sched.c 161.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
30
#include <linux/capability.h>
L
Linus Torvalds 已提交
31 32
#include <linux/completion.h>
#include <linux/kernel_stat.h>
33
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
37
#include <linux/freezer.h>
38
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/times.h>
52
#include <linux/tsacct_kern.h>
53
#include <linux/kprobes.h>
54
#include <linux/delayacct.h>
55
#include <linux/reciprocal_div.h>
L
Linus Torvalds 已提交
56

57
#include <asm/tlb.h>
L
Linus Torvalds 已提交
58 59
#include <asm/unistd.h>

60 61 62 63 64 65 66 67 68 69
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
#define ON_RUNQUEUE_WEIGHT	 30
#define CHILD_PENALTY		 95
#define PARENT_PENALTY		100
#define EXIT_WEIGHT		  3
#define PRIO_BONUS_RATIO	 25
#define MAX_BONUS		(MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
#define INTERACTIVE_DELTA	  2
#define MAX_SLEEP_AVG		(DEF_TIMESLICE * MAX_BONUS)
#define STARVATION_LIMIT	(MAX_SLEEP_AVG)
#define NS_MAX_SLEEP_AVG	(JIFFIES_TO_NS(MAX_SLEEP_AVG))

/*
 * If a task is 'interactive' then we reinsert it in the active
 * array after it has expired its current timeslice. (it will not
 * continue to run immediately, it will still roundrobin with
 * other interactive tasks.)
 *
 * This part scales the interactivity limit depending on niceness.
 *
 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
 * Here are a few examples of different nice levels:
 *
 *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
 *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
 *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
 *
 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
 *  priority range a task can explore, a value of '1' means the
 *  task is rated interactive.)
 *
 * Ie. nice +19 tasks can never get 'interactive' enough to be
 * reinserted into the active array. And only heavily CPU-hog nice -20
 * tasks will be expired. Default nice 0 tasks are somewhere between,
 * it takes some effort for them to get interactive, but it's not
 * too hard.
 */

#define CURRENT_BONUS(p) \
	(NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
		MAX_SLEEP_AVG)

#define GRANULARITY	(10 * HZ / 1000 ? : 1)

#ifdef CONFIG_SMP
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
			num_online_cpus())
#else
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
#endif

#define SCALE(v1,v1_max,v2_max) \
	(v1) * (v2_max) / (v1_max)

#define DELTA(p) \
161 162
	(SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
		INTERACTIVE_DELTA)
L
Linus Torvalds 已提交
163 164 165 166 167 168 169 170 171

#define TASK_INTERACTIVE(p) \
	((p)->prio <= (p)->static_prio - DELTA(p))

#define INTERACTIVE_SLEEP(p) \
	(JIFFIES_TO_NS(MAX_SLEEP_AVG * \
		(MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))

#define TASK_PREEMPTS_CURR(p, rq) \
172
	((p)->prio < (rq)->curr->prio)
L
Linus Torvalds 已提交
173 174

#define SCALE_PRIO(x, prio) \
175
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
L
Linus Torvalds 已提交
176

177
static unsigned int static_prio_timeslice(int static_prio)
L
Linus Torvalds 已提交
178
{
179 180
	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
L
Linus Torvalds 已提交
181
	else
182
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
L
Linus Torvalds 已提交
183
}
184

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

206 207 208 209 210 211 212 213 214
/*
 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
 * to time slice values: [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */

215
static inline unsigned int task_timeslice(struct task_struct *p)
216 217 218 219
{
	return static_prio_timeslice(p->static_prio);
}

L
Linus Torvalds 已提交
220 221 222 223 224 225
/*
 * These are the runqueue data structures:
 */

struct prio_array {
	unsigned int nr_active;
226
	DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236
	struct list_head queue[MAX_PRIO];
};

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
237
struct rq {
L
Linus Torvalds 已提交
238 239 240 241 242 243 244
	spinlock_t lock;

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
245
	unsigned long raw_weighted_load;
L
Linus Torvalds 已提交
246
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
247
	unsigned long cpu_load[3];
248
	unsigned char idle_at_tick;
249 250 251
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
L
Linus Torvalds 已提交
252 253 254 255 256 257 258 259 260 261 262 263
#endif
	unsigned long long nr_switches;

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

	unsigned long expired_timestamp;
264 265
	/* Cached timestamp set by update_cpu_clock() */
	unsigned long long most_recent_timestamp;
266
	struct task_struct *curr, *idle;
267
	unsigned long next_balance;
L
Linus Torvalds 已提交
268
	struct mm_struct *prev_mm;
269
	struct prio_array *active, *expired, arrays[2];
L
Linus Torvalds 已提交
270 271 272 273 274 275 276 277 278
	int best_expired_prio;
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
279
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
280

281
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
304
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
305 306
};

307
static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
308
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
309

310 311 312 313 314 315 316 317 318
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
319 320
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
321
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
322 323 324 325
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
326 327
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
328 329 330 331 332 333 334

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

#ifndef prepare_arch_switch
335 336 337 338 339 340 341
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
342
static inline int task_running(struct rq *rq, struct task_struct *p)
343 344 345 346
{
	return rq->curr == p;
}

347
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
348 349 350
{
}

351
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
352
{
353 354 355 356
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
357 358 359 360 361 362 363
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

364 365 366 367
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
368
static inline int task_running(struct rq *rq, struct task_struct *p)
369 370 371 372 373 374 375 376
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

377
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

394
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
395 396 397 398 399 400 401 402 403 404 405 406
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
407
#endif
408 409
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
410

411 412 413 414
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
415
static inline struct rq *__task_rq_lock(struct task_struct *p)
416 417
	__acquires(rq->lock)
{
418
	struct rq *rq;
419 420 421 422 423 424 425 426 427 428 429

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
430 431 432 433 434
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
435
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
436 437
	__acquires(rq->lock)
{
438
	struct rq *rq;
L
Linus Torvalds 已提交
439 440 441 442 443 444 445 446 447 448 449 450

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

451
static inline void __task_rq_unlock(struct rq *rq)
452 453 454 455 456
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

457
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
458 459 460 461 462 463
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
464
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
465
 */
466
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
467 468
	__acquires(rq->lock)
{
469
	struct rq *rq;
L
Linus Torvalds 已提交
470 471 472 473 474 475 476 477

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

478
#include "sched_stats.h"
L
Linus Torvalds 已提交
479 480 481 482

/*
 * Adding/removing a task to/from a priority array:
 */
483
static void dequeue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
484 485 486 487 488 489 490
{
	array->nr_active--;
	list_del(&p->run_list);
	if (list_empty(array->queue + p->prio))
		__clear_bit(p->prio, array->bitmap);
}

491
static void enqueue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
492 493 494 495 496 497 498 499 500 501 502 503
{
	sched_info_queued(p);
	list_add_tail(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
	array->nr_active++;
	p->array = array;
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
504
static void requeue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
505 506 507 508
{
	list_move_tail(&p->run_list, array->queue + p->prio);
}

509 510
static inline void
enqueue_task_head(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
511 512 513 514 515 516 517 518
{
	list_add(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
	array->nr_active++;
	p->array = array;
}

/*
519
 * __normal_prio - return the priority that is based on the static
L
Linus Torvalds 已提交
520 521 522 523 524 525 526 527 528 529 530 531
 * priority but is modified by bonuses/penalties.
 *
 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
 * into the -5 ... 0 ... +5 bonus/penalty range.
 *
 * We use 25% of the full 0...39 priority range so that:
 *
 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
 *
 * Both properties are important to certain workloads.
 */
532

533
static inline int __normal_prio(struct task_struct *p)
L
Linus Torvalds 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546
{
	int bonus, prio;

	bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;

	prio = p->static_prio - bonus;
	if (prio < MAX_RT_PRIO)
		prio = MAX_RT_PRIO;
	if (prio > MAX_PRIO-1)
		prio = MAX_PRIO-1;
	return prio;
}

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

/*
 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
 * If static_prio_timeslice() is ever changed to break this assumption then
 * this code will need modification
 */
#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
#define LOAD_WEIGHT(lp) \
	(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
#define PRIO_TO_LOAD_WEIGHT(prio) \
	LOAD_WEIGHT(static_prio_timeslice(prio))
#define RTPRIO_TO_LOAD_WEIGHT(rp) \
	(PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))

569
static void set_load_weight(struct task_struct *p)
570
{
571
	if (has_rt_policy(p)) {
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
#ifdef CONFIG_SMP
		if (p == task_rq(p)->migration_thread)
			/*
			 * The migration thread does the actual balancing.
			 * Giving its load any weight will skew balancing
			 * adversely.
			 */
			p->load_weight = 0;
		else
#endif
			p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
	} else
		p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
}

587
static inline void
588
inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
589 590 591 592
{
	rq->raw_weighted_load += p->load_weight;
}

593
static inline void
594
dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
595 596 597 598
{
	rq->raw_weighted_load -= p->load_weight;
}

599
static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
600 601 602 603 604
{
	rq->nr_running++;
	inc_raw_weighted_load(rq, p);
}

605
static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
606 607 608 609 610
{
	rq->nr_running--;
	dec_raw_weighted_load(rq, p);
}

611 612 613 614 615 616 617
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
618
static inline int normal_prio(struct task_struct *p)
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
{
	int prio;

	if (has_rt_policy(p))
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
636
static int effective_prio(struct task_struct *p)
637 638 639 640 641 642 643 644 645 646 647 648
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
649 650 651
/*
 * __activate_task - move a task to the runqueue.
 */
652
static void __activate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
653
{
654
	struct prio_array *target = rq->active;
655

656
	if (batch_task(p))
657 658
		target = rq->expired;
	enqueue_task(p, target);
659
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
660 661 662 663 664
}

/*
 * __activate_idle_task - move idle task to the _front_ of runqueue.
 */
665
static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
666 667
{
	enqueue_task_head(p, rq->active);
668
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
669 670
}

671 672 673 674
/*
 * Recalculate p->normal_prio and p->prio after having slept,
 * updating the sleep-average too:
 */
675
static int recalc_task_prio(struct task_struct *p, unsigned long long now)
L
Linus Torvalds 已提交
676 677
{
	/* Caller must always ensure 'now >= p->timestamp' */
678
	unsigned long sleep_time = now - p->timestamp;
L
Linus Torvalds 已提交
679

680
	if (batch_task(p))
681
		sleep_time = 0;
L
Linus Torvalds 已提交
682 683 684

	if (likely(sleep_time > 0)) {
		/*
685 686 687
		 * This ceiling is set to the lowest priority that would allow
		 * a task to be reinserted into the active array on timeslice
		 * completion.
L
Linus Torvalds 已提交
688
		 */
689
		unsigned long ceiling = INTERACTIVE_SLEEP(p);
690

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
		if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
			/*
			 * Prevents user tasks from achieving best priority
			 * with one single large enough sleep.
			 */
			p->sleep_avg = ceiling;
			/*
			 * Using INTERACTIVE_SLEEP() as a ceiling places a
			 * nice(0) task 1ms sleep away from promotion, and
			 * gives it 700ms to round-robin with no chance of
			 * being demoted.  This is more than generous, so
			 * mark this sleep as non-interactive to prevent the
			 * on-runqueue bonus logic from intervening should
			 * this task not receive cpu immediately.
			 */
			p->sleep_type = SLEEP_NONINTERACTIVE;
L
Linus Torvalds 已提交
707 708 709 710 711 712
		} else {
			/*
			 * Tasks waking from uninterruptible sleep are
			 * limited in their sleep_avg rise as they
			 * are likely to be waiting on I/O
			 */
713
			if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
714
				if (p->sleep_avg >= ceiling)
L
Linus Torvalds 已提交
715 716
					sleep_time = 0;
				else if (p->sleep_avg + sleep_time >=
717 718 719
					 ceiling) {
						p->sleep_avg = ceiling;
						sleep_time = 0;
L
Linus Torvalds 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733
				}
			}

			/*
			 * This code gives a bonus to interactive tasks.
			 *
			 * The boost works by updating the 'average sleep time'
			 * value here, based on ->timestamp. The more time a
			 * task spends sleeping, the higher the average gets -
			 * and the higher the priority boost gets as well.
			 */
			p->sleep_avg += sleep_time;

		}
734 735
		if (p->sleep_avg > NS_MAX_SLEEP_AVG)
			p->sleep_avg = NS_MAX_SLEEP_AVG;
L
Linus Torvalds 已提交
736 737
	}

738
	return effective_prio(p);
L
Linus Torvalds 已提交
739 740 741 742 743 744 745 746
}

/*
 * activate_task - move a task to the runqueue and do priority recalculation
 *
 * Update all the scheduling statistics stuff. (sleep average
 * calculation, priority modifiers, etc.)
 */
747
static void activate_task(struct task_struct *p, struct rq *rq, int local)
L
Linus Torvalds 已提交
748 749 750
{
	unsigned long long now;

751 752 753
	if (rt_task(p))
		goto out;

L
Linus Torvalds 已提交
754 755 756 757
	now = sched_clock();
#ifdef CONFIG_SMP
	if (!local) {
		/* Compensate for drifting sched_clock */
758
		struct rq *this_rq = this_rq();
759 760
		now = (now - this_rq->most_recent_timestamp)
			+ rq->most_recent_timestamp;
L
Linus Torvalds 已提交
761 762 763
	}
#endif

I
Ingo Molnar 已提交
764 765 766 767 768 769 770 771 772 773 774
	/*
	 * Sleep time is in units of nanosecs, so shift by 20 to get a
	 * milliseconds-range estimation of the amount of time that the task
	 * spent sleeping:
	 */
	if (unlikely(prof_on == SLEEP_PROFILING)) {
		if (p->state == TASK_UNINTERRUPTIBLE)
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
				     (now - p->timestamp) >> 20);
	}

775
	p->prio = recalc_task_prio(p, now);
L
Linus Torvalds 已提交
776 777 778 779 780

	/*
	 * This checks to make sure it's not an uninterruptible task
	 * that is now waking up.
	 */
781
	if (p->sleep_type == SLEEP_NORMAL) {
L
Linus Torvalds 已提交
782 783 784 785 786 787 788 789
		/*
		 * Tasks which were woken up by interrupts (ie. hw events)
		 * are most likely of interactive nature. So we give them
		 * the credit of extending their sleep time to the period
		 * of time they spend on the runqueue, waiting for execution
		 * on a CPU, first time around:
		 */
		if (in_interrupt())
790
			p->sleep_type = SLEEP_INTERRUPTED;
L
Linus Torvalds 已提交
791 792 793 794 795
		else {
			/*
			 * Normal first-time wakeups get a credit too for
			 * on-runqueue time, but it will be weighted down:
			 */
796
			p->sleep_type = SLEEP_INTERACTIVE;
L
Linus Torvalds 已提交
797 798 799
		}
	}
	p->timestamp = now;
800
out:
L
Linus Torvalds 已提交
801 802 803 804 805 806
	__activate_task(p, rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
807
static void deactivate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
808
{
809
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
810 811 812 813 814 815 816 817 818 819 820 821
	dequeue_task(p, p->array);
	p->array = NULL;
}

/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP
822 823 824 825 826

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

827
static void resched_task(struct task_struct *p)
L
Linus Torvalds 已提交
828
{
829
	int cpu;
L
Linus Torvalds 已提交
830 831 832

	assert_spin_locked(&task_rq(p)->lock);

833 834 835 836
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
L
Linus Torvalds 已提交
837

838 839 840 841
	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

842
	/* NEED_RESCHED must be visible before we test polling */
843
	smp_mb();
844
	if (!tsk_is_polling(p))
845
		smp_send_reschedule(cpu);
L
Linus Torvalds 已提交
846
}
847 848 849 850 851 852 853 854 855 856 857

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
L
Linus Torvalds 已提交
858
#else
859
static inline void resched_task(struct task_struct *p)
L
Linus Torvalds 已提交
860
{
861
	assert_spin_locked(&task_rq(p)->lock);
L
Linus Torvalds 已提交
862 863 864 865 866 867 868 869
	set_tsk_need_resched(p);
}
#endif

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
870
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
871 872 873 874
{
	return cpu_curr(task_cpu(p)) == p;
}

875 876 877 878 879 880
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->raw_weighted_load;
}

L
Linus Torvalds 已提交
881
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
882 883 884 885 886 887

void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	task_thread_info(p)->cpu = cpu;
}

888
struct migration_req {
L
Linus Torvalds 已提交
889 890
	struct list_head list;

891
	struct task_struct *task;
L
Linus Torvalds 已提交
892 893 894
	int dest_cpu;

	struct completion done;
895
};
L
Linus Torvalds 已提交
896 897 898 899 900

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
901
static int
902
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
903
{
904
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917 918

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
	if (!p->array && !task_running(rq, p)) {
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
919

L
Linus Torvalds 已提交
920 921 922 923 924 925 926 927 928 929 930 931
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
932
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
933 934
{
	unsigned long flags;
935
	struct rq *rq;
936 937
	struct prio_array *array;
	int running;
L
Linus Torvalds 已提交
938 939

repeat:
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
967
	rq = task_rq_lock(p, &flags);
968 969 970 971 972 973 974 975 976 977 978
	running = task_running(rq, p);
	array = p->array;
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
979 980 981
		cpu_relax();
		goto repeat;
	}
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
	if (unlikely(array)) {
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1017
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1029 1030
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1031 1032 1033 1034
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1035
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1036
{
1037
	struct rq *rq = cpu_rq(cpu);
1038

1039
	if (type == 0)
1040
		return rq->raw_weighted_load;
1041

1042
	return min(rq->cpu_load[type-1], rq->raw_weighted_load);
L
Linus Torvalds 已提交
1043 1044 1045
}

/*
1046 1047
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1048
 */
N
Nick Piggin 已提交
1049
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1050
{
1051
	struct rq *rq = cpu_rq(cpu);
1052

N
Nick Piggin 已提交
1053
	if (type == 0)
1054
		return rq->raw_weighted_load;
1055

1056 1057 1058 1059 1060 1061 1062 1063
	return max(rq->cpu_load[type-1], rq->raw_weighted_load);
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1064
	struct rq *rq = cpu_rq(cpu);
1065 1066
	unsigned long n = rq->nr_running;

1067
	return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1068 1069
}

N
Nick Piggin 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1087 1088 1089 1090
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1107 1108
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1109 1110 1111 1112 1113 1114 1115 1116

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1117
nextgroup:
N
Nick Piggin 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1127
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1128
 */
I
Ingo Molnar 已提交
1129 1130
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1131
{
1132
	cpumask_t tmp;
N
Nick Piggin 已提交
1133 1134 1135 1136
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1137 1138 1139 1140
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1141
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1167

1168
	for_each_domain(cpu, tmp) {
1169 1170 1171 1172 1173
 		/*
 	 	 * If power savings logic is enabled for a domain, stop there.
 	 	 */
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1174 1175
		if (tmp->flags & flag)
			sd = tmp;
1176
	}
N
Nick Piggin 已提交
1177 1178 1179 1180

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1181 1182 1183 1184 1185 1186
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1187 1188 1189

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1190 1191 1192 1193
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1194

1195
		new_cpu = find_idlest_cpu(group, t, cpu);
1196 1197 1198 1199 1200
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1201

1202
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1229
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1230 1231 1232 1233 1234
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1245 1246 1247 1248
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1249
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1250 1251 1252 1253 1254
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
		}
N
Nick Piggin 已提交
1255 1256
		else
			break;
L
Linus Torvalds 已提交
1257 1258 1259 1260
	}
	return cpu;
}
#else
1261
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1281
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1282 1283 1284 1285
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1286
	struct rq *rq;
L
Linus Torvalds 已提交
1287
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1288
	struct sched_domain *sd, *this_sd = NULL;
1289
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

	if (p->array)
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1308 1309
	new_cpu = cpu;

L
Linus Torvalds 已提交
1310 1311 1312
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1313 1314 1315 1316 1317 1318 1319 1320
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1321 1322 1323
		}
	}

N
Nick Piggin 已提交
1324
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1325 1326 1327
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1328
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1329
	 */
N
Nick Piggin 已提交
1330 1331 1332
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1333

1334 1335
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1336 1337
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1338

N
Nick Piggin 已提交
1339 1340
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1341 1342
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1343 1344 1345
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1346

L
Linus Torvalds 已提交
1347
			/*
1348 1349 1350
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1351
			 */
1352
			if (sync)
1353
				tl -= current->load_weight;
1354 1355

			if ((tl <= load &&
1356 1357
				tl + target_load(cpu, idx) <= tl_per_task) ||
				100*(tl + p->load_weight) <= imbalance*load) {
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
		if (p->array)
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
	if (old_state == TASK_UNINTERRUPTIBLE) {
		rq->nr_uninterruptible--;
		/*
		 * Tasks on involuntary sleep don't earn
		 * sleep_avg beyond just interactive state.
		 */
1406
		p->sleep_type = SLEEP_NONINTERACTIVE;
1407
	} else
L
Linus Torvalds 已提交
1408

I
Ingo Molnar 已提交
1409 1410
	/*
	 * Tasks that have marked their sleep as noninteractive get
1411 1412
	 * woken up with their sleep average not weighted in an
	 * interactive way.
I
Ingo Molnar 已提交
1413
	 */
1414 1415 1416 1417 1418
		if (old_state & TASK_NONINTERACTIVE)
			p->sleep_type = SLEEP_NONINTERACTIVE;


	activate_task(p, rq, cpu == this_cpu);
L
Linus Torvalds 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
	if (!sync || cpu != this_cpu) {
		if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);
	}
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1441
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1442 1443 1444 1445 1446 1447
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1448
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1449 1450 1451 1452
{
	return try_to_wake_up(p, state, 0);
}

1453
static void task_running_tick(struct rq *rq, struct task_struct *p);
L
Linus Torvalds 已提交
1454 1455 1456 1457
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
 */
1458
void fastcall sched_fork(struct task_struct *p, int clone_flags)
L
Linus Torvalds 已提交
1459
{
N
Nick Piggin 已提交
1460 1461 1462 1463 1464 1465 1466
	int cpu = get_cpu();

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	set_task_cpu(p, cpu);

L
Linus Torvalds 已提交
1467 1468 1469 1470 1471 1472 1473
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
1474 1475 1476 1477 1478 1479

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

L
Linus Torvalds 已提交
1480 1481
	INIT_LIST_HEAD(&p->run_list);
	p->array = NULL;
1482 1483 1484
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
	if (unlikely(sched_info_on()))
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1485
#endif
1486
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1487 1488
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1489
#ifdef CONFIG_PREEMPT
1490
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1491
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
#endif
	/*
	 * Share the timeslice between parent and child, thus the
	 * total amount of pending timeslices in the system doesn't change,
	 * resulting in more scheduling fairness.
	 */
	local_irq_disable();
	p->time_slice = (current->time_slice + 1) >> 1;
	/*
	 * The remainder of the first timeslice might be recovered by
	 * the parent if the child exits early enough.
	 */
	p->first_time_slice = 1;
	current->time_slice >>= 1;
	p->timestamp = sched_clock();
	if (unlikely(!current->time_slice)) {
		/*
		 * This case is rare, it happens when the parent has only
		 * a single jiffy left from its timeslice. Taking the
		 * runqueue lock is not a problem.
		 */
		current->time_slice = 1;
1514
		task_running_tick(cpu_rq(cpu), current);
N
Nick Piggin 已提交
1515 1516 1517
	}
	local_irq_enable();
	put_cpu();
L
Linus Torvalds 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1527
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1528
{
1529
	struct rq *rq, *this_rq;
L
Linus Torvalds 已提交
1530 1531 1532 1533
	unsigned long flags;
	int this_cpu, cpu;

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1534
	BUG_ON(p->state != TASK_RUNNING);
L
Linus Torvalds 已提交
1535
	this_cpu = smp_processor_id();
N
Nick Piggin 已提交
1536
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559

	/*
	 * We decrease the sleep average of forking parents
	 * and children as well, to keep max-interactive tasks
	 * from forking tasks that are max-interactive. The parent
	 * (current) is done further down, under its lock.
	 */
	p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
		CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);

	p->prio = effective_prio(p);

	if (likely(cpu == this_cpu)) {
		if (!(clone_flags & CLONE_VM)) {
			/*
			 * The VM isn't cloned, so we're in a good position to
			 * do child-runs-first in anticipation of an exec. This
			 * usually avoids a lot of COW overhead.
			 */
			if (unlikely(!current->array))
				__activate_task(p, rq);
			else {
				p->prio = current->prio;
1560
				p->normal_prio = current->normal_prio;
L
Linus Torvalds 已提交
1561 1562 1563
				list_add_tail(&p->run_list, &current->run_list);
				p->array = current->array;
				p->array->nr_active++;
1564
				inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
			}
			set_need_resched();
		} else
			/* Run child last */
			__activate_task(p, rq);
		/*
		 * We skip the following code due to cpu == this_cpu
	 	 *
		 *   task_rq_unlock(rq, &flags);
		 *   this_rq = task_rq_lock(current, &flags);
		 */
		this_rq = rq;
	} else {
		this_rq = cpu_rq(this_cpu);

		/*
		 * Not the local CPU - must adjust timestamp. This should
		 * get optimised away in the !CONFIG_SMP case.
		 */
1584 1585
		p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
					+ rq->most_recent_timestamp;
L
Linus Torvalds 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
		__activate_task(p, rq);
		if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);

		/*
		 * Parent and child are on different CPUs, now get the
		 * parent runqueue to update the parent's ->sleep_avg:
		 */
		task_rq_unlock(rq, &flags);
		this_rq = task_rq_lock(current, &flags);
	}
	current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
		PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
	task_rq_unlock(this_rq, &flags);
}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1614
static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1615 1616 1617 1618 1619
{
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1620 1621
/**
 * finish_task_switch - clean up after a task-switch
1622
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1623 1624
 * @prev: the thread we just switched away from.
 *
1625 1626 1627 1628
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1629 1630 1631 1632 1633 1634
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1635
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1636 1637 1638
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1639
	long prev_state;
L
Linus Torvalds 已提交
1640 1641 1642 1643 1644

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1645
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1646 1647
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1648
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1649 1650 1651 1652 1653
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1654
	prev_state = prev->state;
1655 1656
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
L
Linus Torvalds 已提交
1657 1658
	if (mm)
		mmdrop(mm);
1659
	if (unlikely(prev_state == TASK_DEAD)) {
1660 1661 1662 1663 1664
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
	 	 */
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1665
		put_task_struct(prev);
1666
	}
L
Linus Torvalds 已提交
1667 1668 1669 1670 1671 1672
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1673
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1674 1675
	__releases(rq->lock)
{
1676 1677
	struct rq *rq = this_rq();

1678 1679 1680 1681 1682
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1683 1684 1685 1686 1687 1688 1689 1690
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
1691
static inline struct task_struct *
1692
context_switch(struct rq *rq, struct task_struct *prev,
1693
	       struct task_struct *next)
L
Linus Torvalds 已提交
1694 1695 1696 1697
{
	struct mm_struct *mm = next->mm;
	struct mm_struct *oldmm = prev->active_mm;

1698 1699 1700 1701 1702 1703 1704
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

N
Nick Piggin 已提交
1705
	if (!mm) {
L
Linus Torvalds 已提交
1706 1707 1708 1709 1710 1711
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

N
Nick Piggin 已提交
1712
	if (!prev->mm) {
L
Linus Torvalds 已提交
1713 1714 1715 1716
		prev->active_mm = NULL;
		WARN_ON(rq->prev_mm);
		rq->prev_mm = oldmm;
	}
1717 1718 1719 1720 1721 1722 1723
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1724
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1725
#endif
L
Linus Torvalds 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

	return prev;
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1754
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1769 1770
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1771

1772
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1782
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1783 1784 1785 1786 1787
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

L
Linus Torvalds 已提交
1803 1804
#ifdef CONFIG_SMP

1805 1806 1807 1808 1809 1810 1811 1812 1813
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
{
	return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
}

L
Linus Torvalds 已提交
1814 1815 1816 1817 1818 1819
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
1820
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1821 1822 1823
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
1824
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
1825 1826 1827 1828
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
1829
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
1845
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
1859
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
1860 1861 1862 1863
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1864 1865 1866 1867 1868
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
1869
	if (unlikely(!spin_trylock(&busiest->lock))) {
1870
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
1885
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
1886
{
1887
	struct migration_req req;
L
Linus Torvalds 已提交
1888
	unsigned long flags;
1889
	struct rq *rq;
L
Linus Torvalds 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
1900

L
Linus Torvalds 已提交
1901 1902 1903 1904 1905
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
1906

L
Linus Torvalds 已提交
1907 1908 1909 1910 1911 1912 1913
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
1914 1915
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
1916 1917 1918 1919
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
1920
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
1921
	put_cpu();
N
Nick Piggin 已提交
1922 1923
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
1924 1925 1926 1927 1928 1929
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
1930 1931 1932
static void pull_task(struct rq *src_rq, struct prio_array *src_array,
		      struct task_struct *p, struct rq *this_rq,
		      struct prio_array *this_array, int this_cpu)
L
Linus Torvalds 已提交
1933 1934
{
	dequeue_task(p, src_array);
1935
	dec_nr_running(p, src_rq);
L
Linus Torvalds 已提交
1936
	set_task_cpu(p, this_cpu);
1937
	inc_nr_running(p, this_rq);
L
Linus Torvalds 已提交
1938
	enqueue_task(p, this_array);
1939 1940
	p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
				+ this_rq->most_recent_timestamp;
L
Linus Torvalds 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
	if (TASK_PREEMPTS_CURR(p, this_rq))
		resched_task(this_rq->curr);
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
1952
static
1953
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
1954
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
1955
		     int *all_pinned)
L
Linus Torvalds 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
1965 1966 1967 1968
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
1969 1970 1971

	/*
	 * Aggressive migration if:
1972
	 * 1) task is cache cold, or
L
Linus Torvalds 已提交
1973 1974 1975
	 * 2) too many balance attempts have failed.
	 */

1976 1977 1978 1979 1980
	if (sd->nr_balance_failed > sd->cache_nice_tries) {
#ifdef CONFIG_SCHEDSTATS
		if (task_hot(p, rq->most_recent_timestamp, sd))
			schedstat_inc(sd, lb_hot_gained[idle]);
#endif
L
Linus Torvalds 已提交
1981
		return 1;
1982
	}
L
Linus Torvalds 已提交
1983

1984
	if (task_hot(p, rq->most_recent_timestamp, sd))
1985
		return 0;
L
Linus Torvalds 已提交
1986 1987 1988
	return 1;
}

1989
#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
1990

L
Linus Torvalds 已提交
1991
/*
1992 1993 1994
 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
 * load from busiest to this_rq, as part of a balancing operation within
 * "domain". Returns the number of tasks moved.
L
Linus Torvalds 已提交
1995 1996 1997
 *
 * Called with both runqueues locked.
 */
1998
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1999
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2000
		      struct sched_domain *sd, enum cpu_idle_type idle,
2001
		      int *all_pinned)
L
Linus Torvalds 已提交
2002
{
2003 2004
	int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
	    best_prio_seen, skip_for_load;
2005
	struct prio_array *array, *dst_array;
L
Linus Torvalds 已提交
2006
	struct list_head *head, *curr;
2007
	struct task_struct *tmp;
2008
	long rem_load_move;
L
Linus Torvalds 已提交
2009

2010
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2011 2012
		goto out;

2013
	rem_load_move = max_load_move;
2014
	pinned = 1;
2015
	this_best_prio = rq_best_prio(this_rq);
2016
	best_prio = rq_best_prio(busiest);
2017 2018 2019
	/*
	 * Enable handling of the case where there is more than one task
	 * with the best priority.   If the current running task is one
2020
	 * of those with prio==best_prio we know it won't be moved
2021 2022 2023
	 * and therefore it's safe to override the skip (based on load) of
	 * any task we find with that prio.
	 */
2024
	best_prio_seen = best_prio == busiest->curr->prio;
2025

L
Linus Torvalds 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
	/*
	 * We first consider expired tasks. Those will likely not be
	 * executed in the near future, and they are most likely to
	 * be cache-cold, thus switching CPUs has the least effect
	 * on them.
	 */
	if (busiest->expired->nr_active) {
		array = busiest->expired;
		dst_array = this_rq->expired;
	} else {
		array = busiest->active;
		dst_array = this_rq->active;
	}

new_array:
	/* Start searching at priority 0: */
	idx = 0;
skip_bitmap:
	if (!idx)
		idx = sched_find_first_bit(array->bitmap);
	else
		idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
	if (idx >= MAX_PRIO) {
		if (array == busiest->expired && busiest->active->nr_active) {
			array = busiest->active;
			dst_array = this_rq->active;
			goto new_array;
		}
		goto out;
	}

	head = array->queue + idx;
	curr = head->prev;
skip_queue:
2060
	tmp = list_entry(curr, struct task_struct, run_list);
L
Linus Torvalds 已提交
2061 2062 2063

	curr = curr->prev;

2064 2065 2066 2067 2068
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
2069 2070
	skip_for_load = tmp->load_weight > rem_load_move;
	if (skip_for_load && idx < this_best_prio)
2071
		skip_for_load = !best_prio_seen && idx == best_prio;
2072
	if (skip_for_load ||
2073
	    !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2074 2075

		best_prio_seen |= idx == best_prio;
L
Linus Torvalds 已提交
2076 2077 2078 2079 2080 2081 2082 2083
		if (curr != head)
			goto skip_queue;
		idx++;
		goto skip_bitmap;
	}

	pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
	pulled++;
2084
	rem_load_move -= tmp->load_weight;
L
Linus Torvalds 已提交
2085

2086 2087 2088 2089 2090
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2091 2092
		if (idx < this_best_prio)
			this_best_prio = idx;
L
Linus Torvalds 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
		if (curr != head)
			goto skip_queue;
		idx++;
		goto skip_bitmap;
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2105 2106 2107

	if (all_pinned)
		*all_pinned = pinned;
L
Linus Torvalds 已提交
2108 2109 2110 2111 2112
	return pulled;
}

/*
 * find_busiest_group finds and returns the busiest CPU group within the
2113 2114
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2115 2116 2117
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2118
		   unsigned long *imbalance, enum cpu_idle_type idle, int *sd_idle,
2119
		   cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2120 2121 2122
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2123
	unsigned long max_pull;
2124 2125
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2126
	int load_idx;
2127 2128 2129 2130 2131 2132
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2133 2134

	max_load = this_load = total_load = total_pwr = 0;
2135 2136
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2137
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2138
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2139
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2140 2141 2142
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2143 2144

	do {
2145
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2146 2147
		int local_group;
		int i;
2148
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2149
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2150 2151 2152

		local_group = cpu_isset(this_cpu, group->cpumask);

2153 2154 2155
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2156
		/* Tally up the load of all CPUs in the group */
2157
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2158 2159

		for_each_cpu_mask(i, group->cpumask) {
2160 2161 2162 2163 2164 2165
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2166

N
Nick Piggin 已提交
2167 2168 2169
			if (*sd_idle && !idle_cpu(i))
				*sd_idle = 0;

L
Linus Torvalds 已提交
2170
			/* Bias balancing toward cpus of our domain */
2171 2172 2173 2174 2175 2176
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2177
				load = target_load(i, load_idx);
2178
			} else
N
Nick Piggin 已提交
2179
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2180 2181

			avg_load += load;
2182 2183
			sum_nr_running += rq->nr_running;
			sum_weighted_load += rq->raw_weighted_load;
L
Linus Torvalds 已提交
2184 2185
		}

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
		 * domains.
		 */
		if (local_group && balance_cpu != this_cpu && balance) {
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2196
		total_load += avg_load;
2197
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2198 2199

		/* Adjust by relative CPU power of the group */
2200 2201
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2202

2203
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2204

L
Linus Torvalds 已提交
2205 2206 2207
		if (local_group) {
			this_load = avg_load;
			this = group;
2208 2209 2210
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2211
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2212 2213
			max_load = avg_load;
			busiest = group;
2214 2215
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2216
		}
2217 2218 2219 2220 2221 2222

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2223
 		if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
 			goto group_next;

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

 		/*
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
 		 */
 		if (!power_savings_balance || sum_nr_running >= group_capacity
		    || !sum_nr_running)
 			goto group_next;

 		/*
		 * Calculate the group which has the least non-idle load.
 		 * This is the group from where we need to pick up the load
 		 * for saving power
 		 */
 		if ((sum_nr_running < min_nr_running) ||
 		    (sum_nr_running == min_nr_running &&
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
 			group_min = group;
 			min_nr_running = sum_nr_running;
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
 		}

 		/*
		 * Calculate the group which is almost near its
 		 * capacity but still has some space to pick up some load
 		 * from other group and save more power
 		 */
2262
 		if (sum_nr_running <= group_capacity - 1) {
2263 2264 2265 2266 2267 2268 2269
 			if (sum_nr_running > leader_nr_running ||
 			    (sum_nr_running == leader_nr_running &&
 			     first_cpu(group->cpumask) >
 			      first_cpu(group_leader->cpumask))) {
 				group_leader = group;
 				leader_nr_running = sum_nr_running;
 			}
2270
		}
2271 2272
group_next:
#endif
L
Linus Torvalds 已提交
2273 2274 2275
		group = group->next;
	} while (group != sd->groups);

2276
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2277 2278 2279 2280 2281 2282 2283 2284
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2285
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2309 2310

	/* Don't want to pull so many tasks that a group would go idle */
2311
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2312

L
Linus Torvalds 已提交
2313
	/* How much load to actually move to equalise the imbalance */
2314 2315
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2316 2317
			/ SCHED_LOAD_SCALE;

2318 2319 2320 2321 2322 2323 2324
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
	if (*imbalance < busiest_load_per_task) {
2325
		unsigned long tmp, pwr_now, pwr_move;
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2337

2338 2339
		if (max_load - this_load >= busiest_load_per_task * imbn) {
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2340 2341 2342 2343 2344 2345 2346 2347 2348
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2349 2350 2351 2352
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2353 2354 2355
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2356 2357
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2358
		if (max_load > tmp)
2359
			pwr_move += busiest->__cpu_power *
2360
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2361 2362

		/* Amount of load we'd add */
2363
		if (max_load * busiest->__cpu_power <
2364
				busiest_load_per_task * SCHED_LOAD_SCALE)
2365 2366
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2367
		else
2368 2369 2370 2371
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2372 2373 2374 2375 2376 2377
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2378
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2379 2380 2381 2382 2383
	}

	return busiest;

out_balanced:
2384
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2385
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2386
		goto ret;
L
Linus Torvalds 已提交
2387

2388 2389 2390 2391 2392
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2393
ret:
L
Linus Torvalds 已提交
2394 2395 2396 2397 2398 2399 2400
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2401
static struct rq *
I
Ingo Molnar 已提交
2402
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2403
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2404
{
2405
	struct rq *busiest = NULL, *rq;
2406
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2407 2408 2409
	int i;

	for_each_cpu_mask(i, group->cpumask) {
2410 2411 2412 2413

		if (!cpu_isset(i, *cpus))
			continue;

2414
		rq = cpu_rq(i);
2415

2416
		if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2417
			continue;
L
Linus Torvalds 已提交
2418

2419 2420 2421
		if (rq->raw_weighted_load > max_load) {
			max_load = rq->raw_weighted_load;
			busiest = rq;
L
Linus Torvalds 已提交
2422 2423 2424 2425 2426 2427
		}
	}

	return busiest;
}

2428 2429 2430 2431 2432 2433
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

2434 2435 2436 2437 2438
static inline unsigned long minus_1_or_zero(unsigned long n)
{
	return n > 0 ? n - 1 : 0;
}

L
Linus Torvalds 已提交
2439 2440 2441 2442
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2443
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2444
			struct sched_domain *sd, enum cpu_idle_type idle,
2445
			int *balance)
L
Linus Torvalds 已提交
2446
{
2447
	int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2448 2449
	struct sched_group *group;
	unsigned long imbalance;
2450
	struct rq *busiest;
2451
	cpumask_t cpus = CPU_MASK_ALL;
2452
	unsigned long flags;
N
Nick Piggin 已提交
2453

2454 2455 2456 2457
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2458
	 * portraying it as CPU_NOT_IDLE.
2459
	 */
I
Ingo Molnar 已提交
2460
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2461
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2462
		sd_idle = 1;
L
Linus Torvalds 已提交
2463 2464 2465

	schedstat_inc(sd, lb_cnt[idle]);

2466 2467
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2468 2469
				   &cpus, balance);

2470
	if (*balance == 0)
2471 2472
		goto out_balanced;

L
Linus Torvalds 已提交
2473 2474 2475 2476 2477
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2478
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2479 2480 2481 2482 2483
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2484
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. nr_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
2496
		local_irq_save(flags);
N
Nick Piggin 已提交
2497
		double_rq_lock(this_rq, busiest);
L
Linus Torvalds 已提交
2498
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2499 2500
				      minus_1_or_zero(busiest->nr_running),
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2501
		double_rq_unlock(this_rq, busiest);
2502
		local_irq_restore(flags);
2503

2504 2505 2506 2507 2508 2509
		/*
		 * some other cpu did the load balance for us.
		 */
		if (nr_moved && this_cpu != smp_processor_id())
			resched_cpu(this_cpu);

2510
		/* All tasks on this runqueue were pinned by CPU affinity */
2511 2512 2513 2514
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2515
			goto out_balanced;
2516
		}
L
Linus Torvalds 已提交
2517
	}
2518

L
Linus Torvalds 已提交
2519 2520 2521 2522 2523 2524
	if (!nr_moved) {
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2525
			spin_lock_irqsave(&busiest->lock, flags);
2526 2527 2528 2529 2530

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2531
				spin_unlock_irqrestore(&busiest->lock, flags);
2532 2533 2534 2535
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2536 2537 2538
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2539
				active_balance = 1;
L
Linus Torvalds 已提交
2540
			}
2541
			spin_unlock_irqrestore(&busiest->lock, flags);
2542
			if (active_balance)
L
Linus Torvalds 已提交
2543 2544 2545 2546 2547 2548
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2549
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2550
		}
2551
	} else
L
Linus Torvalds 已提交
2552 2553
		sd->nr_balance_failed = 0;

2554
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2555 2556
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2557 2558 2559 2560 2561 2562 2563 2564 2565
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2566 2567
	}

2568
	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2569
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2570
		return -1;
L
Linus Torvalds 已提交
2571 2572 2573 2574 2575
	return nr_moved;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2576
	sd->nr_balance_failed = 0;
2577 2578

out_one_pinned:
L
Linus Torvalds 已提交
2579
	/* tune up the balancing interval */
2580 2581
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2582 2583
		sd->balance_interval *= 2;

2584
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2585
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2586
		return -1;
L
Linus Torvalds 已提交
2587 2588 2589 2590 2591 2592 2593
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2594
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2595 2596
 * this_rq is locked.
 */
2597
static int
2598
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2599 2600
{
	struct sched_group *group;
2601
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2602 2603
	unsigned long imbalance;
	int nr_moved = 0;
N
Nick Piggin 已提交
2604
	int sd_idle = 0;
2605
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2606

2607 2608 2609 2610
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2611
	 * portraying it as CPU_NOT_IDLE.
2612 2613 2614
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2615
		sd_idle = 1;
L
Linus Torvalds 已提交
2616

I
Ingo Molnar 已提交
2617
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2618
redo:
I
Ingo Molnar 已提交
2619
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2620
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2621
	if (!group) {
I
Ingo Molnar 已提交
2622
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2623
		goto out_balanced;
L
Linus Torvalds 已提交
2624 2625
	}

I
Ingo Molnar 已提交
2626
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2627
				&cpus);
N
Nick Piggin 已提交
2628
	if (!busiest) {
I
Ingo Molnar 已提交
2629
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2630
		goto out_balanced;
L
Linus Torvalds 已提交
2631 2632
	}

N
Nick Piggin 已提交
2633 2634
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2635
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2636 2637 2638 2639 2640 2641

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2642
					minus_1_or_zero(busiest->nr_running),
I
Ingo Molnar 已提交
2643
					imbalance, sd, CPU_NEWLY_IDLE, NULL);
2644
		spin_unlock(&busiest->lock);
2645 2646 2647 2648 2649 2650

		if (!nr_moved) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2651 2652
	}

N
Nick Piggin 已提交
2653
	if (!nr_moved) {
I
Ingo Molnar 已提交
2654
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2655 2656
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2657 2658
			return -1;
	} else
2659
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2660 2661

	return nr_moved;
2662 2663

out_balanced:
I
Ingo Molnar 已提交
2664
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2665
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2666
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2667
		return -1;
2668
	sd->nr_balance_failed = 0;
2669

2670
	return 0;
L
Linus Torvalds 已提交
2671 2672 2673 2674 2675 2676
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2677
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2678 2679
{
	struct sched_domain *sd;
2680 2681
	int pulled_task = 0;
	unsigned long next_balance = jiffies + 60 *  HZ;
L
Linus Torvalds 已提交
2682 2683

	for_each_domain(this_cpu, sd) {
2684 2685 2686 2687 2688 2689
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2690
			/* If we've pulled tasks over stop searching: */
2691
			pulled_task = load_balance_newidle(this_cpu,
2692 2693 2694 2695 2696 2697 2698
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2699
	}
2700 2701 2702 2703 2704 2705
	if (!pulled_task)
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
L
Linus Torvalds 已提交
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2716
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2717
{
2718
	int target_cpu = busiest_rq->push_cpu;
2719 2720
	struct sched_domain *sd;
	struct rq *target_rq;
2721

2722
	/* Is there any task to move? */
2723 2724 2725 2726
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2727 2728

	/*
2729 2730 2731
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2732
	 */
2733
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2734

2735 2736 2737 2738
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2739
	for_each_domain(target_cpu, sd) {
2740
		if ((sd->flags & SD_LOAD_BALANCE) &&
2741
		    cpu_isset(busiest_cpu, sd->span))
2742
				break;
2743
	}
2744

2745 2746
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2747

2748
		if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
I
Ingo Molnar 已提交
2749
			       RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
2750 2751 2752 2753 2754
			       NULL))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2755
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2756 2757
}

2758
static void update_load(struct rq *this_rq)
L
Linus Torvalds 已提交
2759
{
2760
	unsigned long this_load;
2761
	unsigned int i, scale;
L
Linus Torvalds 已提交
2762

2763
	this_load = this_rq->raw_weighted_load;
2764 2765

	/* Update our load: */
2766
	for (i = 0, scale = 1; i < 3; i++, scale += scale) {
2767 2768
		unsigned long old_load, new_load;

2769 2770
		/* scale is effectively 1 << i now, and >> i divides by scale */

N
Nick Piggin 已提交
2771
		old_load = this_rq->cpu_load[i];
2772
		new_load = this_load;
N
Nick Piggin 已提交
2773 2774 2775 2776 2777 2778 2779
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
2780
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
N
Nick Piggin 已提交
2781
	}
2782 2783
}

2784 2785 2786 2787 2788 2789 2790 2791 2792
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2793
/*
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2804
 *
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
2861 2862 2863 2864 2865
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
2866
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
2867
{
2868 2869
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
2870 2871
	unsigned long interval;
	struct sched_domain *sd;
2872
	/* Earliest time when we have to do rebalance again */
2873
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
2874

2875
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
2876 2877 2878 2879
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
2880
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
2881 2882 2883 2884 2885 2886 2887
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;

2888 2889 2890 2891 2892
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

2893
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
2894
			if (load_balance(cpu, rq, sd, idle, &balance)) {
2895 2896
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
2897 2898 2899
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
2900
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
2901
			}
2902
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
2903
		}
2904 2905 2906
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
2907 2908
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
2909 2910 2911 2912 2913 2914 2915 2916

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
2917
	}
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
	rq->next_balance = next_balance;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
	int local_cpu = smp_processor_id();
	struct rq *local_rq = cpu_rq(local_cpu);
I
Ingo Molnar 已提交
2930
	enum cpu_idle_type idle = local_rq->idle_at_tick ? CPU_IDLE : CPU_NOT_IDLE;
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955

	rebalance_domains(local_cpu, idle);

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
	if (local_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == local_cpu) {
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

		cpu_clear(local_cpu, cpus);
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

I
Ingo Molnar 已提交
2956
			rebalance_domains(balance_cpu, CPU_IDLE);
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025

			rq = cpu_rq(balance_cpu);
			if (time_after(local_rq->next_balance, rq->next_balance))
				local_rq->next_balance = rq->next_balance;
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
static inline void trigger_load_balance(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3026 3027 3028 3029 3030
}
#else
/*
 * on UP we do not need to balance between CPUs:
 */
3031
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
{
}
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
 * This is called on clock ticks and on context switches.
 * Bank in p->sched_time the ns elapsed since the last tick or switch.
 */
3044
static inline void
3045
update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
L
Linus Torvalds 已提交
3046
{
3047 3048
	p->sched_time += now - p->last_ran;
	p->last_ran = rq->most_recent_timestamp = now;
L
Linus Torvalds 已提交
3049 3050 3051 3052 3053 3054
}

/*
 * Return current->sched_time plus any more ns on the sched_clock
 * that have not yet been banked.
 */
3055
unsigned long long current_sched_time(const struct task_struct *p)
L
Linus Torvalds 已提交
3056 3057 3058
{
	unsigned long long ns;
	unsigned long flags;
3059

L
Linus Torvalds 已提交
3060
	local_irq_save(flags);
3061
	ns = p->sched_time + sched_clock() - p->last_ran;
L
Linus Torvalds 已提交
3062
	local_irq_restore(flags);
3063

L
Linus Torvalds 已提交
3064 3065 3066
	return ns;
}

3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
/*
 * We place interactive tasks back into the active array, if possible.
 *
 * To guarantee that this does not starve expired tasks we ignore the
 * interactivity of a task if the first expired task had to wait more
 * than a 'reasonable' amount of time. This deadline timeout is
 * load-dependent, as the frequency of array switched decreases with
 * increasing number of running tasks. We also ignore the interactivity
 * if a better static_prio task has expired:
 */
3077
static inline int expired_starving(struct rq *rq)
3078 3079 3080 3081 3082 3083 3084 3085 3086
{
	if (rq->curr->static_prio > rq->best_expired_prio)
		return 1;
	if (!STARVATION_LIMIT || !rq->expired_timestamp)
		return 0;
	if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
		return 1;
	return 0;
}
3087

L
Linus Torvalds 已提交
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3119
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3149
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3161
static void task_running_tick(struct rq *rq, struct task_struct *p)
L
Linus Torvalds 已提交
3162 3163
{
	if (p->array != rq->active) {
3164
		/* Task has expired but was not scheduled yet */
L
Linus Torvalds 已提交
3165
		set_tsk_need_resched(p);
3166
		return;
L
Linus Torvalds 已提交
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	}
	spin_lock(&rq->lock);
	/*
	 * The task was running during this tick - update the
	 * time slice counter. Note: we do not update a thread's
	 * priority until it either goes to sleep or uses up its
	 * timeslice. This makes it possible for interactive tasks
	 * to use up their timeslices at their highest priority levels.
	 */
	if (rt_task(p)) {
		/*
		 * RR tasks need a special form of timeslice management.
		 * FIFO tasks have no timeslices.
		 */
		if ((p->policy == SCHED_RR) && !--p->time_slice) {
			p->time_slice = task_timeslice(p);
			p->first_time_slice = 0;
			set_tsk_need_resched(p);

			/* put it at the end of the queue: */
			requeue_task(p, rq->active);
		}
		goto out_unlock;
	}
	if (!--p->time_slice) {
		dequeue_task(p, rq->active);
		set_tsk_need_resched(p);
		p->prio = effective_prio(p);
		p->time_slice = task_timeslice(p);
		p->first_time_slice = 0;

		if (!rq->expired_timestamp)
			rq->expired_timestamp = jiffies;
3200
		if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
L
Linus Torvalds 已提交
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
			enqueue_task(p, rq->expired);
			if (p->static_prio < rq->best_expired_prio)
				rq->best_expired_prio = p->static_prio;
		} else
			enqueue_task(p, rq->active);
	} else {
		/*
		 * Prevent a too long timeslice allowing a task to monopolize
		 * the CPU. We do this by splitting up the timeslice into
		 * smaller pieces.
		 *
		 * Note: this does not mean the task's timeslices expire or
		 * get lost in any way, they just might be preempted by
		 * another task of equal priority. (one with higher
		 * priority would have preempted this task already.) We
		 * requeue this task to the end of the list on this priority
		 * level, which is in essence a round-robin of tasks with
		 * equal priority.
		 *
		 * This only applies to tasks in the interactive
		 * delta range with at least TIMESLICE_GRANULARITY to requeue.
		 */
		if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
			p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
			(p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
			(p->array == rq->active)) {

			requeue_task(p, rq->active);
			set_tsk_need_resched(p);
		}
	}
out_unlock:
	spin_unlock(&rq->lock);
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
}

/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	unsigned long long now = sched_clock();
	struct task_struct *p = current;
	int cpu = smp_processor_id();
3248
	int idle_at_tick = idle_cpu(cpu);
3249 3250 3251 3252
	struct rq *rq = cpu_rq(cpu);

	update_cpu_clock(p, rq, now);

3253
	if (!idle_at_tick)
3254
		task_running_tick(rq, p);
3255
#ifdef CONFIG_SMP
3256
	update_load(rq);
3257
	rq->idle_at_tick = idle_at_tick;
3258
	trigger_load_balance(cpu);
3259
#endif
L
Linus Torvalds 已提交
3260 3261 3262 3263 3264 3265 3266 3267 3268
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3269 3270
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3271 3272 3273 3274
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3275 3276
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3277 3278 3279 3280 3281 3282 3283 3284
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3285 3286
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3287 3288 3289
	/*
	 * Is the spinlock portion underflowing?
	 */
3290 3291 3292 3293
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3294 3295 3296 3297 3298 3299
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

3300 3301 3302 3303 3304 3305
static inline int interactive_sleep(enum sleep_type sleep_type)
{
	return (sleep_type == SLEEP_INTERACTIVE ||
		sleep_type == SLEEP_INTERRUPTED);
}

L
Linus Torvalds 已提交
3306 3307 3308 3309 3310
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
3311
	struct task_struct *prev, *next;
3312
	struct prio_array *array;
L
Linus Torvalds 已提交
3313 3314 3315
	struct list_head *queue;
	unsigned long long now;
	unsigned long run_time;
3316
	int cpu, idx, new_prio;
3317
	long *switch_count;
3318
	struct rq *rq;
L
Linus Torvalds 已提交
3319 3320 3321 3322 3323 3324

	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3325 3326 3327 3328
	if (unlikely(in_atomic() && !current->exit_state)) {
		printk(KERN_ERR "BUG: scheduling while atomic: "
			"%s/0x%08x/%d\n",
			current->comm, preempt_count(), current->pid);
3329
		debug_show_held_locks(current);
3330 3331
		if (irqs_disabled())
			print_irqtrace_events(current);
3332
		dump_stack();
L
Linus Torvalds 已提交
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
	}
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

need_resched:
	preempt_disable();
	prev = current;
	release_kernel_lock(prev);
need_resched_nonpreemptible:
	rq = this_rq();

	/*
	 * The idle thread is not allowed to schedule!
	 * Remove this check after it has been exercised a bit.
	 */
	if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
		printk(KERN_ERR "bad: scheduling from the idle thread!\n");
		dump_stack();
	}

	schedstat_inc(rq, sched_cnt);
	now = sched_clock();
3354
	if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
L
Linus Torvalds 已提交
3355
		run_time = now - prev->timestamp;
3356
		if (unlikely((long long)(now - prev->timestamp) < 0))
L
Linus Torvalds 已提交
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
			run_time = 0;
	} else
		run_time = NS_MAX_SLEEP_AVG;

	/*
	 * Tasks charged proportionately less run_time at high sleep_avg to
	 * delay them losing their interactive status
	 */
	run_time /= (CURRENT_BONUS(prev) ? : 1);

	spin_lock_irq(&rq->lock);

	switch_count = &prev->nivcsw;
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		switch_count = &prev->nvcsw;
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
				unlikely(signal_pending(prev))))
			prev->state = TASK_RUNNING;
		else {
			if (prev->state == TASK_UNINTERRUPTIBLE)
				rq->nr_uninterruptible++;
			deactivate_task(prev, rq);
		}
	}

	cpu = smp_processor_id();
	if (unlikely(!rq->nr_running)) {
		idle_balance(cpu, rq);
		if (!rq->nr_running) {
			next = rq->idle;
			rq->expired_timestamp = 0;
			goto switch_tasks;
		}
	}

	array = rq->active;
	if (unlikely(!array->nr_active)) {
		/*
		 * Switch the active and expired arrays.
		 */
		schedstat_inc(rq, sched_switch);
		rq->active = rq->expired;
		rq->expired = array;
		array = rq->active;
		rq->expired_timestamp = 0;
		rq->best_expired_prio = MAX_PRIO;
	}

	idx = sched_find_first_bit(array->bitmap);
	queue = array->queue + idx;
3407
	next = list_entry(queue->next, struct task_struct, run_list);
L
Linus Torvalds 已提交
3408

3409
	if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
L
Linus Torvalds 已提交
3410
		unsigned long long delta = now - next->timestamp;
3411
		if (unlikely((long long)(now - next->timestamp) < 0))
L
Linus Torvalds 已提交
3412 3413
			delta = 0;

3414
		if (next->sleep_type == SLEEP_INTERACTIVE)
L
Linus Torvalds 已提交
3415 3416 3417
			delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;

		array = next->array;
3418 3419 3420 3421 3422 3423
		new_prio = recalc_task_prio(next, next->timestamp + delta);

		if (unlikely(next->prio != new_prio)) {
			dequeue_task(next, array);
			next->prio = new_prio;
			enqueue_task(next, array);
3424
		}
L
Linus Torvalds 已提交
3425
	}
3426
	next->sleep_type = SLEEP_NORMAL;
L
Linus Torvalds 已提交
3427 3428 3429 3430
switch_tasks:
	if (next == rq->idle)
		schedstat_inc(rq, sched_goidle);
	prefetch(next);
3431
	prefetch_stack(next);
L
Linus Torvalds 已提交
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
	clear_tsk_need_resched(prev);
	rcu_qsctr_inc(task_cpu(prev));

	update_cpu_clock(prev, rq, now);

	prev->sleep_avg -= run_time;
	if ((long)prev->sleep_avg <= 0)
		prev->sleep_avg = 0;
	prev->timestamp = prev->last_ran = now;

	sched_info_switch(prev, next);
	if (likely(prev != next)) {
3444
		next->timestamp = next->last_ran = now;
L
Linus Torvalds 已提交
3445 3446 3447 3448
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3449
		prepare_task_switch(rq, next);
L
Linus Torvalds 已提交
3450 3451
		prev = context_switch(rq, prev, next);
		barrier();
3452 3453 3454 3455 3456 3457
		/*
		 * this_rq must be evaluated again because prev may have moved
		 * CPUs since it called schedule(), thus the 'rq' on its stack
		 * frame will be invalid.
		 */
		finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
	} else
		spin_unlock_irq(&rq->lock);

	prev = current;
	if (unlikely(reacquire_kernel_lock(prev) < 0))
		goto need_resched_nonpreemptible;
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3472
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3487
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3515
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3527
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3557 3558
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3559
{
3560
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3579 3580 3581
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3582
		if (curr->func(curr, mode, sync, key) &&
3583
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3584 3585 3586 3587 3588 3589 3590 3591 3592
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3593
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3594 3595
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3596
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3615
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3627 3628
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3672

L
Linus Torvalds 已提交
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);


#define	SLEEP_ON_VAR					\
	unsigned long flags;				\
	wait_queue_t wait;				\
	init_waitqueue_entry(&wait, current);

#define SLEEP_ON_HEAD					\
	spin_lock_irqsave(&q->lock,flags);		\
	__add_wait_queue(q, &wait);			\
	spin_unlock(&q->lock);

#define	SLEEP_ON_TAIL					\
	spin_lock_irq(&q->lock);			\
	__remove_wait_queue(q, &wait);			\
	spin_unlock_irqrestore(&q->lock, flags);

void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3819 3820
long fastcall __sched
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

void fastcall __sched sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(sleep_on);

long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}

EXPORT_SYMBOL(sleep_on_timeout);

3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3873
void rt_mutex_setprio(struct task_struct *p, int prio)
3874
{
3875
	struct prio_array *array;
3876
	unsigned long flags;
3877
	struct rq *rq;
3878
	int oldprio;
3879 3880 3881 3882 3883

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

3884
	oldprio = p->prio;
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
	array = p->array;
	if (array)
		dequeue_task(p, array);
	p->prio = prio;

	if (array) {
		/*
		 * If changing to an RT priority then queue it
		 * in the active array!
		 */
		if (rt_task(p))
			array = rq->active;
		enqueue_task(p, array);
		/*
		 * Reschedule if we are currently running on this runqueue and
3900 3901
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3902
		 */
3903 3904 3905 3906
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
		} else if (TASK_PREEMPTS_CURR(p, rq))
3907 3908 3909 3910 3911 3912 3913
			resched_task(rq->curr);
	}
	task_rq_unlock(rq, &flags);
}

#endif

3914
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3915
{
3916
	struct prio_array *array;
3917
	int old_prio, delta;
L
Linus Torvalds 已提交
3918
	unsigned long flags;
3919
	struct rq *rq;
L
Linus Torvalds 已提交
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3932
	 * not SCHED_NORMAL/SCHED_BATCH:
L
Linus Torvalds 已提交
3933
	 */
3934
	if (has_rt_policy(p)) {
L
Linus Torvalds 已提交
3935 3936 3937 3938
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
	array = p->array;
3939
	if (array) {
L
Linus Torvalds 已提交
3940
		dequeue_task(p, array);
3941 3942
		dec_raw_weighted_load(rq, p);
	}
L
Linus Torvalds 已提交
3943 3944

	p->static_prio = NICE_TO_PRIO(nice);
3945
	set_load_weight(p);
3946 3947 3948
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3949 3950 3951

	if (array) {
		enqueue_task(p, array);
3952
		inc_raw_weighted_load(rq, p);
L
Linus Torvalds 已提交
3953
		/*
3954 3955
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3956
		 */
3957
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3958 3959 3960 3961 3962 3963 3964
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3965 3966 3967 3968 3969
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3970
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3971
{
3972 3973
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3974

M
Matt Mackall 已提交
3975 3976 3977 3978
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
3990
	long nice, retval;
L
Linus Torvalds 已提交
3991 3992 3993 3994 3995 3996

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3997 3998
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3999 4000 4001 4002 4003 4004 4005 4006 4007
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4008 4009 4010
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4029
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4030 4031 4032 4033 4034 4035 4036 4037
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4038
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4057
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4058 4059 4060 4061 4062 4063 4064 4065
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4066
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4067 4068 4069 4070 4071 4072 4073 4074
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
static void __setscheduler(struct task_struct *p, int policy, int prio)
{
	BUG_ON(p->array);
4075

L
Linus Torvalds 已提交
4076 4077
	p->policy = policy;
	p->rt_priority = prio;
4078 4079 4080 4081 4082 4083 4084 4085
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
	/*
	 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
	 */
	if (policy == SCHED_BATCH)
		p->sleep_avg = 0;
4086
	set_load_weight(p);
L
Linus Torvalds 已提交
4087 4088 4089
}

/**
4090
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4091 4092 4093
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4094
 *
4095
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4096
 */
I
Ingo Molnar 已提交
4097 4098
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4099
{
4100
	int retval, oldprio, oldpolicy = -1;
4101
	struct prio_array *array;
L
Linus Torvalds 已提交
4102
	unsigned long flags;
4103
	struct rq *rq;
L
Linus Torvalds 已提交
4104

4105 4106
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4107 4108 4109 4110 4111
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4112 4113
			policy != SCHED_NORMAL && policy != SCHED_BATCH)
		return -EINVAL;
L
Linus Torvalds 已提交
4114 4115
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4116 4117
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
	 * SCHED_BATCH is 0.
L
Linus Torvalds 已提交
4118 4119
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4120
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4121
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4122
		return -EINVAL;
4123
	if (is_rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4124 4125
		return -EINVAL;

4126 4127 4128 4129
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
		if (is_rt_policy(policy)) {
			unsigned long rlim_rtprio;
			unsigned long flags;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4148

4149 4150 4151 4152 4153
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4154 4155 4156 4157

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4158 4159 4160 4161 4162
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4163 4164 4165 4166
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4167
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4168 4169 4170
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4171 4172
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
		goto recheck;
	}
	array = p->array;
	if (array)
		deactivate_task(p, rq);
	oldprio = p->prio;
	__setscheduler(p, policy, param->sched_priority);
	if (array) {
		__activate_task(p, rq);
		/*
		 * Reschedule if we are currently running on this runqueue and
4184 4185
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4186
		 */
4187 4188 4189 4190
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
		} else if (TASK_PREEMPTS_CURR(p, rq))
L
Linus Torvalds 已提交
4191 4192
			resched_task(rq->curr);
	}
4193 4194 4195
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4196 4197
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4198 4199 4200 4201
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4202 4203
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4204 4205 4206
{
	struct sched_param lparam;
	struct task_struct *p;
4207
	int retval;
L
Linus Torvalds 已提交
4208 4209 4210 4211 4212

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4213 4214 4215

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4216
	p = find_process_by_pid(pid);
4217 4218 4219
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4220

L
Linus Torvalds 已提交
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4233 4234 4235 4236
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4256
	struct task_struct *p;
L
Linus Torvalds 已提交
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4284
	struct task_struct *p;
L
Linus Torvalds 已提交
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4319 4320
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4321

4322
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4323 4324 4325 4326 4327
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4328
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4345 4346 4347 4348
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4349 4350 4351 4352 4353 4354
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4355
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4396
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4397 4398 4399
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4400
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4401 4402
EXPORT_SYMBOL(cpu_online_map);

4403
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4404
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4405 4406 4407 4408
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4409
	struct task_struct *p;
L
Linus Torvalds 已提交
4410 4411
	int retval;

4412
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4413 4414 4415 4416 4417 4418 4419
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4420 4421 4422 4423
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4424
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4425 4426 4427

out_unlock:
	read_unlock(&tasklist_lock);
4428
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
	if (retval)
		return retval;

	return 0;
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
4463
 * This function yields the current CPU by moving the calling thread
L
Linus Torvalds 已提交
4464 4465 4466 4467 4468
 * to the expired array. If there are no other threads running on this
 * CPU then this function will return.
 */
asmlinkage long sys_sched_yield(void)
{
4469 4470
	struct rq *rq = this_rq_lock();
	struct prio_array *array = current->array, *target = rq->expired;
L
Linus Torvalds 已提交
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482

	schedstat_inc(rq, yld_cnt);
	/*
	 * We implement yielding by moving the task into the expired
	 * queue.
	 *
	 * (special rule: RT tasks will just roundrobin in the active
	 *  array.)
	 */
	if (rt_task(current))
		target = rq->active;

4483
	if (array->nr_active == 1) {
L
Linus Torvalds 已提交
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
		schedstat_inc(rq, yld_act_empty);
		if (!rq->expired->nr_active)
			schedstat_inc(rq, yld_both_empty);
	} else if (!rq->expired->nr_active)
		schedstat_inc(rq, yld_exp_empty);

	if (array != target) {
		dequeue_task(current, array);
		enqueue_task(current, target);
	} else
		/*
		 * requeue_task is cheaper so perform that if possible.
		 */
		requeue_task(current, array);

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4504
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4505 4506 4507 4508 4509 4510 4511 4512
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4513
static void __cond_resched(void)
L
Linus Torvalds 已提交
4514
{
4515 4516 4517
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4518 4519 4520 4521 4522
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4523 4524 4525 4526 4527 4528 4529 4530 4531
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4532 4533
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4549
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4550
{
J
Jan Kara 已提交
4551 4552
	int ret = 0;

L
Linus Torvalds 已提交
4553 4554 4555
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4556
		ret = 1;
L
Linus Torvalds 已提交
4557 4558
		spin_lock(lock);
	}
4559
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4560
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4561 4562 4563
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4564
		ret = 1;
L
Linus Torvalds 已提交
4565 4566
		spin_lock(lock);
	}
J
Jan Kara 已提交
4567
	return ret;
L
Linus Torvalds 已提交
4568 4569 4570 4571 4572 4573 4574
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4575
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4576
		local_bh_enable();
L
Linus Torvalds 已提交
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4588
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4607
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4608

4609
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4610 4611 4612
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4613
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4614 4615 4616 4617 4618
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4619
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4620 4621
	long ret;

4622
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4623 4624 4625
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4626
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4647
	case SCHED_BATCH:
L
Linus Torvalds 已提交
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4671
	case SCHED_BATCH:
L
Linus Torvalds 已提交
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4688
	struct task_struct *p;
L
Linus Torvalds 已提交
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4705
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
L
Linus Torvalds 已提交
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
				0 : task_timeslice(p), &t);
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4716
static const char stat_nam[] = "RSDTtZX";
4717 4718

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4719 4720
{
	unsigned long free = 0;
4721
	unsigned state;
L
Linus Torvalds 已提交
4722 4723

	state = p->state ? __ffs(p->state) + 1 : 0;
4724 4725
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
#if (BITS_PER_LONG == 32)
	if (state == TASK_RUNNING)
		printk(" running ");
	else
		printk(" %08lX ", thread_saved_pc(p));
#else
	if (state == TASK_RUNNING)
		printk("  running task   ");
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4739
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4740 4741
		while (!*n)
			n++;
4742
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4743 4744
	}
#endif
4745
	printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4746 4747 4748 4749 4750 4751 4752 4753 4754
	if (!p->mm)
		printk(" (L-TLB)\n");
	else
		printk(" (NOTLB)\n");

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4755
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4756
{
4757
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4758 4759 4760

#if (BITS_PER_LONG == 32)
	printk("\n"
4761 4762
	       "                         free                        sibling\n");
	printk("  task             PC    stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4763 4764
#else
	printk("\n"
4765 4766
	       "                                 free                        sibling\n");
	printk("  task                 PC        stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4767 4768 4769 4770 4771 4772 4773 4774
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4775
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4776
			show_task(p);
L
Linus Torvalds 已提交
4777 4778
	} while_each_thread(g, p);

4779 4780
	touch_all_softlockup_watchdogs();

L
Linus Torvalds 已提交
4781
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4782 4783 4784 4785 4786
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4787 4788
}

I
Ingo Molnar 已提交
4789 4790 4791 4792 4793
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
	/* nothing yet */
}

4794 4795 4796 4797 4798 4799 4800 4801
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4802
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4803
{
4804
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4805 4806
	unsigned long flags;

4807
	idle->timestamp = sched_clock();
L
Linus Torvalds 已提交
4808 4809
	idle->sleep_avg = 0;
	idle->array = NULL;
4810
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4811 4812 4813 4814 4815 4816
	idle->state = TASK_RUNNING;
	idle->cpus_allowed = cpumask_of_cpu(cpu);
	set_task_cpu(idle, cpu);

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4817 4818 4819
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4820 4821 4822 4823
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4824
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4825
#else
A
Al Viro 已提交
4826
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
#endif
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4843
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4865
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4866
{
4867
	struct migration_req req;
L
Linus Torvalds 已提交
4868
	unsigned long flags;
4869
	struct rq *rq;
4870
	int ret = 0;
L
Linus Torvalds 已提交
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4893

L
Linus Torvalds 已提交
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4906 4907
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4908
 */
4909
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4910
{
4911
	struct rq *rq_dest, *rq_src;
4912
	int ret = 0;
L
Linus Torvalds 已提交
4913 4914

	if (unlikely(cpu_is_offline(dest_cpu)))
4915
		return ret;
L
Linus Torvalds 已提交
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

	set_task_cpu(p, dest_cpu);
	if (p->array) {
		/*
		 * Sync timestamp with rq_dest's before activating.
		 * The same thing could be achieved by doing this step
		 * afterwards, and pretending it was a local activate.
		 * This way is cleaner and logically correct.
		 */
4936 4937
		p->timestamp = p->timestamp - rq_src->most_recent_timestamp
				+ rq_dest->most_recent_timestamp;
L
Linus Torvalds 已提交
4938
		deactivate_task(p, rq_src);
4939
		__activate_task(p, rq_dest);
L
Linus Torvalds 已提交
4940 4941 4942
		if (TASK_PREEMPTS_CURR(p, rq_dest))
			resched_task(rq_dest->curr);
	}
4943
	ret = 1;
L
Linus Torvalds 已提交
4944 4945
out:
	double_rq_unlock(rq_src, rq_dest);
4946
	return ret;
L
Linus Torvalds 已提交
4947 4948 4949 4950 4951 4952 4953
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4954
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4955 4956
{
	int cpu = (long)data;
4957
	struct rq *rq;
L
Linus Torvalds 已提交
4958 4959 4960 4961 4962 4963

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
4964
		struct migration_req *req;
L
Linus Torvalds 已提交
4965 4966
		struct list_head *head;

4967
		try_to_freeze();
L
Linus Torvalds 已提交
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
4989
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
4990 4991
		list_del_init(head->next);

N
Nick Piggin 已提交
4992 4993 4994
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5013 5014 5015 5016
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5017
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5018
{
5019
	unsigned long flags;
L
Linus Torvalds 已提交
5020
	cpumask_t mask;
5021 5022
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5023

5024
restart:
L
Linus Torvalds 已提交
5025 5026
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5027
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5028 5029 5030 5031
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5032
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5033 5034 5035

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5036 5037 5038
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5039
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5040 5041 5042 5043 5044 5045

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5046
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5047 5048
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5049
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5050
	}
5051
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5052
		goto restart;
L
Linus Torvalds 已提交
5053 5054 5055 5056 5057 5058 5059 5060 5061
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5062
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5063
{
5064
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5078
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5079 5080 5081

	write_lock_irq(&tasklist_lock);

5082 5083
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5084 5085
			continue;

5086 5087 5088
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5089 5090 5091 5092 5093 5094

	write_unlock_irq(&tasklist_lock);
}

/* Schedules idle task to be the next runnable task on current CPU.
 * It does so by boosting its priority to highest possible and adding it to
5095
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5096 5097 5098
 */
void sched_idle_next(void)
{
5099
	int this_cpu = smp_processor_id();
5100
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5101 5102 5103 5104
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5105
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5106

5107 5108 5109
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5110 5111 5112 5113
	 */
	spin_lock_irqsave(&rq->lock, flags);

	__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5114 5115

	/* Add idle task to the _front_ of its priority queue: */
L
Linus Torvalds 已提交
5116 5117 5118 5119 5120
	__activate_idle_task(p, rq);

	spin_unlock_irqrestore(&rq->lock, flags);
}

5121 5122
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5136
/* called under rq->lock with disabled interrupts */
5137
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5138
{
5139
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5140 5141

	/* Must be exiting, otherwise would be on tasklist. */
5142
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5143 5144

	/* Cannot have done final schedule yet: would have vanished. */
5145
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5146

5147
	get_task_struct(p);
L
Linus Torvalds 已提交
5148 5149 5150 5151 5152

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5153
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5154
	 */
5155
	spin_unlock(&rq->lock);
5156
	move_task_off_dead_cpu(dead_cpu, p);
5157
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5158

5159
	put_task_struct(p);
L
Linus Torvalds 已提交
5160 5161 5162 5163 5164
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5165
	struct rq *rq = cpu_rq(dead_cpu);
5166
	unsigned int arr, i;
L
Linus Torvalds 已提交
5167 5168 5169 5170

	for (arr = 0; arr < 2; arr++) {
		for (i = 0; i < MAX_PRIO; i++) {
			struct list_head *list = &rq->arrays[arr].queue[i];
5171

L
Linus Torvalds 已提交
5172
			while (!list_empty(list))
5173 5174
				migrate_dead(dead_cpu, list_entry(list->next,
					     struct task_struct, run_list));
L
Linus Torvalds 已提交
5175 5176 5177 5178 5179 5180 5181 5182 5183
		}
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5184 5185
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5186 5187
{
	struct task_struct *p;
5188
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5189
	unsigned long flags;
5190
	struct rq *rq;
L
Linus Torvalds 已提交
5191 5192

	switch (action) {
5193 5194 5195 5196
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5197
	case CPU_UP_PREPARE:
5198
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
		p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
		if (IS_ERR(p))
			return NOTIFY_BAD;
		p->flags |= PF_NOFREEZE;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
		__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5210

L
Linus Torvalds 已提交
5211
	case CPU_ONLINE:
5212
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5213 5214 5215
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5216

L
Linus Torvalds 已提交
5217 5218
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5219
	case CPU_UP_CANCELED_FROZEN:
5220 5221
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5222
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5223 5224
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5225 5226 5227
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5228

L
Linus Torvalds 已提交
5229
	case CPU_DEAD:
5230
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
		deactivate_task(rq->idle, rq);
		rq->idle->static_prio = MAX_PRIO;
		__setscheduler(rq->idle, SCHED_NORMAL, 0);
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5246
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5247 5248 5249
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5250 5251
			struct migration_req *req;

L
Linus Torvalds 已提交
5252
			req = list_entry(rq->migration_queue.next,
5253
					 struct migration_req, list);
L
Linus Torvalds 已提交
5254 5255 5256 5257 5258 5259
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5260 5261 5262
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5263 5264 5265 5266 5267 5268 5269
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5270
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5271 5272 5273 5274 5275 5276 5277
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5278
	int err;
5279 5280

	/* Start one for the boot CPU: */
5281 5282
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5283 5284
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5285

L
Linus Torvalds 已提交
5286 5287 5288 5289 5290
	return 0;
}
#endif

#ifdef CONFIG_SMP
5291 5292 5293 5294 5295

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5296
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5297 5298 5299 5300 5301
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5302 5303 5304 5305 5306
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5326 5327
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5328 5329 5330 5331 5332 5333
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5334 5335
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5336
		if (!cpu_isset(cpu, group->cpumask))
5337 5338
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5351
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5352
				printk("\n");
5353 5354
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5377 5378
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5379 5380 5381

		level++;
		sd = sd->parent;
5382 5383
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5384

5385 5386 5387
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5388 5389 5390 5391

	} while (sd);
}
#else
5392
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5393 5394
#endif

5395
static int sd_degenerate(struct sched_domain *sd)
5396 5397 5398 5399 5400 5401 5402 5403
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5404 5405 5406
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5420 5421
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5440 5441 5442
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5443 5444 5445 5446 5447 5448 5449
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5450 5451 5452 5453
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5454
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5455
{
5456
	struct rq *rq = cpu_rq(cpu);
5457 5458 5459 5460 5461 5462 5463
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5464
		if (sd_parent_degenerate(tmp, parent)) {
5465
			tmp->parent = parent->parent;
5466 5467 5468
			if (parent->parent)
				parent->parent->child = tmp;
		}
5469 5470
	}

5471
	if (sd && sd_degenerate(sd)) {
5472
		sd = sd->parent;
5473 5474 5475
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5476 5477 5478

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5479
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5480 5481 5482
}

/* cpus with isolated domains */
5483
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5501 5502 5503 5504
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5505 5506 5507 5508 5509
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5510
static void
5511 5512 5513
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5514 5515 5516 5517 5518 5519
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5520 5521
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5522 5523 5524 5525 5526 5527
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5528
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5529 5530

		for_each_cpu_mask(j, span) {
5531
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5546
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5547

5548
#ifdef CONFIG_NUMA
5549

5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5602 5603
	cpumask_t span, nodemask;
	int i;
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5614

5615 5616 5617 5618 5619 5620 5621 5622
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5623
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5624

5625
/*
5626
 * SMT sched-domains:
5627
 */
L
Linus Torvalds 已提交
5628 5629
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5630
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5631

5632 5633
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5634
{
5635 5636
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5637 5638 5639 5640
	return cpu;
}
#endif

5641 5642 5643
/*
 * multi-core sched-domains:
 */
5644 5645
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5646
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5647 5648 5649
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5650 5651
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5652
{
5653
	int group;
5654 5655
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5656 5657 5658 5659
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5660 5661
}
#elif defined(CONFIG_SCHED_MC)
5662 5663
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5664
{
5665 5666
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5667 5668 5669 5670
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5671
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5672
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5673

5674 5675
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5676
{
5677
	int group;
5678
#ifdef CONFIG_SCHED_MC
5679
	cpumask_t mask = cpu_coregroup_map(cpu);
5680
	cpus_and(mask, mask, *cpu_map);
5681
	group = first_cpu(mask);
5682
#elif defined(CONFIG_SCHED_SMT)
5683 5684
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5685
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5686
#else
5687
	group = cpu;
L
Linus Torvalds 已提交
5688
#endif
5689 5690 5691
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5692 5693 5694 5695
}

#ifdef CONFIG_NUMA
/*
5696 5697 5698
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5699
 */
5700
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5701
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5702

5703
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5704
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5705

5706 5707
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5708
{
5709 5710 5711 5712 5713 5714 5715 5716 5717
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5718
}
5719

5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5740
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5741 5742 5743 5744 5745
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5746 5747
#endif

5748
#ifdef CONFIG_NUMA
5749 5750 5751
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5752
	int cpu, i;
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5783 5784 5785 5786 5787
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5788

5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5815 5816
	sd->groups->__cpu_power = 0;

5817 5818 5819 5820 5821 5822 5823 5824 5825 5826
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5827
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5828 5829 5830 5831 5832 5833 5834 5835
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5836
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5837 5838 5839 5840
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
5841
/*
5842 5843
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
5844
 */
5845
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
5846 5847
{
	int i;
5848
	struct sched_domain *sd;
5849 5850
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
5851
	int sd_allnodes = 0;
5852 5853 5854 5855

	/*
	 * Allocate the per-node list of sched groups
	 */
5856
	sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5857
					   GFP_KERNEL);
5858 5859
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
5860
		return -ENOMEM;
5861 5862 5863
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
5864 5865

	/*
5866
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
5867
	 */
5868
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5869 5870 5871
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

5872
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
5873 5874

#ifdef CONFIG_NUMA
5875
		if (cpus_weight(*cpu_map)
5876 5877 5878 5879
				> SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
5880
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
5881
			p = sd;
5882
			sd_allnodes = 1;
5883 5884 5885
		} else
			p = NULL;

L
Linus Torvalds 已提交
5886 5887
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
5888 5889
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
5890 5891
		if (p)
			p->child = sd;
5892
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
5893 5894 5895 5896 5897 5898 5899
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
5900 5901
		if (p)
			p->child = sd;
5902
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
5903

5904 5905 5906 5907 5908 5909 5910
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
5911
		p->child = sd;
5912
		cpu_to_core_group(i, cpu_map, &sd->groups);
5913 5914
#endif

L
Linus Torvalds 已提交
5915 5916 5917 5918 5919
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
5920
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
5921
		sd->parent = p;
5922
		p->child = sd;
5923
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
5924 5925 5926 5927 5928
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
5929
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5930
		cpumask_t this_sibling_map = cpu_sibling_map[i];
5931
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
5932 5933 5934
		if (i != first_cpu(this_sibling_map))
			continue;

5935
		init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
L
Linus Torvalds 已提交
5936 5937 5938
	}
#endif

5939 5940 5941 5942 5943 5944 5945
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
5946
		init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
5947 5948 5949 5950
	}
#endif


L
Linus Torvalds 已提交
5951 5952 5953 5954
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

5955
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
5956 5957 5958
		if (cpus_empty(nodemask))
			continue;

5959
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
5960 5961 5962 5963
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
5964 5965
	if (sd_allnodes)
		init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
5966 5967 5968 5969 5970 5971 5972 5973 5974 5975

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
5976 5977
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
5978
			continue;
5979
		}
5980 5981 5982 5983

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

5984
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
5985 5986 5987 5988 5989
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
5990 5991 5992 5993 5994 5995
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
5996
		sg->__cpu_power = 0;
5997
		sg->cpumask = nodemask;
5998
		sg->next = sg;
5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6017 6018
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6019 6020 6021
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6022
				goto error;
6023
			}
6024
			sg->__cpu_power = 0;
6025
			sg->cpumask = tmp;
6026
			sg->next = prev->next;
6027 6028 6029 6030 6031
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6032 6033 6034
#endif

	/* Calculate CPU power for physical packages and nodes */
6035
#ifdef CONFIG_SCHED_SMT
6036
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6037
		sd = &per_cpu(cpu_domains, i);
6038
		init_sched_groups_power(i, sd);
6039
	}
L
Linus Torvalds 已提交
6040
#endif
6041
#ifdef CONFIG_SCHED_MC
6042
	for_each_cpu_mask(i, *cpu_map) {
6043
		sd = &per_cpu(core_domains, i);
6044
		init_sched_groups_power(i, sd);
6045 6046
	}
#endif
6047

6048
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6049
		sd = &per_cpu(phys_domains, i);
6050
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6051 6052
	}

6053
#ifdef CONFIG_NUMA
6054 6055
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6056

6057 6058
	if (sd_allnodes) {
		struct sched_group *sg;
6059

6060
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6061 6062
		init_numa_sched_groups_power(sg);
	}
6063 6064
#endif

L
Linus Torvalds 已提交
6065
	/* Attach the domains */
6066
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6067 6068 6069
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6070 6071
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6072 6073 6074 6075 6076
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6077 6078 6079

	return 0;

6080
#ifdef CONFIG_NUMA
6081 6082 6083
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6084
#endif
L
Linus Torvalds 已提交
6085
}
6086 6087 6088
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6089
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6090 6091
{
	cpumask_t cpu_default_map;
6092
	int err;
L
Linus Torvalds 已提交
6093

6094 6095 6096 6097 6098 6099 6100
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6101 6102 6103
	err = build_sched_domains(&cpu_default_map);

	return err;
6104 6105 6106
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6107
{
6108
	free_sched_groups(cpu_map);
6109
}
L
Linus Torvalds 已提交
6110

6111 6112 6113 6114
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6115
static void detach_destroy_domains(const cpumask_t *cpu_map)
6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6133
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6134 6135
{
	cpumask_t change_map;
6136
	int err = 0;
6137 6138 6139 6140 6141 6142 6143 6144

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6145 6146 6147 6148 6149
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6150 6151
}

6152 6153 6154 6155 6156
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

6157
	mutex_lock(&sched_hotcpu_mutex);
6158 6159
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6160
	mutex_unlock(&sched_hotcpu_mutex);
6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6185

6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6205 6206
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6219 6220
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6221 6222 6223 6224 6225 6226 6227
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6228 6229 6230
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6231
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6232 6233 6234 6235 6236 6237 6238
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6239
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6240
	case CPU_DOWN_PREPARE:
6241
	case CPU_DOWN_PREPARE_FROZEN:
6242
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6243 6244 6245
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6246
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6247
	case CPU_DOWN_FAILED:
6248
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6249
	case CPU_ONLINE:
6250
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6251
	case CPU_DEAD:
6252
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6253 6254 6255 6256 6257 6258 6259 6260 6261
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6262
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6263 6264 6265 6266 6267 6268

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6269 6270
	cpumask_t non_isolated_cpus;

6271
	mutex_lock(&sched_hotcpu_mutex);
6272
	arch_init_sched_domains(&cpu_online_map);
6273
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6274 6275
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6276
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6277 6278
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6279 6280 6281 6282

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6294

L
Linus Torvalds 已提交
6295 6296 6297 6298 6299 6300 6301 6302
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

void __init sched_init(void)
{
	int i, j, k;
6303
	int highest_cpu = 0;
L
Linus Torvalds 已提交
6304

6305
	for_each_possible_cpu(i) {
6306 6307
		struct prio_array *array;
		struct rq *rq;
L
Linus Torvalds 已提交
6308 6309 6310

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6311
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6312
		rq->nr_running = 0;
L
Linus Torvalds 已提交
6313 6314 6315 6316 6317
		rq->active = rq->arrays;
		rq->expired = rq->arrays + 1;
		rq->best_expired_prio = MAX_PRIO;

#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6318
		rq->sd = NULL;
N
Nick Piggin 已提交
6319 6320
		for (j = 1; j < 3; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6321 6322
		rq->active_balance = 0;
		rq->push_cpu = 0;
6323
		rq->cpu = i;
L
Linus Torvalds 已提交
6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

		for (j = 0; j < 2; j++) {
			array = rq->arrays + j;
			for (k = 0; k < MAX_PRIO; k++) {
				INIT_LIST_HEAD(array->queue + k);
				__clear_bit(k, array->bitmap);
			}
			// delimiter for bitsearch
			__set_bit(MAX_PRIO, array->bitmap);
		}
6338
		highest_cpu = i;
L
Linus Torvalds 已提交
6339 6340
	}

6341
	set_load_weight(&init_task);
6342

6343
#ifdef CONFIG_SMP
6344
	nr_cpu_ids = highest_cpu + 1;
6345 6346 6347
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6348 6349 6350 6351
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6370
#ifdef in_atomic
L
Linus Torvalds 已提交
6371 6372 6373 6374 6375 6376 6377
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6378
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6379 6380 6381
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6382
		debug_show_held_locks(current);
6383 6384
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6395
	struct prio_array *array;
6396
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6397
	unsigned long flags;
6398
	struct rq *rq;
L
Linus Torvalds 已提交
6399 6400

	read_lock_irq(&tasklist_lock);
6401 6402

	do_each_thread(g, p) {
L
Linus Torvalds 已提交
6403 6404 6405
		if (!rt_task(p))
			continue;

6406 6407
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417

		array = p->array;
		if (array)
			deactivate_task(p, task_rq(p));
		__setscheduler(p, SCHED_NORMAL, 0);
		if (array) {
			__activate_task(p, task_rq(p));
			resched_task(rq->curr);
		}

6418 6419
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6420 6421
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6422 6423 6424 6425
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6444
struct task_struct *curr_task(int cpu)
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6464
void set_curr_task(int cpu, struct task_struct *p)
6465 6466 6467 6468 6469
{
	cpu_curr(cpu) = p;
}

#endif