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1420 1421
#endif

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1432
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1433
typedef int (*tg_visitor)(struct task_group *, void *);
1434 1435 1436 1437 1438

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1439
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1440 1441
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1442
	int ret;
1443 1444 1445 1446

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1447 1448 1449
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1450 1451 1452 1453 1454 1455 1456
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1457 1458 1459
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1460 1461 1462 1463 1464

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1465
out_unlock:
1466
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1467 1468

	return ret;
1469 1470
}

P
Peter Zijlstra 已提交
1471 1472 1473
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1474
}
P
Peter Zijlstra 已提交
1475 1476 1477
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1517 1518
static unsigned long power_of(int cpu)
{
1519
	return cpu_rq(cpu)->cpu_power;
1520 1521
}

P
Peter Zijlstra 已提交
1522 1523 1524 1525 1526
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1527
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1528

1529 1530
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1531 1532
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1533 1534 1535 1536 1537

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1538 1539

/*
1540 1541 1542
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1543
 */
P
Peter Zijlstra 已提交
1544
static int tg_load_down(struct task_group *tg, void *data)
1545
{
1546
	unsigned long load;
P
Peter Zijlstra 已提交
1547
	long cpu = (long)data;
1548

1549 1550 1551 1552
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
P
Peter Zijlstra 已提交
1553
		load *= tg->se[cpu]->load.weight;
1554 1555
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1556

1557
	tg->cfs_rq[cpu]->h_load = load;
1558

P
Peter Zijlstra 已提交
1559
	return 0;
1560 1561
}

P
Peter Zijlstra 已提交
1562
static void update_h_load(long cpu)
1563
{
P
Peter Zijlstra 已提交
1564
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1565 1566
}

1567 1568
#endif

1569 1570
#ifdef CONFIG_PREEMPT

1571 1572
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1573
/*
1574 1575 1576 1577 1578 1579
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1580
 */
1581 1582 1583 1584 1585
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1586
	raw_spin_unlock(&this_rq->lock);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1601 1602 1603 1604 1605 1606
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1607
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1608
		if (busiest < this_rq) {
1609 1610 1611 1612
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1613 1614
			ret = 1;
		} else
1615 1616
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1617 1618 1619 1620
	}
	return ret;
}

1621 1622 1623 1624 1625 1626 1627 1628 1629
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1630
		raw_spin_unlock(&this_rq->lock);
1631 1632 1633 1634 1635 1636
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1637 1638 1639
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1640
	raw_spin_unlock(&busiest->lock);
1641 1642
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1686 1687
#endif

1688
static void calc_load_account_idle(struct rq *this_rq);
1689
static void update_sysctl(void);
1690
static int get_update_sysctl_factor(void);
1691
static void update_cpu_load(struct rq *this_rq);
1692

P
Peter Zijlstra 已提交
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1706

1707
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1708

1709
#define sched_class_highest (&stop_sched_class)
1710 1711
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1712

1713 1714
#include "sched_stats.h"

1715
static void inc_nr_running(struct rq *rq)
1716 1717 1718 1719
{
	rq->nr_running++;
}

1720
static void dec_nr_running(struct rq *rq)
1721 1722 1723 1724
{
	rq->nr_running--;
}

1725 1726
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
1727 1728 1729 1730 1731 1732 1733 1734
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1735

I
Ingo Molnar 已提交
1736 1737
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1738 1739
}

1740
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1741
{
1742
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1743
	sched_info_queued(p);
1744
	p->sched_class->enqueue_task(rq, p, flags);
I
Ingo Molnar 已提交
1745
	p->se.on_rq = 1;
1746 1747
}

1748
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1749
{
1750
	update_rq_clock(rq);
1751
	sched_info_dequeued(p);
1752
	p->sched_class->dequeue_task(rq, p, flags);
I
Ingo Molnar 已提交
1753
	p->se.on_rq = 0;
1754 1755
}

1756 1757 1758
/*
 * activate_task - move a task to the runqueue.
 */
1759
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1760 1761 1762 1763
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1764
	enqueue_task(rq, p, flags);
1765 1766 1767 1768 1769 1770
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1771
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1772 1773 1774 1775
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1776
	dequeue_task(rq, p, flags);
1777 1778 1779
	dec_nr_running(rq);
}

1780 1781
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

1782 1783 1784 1785 1786 1787 1788
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
1789 1790 1791
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
1792
 */
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
1847 1848 1849
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
1850
#endif /* CONFIG_64BIT */
1851

1852 1853 1854 1855
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
1856 1857 1858
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
1859
	s64 delta;
1860 1861 1862 1863 1864 1865 1866 1867
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
1868 1869 1870
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

1871
	irq_time_write_begin();
1872 1873 1874 1875 1876 1877 1878
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
1879
		__this_cpu_add(cpu_hardirq_time, delta);
1880
	else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1881
		__this_cpu_add(cpu_softirq_time, delta);
1882

1883
	irq_time_write_end();
1884 1885
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
1886
EXPORT_SYMBOL_GPL(account_system_vtime);
1887

1888
static void update_rq_clock_task(struct rq *rq, s64 delta)
1889
{
1890 1891
	s64 irq_delta;

1892
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
	rq->clock_task += delta;

	if (irq_delta && sched_feat(NONIRQ_POWER))
		sched_rt_avg_update(rq, irq_delta);
1918 1919
}

1920
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
1921

1922
static void update_rq_clock_task(struct rq *rq, s64 delta)
1923
{
1924
	rq->clock_task += delta;
1925 1926
}

1927
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1928

1929 1930 1931
#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
1932
#include "sched_autogroup.c"
1933
#include "sched_stoptask.c"
1934 1935 1936 1937
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

1968
/*
I
Ingo Molnar 已提交
1969
 * __normal_prio - return the priority that is based on the static prio
1970 1971 1972
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1973
	return p->static_prio;
1974 1975
}

1976 1977 1978 1979 1980 1981 1982
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1983
static inline int normal_prio(struct task_struct *p)
1984 1985 1986
{
	int prio;

1987
	if (task_has_rt_policy(p))
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
2001
static int effective_prio(struct task_struct *p)
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
2014 2015 2016 2017
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
2018
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
2019 2020 2021 2022
{
	return cpu_curr(task_cpu(p)) == p;
}

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
2056
	if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2057 2058 2059
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
2060
#ifdef CONFIG_SMP
2061 2062 2063
/*
 * Is this task likely cache-hot:
 */
2064
static int
2065 2066 2067 2068
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2069 2070 2071
	if (p->sched_class != &fair_sched_class)
		return 0;

2072 2073 2074
	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

2075 2076 2077
	/*
	 * Buddy candidates are cache hot:
	 */
2078
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2079 2080
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2081 2082
		return 1;

2083 2084 2085 2086 2087
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2088 2089 2090 2091 2092
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2093
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2094
{
2095 2096 2097 2098 2099
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2100 2101
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2102 2103
#endif

2104
	trace_sched_migrate_task(p, new_cpu);
2105

2106 2107 2108 2109
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2110 2111

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2112 2113
}

2114
struct migration_arg {
2115
	struct task_struct *task;
L
Linus Torvalds 已提交
2116
	int dest_cpu;
2117
};
L
Linus Torvalds 已提交
2118

2119 2120
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2121 2122 2123 2124
/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2125
static bool migrate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
2126 2127 2128
{
	/*
	 * If the task is not on a runqueue (and not running), then
2129
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2130
	 */
2131
	return p->se.on_rq || task_running(rq, p);
L
Linus Torvalds 已提交
2132 2133 2134 2135 2136
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2137 2138 2139 2140 2141 2142 2143
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2144 2145 2146 2147 2148 2149
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2150
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2151 2152
{
	unsigned long flags;
I
Ingo Molnar 已提交
2153
	int running, on_rq;
R
Roland McGrath 已提交
2154
	unsigned long ncsw;
2155
	struct rq *rq;
L
Linus Torvalds 已提交
2156

2157 2158 2159 2160 2161 2162 2163 2164
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2165

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2177 2178 2179
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2180
			cpu_relax();
R
Roland McGrath 已提交
2181
		}
2182

2183 2184 2185 2186 2187 2188
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2189
		trace_sched_wait_task(p);
2190 2191
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2192
		ncsw = 0;
2193
		if (!match_state || p->state == match_state)
2194
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2195
		task_rq_unlock(rq, &flags);
2196

R
Roland McGrath 已提交
2197 2198 2199 2200 2201 2202
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2213

2214 2215 2216 2217 2218
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2219
		 * So if it was still runnable (but just not actively
2220 2221 2222 2223 2224 2225 2226
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2227

2228 2229 2230 2231 2232 2233 2234
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2235 2236

	return ncsw;
L
Linus Torvalds 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2252
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2262
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2263
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2264

T
Thomas Gleixner 已提交
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2286
#ifdef CONFIG_SMP
2287 2288 2289
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2306 2307 2308 2309 2310 2311 2312 2313 2314
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
2315 2316 2317 2318 2319
	}

	return dest_cpu;
}

2320
/*
2321
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2322
 */
2323
static inline
2324
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2325
{
2326
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2339
		     !cpu_online(cpu)))
2340
		cpu = select_fallback_rq(task_cpu(p), p);
2341 2342

	return cpu;
2343
}
2344 2345 2346 2347 2348 2349

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2350 2351
#endif

T
Tejun Heo 已提交
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
				 bool is_sync, bool is_migrate, bool is_local,
				 unsigned long en_flags)
{
	schedstat_inc(p, se.statistics.nr_wakeups);
	if (is_sync)
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
	if (is_migrate)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
	if (is_local)
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	else
		schedstat_inc(p, se.statistics.nr_wakeups_remote);

	activate_task(rq, p, en_flags);
}

static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
					int wake_flags, bool success)
{
	trace_sched_wakeup(p, success);
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
T
Tejun Heo 已提交
2391 2392 2393
	/* if a worker is waking up, notify workqueue */
	if ((p->flags & PF_WQ_WORKER) && success)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2394 2395 2396
}

/**
L
Linus Torvalds 已提交
2397
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2398
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2399
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2400
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2401 2402 2403 2404 2405 2406 2407
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2408 2409
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2410
 */
P
Peter Zijlstra 已提交
2411 2412
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2413
{
2414
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2415
	unsigned long flags;
2416
	unsigned long en_flags = ENQUEUE_WAKEUP;
2417
	struct rq *rq;
L
Linus Torvalds 已提交
2418

P
Peter Zijlstra 已提交
2419
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2420

2421
	smp_wmb();
2422
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2423
	if (!(p->state & state))
L
Linus Torvalds 已提交
2424 2425
		goto out;

I
Ingo Molnar 已提交
2426
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2427 2428 2429
		goto out_running;

	cpu = task_cpu(p);
2430
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2431 2432 2433 2434 2435

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2436 2437 2438
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2439 2440
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2441
	 */
2442 2443 2444 2445 2446 2447
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2448
	p->state = TASK_WAKING;
2449

2450
	if (p->sched_class->task_waking) {
2451
		p->sched_class->task_waking(rq, p);
2452 2453
		en_flags |= ENQUEUE_WAKING;
	}
2454

2455 2456
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2457
		set_task_cpu(p, cpu);
2458
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2459

2460 2461
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2462

2463 2464 2465 2466 2467 2468 2469
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2470
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2471

2472 2473 2474 2475 2476 2477 2478
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2479
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2480 2481 2482 2483 2484
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2485
#endif /* CONFIG_SCHEDSTATS */
2486

L
Linus Torvalds 已提交
2487 2488
out_activate:
#endif /* CONFIG_SMP */
T
Tejun Heo 已提交
2489 2490
	ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
		      cpu == this_cpu, en_flags);
L
Linus Torvalds 已提交
2491 2492
	success = 1;
out_running:
T
Tejun Heo 已提交
2493
	ttwu_post_activation(p, rq, wake_flags, success);
L
Linus Torvalds 已提交
2494 2495
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2496
	put_cpu();
L
Linus Torvalds 已提交
2497 2498 2499 2500

	return success;
}

T
Tejun Heo 已提交
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
 * Put @p on the run-queue if it's not alredy there.  The caller must
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
 * the current task.  this_rq() stays locked over invocation.
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);
	bool success = false;

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

	if (!(p->state & TASK_NORMAL))
		return;

	if (!p->se.on_rq) {
		if (likely(!task_running(rq, p))) {
			schedstat_inc(rq, ttwu_count);
			schedstat_inc(rq, ttwu_local);
		}
		ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
		success = true;
	}
	ttwu_post_activation(p, rq, 0, success);
}

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2543
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2544
{
2545
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2546 2547 2548
}
EXPORT_SYMBOL(wake_up_process);

2549
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2550 2551 2552 2553 2554 2555 2556
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2557 2558 2559 2560 2561 2562 2563
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2564
	p->se.prev_sum_exec_runtime	= 0;
2565
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2566 2567

#ifdef CONFIG_SCHEDSTATS
2568
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2569
#endif
N
Nick Piggin 已提交
2570

P
Peter Zijlstra 已提交
2571
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2572
	p->se.on_rq = 0;
2573
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2574

2575 2576 2577
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2588
	/*
2589
	 * We mark the process as running here. This guarantees that
2590 2591 2592
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2593
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2594

2595 2596 2597 2598
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2599
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2600
			p->policy = SCHED_NORMAL;
2601 2602
			p->normal_prio = p->static_prio;
		}
2603

2604 2605
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2606
			p->normal_prio = p->static_prio;
2607 2608 2609
			set_load_weight(p);
		}

2610 2611 2612 2613 2614 2615
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2616

2617 2618 2619 2620 2621
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2622 2623
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2624

P
Peter Zijlstra 已提交
2625 2626 2627
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2628 2629 2630 2631 2632 2633 2634 2635
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
	rcu_read_lock();
2636
	set_task_cpu(p, cpu);
2637
	rcu_read_unlock();
2638

2639
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2640
	if (likely(sched_info_on()))
2641
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2642
#endif
2643
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2644 2645
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2646
#ifdef CONFIG_PREEMPT
2647
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2648
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2649
#endif
2650
#ifdef CONFIG_SMP
2651
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2652
#endif
2653

N
Nick Piggin 已提交
2654
	put_cpu();
L
Linus Torvalds 已提交
2655 2656 2657 2658 2659 2660 2661 2662 2663
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2664
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2665 2666
{
	unsigned long flags;
I
Ingo Molnar 已提交
2667
	struct rq *rq;
2668
	int cpu __maybe_unused = get_cpu();
2669 2670

#ifdef CONFIG_SMP
2671 2672 2673
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2674 2675 2676 2677 2678
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2679 2680
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2681
	 */
2682
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2683
	set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2684

2685
	p->state = TASK_RUNNING;
2686 2687 2688 2689
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2690
	activate_task(rq, p, 0);
2691
	trace_sched_wakeup_new(p, 1);
P
Peter Zijlstra 已提交
2692
	check_preempt_curr(rq, p, WF_FORK);
2693
#ifdef CONFIG_SMP
2694 2695
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2696
#endif
I
Ingo Molnar 已提交
2697
	task_rq_unlock(rq, &flags);
2698
	put_cpu();
L
Linus Torvalds 已提交
2699 2700
}

2701 2702 2703
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2704
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2705
 * @notifier: notifier struct to register
2706 2707 2708 2709 2710 2711 2712 2713 2714
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2715
 * @notifier: notifier struct to unregister
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2745
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2757
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2758

2759 2760 2761
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2762
 * @prev: the current task that is being switched out
2763 2764 2765 2766 2767 2768 2769 2770 2771
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2772 2773 2774
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2775
{
2776
	fire_sched_out_preempt_notifiers(prev, next);
2777 2778 2779 2780
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2781 2782
/**
 * finish_task_switch - clean up after a task-switch
2783
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2784 2785
 * @prev: the thread we just switched away from.
 *
2786 2787 2788 2789
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2790 2791
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2792
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2793 2794 2795
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2796
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2797 2798 2799
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2800
	long prev_state;
L
Linus Torvalds 已提交
2801 2802 2803 2804 2805

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2806
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2807 2808
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2809
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2810 2811 2812 2813 2814
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2815
	prev_state = prev->state;
2816
	finish_arch_switch(prev);
2817 2818 2819
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2820
	perf_event_task_sched_in(current);
2821 2822 2823
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2824
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2825

2826
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2827 2828
	if (mm)
		mmdrop(mm);
2829
	if (unlikely(prev_state == TASK_DEAD)) {
2830 2831 2832
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2833
		 */
2834
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2835
		put_task_struct(prev);
2836
	}
L
Linus Torvalds 已提交
2837 2838
}

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2854
		raw_spin_lock_irqsave(&rq->lock, flags);
2855 2856
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2857
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2858 2859 2860 2861 2862 2863

		rq->post_schedule = 0;
	}
}

#else
2864

2865 2866 2867 2868 2869 2870
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2871 2872
}

2873 2874
#endif

L
Linus Torvalds 已提交
2875 2876 2877 2878
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2879
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2880 2881
	__releases(rq->lock)
{
2882 2883
	struct rq *rq = this_rq();

2884
	finish_task_switch(rq, prev);
2885

2886 2887 2888 2889 2890
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2891

2892 2893 2894 2895
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2896
	if (current->set_child_tid)
2897
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2898 2899 2900 2901 2902 2903
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2904
static inline void
2905
context_switch(struct rq *rq, struct task_struct *prev,
2906
	       struct task_struct *next)
L
Linus Torvalds 已提交
2907
{
I
Ingo Molnar 已提交
2908
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2909

2910
	prepare_task_switch(rq, prev, next);
2911
	trace_sched_switch(prev, next);
I
Ingo Molnar 已提交
2912 2913
	mm = next->mm;
	oldmm = prev->active_mm;
2914 2915 2916 2917 2918
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2919
	arch_start_context_switch(prev);
2920

2921
	if (!mm) {
L
Linus Torvalds 已提交
2922 2923 2924 2925 2926 2927
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2928
	if (!prev->mm) {
L
Linus Torvalds 已提交
2929 2930 2931
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2932 2933 2934 2935 2936 2937 2938
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2939
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2940
#endif
L
Linus Torvalds 已提交
2941 2942 2943 2944

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2945 2946 2947 2948 2949 2950 2951
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2969
}
L
Linus Torvalds 已提交
2970 2971

unsigned long nr_uninterruptible(void)
2972
{
L
Linus Torvalds 已提交
2973
	unsigned long i, sum = 0;
2974

2975
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2976
		sum += cpu_rq(i)->nr_uninterruptible;
2977 2978

	/*
L
Linus Torvalds 已提交
2979 2980
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2981
	 */
L
Linus Torvalds 已提交
2982 2983
	if (unlikely((long)sum < 0))
		sum = 0;
2984

L
Linus Torvalds 已提交
2985
	return sum;
2986 2987
}

L
Linus Torvalds 已提交
2988
unsigned long long nr_context_switches(void)
2989
{
2990 2991
	int i;
	unsigned long long sum = 0;
2992

2993
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2994
		sum += cpu_rq(i)->nr_switches;
2995

L
Linus Torvalds 已提交
2996 2997
	return sum;
}
2998

L
Linus Torvalds 已提交
2999 3000 3001
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
3002

3003
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3004
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
3005

L
Linus Torvalds 已提交
3006 3007
	return sum;
}
3008

3009
unsigned long nr_iowait_cpu(int cpu)
3010
{
3011
	struct rq *this = cpu_rq(cpu);
3012 3013
	return atomic_read(&this->nr_iowait);
}
3014

3015 3016 3017 3018 3019
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
3020

3021

3022 3023 3024 3025 3026
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
3027

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

3043 3044 3045 3046 3047 3048 3049 3050 3051
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
3203 3204 3205 3206 3207 3208 3209 3210 3211
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
3212 3213 3214 3215

static void calc_global_nohz(unsigned long ticks)
{
}
3216 3217
#endif

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3231 3232 3233
}

/*
3234 3235
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3236
 */
3237
void calc_global_load(unsigned long ticks)
3238
{
3239
	long active;
L
Linus Torvalds 已提交
3240

3241 3242 3243
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
3244
		return;
L
Linus Torvalds 已提交
3245

3246 3247
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3248

3249 3250 3251
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3252

3253 3254
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3255

3256
/*
3257 3258
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3259 3260 3261
 */
static void calc_load_account_active(struct rq *this_rq)
{
3262
	long delta;
3263

3264 3265
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3266

3267 3268 3269
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3270
		atomic_long_add(delta, &calc_load_tasks);
3271 3272

	this_rq->calc_load_update += LOAD_FREQ;
3273 3274
}

3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

3342
/*
I
Ingo Molnar 已提交
3343
 * Update rq->cpu_load[] statistics. This function is usually called every
3344 3345
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
3346
 */
I
Ingo Molnar 已提交
3347
static void update_cpu_load(struct rq *this_rq)
3348
{
3349
	unsigned long this_load = this_rq->load.weight;
3350 3351
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
3352
	int i, scale;
3353

I
Ingo Molnar 已提交
3354
	this_rq->nr_load_updates++;
3355

3356 3357 3358 3359 3360 3361 3362
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
3363
	/* Update our load: */
3364 3365
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
3366
		unsigned long old_load, new_load;
3367

I
Ingo Molnar 已提交
3368
		/* scale is effectively 1 << i now, and >> i divides by scale */
3369

I
Ingo Molnar 已提交
3370
		old_load = this_rq->cpu_load[i];
3371
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
3372
		new_load = this_load;
I
Ingo Molnar 已提交
3373 3374 3375 3376 3377 3378
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
3379 3380 3381
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
3382
	}
3383 3384

	sched_avg_update(this_rq);
3385 3386 3387 3388 3389
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
3390

3391
	calc_load_account_active(this_rq);
3392 3393
}

I
Ingo Molnar 已提交
3394
#ifdef CONFIG_SMP
3395

3396
/*
P
Peter Zijlstra 已提交
3397 3398
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3399
 */
P
Peter Zijlstra 已提交
3400
void sched_exec(void)
3401
{
P
Peter Zijlstra 已提交
3402
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3403
	unsigned long flags;
3404
	struct rq *rq;
3405
	int dest_cpu;
3406

L
Linus Torvalds 已提交
3407
	rq = task_rq_lock(p, &flags);
3408 3409 3410
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3411

3412
	/*
P
Peter Zijlstra 已提交
3413
	 * select_task_rq() can race against ->cpus_allowed
3414
	 */
3415
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3416
	    likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3417
		struct migration_arg arg = { p, dest_cpu };
3418

L
Linus Torvalds 已提交
3419
		task_rq_unlock(rq, &flags);
3420
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3421 3422
		return;
	}
3423
unlock:
L
Linus Torvalds 已提交
3424 3425
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3426

L
Linus Torvalds 已提交
3427 3428 3429 3430 3431 3432 3433
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3434
 * Return any ns on the sched_clock that have not yet been accounted in
3435
 * @p in case that task is currently running.
3436 3437
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3438
 */
3439 3440 3441 3442 3443 3444
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
3445
		ns = rq->clock_task - p->se.exec_start;
3446 3447 3448 3449 3450 3451 3452
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3453
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3454 3455
{
	unsigned long flags;
3456
	struct rq *rq;
3457
	u64 ns = 0;
3458

3459
	rq = task_rq_lock(p, &flags);
3460 3461
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3462

3463 3464
	return ns;
}
3465

3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3483

3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3503
	task_rq_unlock(rq, &flags);
3504

L
Linus Torvalds 已提交
3505 3506 3507 3508 3509 3510 3511
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3512
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3513
 */
3514 3515
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3516 3517 3518 3519
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3520
	/* Add user time to process. */
L
Linus Torvalds 已提交
3521
	p->utime = cputime_add(p->utime, cputime);
3522
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3523
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3524 3525 3526 3527 3528 3529 3530

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3531 3532

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3533 3534
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3535 3536
}

3537 3538 3539 3540
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3541
 * @cputime_scaled: cputime scaled by cpu frequency
3542
 */
3543 3544
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3545 3546 3547 3548 3549 3550
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3551
	/* Add guest time to process. */
3552
	p->utime = cputime_add(p->utime, cputime);
3553
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3554
	account_group_user_time(p, cputime);
3555 3556
	p->gtime = cputime_add(p->gtime, cputime);

3557
	/* Add guest time to cpustat. */
3558 3559 3560 3561 3562 3563 3564
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3565 3566
}

L
Linus Torvalds 已提交
3567 3568 3569 3570 3571
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3572
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3573 3574
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3575
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3576 3577 3578 3579
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3580
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3581
		account_guest_time(p, cputime, cputime_scaled);
3582 3583
		return;
	}
3584

3585
	/* Add system time to process. */
L
Linus Torvalds 已提交
3586
	p->stime = cputime_add(p->stime, cputime);
3587
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3588
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3589 3590 3591 3592 3593

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
3594
	else if (in_serving_softirq())
L
Linus Torvalds 已提交
3595 3596
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3597 3598
		cpustat->system = cputime64_add(cpustat->system, tmp);

3599 3600
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3601 3602 3603 3604
	/* Account for system time used */
	acct_update_integrals(p);
}

3605
/*
L
Linus Torvalds 已提交
3606 3607
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3608
 */
3609
void account_steal_time(cputime_t cputime)
3610
{
3611 3612 3613 3614
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3615 3616
}

L
Linus Torvalds 已提交
3617
/*
3618 3619
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3620
 */
3621
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3622 3623
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3624
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3625
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3626

3627 3628 3629 3630
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3631 3632
}

3633 3634 3635 3636 3637 3638 3639 3640 3641
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3642
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3643 3644 3645
	struct rq *rq = this_rq();

	if (user_tick)
3646
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3647
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3648
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3649 3650
				    one_jiffy_scaled);
	else
3651
		account_idle_time(cputime_one_jiffy);
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3671 3672
}

3673 3674
#endif

3675 3676 3677 3678
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3679
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3680
{
3681 3682
	*ut = p->utime;
	*st = p->stime;
3683 3684
}

3685
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3686
{
3687 3688 3689 3690 3691 3692
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3693 3694
}
#else
3695 3696

#ifndef nsecs_to_cputime
3697
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3698 3699
#endif

3700
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3701
{
3702
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3703 3704 3705 3706

	/*
	 * Use CFS's precise accounting:
	 */
3707
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3708 3709

	if (total) {
3710
		u64 temp = rtime;
3711

3712
		temp *= utime;
3713
		do_div(temp, total);
3714 3715 3716
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3717

3718 3719 3720
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3721
	p->prev_utime = max(p->prev_utime, utime);
3722
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3723

3724 3725
	*ut = p->prev_utime;
	*st = p->prev_stime;
3726 3727
}

3728 3729 3730 3731
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3732
{
3733 3734 3735
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3736

3737
	thread_group_cputime(p, &cputime);
3738

3739 3740
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3741

3742
	if (total) {
3743
		u64 temp = rtime;
3744

3745
		temp *= cputime.utime;
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3757 3758 3759
}
#endif

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3771
	struct task_struct *curr = rq->curr;
3772 3773

	sched_clock_tick();
I
Ingo Molnar 已提交
3774

3775
	raw_spin_lock(&rq->lock);
3776
	update_rq_clock(rq);
3777
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3778
	curr->sched_class->task_tick(rq, curr, 0);
3779
	raw_spin_unlock(&rq->lock);
3780

3781
	perf_event_task_tick();
3782

3783
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3784 3785
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3786
#endif
L
Linus Torvalds 已提交
3787 3788
}

3789
notrace unsigned long get_parent_ip(unsigned long addr)
3790 3791 3792 3793 3794 3795 3796 3797
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3798

3799 3800 3801
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3802
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3803
{
3804
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3805 3806 3807
	/*
	 * Underflow?
	 */
3808 3809
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3810
#endif
L
Linus Torvalds 已提交
3811
	preempt_count() += val;
3812
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3813 3814 3815
	/*
	 * Spinlock count overflowing soon?
	 */
3816 3817
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3818 3819 3820
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3821 3822 3823
}
EXPORT_SYMBOL(add_preempt_count);

3824
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3825
{
3826
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3827 3828 3829
	/*
	 * Underflow?
	 */
3830
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3831
		return;
L
Linus Torvalds 已提交
3832 3833 3834
	/*
	 * Is the spinlock portion underflowing?
	 */
3835 3836 3837
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3838
#endif
3839

3840 3841
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3842 3843 3844 3845 3846 3847 3848
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3849
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3850
 */
I
Ingo Molnar 已提交
3851
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3852
{
3853 3854
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3855 3856
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3857

I
Ingo Molnar 已提交
3858
	debug_show_held_locks(prev);
3859
	print_modules();
I
Ingo Molnar 已提交
3860 3861
	if (irqs_disabled())
		print_irqtrace_events(prev);
3862 3863 3864 3865 3866

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3867
}
L
Linus Torvalds 已提交
3868

I
Ingo Molnar 已提交
3869 3870 3871 3872 3873
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3874
	/*
I
Ingo Molnar 已提交
3875
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3876 3877 3878
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3879
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3880 3881
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3882 3883
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3884
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3885 3886
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3887
		schedstat_inc(this_rq(), rq_sched_info.bkl_count);
3888
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3889 3890
	}
#endif
I
Ingo Molnar 已提交
3891 3892
}

P
Peter Zijlstra 已提交
3893
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3894
{
3895 3896
	if (prev->se.on_rq)
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
3897
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3898 3899
}

I
Ingo Molnar 已提交
3900 3901 3902 3903
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3904
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3905
{
3906
	const struct sched_class *class;
I
Ingo Molnar 已提交
3907
	struct task_struct *p;
L
Linus Torvalds 已提交
3908 3909

	/*
I
Ingo Molnar 已提交
3910 3911
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3912
	 */
I
Ingo Molnar 已提交
3913
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3914
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3915 3916
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3917 3918
	}

3919
	for_each_class(class) {
3920
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3921 3922 3923
		if (p)
			return p;
	}
3924 3925

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3926
}
L
Linus Torvalds 已提交
3927

I
Ingo Molnar 已提交
3928 3929 3930
/*
 * schedule() is the main scheduler function.
 */
3931
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3932 3933
{
	struct task_struct *prev, *next;
3934
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3935
	struct rq *rq;
3936
	int cpu;
I
Ingo Molnar 已提交
3937

3938 3939
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3940 3941
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3942
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3943 3944 3945 3946 3947 3948
	prev = rq->curr;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3949

3950
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3951
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3952

3953
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
3954

3955
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3956
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3957
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3958
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
		} else {
			/*
			 * If a worker is going to sleep, notify and
			 * ask workqueue whether it wants to wake up a
			 * task to maintain concurrency.  If so, wake
			 * up the task.
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
3973
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
T
Tejun Heo 已提交
3974
		}
I
Ingo Molnar 已提交
3975
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3976 3977
	}

3978
	pre_schedule(rq, prev);
3979

I
Ingo Molnar 已提交
3980
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3981 3982
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3983
	put_prev_task(rq, prev);
3984
	next = pick_next_task(rq);
3985 3986
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
3987 3988

	if (likely(prev != next)) {
3989
		sched_info_switch(prev, next);
3990
		perf_event_task_sched_out(prev, next);
3991

L
Linus Torvalds 已提交
3992 3993 3994 3995
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3996
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3997
		/*
3998 3999 4000 4001
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
4002 4003 4004
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4005
	} else
4006
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
4007

4008
	post_schedule(rq);
L
Linus Torvalds 已提交
4009

4010
	if (unlikely(reacquire_kernel_lock(prev)))
L
Linus Torvalds 已提交
4011
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4012

L
Linus Torvalds 已提交
4013
	preempt_enable_no_resched();
4014
	if (need_resched())
L
Linus Torvalds 已提交
4015 4016 4017 4018
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

4019
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
4039
		return 0;
4040 4041 4042 4043 4044 4045 4046 4047 4048
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
4049
		return 0;
4050 4051 4052 4053 4054 4055

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
4056
		return 0;
4057 4058 4059 4060 4061 4062 4063

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
4064 4065 4066 4067 4068 4069 4070 4071
		if (lock->owner != owner) {
			/*
			 * If the lock has switched to a different owner,
			 * we likely have heavy contention. Return 0 to quit
			 * optimistic spinning and not contend further:
			 */
			if (lock->owner)
				return 0;
4072
			break;
4073
		}
4074 4075 4076 4077 4078 4079 4080

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

4081
		arch_mutex_cpu_relax();
4082
	}
4083

4084 4085 4086 4087
	return 1;
}
#endif

L
Linus Torvalds 已提交
4088 4089
#ifdef CONFIG_PREEMPT
/*
4090
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4091
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4092 4093
 * occur there and call schedule directly.
 */
4094
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
4095 4096
{
	struct thread_info *ti = current_thread_info();
4097

L
Linus Torvalds 已提交
4098 4099
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4100
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4101
	 */
N
Nick Piggin 已提交
4102
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4103 4104
		return;

4105
	do {
4106
		add_preempt_count_notrace(PREEMPT_ACTIVE);
4107
		schedule();
4108
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4109

4110 4111 4112 4113 4114
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4115
	} while (need_resched());
L
Linus Torvalds 已提交
4116 4117 4118 4119
}
EXPORT_SYMBOL(preempt_schedule);

/*
4120
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4121 4122 4123 4124 4125 4126 4127
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4128

4129
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4130 4131
	BUG_ON(ti->preempt_count || !irqs_disabled());

4132 4133 4134 4135 4136 4137
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4138

4139 4140 4141 4142 4143
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4144
	} while (need_resched());
L
Linus Torvalds 已提交
4145 4146 4147 4148
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
4149
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
4150
			  void *key)
L
Linus Torvalds 已提交
4151
{
P
Peter Zijlstra 已提交
4152
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
4153 4154 4155 4156
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4157 4158
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4159 4160 4161
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4162
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4163 4164
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4165
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
4166
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
4167
{
4168
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4169

4170
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4171 4172
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
4173
		if (curr->func(curr, mode, wake_flags, key) &&
4174
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4175 4176 4177 4178 4179 4180 4181 4182 4183
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4184
 * @key: is directly passed to the wakeup function
4185 4186 4187
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4188
 */
4189
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4190
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4203
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4204 4205 4206
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
4207
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
4208

4209 4210 4211 4212 4213
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
4214
/**
4215
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4216 4217 4218
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4219
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
4220 4221 4222 4223 4224 4225 4226
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
4227 4228 4229
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4230
 */
4231 4232
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4233 4234
{
	unsigned long flags;
P
Peter Zijlstra 已提交
4235
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
4236 4237 4238 4239 4240

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
4241
		wake_flags = 0;
L
Linus Torvalds 已提交
4242 4243

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
4244
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
4245 4246
	spin_unlock_irqrestore(&q->lock, flags);
}
4247 4248 4249 4250 4251 4252 4253 4254 4255
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4256 4257
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4258 4259 4260 4261 4262 4263 4264 4265
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4266 4267 4268
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4269
 */
4270
void complete(struct completion *x)
L
Linus Torvalds 已提交
4271 4272 4273 4274 4275
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4276
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4277 4278 4279 4280
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4281 4282 4283 4284 4285
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4286 4287 4288
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4289
 */
4290
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4291 4292 4293 4294 4295
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4296
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4297 4298 4299 4300
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4301 4302
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4303 4304 4305 4306
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
4307
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
4308
		do {
4309
			if (signal_pending_state(state, current)) {
4310 4311
				timeout = -ERESTARTSYS;
				break;
4312 4313
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4314 4315 4316
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4317
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4318
		__remove_wait_queue(&x->wait, &wait);
4319 4320
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4321 4322
	}
	x->done--;
4323
	return timeout ?: 1;
L
Linus Torvalds 已提交
4324 4325
}

4326 4327
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4328 4329 4330 4331
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4332
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4333
	spin_unlock_irq(&x->wait.lock);
4334 4335
	return timeout;
}
L
Linus Torvalds 已提交
4336

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4347
void __sched wait_for_completion(struct completion *x)
4348 4349
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4350
}
4351
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4352

4353 4354 4355 4356 4357 4358 4359 4360 4361
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4362
unsigned long __sched
4363
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4364
{
4365
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4366
}
4367
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4368

4369 4370 4371 4372 4373 4374 4375
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4376
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4377
{
4378 4379 4380 4381
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4382
}
4383
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4384

4385 4386 4387 4388 4389 4390 4391 4392
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4393
long __sched
4394 4395
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4396
{
4397
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4398
}
4399
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4400

4401 4402 4403 4404 4405 4406 4407
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4408 4409 4410 4411 4412 4413 4414 4415 4416
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4417 4418 4419 4420 4421 4422 4423 4424 4425
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
4426
long __sched
4427 4428 4429 4430 4431 4432 4433
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4448
	unsigned long flags;
4449 4450
	int ret = 1;

4451
	spin_lock_irqsave(&x->wait.lock, flags);
4452 4453 4454 4455
	if (!x->done)
		ret = 0;
	else
		x->done--;
4456
	spin_unlock_irqrestore(&x->wait.lock, flags);
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4471
	unsigned long flags;
4472 4473
	int ret = 1;

4474
	spin_lock_irqsave(&x->wait.lock, flags);
4475 4476
	if (!x->done)
		ret = 0;
4477
	spin_unlock_irqrestore(&x->wait.lock, flags);
4478 4479 4480 4481
	return ret;
}
EXPORT_SYMBOL(completion_done);

4482 4483
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4484
{
I
Ingo Molnar 已提交
4485 4486 4487 4488
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4489

4490
	__set_current_state(state);
L
Linus Torvalds 已提交
4491

4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4506 4507 4508
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4509
long __sched
I
Ingo Molnar 已提交
4510
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4511
{
4512
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4513 4514 4515
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4516
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4517
{
4518
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4519 4520 4521
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4522
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4523
{
4524
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4525 4526 4527
}
EXPORT_SYMBOL(sleep_on_timeout);

4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4540
void rt_mutex_setprio(struct task_struct *p, int prio)
4541 4542
{
	unsigned long flags;
4543
	int oldprio, on_rq, running;
4544
	struct rq *rq;
4545
	const struct sched_class *prev_class;
4546 4547 4548 4549 4550

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4551
	trace_sched_pi_setprio(p, prio);
4552
	oldprio = p->prio;
4553
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4554
	on_rq = p->se.on_rq;
4555
	running = task_current(rq, p);
4556
	if (on_rq)
4557
		dequeue_task(rq, p, 0);
4558 4559
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4560 4561 4562 4563 4564 4565

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4566 4567
	p->prio = prio;

4568 4569
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4570
	if (on_rq) {
4571
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4572 4573

		check_class_changed(rq, p, prev_class, oldprio, running);
4574 4575 4576 4577 4578 4579
	}
	task_rq_unlock(rq, &flags);
}

#endif

4580
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4581
{
I
Ingo Molnar 已提交
4582
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4583
	unsigned long flags;
4584
	struct rq *rq;
L
Linus Torvalds 已提交
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4597
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4598
	 */
4599
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4600 4601 4602
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4603
	on_rq = p->se.on_rq;
4604
	if (on_rq)
4605
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4606 4607

	p->static_prio = NICE_TO_PRIO(nice);
4608
	set_load_weight(p);
4609 4610 4611
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4612

I
Ingo Molnar 已提交
4613
	if (on_rq) {
4614
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4615
		/*
4616 4617
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4618
		 */
4619
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4620 4621 4622 4623 4624 4625 4626
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4627 4628 4629 4630 4631
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4632
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4633
{
4634 4635
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4636

4637
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4638 4639 4640
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4641 4642 4643 4644 4645 4646 4647 4648 4649
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4650
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4651
{
4652
	long nice, retval;
L
Linus Torvalds 已提交
4653 4654 4655 4656 4657 4658

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4659 4660
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4661 4662 4663
	if (increment > 40)
		increment = 40;

4664
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4665 4666 4667 4668 4669
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4670 4671 4672
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4691
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4692 4693 4694 4695 4696 4697 4698 4699
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4700
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4701 4702 4703
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4704
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4719
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4720 4721 4722 4723 4724 4725 4726 4727
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4728
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4729
{
4730
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4731 4732 4733
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4734 4735
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4736
{
I
Ingo Molnar 已提交
4737
	BUG_ON(p->se.on_rq);
4738

L
Linus Torvalds 已提交
4739 4740
	p->policy = policy;
	p->rt_priority = prio;
4741 4742 4743
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4744 4745 4746 4747
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4748
	set_load_weight(p);
L
Linus Torvalds 已提交
4749 4750
}

4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4767
static int __sched_setscheduler(struct task_struct *p, int policy,
4768
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4769
{
4770
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4771
	unsigned long flags;
4772
	const struct sched_class *prev_class;
4773
	struct rq *rq;
4774
	int reset_on_fork;
L
Linus Torvalds 已提交
4775

4776 4777
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4778 4779
recheck:
	/* double check policy once rq lock held */
4780 4781
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4782
		policy = oldpolicy = p->policy;
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4793 4794
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4795 4796
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4797 4798
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4799
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4800
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4801
		return -EINVAL;
4802
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4803 4804
		return -EINVAL;

4805 4806 4807
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4808
	if (user && !capable(CAP_SYS_NICE)) {
4809
		if (rt_policy(policy)) {
4810 4811
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4822 4823 4824 4825 4826 4827
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4828

4829
		/* can't change other user's priorities */
4830
		if (!check_same_owner(p))
4831
			return -EPERM;
4832 4833 4834 4835

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4836
	}
L
Linus Torvalds 已提交
4837

4838
	if (user) {
4839
		retval = security_task_setscheduler(p);
4840 4841 4842 4843
		if (retval)
			return retval;
	}

4844 4845 4846 4847
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4848
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4849 4850 4851 4852
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4853
	rq = __task_rq_lock(p);
4854

4855 4856 4857 4858 4859 4860 4861 4862 4863
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return -EINVAL;
	}

4864 4865 4866 4867 4868 4869 4870
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4871 4872
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4873 4874 4875 4876 4877 4878 4879
			__task_rq_unlock(rq);
			raw_spin_unlock_irqrestore(&p->pi_lock, flags);
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4880 4881 4882
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4883
		__task_rq_unlock(rq);
4884
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4885 4886
		goto recheck;
	}
I
Ingo Molnar 已提交
4887
	on_rq = p->se.on_rq;
4888
	running = task_current(rq, p);
4889
	if (on_rq)
4890
		deactivate_task(rq, p, 0);
4891 4892
	if (running)
		p->sched_class->put_prev_task(rq, p);
4893

4894 4895
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4896
	oldprio = p->prio;
4897
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4898
	__setscheduler(rq, p, policy, param->sched_priority);
4899

4900 4901
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4902 4903
	if (on_rq) {
		activate_task(rq, p, 0);
4904 4905

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4906
	}
4907
	__task_rq_unlock(rq);
4908
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4909

4910 4911
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4912 4913
	return 0;
}
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4924
		       const struct sched_param *param)
4925 4926 4927
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4928 4929
EXPORT_SYMBOL_GPL(sched_setscheduler);

4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4942
			       const struct sched_param *param)
4943 4944 4945 4946
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4947 4948
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4949 4950 4951
{
	struct sched_param lparam;
	struct task_struct *p;
4952
	int retval;
L
Linus Torvalds 已提交
4953 4954 4955 4956 4957

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4958 4959 4960

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4961
	p = find_process_by_pid(pid);
4962 4963 4964
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4965

L
Linus Torvalds 已提交
4966 4967 4968 4969 4970 4971 4972 4973 4974
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4975 4976
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4977
{
4978 4979 4980 4981
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4982 4983 4984 4985 4986 4987 4988 4989
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4990
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4991 4992 4993 4994 4995 4996 4997 4998
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4999
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5000
{
5001
	struct task_struct *p;
5002
	int retval;
L
Linus Torvalds 已提交
5003 5004

	if (pid < 0)
5005
		return -EINVAL;
L
Linus Torvalds 已提交
5006 5007

	retval = -ESRCH;
5008
	rcu_read_lock();
L
Linus Torvalds 已提交
5009 5010 5011 5012
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
5013 5014
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
5015
	}
5016
	rcu_read_unlock();
L
Linus Torvalds 已提交
5017 5018 5019 5020
	return retval;
}

/**
5021
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
5022 5023 5024
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5025
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5026 5027
{
	struct sched_param lp;
5028
	struct task_struct *p;
5029
	int retval;
L
Linus Torvalds 已提交
5030 5031

	if (!param || pid < 0)
5032
		return -EINVAL;
L
Linus Torvalds 已提交
5033

5034
	rcu_read_lock();
L
Linus Torvalds 已提交
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
5045
	rcu_read_unlock();
L
Linus Torvalds 已提交
5046 5047 5048 5049 5050 5051 5052 5053 5054

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
5055
	rcu_read_unlock();
L
Linus Torvalds 已提交
5056 5057 5058
	return retval;
}

5059
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5060
{
5061
	cpumask_var_t cpus_allowed, new_mask;
5062 5063
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5064

5065
	get_online_cpus();
5066
	rcu_read_lock();
L
Linus Torvalds 已提交
5067 5068 5069

	p = find_process_by_pid(pid);
	if (!p) {
5070
		rcu_read_unlock();
5071
		put_online_cpus();
L
Linus Torvalds 已提交
5072 5073 5074
		return -ESRCH;
	}

5075
	/* Prevent p going away */
L
Linus Torvalds 已提交
5076
	get_task_struct(p);
5077
	rcu_read_unlock();
L
Linus Torvalds 已提交
5078

5079 5080 5081 5082 5083 5084 5085 5086
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5087
	retval = -EPERM;
5088
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
5089 5090
		goto out_unlock;

5091
	retval = security_task_setscheduler(p);
5092 5093 5094
	if (retval)
		goto out_unlock;

5095 5096
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
5097
again:
5098
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5099

P
Paul Menage 已提交
5100
	if (!retval) {
5101 5102
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5103 5104 5105 5106 5107
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5108
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5109 5110 5111
			goto again;
		}
	}
L
Linus Torvalds 已提交
5112
out_unlock:
5113 5114 5115 5116
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5117
	put_task_struct(p);
5118
	put_online_cpus();
L
Linus Torvalds 已提交
5119 5120 5121 5122
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5123
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5124
{
5125 5126 5127 5128 5129
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5130 5131 5132 5133 5134 5135 5136 5137 5138
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5139 5140
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5141
{
5142
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5143 5144
	int retval;

5145 5146
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5147

5148 5149 5150 5151 5152
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5153 5154
}

5155
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5156
{
5157
	struct task_struct *p;
5158 5159
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
5160 5161
	int retval;

5162
	get_online_cpus();
5163
	rcu_read_lock();
L
Linus Torvalds 已提交
5164 5165 5166 5167 5168 5169

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5170 5171 5172 5173
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5174
	rq = task_rq_lock(p, &flags);
5175
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5176
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5177 5178

out_unlock:
5179
	rcu_read_unlock();
5180
	put_online_cpus();
L
Linus Torvalds 已提交
5181

5182
	return retval;
L
Linus Torvalds 已提交
5183 5184 5185 5186 5187 5188 5189 5190
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5191 5192
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5193 5194
{
	int ret;
5195
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5196

A
Anton Blanchard 已提交
5197
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5198 5199
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
5200 5201
		return -EINVAL;

5202 5203
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5204

5205 5206
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
5207
		size_t retlen = min_t(size_t, len, cpumask_size());
5208 5209

		if (copy_to_user(user_mask_ptr, mask, retlen))
5210 5211
			ret = -EFAULT;
		else
5212
			ret = retlen;
5213 5214
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5215

5216
	return ret;
L
Linus Torvalds 已提交
5217 5218 5219 5220 5221
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5222 5223
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5224
 */
5225
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5226
{
5227
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5228

5229
	schedstat_inc(rq, yld_count);
5230
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5231 5232 5233 5234 5235 5236

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5237
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5238
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
5239 5240 5241 5242 5243 5244 5245
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
5246 5247 5248 5249 5250
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
5251
static void __cond_resched(void)
L
Linus Torvalds 已提交
5252
{
5253 5254 5255
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5256 5257
}

5258
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5259
{
P
Peter Zijlstra 已提交
5260
	if (should_resched()) {
L
Linus Torvalds 已提交
5261 5262 5263 5264 5265
		__cond_resched();
		return 1;
	}
	return 0;
}
5266
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5267 5268

/*
5269
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5270 5271
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5272
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5273 5274 5275
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5276
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5277
{
P
Peter Zijlstra 已提交
5278
	int resched = should_resched();
J
Jan Kara 已提交
5279 5280
	int ret = 0;

5281 5282
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5283
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5284
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5285
		if (resched)
N
Nick Piggin 已提交
5286 5287 5288
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5289
		ret = 1;
L
Linus Torvalds 已提交
5290 5291
		spin_lock(lock);
	}
J
Jan Kara 已提交
5292
	return ret;
L
Linus Torvalds 已提交
5293
}
5294
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5295

5296
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5297 5298 5299
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5300
	if (should_resched()) {
5301
		local_bh_enable();
L
Linus Torvalds 已提交
5302 5303 5304 5305 5306 5307
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5308
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5309 5310 5311 5312

/**
 * yield - yield the current processor to other threads.
 *
5313
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5324
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5325 5326 5327 5328
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5329
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5330

5331
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5332
	atomic_inc(&rq->nr_iowait);
5333
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5334
	schedule();
5335
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5336
	atomic_dec(&rq->nr_iowait);
5337
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5338 5339 5340 5341 5342
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5343
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5344 5345
	long ret;

5346
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5347
	atomic_inc(&rq->nr_iowait);
5348
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5349
	ret = schedule_timeout(timeout);
5350
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5351
	atomic_dec(&rq->nr_iowait);
5352
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5363
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5364 5365 5366 5367 5368 5369 5370 5371 5372
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5373
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5374
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5388
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5389 5390 5391 5392 5393 5394 5395 5396 5397
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5398
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5399
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5413
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5414
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5415
{
5416
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5417
	unsigned int time_slice;
5418 5419
	unsigned long flags;
	struct rq *rq;
5420
	int retval;
L
Linus Torvalds 已提交
5421 5422 5423
	struct timespec t;

	if (pid < 0)
5424
		return -EINVAL;
L
Linus Torvalds 已提交
5425 5426

	retval = -ESRCH;
5427
	rcu_read_lock();
L
Linus Torvalds 已提交
5428 5429 5430 5431 5432 5433 5434 5435
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5436 5437 5438
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5439

5440
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5441
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5442 5443
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5444

L
Linus Torvalds 已提交
5445
out_unlock:
5446
	rcu_read_unlock();
L
Linus Torvalds 已提交
5447 5448 5449
	return retval;
}

5450
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5451

5452
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5453 5454
{
	unsigned long free = 0;
5455
	unsigned state;
L
Linus Torvalds 已提交
5456 5457

	state = p->state ? __ffs(p->state) + 1 : 0;
5458
	printk(KERN_INFO "%-15.15s %c", p->comm,
5459
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5460
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5461
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5462
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5463
	else
P
Peter Zijlstra 已提交
5464
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5465 5466
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5467
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5468
	else
P
Peter Zijlstra 已提交
5469
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5470 5471
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5472
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5473
#endif
P
Peter Zijlstra 已提交
5474
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5475 5476
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5477

5478
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5479 5480
}

I
Ingo Molnar 已提交
5481
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5482
{
5483
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5484

5485
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5486 5487
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5488
#else
P
Peter Zijlstra 已提交
5489 5490
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5491 5492 5493 5494 5495 5496 5497 5498
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5499
		if (!state_filter || (p->state & state_filter))
5500
			sched_show_task(p);
L
Linus Torvalds 已提交
5501 5502
	} while_each_thread(g, p);

5503 5504
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5505 5506 5507
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5508
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5509 5510 5511
	/*
	 * Only show locks if all tasks are dumped:
	 */
5512
	if (!state_filter)
I
Ingo Molnar 已提交
5513
		debug_show_all_locks();
L
Linus Torvalds 已提交
5514 5515
}

I
Ingo Molnar 已提交
5516 5517
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5518
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5519 5520
}

5521 5522 5523 5524 5525 5526 5527 5528
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5529
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5530
{
5531
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5532 5533
	unsigned long flags;

5534
	raw_spin_lock_irqsave(&rq->lock, flags);
5535

I
Ingo Molnar 已提交
5536
	__sched_fork(idle);
5537
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5538 5539
	idle->se.exec_start = sched_clock();

5540
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5552
	__set_task_cpu(idle, cpu);
5553
	rcu_read_unlock();
L
Linus Torvalds 已提交
5554 5555

	rq->curr = rq->idle = idle;
5556 5557 5558
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5559
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5560 5561

	/* Set the preempt count _outside_ the spinlocks! */
5562 5563 5564
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5565
	task_thread_info(idle)->preempt_count = 0;
5566
#endif
I
Ingo Molnar 已提交
5567 5568 5569 5570
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5571
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5572 5573 5574 5575 5576 5577 5578
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5579
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5580
 */
5581
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5582

I
Ingo Molnar 已提交
5583 5584 5585 5586 5587 5588 5589 5590 5591
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5592
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5593
{
5594
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5609

5610 5611
	return factor;
}
I
Ingo Molnar 已提交
5612

5613 5614 5615
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5616

5617 5618 5619 5620 5621 5622 5623
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}
5624

5625 5626 5627
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5628 5629
}

L
Linus Torvalds 已提交
5630 5631 5632 5633
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5634 5635 5636 5637 5638 5639
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5640
 *    it and puts it into the right queue.
5641 5642
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5643 5644 5645 5646 5647 5648 5649 5650
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5651
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5652 5653
 * call is not atomic; no spinlocks may be held.
 */
5654
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5655 5656
{
	unsigned long flags;
5657
	struct rq *rq;
5658
	unsigned int dest_cpu;
5659
	int ret = 0;
L
Linus Torvalds 已提交
5660

P
Peter Zijlstra 已提交
5661 5662 5663 5664 5665 5666 5667
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5668
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5669 5670 5671 5672
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5673

5674
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5675 5676 5677 5678
		ret = -EINVAL;
		goto out;
	}

5679
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5680
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5681 5682 5683 5684
		ret = -EINVAL;
		goto out;
	}

5685
	if (p->sched_class->set_cpus_allowed)
5686
		p->sched_class->set_cpus_allowed(p, new_mask);
5687
	else {
5688 5689
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5690 5691
	}

L
Linus Torvalds 已提交
5692
	/* Can the task run on the task's current CPU? If so, we're done */
5693
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5694 5695
		goto out;

5696
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5697
	if (migrate_task(p, rq)) {
5698
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5699 5700
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
5701
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5702 5703 5704 5705 5706
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5707

L
Linus Torvalds 已提交
5708 5709
	return ret;
}
5710
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5711 5712

/*
I
Ingo Molnar 已提交
5713
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5714 5715 5716 5717 5718 5719
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5720 5721
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5722
 */
5723
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5724
{
5725
	struct rq *rq_dest, *rq_src;
5726
	int ret = 0;
L
Linus Torvalds 已提交
5727

5728
	if (unlikely(!cpu_active(dest_cpu)))
5729
		return ret;
L
Linus Torvalds 已提交
5730 5731 5732 5733 5734 5735 5736

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5737
		goto done;
L
Linus Torvalds 已提交
5738
	/* Affinity changed (again). */
5739
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5740
		goto fail;
L
Linus Torvalds 已提交
5741

5742 5743 5744 5745 5746
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5747
		deactivate_task(rq_src, p, 0);
5748
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5749
		activate_task(rq_dest, p, 0);
5750
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5751
	}
L
Linus Torvalds 已提交
5752
done:
5753
	ret = 1;
L
Linus Torvalds 已提交
5754
fail:
L
Linus Torvalds 已提交
5755
	double_rq_unlock(rq_src, rq_dest);
5756
	return ret;
L
Linus Torvalds 已提交
5757 5758 5759
}

/*
5760 5761 5762
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5763
 */
5764
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5765
{
5766
	struct migration_arg *arg = data;
5767

5768 5769 5770 5771
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5772
	local_irq_disable();
5773
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5774
	local_irq_enable();
L
Linus Torvalds 已提交
5775
	return 0;
5776 5777
}

L
Linus Torvalds 已提交
5778
#ifdef CONFIG_HOTPLUG_CPU
5779

5780
/*
5781 5782
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5783
 */
5784
void idle_task_exit(void)
L
Linus Torvalds 已提交
5785
{
5786
	struct mm_struct *mm = current->active_mm;
5787

5788
	BUG_ON(cpu_online(smp_processor_id()));
5789

5790 5791 5792
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
5793 5794 5795 5796 5797 5798 5799 5800 5801
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5802
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5803
{
5804
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5805 5806 5807 5808 5809

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
5810
/*
5811
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
5812
 */
5813
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
5814
{
5815 5816
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
5817 5818
}

5819
/*
5820 5821 5822 5823 5824 5825
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5826
 */
5827
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5828
{
5829
	struct rq *rq = cpu_rq(dead_cpu);
5830 5831
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5832 5833

	/*
5834 5835 5836 5837 5838 5839 5840
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5841
	 */
5842
	rq->stop = NULL;
5843

I
Ingo Molnar 已提交
5844
	for ( ; ; ) {
5845 5846 5847 5848 5849
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5850
			break;
5851

5852
		next = pick_next_task(rq);
5853
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5854
		next->sched_class->put_prev_task(rq, next);
5855

5856 5857 5858 5859 5860 5861 5862
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5863
	}
5864

5865
	rq->stop = stop;
5866
}
5867

L
Linus Torvalds 已提交
5868 5869
#endif /* CONFIG_HOTPLUG_CPU */

5870 5871 5872
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5873 5874
	{
		.procname	= "sched_domain",
5875
		.mode		= 0555,
5876
	},
5877
	{}
5878 5879 5880
};

static struct ctl_table sd_ctl_root[] = {
5881 5882
	{
		.procname	= "kernel",
5883
		.mode		= 0555,
5884 5885
		.child		= sd_ctl_dir,
	},
5886
	{}
5887 5888 5889 5890 5891
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5892
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5893 5894 5895 5896

	return entry;
}

5897 5898
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5899
	struct ctl_table *entry;
5900

5901 5902 5903
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5904
	 * will always be set. In the lowest directory the names are
5905 5906 5907
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5908 5909
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5910 5911 5912
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5913 5914 5915 5916 5917

	kfree(*tablep);
	*tablep = NULL;
}

5918
static void
5919
set_table_entry(struct ctl_table *entry,
5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5933
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5934

5935 5936 5937
	if (table == NULL)
		return NULL;

5938
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5939
		sizeof(long), 0644, proc_doulongvec_minmax);
5940
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5941
		sizeof(long), 0644, proc_doulongvec_minmax);
5942
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5943
		sizeof(int), 0644, proc_dointvec_minmax);
5944
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5945
		sizeof(int), 0644, proc_dointvec_minmax);
5946
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5947
		sizeof(int), 0644, proc_dointvec_minmax);
5948
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5949
		sizeof(int), 0644, proc_dointvec_minmax);
5950
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5951
		sizeof(int), 0644, proc_dointvec_minmax);
5952
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5953
		sizeof(int), 0644, proc_dointvec_minmax);
5954
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5955
		sizeof(int), 0644, proc_dointvec_minmax);
5956
	set_table_entry(&table[9], "cache_nice_tries",
5957 5958
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5959
	set_table_entry(&table[10], "flags", &sd->flags,
5960
		sizeof(int), 0644, proc_dointvec_minmax);
5961 5962 5963
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5964 5965 5966 5967

	return table;
}

5968
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5969 5970 5971 5972 5973 5974 5975 5976 5977
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5978 5979
	if (table == NULL)
		return NULL;
5980 5981 5982 5983 5984

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5985
		entry->mode = 0555;
5986 5987 5988 5989 5990 5991 5992 5993
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5994
static void register_sched_domain_sysctl(void)
5995
{
5996
	int i, cpu_num = num_possible_cpus();
5997 5998 5999
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6000 6001 6002
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6003 6004 6005
	if (entry == NULL)
		return;

6006
	for_each_possible_cpu(i) {
6007 6008
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6009
		entry->mode = 0555;
6010
		entry->child = sd_alloc_ctl_cpu_table(i);
6011
		entry++;
6012
	}
6013 6014

	WARN_ON(sd_sysctl_header);
6015 6016
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6017

6018
/* may be called multiple times per register */
6019 6020
static void unregister_sched_domain_sysctl(void)
{
6021 6022
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6023
	sd_sysctl_header = NULL;
6024 6025
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6026
}
6027
#else
6028 6029 6030 6031
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6032 6033 6034 6035
{
}
#endif

6036 6037 6038 6039 6040
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6041
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6061
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6062 6063 6064 6065
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6066 6067 6068 6069
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6070 6071
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6072
{
6073
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6074
	unsigned long flags;
6075
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6076

6077
	switch (action & ~CPU_TASKS_FROZEN) {
6078

L
Linus Torvalds 已提交
6079
	case CPU_UP_PREPARE:
6080
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
6081
		break;
6082

L
Linus Torvalds 已提交
6083
	case CPU_ONLINE:
6084
		/* Update our root-domain */
6085
		raw_spin_lock_irqsave(&rq->lock, flags);
6086
		if (rq->rd) {
6087
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6088 6089

			set_rq_online(rq);
6090
		}
6091
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6092
		break;
6093

L
Linus Torvalds 已提交
6094
#ifdef CONFIG_HOTPLUG_CPU
6095
	case CPU_DYING:
G
Gregory Haskins 已提交
6096
		/* Update our root-domain */
6097
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6098
		if (rq->rd) {
6099
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6100
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6101
		}
6102 6103
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
6104
		raw_spin_unlock_irqrestore(&rq->lock, flags);
6105 6106 6107

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
6108
		break;
L
Linus Torvalds 已提交
6109 6110 6111 6112 6113
#endif
	}
	return NOTIFY_OK;
}

6114 6115 6116
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
6117
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
6118
 */
6119
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6120
	.notifier_call = migration_call,
6121
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
6122 6123
};

6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

6149
static int __init migration_init(void)
L
Linus Torvalds 已提交
6150 6151
{
	void *cpu = (void *)(long)smp_processor_id();
6152
	int err;
6153

6154
	/* Initialize migration for the boot CPU */
6155 6156
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6157 6158
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6159

6160 6161 6162 6163
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

6164
	return 0;
L
Linus Torvalds 已提交
6165
}
6166
early_initcall(migration_init);
L
Linus Torvalds 已提交
6167 6168 6169
#endif

#ifdef CONFIG_SMP
6170

6171
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6172

6173 6174 6175 6176 6177 6178 6179 6180 6181 6182
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6183
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6184
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6185
{
I
Ingo Molnar 已提交
6186
	struct sched_group *group = sd->groups;
6187
	char str[256];
L
Linus Torvalds 已提交
6188

R
Rusty Russell 已提交
6189
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6190
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6191 6192 6193 6194

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6195
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6196
		if (sd->parent)
P
Peter Zijlstra 已提交
6197 6198
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6199
		return -1;
N
Nick Piggin 已提交
6200 6201
	}

P
Peter Zijlstra 已提交
6202
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6203

6204
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6205 6206
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6207
	}
6208
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6209 6210
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6211
	}
L
Linus Torvalds 已提交
6212

I
Ingo Molnar 已提交
6213
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6214
	do {
I
Ingo Molnar 已提交
6215
		if (!group) {
P
Peter Zijlstra 已提交
6216 6217
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6218 6219 6220
			break;
		}

6221
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6222 6223 6224
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6225 6226
			break;
		}
L
Linus Torvalds 已提交
6227

6228
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6229 6230
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6231 6232
			break;
		}
L
Linus Torvalds 已提交
6233

6234
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6235 6236
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6237 6238
			break;
		}
L
Linus Torvalds 已提交
6239

6240
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6241

R
Rusty Russell 已提交
6242
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6243

P
Peter Zijlstra 已提交
6244
		printk(KERN_CONT " %s", str);
6245
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6246 6247
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6248
		}
L
Linus Torvalds 已提交
6249

I
Ingo Molnar 已提交
6250 6251
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6252
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6253

6254
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6255
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6256

6257 6258
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6259 6260
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6261 6262
	return 0;
}
L
Linus Torvalds 已提交
6263

I
Ingo Molnar 已提交
6264 6265
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6266
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6267
	int level = 0;
L
Linus Torvalds 已提交
6268

6269 6270 6271
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6272 6273 6274 6275
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6276

I
Ingo Molnar 已提交
6277 6278
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6279
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6280 6281 6282 6283
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6284
	for (;;) {
6285
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6286
			break;
L
Linus Torvalds 已提交
6287 6288
		level++;
		sd = sd->parent;
6289
		if (!sd)
I
Ingo Molnar 已提交
6290 6291
			break;
	}
6292
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6293
}
6294
#else /* !CONFIG_SCHED_DEBUG */
6295
# define sched_domain_debug(sd, cpu) do { } while (0)
6296
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6297

6298
static int sd_degenerate(struct sched_domain *sd)
6299
{
6300
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6301 6302 6303 6304 6305 6306
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6307 6308 6309
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6310 6311 6312 6313 6314
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6315
	if (sd->flags & (SD_WAKE_AFFINE))
6316 6317 6318 6319 6320
		return 0;

	return 1;
}

6321 6322
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6323 6324 6325 6326 6327 6328
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6329
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6330 6331 6332 6333 6334 6335 6336
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6337 6338 6339
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6340 6341
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6342 6343 6344 6345 6346 6347 6348
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6349 6350
static void free_rootdomain(struct root_domain *rd)
{
6351 6352
	synchronize_sched();

6353 6354
	cpupri_cleanup(&rd->cpupri);

6355 6356 6357 6358 6359 6360
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6361 6362
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6363
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6364 6365
	unsigned long flags;

6366
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6367 6368

	if (rq->rd) {
I
Ingo Molnar 已提交
6369
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6370

6371
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6372
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6373

6374
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6375

I
Ingo Molnar 已提交
6376 6377 6378 6379 6380 6381 6382
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6383 6384 6385 6386 6387
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6388
	cpumask_set_cpu(rq->cpu, rd->span);
6389
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6390
		set_rq_online(rq);
G
Gregory Haskins 已提交
6391

6392
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6393 6394 6395

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6396 6397
}

6398
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6399 6400 6401
{
	memset(rd, 0, sizeof(*rd));

6402
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6403
		goto out;
6404
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6405
		goto free_span;
6406
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6407
		goto free_online;
6408

6409
	if (cpupri_init(&rd->cpupri) != 0)
6410
		goto free_rto_mask;
6411
	return 0;
6412

6413 6414
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6415 6416 6417 6418
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6419
out:
6420
	return -ENOMEM;
G
Gregory Haskins 已提交
6421 6422 6423 6424
}

static void init_defrootdomain(void)
{
6425
	init_rootdomain(&def_root_domain);
6426

G
Gregory Haskins 已提交
6427 6428 6429
	atomic_set(&def_root_domain.refcount, 1);
}

6430
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6431 6432 6433 6434 6435 6436 6437
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6438
	if (init_rootdomain(rd) != 0) {
6439 6440 6441
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6442 6443 6444 6445

	return rd;
}

L
Linus Torvalds 已提交
6446
/*
I
Ingo Molnar 已提交
6447
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6448 6449
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6450 6451
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6452
{
6453
	struct rq *rq = cpu_rq(cpu);
6454 6455
	struct sched_domain *tmp;

6456 6457 6458
	for (tmp = sd; tmp; tmp = tmp->parent)
		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));

6459
	/* Remove the sched domains which do not contribute to scheduling. */
6460
	for (tmp = sd; tmp; ) {
6461 6462 6463
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6464

6465
		if (sd_parent_degenerate(tmp, parent)) {
6466
			tmp->parent = parent->parent;
6467 6468
			if (parent->parent)
				parent->parent->child = tmp;
6469 6470
		} else
			tmp = tmp->parent;
6471 6472
	}

6473
	if (sd && sd_degenerate(sd)) {
6474
		sd = sd->parent;
6475 6476 6477
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6478 6479 6480

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6481
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6482
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6483 6484 6485
}

/* cpus with isolated domains */
6486
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6487 6488 6489 6490

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6491
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6492
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6493 6494 6495
	return 1;
}

I
Ingo Molnar 已提交
6496
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6497 6498

/*
6499 6500
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6501 6502
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6503 6504 6505 6506 6507
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6508
static void
6509 6510 6511
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6512
					struct sched_group **sg,
6513 6514
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6515 6516 6517 6518
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6519
	cpumask_clear(covered);
6520

6521
	for_each_cpu(i, span) {
6522
		struct sched_group *sg;
6523
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6524 6525
		int j;

6526
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6527 6528
			continue;

6529
		cpumask_clear(sched_group_cpus(sg));
6530
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6531

6532
		for_each_cpu(j, span) {
6533
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6534 6535
				continue;

6536
			cpumask_set_cpu(j, covered);
6537
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6538 6539 6540 6541 6542 6543 6544 6545 6546 6547
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6548
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6549

6550
#ifdef CONFIG_NUMA
6551

6552 6553 6554 6555 6556
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6557
 * Find the next node to include in a given scheduling domain. Simply
6558 6559 6560 6561
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6562
static int find_next_best_node(int node, nodemask_t *used_nodes)
6563 6564 6565 6566 6567
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6568
	for (i = 0; i < nr_node_ids; i++) {
6569
		/* Start at @node */
6570
		n = (node + i) % nr_node_ids;
6571 6572 6573 6574 6575

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6576
		if (node_isset(n, *used_nodes))
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6588
	node_set(best_node, *used_nodes);
6589 6590 6591 6592 6593 6594
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6595
 * @span: resulting cpumask
6596
 *
I
Ingo Molnar 已提交
6597
 * Given a node, construct a good cpumask for its sched_domain to span. It
6598 6599 6600
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6601
static void sched_domain_node_span(int node, struct cpumask *span)
6602
{
6603
	nodemask_t used_nodes;
6604
	int i;
6605

6606
	cpumask_clear(span);
6607
	nodes_clear(used_nodes);
6608

6609
	cpumask_or(span, span, cpumask_of_node(node));
6610
	node_set(node, used_nodes);
6611 6612

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6613
		int next_node = find_next_best_node(node, &used_nodes);
6614

6615
		cpumask_or(span, span, cpumask_of_node(next_node));
6616 6617
	}
}
6618
#endif /* CONFIG_NUMA */
6619

6620
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6621

6622 6623
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6624 6625 6626
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6638 6639 6640 6641 6642 6643 6644 6645 6646 6647
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
6648
	cpumask_var_t		this_book_map;
6649 6650 6651 6652 6653 6654
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6655 6656 6657 6658 6659
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
6660
	sa_this_book_map,
6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6673
/*
6674
 * SMT sched-domains:
6675
 */
L
Linus Torvalds 已提交
6676
#ifdef CONFIG_SCHED_SMT
6677
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6678
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6679

I
Ingo Molnar 已提交
6680
static int
6681 6682
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6683
{
6684
	if (sg)
6685
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6686 6687
	return cpu;
}
6688
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6689

6690 6691 6692
/*
 * multi-core sched-domains:
 */
6693
#ifdef CONFIG_SCHED_MC
6694 6695
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6696

I
Ingo Molnar 已提交
6697
static int
6698 6699
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6700
{
6701
	int group;
6702
#ifdef CONFIG_SCHED_SMT
6703
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6704
	group = cpumask_first(mask);
6705 6706 6707
#else
	group = cpu;
#endif
6708
	if (sg)
6709
		*sg = &per_cpu(sched_group_core, group).sg;
6710
	return group;
6711
}
6712
#endif /* CONFIG_SCHED_MC */
6713

6714 6715 6716 6717 6718 6719 6720
/*
 * book sched-domains:
 */
#ifdef CONFIG_SCHED_BOOK
static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);

I
Ingo Molnar 已提交
6721
static int
6722 6723
cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6724
{
6725 6726 6727 6728 6729 6730 6731 6732
	int group = cpu;
#ifdef CONFIG_SCHED_MC
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_SMT)
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
	group = cpumask_first(mask);
#endif
6733
	if (sg)
6734 6735
		*sg = &per_cpu(sched_group_book, group).sg;
	return group;
6736
}
6737
#endif /* CONFIG_SCHED_BOOK */
6738

6739 6740
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6741

I
Ingo Molnar 已提交
6742
static int
6743 6744
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6745
{
6746
	int group;
6747 6748 6749 6750
#ifdef CONFIG_SCHED_BOOK
	cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_MC)
6751
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6752
	group = cpumask_first(mask);
6753
#elif defined(CONFIG_SCHED_SMT)
6754
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6755
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6756
#else
6757
	group = cpu;
L
Linus Torvalds 已提交
6758
#endif
6759
	if (sg)
6760
		*sg = &per_cpu(sched_group_phys, group).sg;
6761
	return group;
L
Linus Torvalds 已提交
6762 6763 6764 6765
}

#ifdef CONFIG_NUMA
/*
6766 6767 6768
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6769
 */
6770
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6771
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6772

6773
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6774
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6775

6776 6777 6778
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6779
{
6780 6781
	int group;

6782
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6783
	group = cpumask_first(nodemask);
6784 6785

	if (sg)
6786
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6787
	return group;
L
Linus Torvalds 已提交
6788
}
6789

6790 6791 6792 6793 6794 6795 6796
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6797
	do {
6798
		for_each_cpu(j, sched_group_cpus(sg)) {
6799
			struct sched_domain *sd;
6800

6801
			sd = &per_cpu(phys_domains, j).sd;
6802
			if (j != group_first_cpu(sd->groups)) {
6803 6804 6805 6806 6807 6808
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6809

6810
			sg->cpu_power += sd->groups->cpu_power;
6811 6812 6813
		}
		sg = sg->next;
	} while (sg != group_head);
6814
}
6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6836 6837
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6838 6839 6840 6841 6842 6843 6844 6845 6846
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6847
	sg->cpu_power = 0;
6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6866 6867
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6868 6869
			return -ENOMEM;
		}
6870
		sg->cpu_power = 0;
6871 6872 6873 6874 6875 6876 6877 6878 6879
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6880
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6881

6882
#ifdef CONFIG_NUMA
6883
/* Free memory allocated for various sched_group structures */
6884 6885
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6886
{
6887
	int cpu, i;
6888

6889
	for_each_cpu(cpu, cpu_map) {
6890 6891 6892 6893 6894 6895
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6896
		for (i = 0; i < nr_node_ids; i++) {
6897 6898
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6899
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6900
			if (cpumask_empty(nodemask))
6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6917
#else /* !CONFIG_NUMA */
6918 6919
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6920 6921
{
}
6922
#endif /* CONFIG_NUMA */
6923

6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6938 6939
	long power;
	int weight;
6940 6941 6942

	WARN_ON(!sd || !sd->groups);

6943
	if (cpu != group_first_cpu(sd->groups))
6944 6945
		return;

6946 6947
	sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));

6948 6949
	child = sd->child;

6950
	sd->groups->cpu_power = 0;
6951

6952 6953 6954 6955 6956
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6957 6958 6959
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6960
		 */
P
Peter Zijlstra 已提交
6961 6962
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6963
			power /= weight;
P
Peter Zijlstra 已提交
6964 6965
			power >>= SCHED_LOAD_SHIFT;
		}
6966
		sd->groups->cpu_power += power;
6967 6968 6969 6970
		return;
	}

	/*
6971
	 * Add cpu_power of each child group to this groups cpu_power.
6972 6973 6974
	 */
	group = child->groups;
	do {
6975
		sd->groups->cpu_power += group->cpu_power;
6976 6977 6978 6979
		group = group->next;
	} while (group != child->groups);
}

6980 6981 6982 6983 6984
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6985 6986 6987 6988 6989 6990
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6991
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6992

6993 6994 6995 6996 6997
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6998
	sd->level = SD_LV_##type;				\
6999
	SD_INIT_NAME(sd, type);					\
7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
7013 7014 7015
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
7016

7017 7018 7019 7020
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7021 7022 7023 7024 7025 7026
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
7045
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7046 7047
	} else {
		/* turn on idle balance on this domain */
7048
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7049 7050 7051
	}
}

7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
7065 7066
	case sa_this_book_map:
		free_cpumask_var(d->this_book_map); /* fall through */
7067 7068 7069 7070 7071 7072 7073
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
7074
#ifdef CONFIG_NUMA
7075 7076 7077 7078 7079 7080 7081
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
7082
#endif
7083 7084 7085 7086
	case sa_none:
		break;
	}
}
7087

7088 7089 7090
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
7091
#ifdef CONFIG_NUMA
7092 7093 7094 7095 7096 7097 7098 7099 7100 7101
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
7102
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7103
		return sa_notcovered;
7104
	}
7105
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7106
#endif
7107 7108 7109 7110 7111 7112
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
7113
	if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7114
		return sa_this_core_map;
7115 7116
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_book_map;
7117 7118 7119 7120
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
7121
		printk(KERN_WARNING "Cannot alloc root domain\n");
7122
		return sa_tmpmask;
G
Gregory Haskins 已提交
7123
	}
7124 7125
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
7126

7127 7128 7129 7130
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
7131
#ifdef CONFIG_NUMA
7132
	struct sched_domain *parent;
L
Linus Torvalds 已提交
7133

7134 7135 7136 7137 7138
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
7139
		set_domain_attribute(sd, attr);
7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7154
#endif
7155 7156
	return sd;
}
L
Linus Torvalds 已提交
7157

7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
7173

7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190
static struct sched_domain *__build_book_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
#ifdef CONFIG_SCHED_BOOK
	sd = &per_cpu(book_domains, i).sd;
	SD_INIT(sd, BOOK);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
#endif
	return sd;
}

7191 7192 7193 7194 7195
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
7196
#ifdef CONFIG_SCHED_MC
7197 7198 7199 7200 7201 7202 7203
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7204
#endif
7205 7206
	return sd;
}
7207

7208 7209 7210 7211 7212
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
7213
#ifdef CONFIG_SCHED_SMT
7214 7215 7216 7217 7218 7219 7220
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
7221
#endif
7222 7223
	return sd;
}
L
Linus Torvalds 已提交
7224

7225 7226 7227 7228
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
7229
#ifdef CONFIG_SCHED_SMT
7230 7231 7232 7233 7234 7235 7236 7237
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7238
#endif
7239
#ifdef CONFIG_SCHED_MC
7240 7241 7242 7243 7244 7245 7246
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
7247 7248 7249 7250 7251 7252 7253 7254 7255
#endif
#ifdef CONFIG_SCHED_BOOK
	case SD_LV_BOOK: /* set up book groups */
		cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
		if (cpu == cpumask_first(d->this_book_map))
			init_sched_build_groups(d->this_book_map, cpu_map,
						&cpu_to_book_group,
						d->send_covered, d->tmpmask);
		break;
7256
#endif
7257 7258 7259 7260 7261 7262 7263
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7264
#ifdef CONFIG_NUMA
7265 7266 7267 7268 7269
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
7270 7271
	default:
		break;
7272
	}
7273
}
7274

7275 7276 7277 7278 7279 7280 7281 7282 7283
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7284
	struct sched_domain *sd;
7285
	int i;
7286
#ifdef CONFIG_NUMA
7287
	d.sd_allnodes = 0;
7288
#endif
7289

7290 7291 7292 7293
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7294

L
Linus Torvalds 已提交
7295
	/*
7296
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7297
	 */
7298
	for_each_cpu(i, cpu_map) {
7299 7300
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7301

7302
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7303
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7304
		sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7305
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7306
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7307
	}
7308

7309
	for_each_cpu(i, cpu_map) {
7310
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7311
		build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7312
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7313
	}
7314

L
Linus Torvalds 已提交
7315
	/* Set up physical groups */
7316 7317
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7318

L
Linus Torvalds 已提交
7319 7320
#ifdef CONFIG_NUMA
	/* Set up node groups */
7321 7322
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7323

7324 7325
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7326
			goto error;
L
Linus Torvalds 已提交
7327 7328 7329
#endif

	/* Calculate CPU power for physical packages and nodes */
7330
#ifdef CONFIG_SCHED_SMT
7331
	for_each_cpu(i, cpu_map) {
7332
		sd = &per_cpu(cpu_domains, i).sd;
7333
		init_sched_groups_power(i, sd);
7334
	}
L
Linus Torvalds 已提交
7335
#endif
7336
#ifdef CONFIG_SCHED_MC
7337
	for_each_cpu(i, cpu_map) {
7338
		sd = &per_cpu(core_domains, i).sd;
7339
		init_sched_groups_power(i, sd);
7340 7341
	}
#endif
7342 7343 7344 7345 7346 7347
#ifdef CONFIG_SCHED_BOOK
	for_each_cpu(i, cpu_map) {
		sd = &per_cpu(book_domains, i).sd;
		init_sched_groups_power(i, sd);
	}
#endif
7348

7349
	for_each_cpu(i, cpu_map) {
7350
		sd = &per_cpu(phys_domains, i).sd;
7351
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7352 7353
	}

7354
#ifdef CONFIG_NUMA
7355
	for (i = 0; i < nr_node_ids; i++)
7356
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7357

7358
	if (d.sd_allnodes) {
7359
		struct sched_group *sg;
7360

7361
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7362
								d.tmpmask);
7363 7364
		init_numa_sched_groups_power(sg);
	}
7365 7366
#endif

L
Linus Torvalds 已提交
7367
	/* Attach the domains */
7368
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7369
#ifdef CONFIG_SCHED_SMT
7370
		sd = &per_cpu(cpu_domains, i).sd;
7371
#elif defined(CONFIG_SCHED_MC)
7372
		sd = &per_cpu(core_domains, i).sd;
7373 7374
#elif defined(CONFIG_SCHED_BOOK)
		sd = &per_cpu(book_domains, i).sd;
L
Linus Torvalds 已提交
7375
#else
7376
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7377
#endif
7378
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7379
	}
7380

7381 7382 7383
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7384 7385

error:
7386 7387
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7388
}
P
Paul Jackson 已提交
7389

7390
static int build_sched_domains(const struct cpumask *cpu_map)
7391 7392 7393 7394
{
	return __build_sched_domains(cpu_map, NULL);
}

7395
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7396
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7397 7398
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7399 7400 7401

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7402 7403
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7404
 */
7405
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7406

7407 7408 7409 7410 7411 7412
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7413
{
7414
	return 0;
7415 7416
}

7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7442
/*
I
Ingo Molnar 已提交
7443
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7444 7445
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7446
 */
7447
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7448
{
7449 7450
	int err;

7451
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7452
	ndoms_cur = 1;
7453
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7454
	if (!doms_cur)
7455 7456
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7457
	dattr_cur = NULL;
7458
	err = build_sched_domains(doms_cur[0]);
7459
	register_sched_domain_sysctl();
7460 7461

	return err;
7462 7463
}

7464 7465
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7466
{
7467
	free_sched_groups(cpu_map, tmpmask);
7468
}
L
Linus Torvalds 已提交
7469

7470 7471 7472 7473
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7474
static void detach_destroy_domains(const struct cpumask *cpu_map)
7475
{
7476 7477
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7478 7479
	int i;

7480
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7481
		cpu_attach_domain(NULL, &def_root_domain, i);
7482
	synchronize_sched();
7483
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7484 7485
}

7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7502 7503
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7504
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7505 7506 7507
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7508
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7509 7510 7511
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7512 7513 7514
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7515 7516 7517 7518 7519 7520
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7521
 *
7522
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7523 7524
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7525
 *
P
Paul Jackson 已提交
7526 7527
 * Call with hotplug lock held
 */
7528
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7529
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7530
{
7531
	int i, j, n;
7532
	int new_topology;
P
Paul Jackson 已提交
7533

7534
	mutex_lock(&sched_domains_mutex);
7535

7536 7537 7538
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7539 7540 7541
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7542
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7543 7544 7545

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7546
		for (j = 0; j < n && !new_topology; j++) {
7547
			if (cpumask_equal(doms_cur[i], doms_new[j])
7548
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7549 7550 7551
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7552
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7553 7554 7555 7556
match1:
		;
	}

7557 7558
	if (doms_new == NULL) {
		ndoms_cur = 0;
7559
		doms_new = &fallback_doms;
7560
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7561
		WARN_ON_ONCE(dattr_new);
7562 7563
	}

P
Paul Jackson 已提交
7564 7565
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7566
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7567
			if (cpumask_equal(doms_new[i], doms_cur[j])
7568
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7569 7570 7571
				goto match2;
		}
		/* no match - add a new doms_new */
7572
		__build_sched_domains(doms_new[i],
7573
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7574 7575 7576 7577 7578
match2:
		;
	}

	/* Remember the new sched domains */
7579 7580
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7581
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7582
	doms_cur = doms_new;
7583
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7584
	ndoms_cur = ndoms_new;
7585 7586

	register_sched_domain_sysctl();
7587

7588
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7589 7590
}

7591
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7592
static void arch_reinit_sched_domains(void)
7593
{
7594
	get_online_cpus();
7595 7596 7597 7598

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7599
	rebuild_sched_domains();
7600
	put_online_cpus();
7601 7602 7603 7604
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7605
	unsigned int level = 0;
7606

7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7618 7619 7620
		return -EINVAL;

	if (smt)
7621
		sched_smt_power_savings = level;
7622
	else
7623
		sched_mc_power_savings = level;
7624

7625
	arch_reinit_sched_domains();
7626

7627
	return count;
7628 7629 7630
}

#ifdef CONFIG_SCHED_MC
7631
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7632
					   struct sysdev_class_attribute *attr,
7633
					   char *page)
7634 7635 7636
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7637
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7638
					    struct sysdev_class_attribute *attr,
7639
					    const char *buf, size_t count)
7640 7641 7642
{
	return sched_power_savings_store(buf, count, 0);
}
7643 7644 7645
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7646 7647 7648
#endif

#ifdef CONFIG_SCHED_SMT
7649
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7650
					    struct sysdev_class_attribute *attr,
7651
					    char *page)
7652 7653 7654
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7655
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7656
					     struct sysdev_class_attribute *attr,
7657
					     const char *buf, size_t count)
7658 7659 7660
{
	return sched_power_savings_store(buf, count, 1);
}
7661 7662
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7663 7664 7665
		   sched_smt_power_savings_store);
#endif

7666
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7682
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7683

L
Linus Torvalds 已提交
7684
/*
7685 7686 7687
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7688
 */
7689 7690
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7691
{
7692
	switch (action & ~CPU_TASKS_FROZEN) {
7693
	case CPU_ONLINE:
7694
	case CPU_DOWN_FAILED:
7695
		cpuset_update_active_cpus();
7696
		return NOTIFY_OK;
7697 7698 7699 7700
	default:
		return NOTIFY_DONE;
	}
}
7701

7702 7703
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7704 7705 7706 7707 7708
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
7709 7710 7711 7712 7713 7714 7715
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7716
{
P
Peter Zijlstra 已提交
7717 7718
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7719 7720
	switch (action) {
	case CPU_DOWN_PREPARE:
7721
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7722
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7723 7724 7725
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7726
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7727
	case CPU_ONLINE:
7728
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7729
		enable_runtime(cpu_rq(cpu));
7730 7731
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7732 7733 7734 7735 7736 7737 7738
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7739 7740 7741
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7742
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7743

7744 7745 7746 7747 7748
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7749
	get_online_cpus();
7750
	mutex_lock(&sched_domains_mutex);
7751
	arch_init_sched_domains(cpu_active_mask);
7752 7753 7754
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7755
	mutex_unlock(&sched_domains_mutex);
7756
	put_online_cpus();
7757

7758 7759
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7760 7761 7762 7763

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7764
	init_hrtick();
7765 7766

	/* Move init over to a non-isolated CPU */
7767
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7768
		BUG();
I
Ingo Molnar 已提交
7769
	sched_init_granularity();
7770
	free_cpumask_var(non_isolated_cpus);
7771

7772
	init_sched_rt_class();
L
Linus Torvalds 已提交
7773 7774 7775 7776
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7777
	sched_init_granularity();
L
Linus Torvalds 已提交
7778 7779 7780
}
#endif /* CONFIG_SMP */

7781 7782
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7783 7784 7785 7786 7787 7788 7789
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7790
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7791 7792
{
	cfs_rq->tasks_timeline = RB_ROOT;
7793
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7794 7795 7796
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7797
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7798 7799
}

P
Peter Zijlstra 已提交
7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7813
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7814
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7815
#ifdef CONFIG_SMP
7816
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7817 7818
#endif
#endif
P
Peter Zijlstra 已提交
7819 7820 7821
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7822
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7823 7824 7825 7826
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7827
	rt_rq->rt_runtime = 0;
7828
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7829

7830
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7831
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7832 7833
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7834 7835
}

P
Peter Zijlstra 已提交
7836
#ifdef CONFIG_FAIR_GROUP_SCHED
7837
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7838
				struct sched_entity *se, int cpu,
7839
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7840
{
7841
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7842 7843 7844 7845 7846
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;

	tg->se[cpu] = se;
7847
	/* se could be NULL for root_task_group */
D
Dhaval Giani 已提交
7848 7849 7850
	if (!se)
		return;

7851 7852 7853 7854 7855
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7856
	se->my_q = cfs_rq;
7857
	update_load_set(&se->load, 0);
7858
	se->parent = parent;
P
Peter Zijlstra 已提交
7859
}
7860
#endif
P
Peter Zijlstra 已提交
7861

7862
#ifdef CONFIG_RT_GROUP_SCHED
7863
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7864
		struct sched_rt_entity *rt_se, int cpu,
7865
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7866
{
7867 7868
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7869 7870 7871
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7872
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7873 7874

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7875 7876 7877
	if (!rt_se)
		return;

7878 7879 7880 7881 7882
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7883
	rt_se->my_q = rt_rq;
7884
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7885 7886 7887 7888
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7889 7890
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7891
	int i, j;
7892 7893 7894 7895 7896 7897 7898
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7899
#endif
7900
#ifdef CONFIG_CPUMASK_OFFSTACK
7901
	alloc_size += num_possible_cpus() * cpumask_size();
7902 7903
#endif
	if (alloc_size) {
7904
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7905 7906

#ifdef CONFIG_FAIR_GROUP_SCHED
7907
		root_task_group.se = (struct sched_entity **)ptr;
7908 7909
		ptr += nr_cpu_ids * sizeof(void **);

7910
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7911
		ptr += nr_cpu_ids * sizeof(void **);
7912

7913
#endif /* CONFIG_FAIR_GROUP_SCHED */
7914
#ifdef CONFIG_RT_GROUP_SCHED
7915
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7916 7917
		ptr += nr_cpu_ids * sizeof(void **);

7918
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7919 7920
		ptr += nr_cpu_ids * sizeof(void **);

7921
#endif /* CONFIG_RT_GROUP_SCHED */
7922 7923 7924 7925 7926 7927
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7928
	}
I
Ingo Molnar 已提交
7929

G
Gregory Haskins 已提交
7930 7931 7932 7933
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7934 7935 7936 7937
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
7938
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7939
			global_rt_period(), global_rt_runtime());
7940
#endif /* CONFIG_RT_GROUP_SCHED */
7941

D
Dhaval Giani 已提交
7942
#ifdef CONFIG_CGROUP_SCHED
7943 7944
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7945
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
7946
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7947

7948
	for_each_possible_cpu(i) {
7949
		struct rq *rq;
L
Linus Torvalds 已提交
7950 7951

		rq = cpu_rq(i);
7952
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7953
		rq->nr_running = 0;
7954 7955
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7956
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7957
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7958
#ifdef CONFIG_FAIR_GROUP_SCHED
7959
		root_task_group.shares = root_task_group_load;
P
Peter Zijlstra 已提交
7960
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7961
		/*
7962
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7963 7964 7965 7966
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7967
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7968 7969 7970
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7971
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7972 7973 7974
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7975
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7976
		 *
7977 7978
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7979
		 */
7980
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7981 7982 7983
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7984
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7985
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7986
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7987
#endif
L
Linus Torvalds 已提交
7988

I
Ingo Molnar 已提交
7989 7990
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7991 7992 7993

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7994
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7995
		rq->sd = NULL;
G
Gregory Haskins 已提交
7996
		rq->rd = NULL;
7997
		rq->cpu_power = SCHED_LOAD_SCALE;
7998
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7999
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8000
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8001
		rq->push_cpu = 0;
8002
		rq->cpu = i;
8003
		rq->online = 0;
8004 8005
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
8006
		rq_attach_root(rq, &def_root_domain);
8007 8008 8009 8010
#ifdef CONFIG_NO_HZ
		rq->nohz_balance_kick = 0;
		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
#endif
L
Linus Torvalds 已提交
8011
#endif
P
Peter Zijlstra 已提交
8012
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8013 8014 8015
		atomic_set(&rq->nr_iowait, 0);
	}

8016
	set_load_weight(&init_task);
8017

8018 8019 8020 8021
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8022
#ifdef CONFIG_SMP
8023
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8024 8025
#endif

8026
#ifdef CONFIG_RT_MUTEXES
8027
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8028 8029
#endif

L
Linus Torvalds 已提交
8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
8043 8044 8045

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
8046 8047 8048 8049
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8050

8051
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8052
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8053
#ifdef CONFIG_SMP
8054
#ifdef CONFIG_NO_HZ
8055 8056 8057 8058 8059
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
	atomic_set(&nohz.load_balancer, nr_cpu_ids);
	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8060
#endif
R
Rusty Russell 已提交
8061 8062 8063
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8064
#endif /* SMP */
8065

8066
	scheduler_running = 1;
L
Linus Torvalds 已提交
8067 8068 8069
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8070 8071
static inline int preempt_count_equals(int preempt_offset)
{
8072
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8073 8074 8075 8076

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

8077
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
8078
{
8079
#ifdef in_atomic
L
Linus Torvalds 已提交
8080 8081
	static unsigned long prev_jiffy;	/* ratelimiting */

8082 8083
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
8084 8085 8086 8087 8088
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
8089 8090 8091 8092 8093 8094 8095
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
8096 8097 8098 8099 8100

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8101 8102 8103 8104 8105 8106
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8107 8108 8109
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8110

8111 8112 8113 8114 8115 8116 8117 8118 8119 8120
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8121 8122
void normalize_rt_tasks(void)
{
8123
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8124
	unsigned long flags;
8125
	struct rq *rq;
L
Linus Torvalds 已提交
8126

8127
	read_lock_irqsave(&tasklist_lock, flags);
8128
	do_each_thread(g, p) {
8129 8130 8131 8132 8133 8134
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8135 8136
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
8137 8138 8139
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
8140
#endif
I
Ingo Molnar 已提交
8141 8142 8143 8144 8145 8146 8147 8148

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8149
			continue;
I
Ingo Molnar 已提交
8150
		}
L
Linus Torvalds 已提交
8151

8152
		raw_spin_lock(&p->pi_lock);
8153
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8154

8155
		normalize_task(rq, p);
8156

8157
		__task_rq_unlock(rq);
8158
		raw_spin_unlock(&p->pi_lock);
8159 8160
	} while_each_thread(g, p);

8161
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8162 8163 8164
}

#endif /* CONFIG_MAGIC_SYSRQ */
8165

8166
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8167
/*
8168
 * These functions are only useful for the IA64 MCA handling, or kdb.
8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8183
struct task_struct *curr_task(int cpu)
8184 8185 8186 8187
{
	return cpu_curr(cpu);
}

8188 8189 8190
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
8191 8192 8193 8194 8195 8196
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8197 8198
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8199 8200 8201 8202 8203 8204 8205
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8206
void set_curr_task(int cpu, struct task_struct *p)
8207 8208 8209 8210 8211
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8212

8213 8214
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8229 8230
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8231 8232
{
	struct cfs_rq *cfs_rq;
8233
	struct sched_entity *se;
8234
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8235 8236
	int i;

8237
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8238 8239
	if (!tg->cfs_rq)
		goto err;
8240
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8241 8242
	if (!tg->se)
		goto err;
8243 8244

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8245 8246

	for_each_possible_cpu(i) {
8247
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8248

8249 8250
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8251 8252 8253
		if (!cfs_rq)
			goto err;

8254 8255
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8256
		if (!se)
8257
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8258

8259
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8260 8261 8262 8263
	}

	return 1;

P
Peter Zijlstra 已提交
8264
err_free_rq:
8265
	kfree(cfs_rq);
P
Peter Zijlstra 已提交
8266
err:
8267 8268 8269 8270 8271
	return 0;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
8283
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8284
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8285
}
8286
#else /* !CONFG_FAIR_GROUP_SCHED */
8287 8288 8289 8290
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8291 8292
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8293 8294 8295 8296 8297 8298 8299
{
	return 1;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8300
#endif /* CONFIG_FAIR_GROUP_SCHED */
8301 8302

#ifdef CONFIG_RT_GROUP_SCHED
8303 8304 8305 8306
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8307 8308
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8320 8321
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8322 8323
{
	struct rt_rq *rt_rq;
8324
	struct sched_rt_entity *rt_se;
8325 8326 8327
	struct rq *rq;
	int i;

8328
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8329 8330
	if (!tg->rt_rq)
		goto err;
8331
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8332 8333 8334
	if (!tg->rt_se)
		goto err;

8335 8336
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8337 8338 8339 8340

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8341 8342
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8343 8344
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8345

8346 8347
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8348
		if (!rt_se)
8349
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8350

8351
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8352 8353
	}

8354 8355
	return 1;

P
Peter Zijlstra 已提交
8356
err_free_rq:
8357
	kfree(rt_rq);
P
Peter Zijlstra 已提交
8358
err:
8359 8360
	return 0;
}
8361
#else /* !CONFIG_RT_GROUP_SCHED */
8362 8363 8364 8365
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8366 8367
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8368 8369 8370
{
	return 1;
}
8371
#endif /* CONFIG_RT_GROUP_SCHED */
8372

D
Dhaval Giani 已提交
8373
#ifdef CONFIG_CGROUP_SCHED
8374 8375 8376 8377
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
8378
	autogroup_free(tg);
8379 8380 8381 8382
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8383
struct task_group *sched_create_group(struct task_group *parent)
8384 8385 8386 8387 8388 8389 8390 8391
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8392
	if (!alloc_fair_sched_group(tg, parent))
8393 8394
		goto err;

8395
	if (!alloc_rt_sched_group(tg, parent))
8396 8397
		goto err;

8398
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8399
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8400 8401 8402 8403 8404

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8405
	list_add_rcu(&tg->siblings, &parent->children);
8406
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8407

8408
	return tg;
S
Srivatsa Vaddagiri 已提交
8409 8410

err:
P
Peter Zijlstra 已提交
8411
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8412 8413 8414
	return ERR_PTR(-ENOMEM);
}

8415
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8416
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8417 8418
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8419
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8420 8421
}

8422
/* Destroy runqueue etc associated with a task group */
8423
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8424
{
8425
	unsigned long flags;
8426
	int i;
S
Srivatsa Vaddagiri 已提交
8427

8428 8429
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
8430
		unregister_fair_sched_group(tg, i);
8431 8432

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8433
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8434
	list_del_rcu(&tg->siblings);
8435
	spin_unlock_irqrestore(&task_group_lock, flags);
8436 8437

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8438
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8439 8440
}

8441
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8442 8443 8444
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8445 8446
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8447 8448 8449 8450 8451 8452 8453
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8454
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8455 8456
	on_rq = tsk->se.on_rq;

8457
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8458
		dequeue_task(rq, tsk, 0);
8459 8460
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8461

P
Peter Zijlstra 已提交
8462
#ifdef CONFIG_FAIR_GROUP_SCHED
8463 8464 8465
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
8466
#endif
8467
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
8468

8469 8470 8471
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8472
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8473 8474 8475

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8476
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8477

8478
#ifdef CONFIG_FAIR_GROUP_SCHED
8479 8480
static DEFINE_MUTEX(shares_mutex);

8481
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8482 8483
{
	int i;
8484
	unsigned long flags;
8485

8486 8487 8488 8489 8490 8491
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8492 8493
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8494 8495
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8496

8497
	mutex_lock(&shares_mutex);
8498
	if (tg->shares == shares)
8499
		goto done;
S
Srivatsa Vaddagiri 已提交
8500

8501
	tg->shares = shares;
8502
	for_each_possible_cpu(i) {
8503 8504 8505 8506 8507 8508 8509 8510 8511
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
			update_cfs_shares(group_cfs_rq(se), 0);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
8512
	}
S
Srivatsa Vaddagiri 已提交
8513

8514
done:
8515
	mutex_unlock(&shares_mutex);
8516
	return 0;
S
Srivatsa Vaddagiri 已提交
8517 8518
}

8519 8520 8521 8522
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8523
#endif
8524

8525
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8526
/*
P
Peter Zijlstra 已提交
8527
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8528
 */
P
Peter Zijlstra 已提交
8529 8530 8531 8532 8533
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8534
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8535

P
Peter Zijlstra 已提交
8536
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8537 8538
}

P
Peter Zijlstra 已提交
8539 8540
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8541
{
P
Peter Zijlstra 已提交
8542
	struct task_struct *g, *p;
8543

P
Peter Zijlstra 已提交
8544 8545 8546 8547
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8548

P
Peter Zijlstra 已提交
8549 8550
	return 0;
}
8551

P
Peter Zijlstra 已提交
8552 8553 8554 8555 8556
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8557

P
Peter Zijlstra 已提交
8558 8559 8560 8561 8562 8563
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8564

P
Peter Zijlstra 已提交
8565 8566
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8567

P
Peter Zijlstra 已提交
8568 8569 8570
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8571 8572
	}

8573 8574 8575 8576 8577
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8578

8579 8580 8581
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8582 8583
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8584

P
Peter Zijlstra 已提交
8585
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8586

8587 8588 8589 8590 8591
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8592

8593 8594 8595
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8596 8597 8598
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8599

P
Peter Zijlstra 已提交
8600 8601 8602 8603
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8604

P
Peter Zijlstra 已提交
8605
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8606
	}
P
Peter Zijlstra 已提交
8607

P
Peter Zijlstra 已提交
8608 8609 8610 8611
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8612 8613
}

P
Peter Zijlstra 已提交
8614
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8615
{
P
Peter Zijlstra 已提交
8616 8617 8618 8619 8620 8621 8622
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8623 8624
}

8625 8626
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8627
{
P
Peter Zijlstra 已提交
8628
	int i, err = 0;
P
Peter Zijlstra 已提交
8629 8630

	mutex_lock(&rt_constraints_mutex);
8631
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8632 8633
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8634
		goto unlock;
P
Peter Zijlstra 已提交
8635

8636
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8637 8638
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8639 8640 8641 8642

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8643
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8644
		rt_rq->rt_runtime = rt_runtime;
8645
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8646
	}
8647
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8648
unlock:
8649
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8650 8651 8652
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8653 8654
}

8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8667 8668 8669 8670
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8671
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8672 8673
		return -1;

8674
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8675 8676 8677
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8678 8679 8680 8681 8682 8683 8684 8685

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8686 8687 8688
	if (rt_period == 0)
		return -EINVAL;

8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8703
	u64 runtime, period;
8704 8705
	int ret = 0;

8706 8707 8708
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8709 8710 8711 8712 8713 8714 8715 8716
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8717

8718
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8719
	read_lock(&tasklist_lock);
8720
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8721
	read_unlock(&tasklist_lock);
8722 8723 8724 8725
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8726 8727 8728 8729 8730 8731 8732 8733 8734 8735

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8736
#else /* !CONFIG_RT_GROUP_SCHED */
8737 8738
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8739 8740 8741
	unsigned long flags;
	int i;

8742 8743 8744
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8745 8746 8747 8748 8749 8750 8751
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8752
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8753 8754 8755
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8756
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8757
		rt_rq->rt_runtime = global_rt_runtime();
8758
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8759
	}
8760
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8761

8762 8763
	return 0;
}
8764
#endif /* CONFIG_RT_GROUP_SCHED */
8765 8766

int sched_rt_handler(struct ctl_table *table, int write,
8767
		void __user *buffer, size_t *lenp,
8768 8769 8770 8771 8772 8773 8774 8775 8776 8777
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8778
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8795

8796
#ifdef CONFIG_CGROUP_SCHED
8797 8798

/* return corresponding task_group object of a cgroup */
8799
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8800
{
8801 8802
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8803 8804 8805
}

static struct cgroup_subsys_state *
8806
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8807
{
8808
	struct task_group *tg, *parent;
8809

8810
	if (!cgrp->parent) {
8811
		/* This is early initialization for the top cgroup */
8812
		return &root_task_group.css;
8813 8814
	}

8815 8816
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8817 8818 8819 8820 8821 8822
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8823 8824
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8825
{
8826
	struct task_group *tg = cgroup_tg(cgrp);
8827 8828 8829 8830

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8831
static int
8832
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8833
{
8834
#ifdef CONFIG_RT_GROUP_SCHED
8835
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8836 8837
		return -EINVAL;
#else
8838 8839 8840
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8841
#endif
8842 8843
	return 0;
}
8844

8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8864 8865 8866 8867
	return 0;
}

static void
8868
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8869 8870
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8871 8872
{
	sched_move_task(tsk);
8873 8874 8875 8876 8877 8878 8879 8880
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8881 8882
}

8883
#ifdef CONFIG_FAIR_GROUP_SCHED
8884
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8885
				u64 shareval)
8886
{
8887
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8888 8889
}

8890
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8891
{
8892
	struct task_group *tg = cgroup_tg(cgrp);
8893 8894 8895

	return (u64) tg->shares;
}
8896
#endif /* CONFIG_FAIR_GROUP_SCHED */
8897

8898
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8899
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8900
				s64 val)
P
Peter Zijlstra 已提交
8901
{
8902
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8903 8904
}

8905
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8906
{
8907
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8908
}
8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8920
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8921

8922
static struct cftype cpu_files[] = {
8923
#ifdef CONFIG_FAIR_GROUP_SCHED
8924 8925
	{
		.name = "shares",
8926 8927
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8928
	},
8929 8930
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8931
	{
P
Peter Zijlstra 已提交
8932
		.name = "rt_runtime_us",
8933 8934
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8935
	},
8936 8937
	{
		.name = "rt_period_us",
8938 8939
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8940
	},
8941
#endif
8942 8943 8944 8945
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8946
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8947 8948 8949
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8950 8951 8952 8953 8954 8955 8956
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8957 8958 8959
	.early_init	= 1,
};

8960
#endif	/* CONFIG_CGROUP_SCHED */
8961 8962 8963 8964 8965 8966 8967 8968 8969 8970

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8971
/* track cpu usage of a group of tasks and its child groups */
8972 8973 8974
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8975
	u64 __percpu *cpuusage;
8976
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8977
	struct cpuacct *parent;
8978 8979 8980 8981 8982
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8983
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8984
{
8985
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8998
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8999 9000
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9001
	int i;
9002 9003

	if (!ca)
9004
		goto out;
9005 9006

	ca->cpuusage = alloc_percpu(u64);
9007 9008 9009 9010 9011 9012
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
9013

9014 9015 9016
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9017
	return &ca->css;
9018 9019 9020 9021 9022 9023 9024 9025 9026

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
9027 9028 9029
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9030
static void
9031
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9032
{
9033
	struct cpuacct *ca = cgroup_ca(cgrp);
9034
	int i;
9035

9036 9037
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
9038 9039 9040 9041
	free_percpu(ca->cpuusage);
	kfree(ca);
}

9042 9043
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
9044
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9045 9046 9047 9048 9049 9050
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
9051
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9052
	data = *cpuusage;
9053
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9054 9055 9056 9057 9058 9059 9060 9061 9062
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
9063
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9064 9065 9066 9067 9068

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
9069
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9070
	*cpuusage = val;
9071
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9072 9073 9074 9075 9076
#else
	*cpuusage = val;
#endif
}

9077
/* return total cpu usage (in nanoseconds) of a group */
9078
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9079
{
9080
	struct cpuacct *ca = cgroup_ca(cgrp);
9081 9082 9083
	u64 totalcpuusage = 0;
	int i;

9084 9085
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9086 9087 9088 9089

	return totalcpuusage;
}

9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9102 9103
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9104 9105 9106 9107 9108

out:
	return err;
}

9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

9143 9144 9145
static struct cftype files[] = {
	{
		.name = "usage",
9146 9147
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9148
	},
9149 9150 9151 9152
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9153 9154 9155 9156
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9157 9158
};

9159
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9160
{
9161
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9162 9163 9164 9165 9166 9167 9168 9169 9170 9171
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9172
	int cpu;
9173

L
Li Zefan 已提交
9174
	if (unlikely(!cpuacct_subsys.active))
9175 9176
		return;

9177
	cpu = task_cpu(tsk);
9178 9179 9180

	rcu_read_lock();

9181 9182
	ca = task_ca(tsk);

9183
	for (; ca; ca = ca->parent) {
9184
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9185 9186
		*cpuusage += cputime;
	}
9187 9188

	rcu_read_unlock();
9189 9190
}

9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9208 9209 9210 9211 9212 9213 9214
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9215
	int batch = CPUACCT_BATCH;
9216 9217 9218 9219 9220 9221 9222 9223

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9224
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9225 9226 9227 9228 9229
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9230 9231 9232 9233 9234 9235 9236 9237
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9238