sched.c 219.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/stop_machine.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <linux/slab.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79
#include "sched_cpupri.h"
T
Tejun Heo 已提交
80
#include "workqueue_sched.h"
81

82
#define CREATE_TRACE_POINTS
83
#include <trace/events/sched.h>
84

L
Linus Torvalds 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
104
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
105
 */
106
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
107

I
Ingo Molnar 已提交
108 109 110
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
111 112 113
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
114
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
115 116 117
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
118

119 120 121 122 123
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

124 125
static inline int rt_policy(int policy)
{
126
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 128 129 130 131 132 133 134 135
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
136
/*
I
Ingo Molnar 已提交
137
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
138
 */
I
Ingo Molnar 已提交
139 140 141 142 143
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

144
struct rt_bandwidth {
I
Ingo Molnar 已提交
145
	/* nests inside the rq lock: */
146
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
147 148 149
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

183
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
184

185 186 187 188 189
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

190 191 192
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
193 194 195 196 197 198
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

199
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 201 202 203 204
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

205
	raw_spin_lock(&rt_b->rt_runtime_lock);
206
	for (;;) {
207 208 209
		unsigned long delta;
		ktime_t soft, hard;

210 211 212 213 214
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215 216 217 218 219

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220
				HRTIMER_MODE_ABS_PINNED, 0);
221
	}
222
	raw_spin_unlock(&rt_b->rt_runtime_lock);
223 224 225 226 227 228 229 230 231
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

232 233 234 235 236 237
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
238
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
239

240 241
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
242 243
struct cfs_rq;

P
Peter Zijlstra 已提交
244 245
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
246
/* task group related information */
247
struct task_group {
248
	struct cgroup_subsys_state css;
249

250
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
251 252 253 254 255
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
P
Peter Zijlstra 已提交
256 257

	atomic_t load_weight;
258 259 260 261 262 263
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

264
	struct rt_bandwidth rt_bandwidth;
265
#endif
266

267
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
268
	struct list_head list;
P
Peter Zijlstra 已提交
269 270 271 272

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
273 274
};

275
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
276

277
/* task_group_lock serializes the addition/removal of task groups */
278
static DEFINE_SPINLOCK(task_group_lock);
279

280 281
#ifdef CONFIG_FAIR_GROUP_SCHED

282 283
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

284
/*
285 286 287 288
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
289 290 291
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
292
#define MIN_SHARES	2
293
#define MAX_SHARES	(1UL << 18)
294

295 296 297
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
298
/* Default task group.
I
Ingo Molnar 已提交
299
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
300
 */
301
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
302

D
Dhaval Giani 已提交
303
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
304

I
Ingo Molnar 已提交
305 306 307 308 309 310
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
311
	u64 min_vruntime;
I
Ingo Molnar 已提交
312 313 314

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
315 316 317 318 319 320

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
321 322
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
323
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
324

P
Peter Zijlstra 已提交
325
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
326

327
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
328 329
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
330 331
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
332 333 334 335 336 337
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
338
	int on_list;
I
Ingo Molnar 已提交
339 340
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
341 342 343

#ifdef CONFIG_SMP
	/*
344
	 * the part of load.weight contributed by tasks
345
	 */
346
	unsigned long task_weight;
347

348 349 350 351 352 353 354
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
355

356 357 358 359 360 361 362
	/*
	 * Maintaining per-cpu shares distribution for group scheduling
	 *
	 * load_stamp is the last time we updated the load average
	 * load_last is the last time we updated the load average and saw load
	 * load_unacc_exec_time is currently unaccounted execution time
	 */
P
Peter Zijlstra 已提交
363 364
	u64 load_avg;
	u64 load_period;
365
	u64 load_stamp, load_last, load_unacc_exec_time;
366

P
Peter Zijlstra 已提交
367
	unsigned long load_contribution;
368
#endif
I
Ingo Molnar 已提交
369 370
#endif
};
L
Linus Torvalds 已提交
371

I
Ingo Molnar 已提交
372 373 374
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
375
	unsigned long rt_nr_running;
376
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
377 378
	struct {
		int curr; /* highest queued rt task prio */
379
#ifdef CONFIG_SMP
380
		int next; /* next highest */
381
#endif
382
	} highest_prio;
P
Peter Zijlstra 已提交
383
#endif
P
Peter Zijlstra 已提交
384
#ifdef CONFIG_SMP
385
	unsigned long rt_nr_migratory;
386
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
387
	int overloaded;
388
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
389
#endif
P
Peter Zijlstra 已提交
390
	int rt_throttled;
P
Peter Zijlstra 已提交
391
	u64 rt_time;
P
Peter Zijlstra 已提交
392
	u64 rt_runtime;
I
Ingo Molnar 已提交
393
	/* Nests inside the rq lock: */
394
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
395

396
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
397 398
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
399 400 401 402
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
403 404
};

G
Gregory Haskins 已提交
405 406 407 408
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
409 410
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
411 412 413 414 415 416
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
417 418
	cpumask_var_t span;
	cpumask_var_t online;
419

I
Ingo Molnar 已提交
420
	/*
421 422 423
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
424
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
425
	atomic_t rto_count;
426
	struct cpupri cpupri;
G
Gregory Haskins 已提交
427 428
};

429 430 431 432
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
433 434
static struct root_domain def_root_domain;

435
#endif /* CONFIG_SMP */
G
Gregory Haskins 已提交
436

L
Linus Torvalds 已提交
437 438 439 440 441 442 443
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
444
struct rq {
445
	/* runqueue lock: */
446
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
447 448 449 450 451 452

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
453 454
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
455
	unsigned long last_load_update_tick;
456
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
457
	u64 nohz_stamp;
458
	unsigned char nohz_balance_kick;
459
#endif
460 461
	unsigned int skip_clock_update;

462 463
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
464 465 466 467
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
468 469
	struct rt_rq rt;

I
Ingo Molnar 已提交
470
#ifdef CONFIG_FAIR_GROUP_SCHED
471 472
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
473 474
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
475
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
476 477 478 479 480 481 482 483 484 485
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

486
	struct task_struct *curr, *idle, *stop;
487
	unsigned long next_balance;
L
Linus Torvalds 已提交
488
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
489

490
	u64 clock;
491
	u64 clock_task;
I
Ingo Molnar 已提交
492

L
Linus Torvalds 已提交
493 494 495
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
496
	struct root_domain *rd;
L
Linus Torvalds 已提交
497 498
	struct sched_domain *sd;

499 500
	unsigned long cpu_power;

501
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
502
	/* For active balancing */
503
	int post_schedule;
L
Linus Torvalds 已提交
504 505
	int active_balance;
	int push_cpu;
506
	struct cpu_stop_work active_balance_work;
507 508
	/* cpu of this runqueue: */
	int cpu;
509
	int online;
L
Linus Torvalds 已提交
510

511
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
512

513 514
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
515 516
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
517 518
#endif

519 520 521 522
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64 prev_irq_time;
#endif

523 524 525 526
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
527
#ifdef CONFIG_SCHED_HRTICK
528 529 530 531
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
532 533 534
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
535 536 537
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
538 539
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
540 541

	/* sys_sched_yield() stats */
542
	unsigned int yld_count;
L
Linus Torvalds 已提交
543 544

	/* schedule() stats */
545 546 547
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
548 549

	/* try_to_wake_up() stats */
550 551
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
552 553

	/* BKL stats */
554
	unsigned int bkl_count;
L
Linus Torvalds 已提交
555 556 557
#endif
};

558
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
559

P
Peter Zijlstra 已提交
560 561
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
562
{
P
Peter Zijlstra 已提交
563
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
564 565 566 567 568 569 570

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
	if (test_tsk_need_resched(p))
		rq->skip_clock_update = 1;
I
Ingo Molnar 已提交
571 572
}

573 574 575 576 577 578 579 580 581
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

582
#define rcu_dereference_check_sched_domain(p) \
583 584 585 586
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
587 588
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
590 591 592 593
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
594
#define for_each_domain(cpu, __sd) \
595
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
596 597 598 599 600

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
601
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
602

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
 * We use task_subsys_state_check() and extend the RCU verification
 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
 * holds that lock for each task it moves into the cgroup. Therefore
 * by holding that lock, we pin the task to the current cgroup.
 */
static inline struct task_group *task_group(struct task_struct *p)
{
	struct cgroup_subsys_state *css;

	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
			lockdep_is_held(&task_rq(p)->lock));
	return container_of(css, struct task_group, css);
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

646
static u64 irq_time_cpu(int cpu);
647
static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
648

I
Ingo Molnar 已提交
649
inline void update_rq_clock(struct rq *rq)
650
{
651 652 653 654 655 656 657 658
	if (!rq->skip_clock_update) {
		int cpu = cpu_of(rq);
		u64 irq_time;

		rq->clock = sched_clock_cpu(cpu);
		irq_time = irq_time_cpu(cpu);
		if (rq->clock - irq_time > rq->clock_task)
			rq->clock_task = rq->clock - irq_time;
659 660

		sched_irq_time_avg_update(rq, irq_time);
661
	}
662 663
}

I
Ingo Molnar 已提交
664 665 666 667 668 669 670 671 672
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
673 674
/**
 * runqueue_is_locked
675
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
676 677 678 679 680
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
681
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
682
{
683
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
684 685
}

I
Ingo Molnar 已提交
686 687 688
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
689 690 691 692

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
693
enum {
P
Peter Zijlstra 已提交
694
#include "sched_features.h"
I
Ingo Molnar 已提交
695 696
};

P
Peter Zijlstra 已提交
697 698 699 700 701
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
702
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
703 704 705 706 707 708 709 710 711
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

712
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
713 714 715 716 717 718
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
719
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
720 721 722 723
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
724 725 726
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
727
	}
L
Li Zefan 已提交
728
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
729

L
Li Zefan 已提交
730
	return 0;
P
Peter Zijlstra 已提交
731 732 733 734 735 736 737
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
738
	char *cmp;
P
Peter Zijlstra 已提交
739 740 741 742 743 744 745 746 747 748
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
749
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
750

I
Ingo Molnar 已提交
751
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
752 753 754 755 756
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
757
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
P
Peter Zijlstra 已提交
758 759 760 761 762 763 764 765 766 767 768
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

769
	*ppos += cnt;
P
Peter Zijlstra 已提交
770 771 772 773

	return cnt;
}

L
Li Zefan 已提交
774 775 776 777 778
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

779
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
780 781 782 783 784
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
799

800 801 802 803 804 805
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

806 807 808 809 810 811 812 813
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
814
/*
P
Peter Zijlstra 已提交
815
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
816 817
 * default: 1s
 */
P
Peter Zijlstra 已提交
818
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
819

820 821
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
822 823 824 825 826
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
827

828 829 830 831 832 833 834
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
835
	if (sysctl_sched_rt_runtime < 0)
836 837 838 839
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
840

L
Linus Torvalds 已提交
841
#ifndef prepare_arch_switch
842 843 844 845 846 847
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

848 849 850 851 852
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

853
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
854
static inline int task_running(struct rq *rq, struct task_struct *p)
855
{
856
	return task_current(rq, p);
857 858
}

859
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
860 861 862
{
}

863
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
864
{
865 866 867 868
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
869 870 871 872 873 874 875
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

876
	raw_spin_unlock_irq(&rq->lock);
877 878 879
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
880
static inline int task_running(struct rq *rq, struct task_struct *p)
881 882 883 884
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
885
	return task_current(rq, p);
886 887 888
#endif
}

889
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
890 891 892 893 894 895 896 897 898 899
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
900
	raw_spin_unlock_irq(&rq->lock);
901
#else
902
	raw_spin_unlock(&rq->lock);
903 904 905
#endif
}

906
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
907 908 909 910 911 912 913 914 915 916 917 918
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
919
#endif
920 921
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
922

923
/*
P
Peter Zijlstra 已提交
924 925
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
926 927 928
 */
static inline int task_is_waking(struct task_struct *p)
{
929
	return unlikely(p->state == TASK_WAKING);
930 931
}

932 933 934 935
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
936
static inline struct rq *__task_rq_lock(struct task_struct *p)
937 938
	__acquires(rq->lock)
{
939 940
	struct rq *rq;

941
	for (;;) {
942
		rq = task_rq(p);
943
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
944
		if (likely(rq == task_rq(p)))
945
			return rq;
946
		raw_spin_unlock(&rq->lock);
947 948 949
	}
}

L
Linus Torvalds 已提交
950 951
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
952
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
953 954
 * explicitly disabling preemption.
 */
955
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
956 957
	__acquires(rq->lock)
{
958
	struct rq *rq;
L
Linus Torvalds 已提交
959

960 961 962
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
963
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
964
		if (likely(rq == task_rq(p)))
965
			return rq;
966
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
967 968 969
	}
}

A
Alexey Dobriyan 已提交
970
static void __task_rq_unlock(struct rq *rq)
971 972
	__releases(rq->lock)
{
973
	raw_spin_unlock(&rq->lock);
974 975
}

976
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
977 978
	__releases(rq->lock)
{
979
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
980 981 982
}

/*
983
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
984
 */
A
Alexey Dobriyan 已提交
985
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
986 987
	__acquires(rq->lock)
{
988
	struct rq *rq;
L
Linus Torvalds 已提交
989 990 991

	local_irq_disable();
	rq = this_rq();
992
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
993 994 995 996

	return rq;
}

P
Peter Zijlstra 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1018
	if (!cpu_active(cpu_of(rq)))
1019
		return 0;
P
Peter Zijlstra 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1039
	raw_spin_lock(&rq->lock);
1040
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1041
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1042
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1043 1044 1045 1046

	return HRTIMER_NORESTART;
}

1047
#ifdef CONFIG_SMP
1048 1049 1050 1051
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1052
{
1053
	struct rq *rq = arg;
1054

1055
	raw_spin_lock(&rq->lock);
1056 1057
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1058
	raw_spin_unlock(&rq->lock);
1059 1060
}

1061 1062 1063 1064 1065 1066
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1067
{
1068 1069
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1070

1071
	hrtimer_set_expires(timer, time);
1072 1073 1074 1075

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1076
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1077 1078
		rq->hrtick_csd_pending = 1;
	}
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1093
		hrtick_clear(cpu_rq(cpu));
1094 1095 1096 1097 1098 1099
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1100
static __init void init_hrtick(void)
1101 1102 1103
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1104 1105 1106 1107 1108 1109 1110 1111
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1112
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1113
			HRTIMER_MODE_REL_PINNED, 0);
1114
}
1115

A
Andrew Morton 已提交
1116
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1117 1118
{
}
1119
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1120

1121
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1122
{
1123 1124
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1125

1126 1127 1128 1129
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1130

1131 1132
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1133
}
A
Andrew Morton 已提交
1134
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1135 1136 1137 1138 1139 1140 1141 1142
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1143 1144 1145
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1146
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1147

I
Ingo Molnar 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1161
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1162 1163 1164
{
	int cpu;

1165
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1166

1167
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1168 1169
		return;

1170
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1187
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1188 1189
		return;
	resched_task(cpu_curr(cpu));
1190
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1191
}
1192 1193

#ifdef CONFIG_NO_HZ
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		for_each_cpu(i, sched_domain_span(sd))
			if (!idle_cpu(i))
				return i;
	}
	return cpu;
}
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1247
	set_tsk_need_resched(rq->idle);
1248 1249 1250 1251 1252 1253

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1254

1255
#endif /* CONFIG_NO_HZ */
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
1267 1268 1269 1270 1271 1272
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1284
#else /* !CONFIG_SMP */
1285
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1286
{
1287
	assert_raw_spin_locked(&task_rq(p)->lock);
1288
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1289
}
1290 1291 1292 1293

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1294 1295 1296 1297

static void sched_avg_update(struct rq *rq)
{
}
1298
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1299

1300 1301 1302 1303 1304 1305 1306 1307
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1308 1309 1310
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1311
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1312

1313 1314 1315
/*
 * delta *= weight / lw
 */
1316
static unsigned long
1317 1318 1319 1320 1321
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1322 1323 1324 1325 1326 1327 1328
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1329 1330 1331 1332 1333

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1334
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1335
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1336 1337
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1338
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1339

1340
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1341 1342
}

1343
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1344 1345
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1346
	lw->inv_weight = 0;
1347 1348
}

1349
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1350 1351
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1352
	lw->inv_weight = 0;
1353 1354
}

P
Peter Zijlstra 已提交
1355 1356 1357 1358 1359 1360
static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

1361 1362 1363 1364
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1365
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1366 1367 1368 1369
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1370 1371
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1381 1382 1383
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1384 1385
 */
static const int prio_to_weight[40] = {
1386 1387 1388 1389 1390 1391 1392 1393
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1394 1395
};

1396 1397 1398 1399 1400 1401 1402
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1403
static const u32 prio_to_wmult[40] = {
1404 1405 1406 1407 1408 1409 1410 1411
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1412
};
1413

1414 1415 1416 1417 1418 1419 1420 1421
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1422 1423
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1424 1425
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1426 1427
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1428 1429
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1430 1431
#endif

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1442
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1443
typedef int (*tg_visitor)(struct task_group *, void *);
1444 1445 1446 1447 1448

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1449
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1450 1451
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1452
	int ret;
1453 1454 1455 1456

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1457 1458 1459
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1460 1461 1462 1463 1464 1465 1466
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1467 1468 1469
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1470 1471 1472 1473 1474

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1475
out_unlock:
1476
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1477 1478

	return ret;
1479 1480
}

P
Peter Zijlstra 已提交
1481 1482 1483
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1484
}
P
Peter Zijlstra 已提交
1485 1486 1487
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1527 1528
static unsigned long power_of(int cpu)
{
1529
	return cpu_rq(cpu)->cpu_power;
1530 1531
}

P
Peter Zijlstra 已提交
1532 1533 1534 1535 1536
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1537
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1538

1539 1540
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1541 1542
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1543 1544 1545 1546 1547

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1548 1549

/*
1550 1551 1552
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1553
 */
P
Peter Zijlstra 已提交
1554
static int tg_load_down(struct task_group *tg, void *data)
1555
{
1556
	unsigned long load;
P
Peter Zijlstra 已提交
1557
	long cpu = (long)data;
1558

1559 1560 1561 1562
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
P
Peter Zijlstra 已提交
1563
		load *= tg->se[cpu]->load.weight;
1564 1565
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1566

1567
	tg->cfs_rq[cpu]->h_load = load;
1568

P
Peter Zijlstra 已提交
1569
	return 0;
1570 1571
}

P
Peter Zijlstra 已提交
1572
static void update_h_load(long cpu)
1573
{
P
Peter Zijlstra 已提交
1574
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1575 1576
}

1577 1578
#endif

1579 1580
#ifdef CONFIG_PREEMPT

1581 1582
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1583
/*
1584 1585 1586 1587 1588 1589
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1590
 */
1591 1592 1593 1594 1595
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1596
	raw_spin_unlock(&this_rq->lock);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1611 1612 1613 1614 1615 1616
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1617
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1618
		if (busiest < this_rq) {
1619 1620 1621 1622
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1623 1624
			ret = 1;
		} else
1625 1626
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1627 1628 1629 1630
	}
	return ret;
}

1631 1632 1633 1634 1635 1636 1637 1638 1639
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1640
		raw_spin_unlock(&this_rq->lock);
1641 1642 1643 1644 1645 1646
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1647 1648 1649
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1650
	raw_spin_unlock(&busiest->lock);
1651 1652
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1696 1697
#endif

1698
static void calc_load_account_idle(struct rq *this_rq);
1699
static void update_sysctl(void);
1700
static int get_update_sysctl_factor(void);
1701
static void update_cpu_load(struct rq *this_rq);
1702

P
Peter Zijlstra 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1716

1717
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1718

1719
#define sched_class_highest (&stop_sched_class)
1720 1721
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1722

1723 1724
#include "sched_stats.h"

1725
static void inc_nr_running(struct rq *rq)
1726 1727 1728 1729
{
	rq->nr_running++;
}

1730
static void dec_nr_running(struct rq *rq)
1731 1732 1733 1734
{
	rq->nr_running--;
}

1735 1736
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
1737 1738 1739 1740 1741 1742 1743 1744
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1745

I
Ingo Molnar 已提交
1746 1747
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1748 1749
}

1750
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1751
{
1752
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1753
	sched_info_queued(p);
1754
	p->sched_class->enqueue_task(rq, p, flags);
I
Ingo Molnar 已提交
1755
	p->se.on_rq = 1;
1756 1757
}

1758
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1759
{
1760
	update_rq_clock(rq);
1761
	sched_info_dequeued(p);
1762
	p->sched_class->dequeue_task(rq, p, flags);
I
Ingo Molnar 已提交
1763
	p->se.on_rq = 0;
1764 1765
}

1766 1767 1768
/*
 * activate_task - move a task to the runqueue.
 */
1769
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1770 1771 1772 1773
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1774
	enqueue_task(rq, p, flags);
1775 1776 1777 1778 1779 1780
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1781
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1782 1783 1784 1785
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1786
	dequeue_task(rq, p, flags);
1787 1788 1789
	dec_nr_running(rq);
}

1790 1791
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
 * or new value (or semi updated value on 32 bit) with a side effect of
 * accounting a slice of irq time to wrong task when irq is in progress
 * while we read rq->clock. That is a worthy compromise in place of having
 * locks on each irq in account_system_time.
 */
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

1820 1821 1822 1823 1824 1825 1826 1827
static u64 irq_time_cpu(int cpu)
{
	if (!sched_clock_irqtime)
		return 0;

	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
	int cpu;
	u64 now, delta;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
1840
	now = sched_clock_cpu(cpu);
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	delta = now - per_cpu(irq_start_time, cpu);
	per_cpu(irq_start_time, cpu) = now;
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
		per_cpu(cpu_hardirq_time, cpu) += delta;
	else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
		per_cpu(cpu_softirq_time, cpu) += delta;

	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
1856
EXPORT_SYMBOL_GPL(account_system_vtime);
1857

1858 1859 1860 1861 1862 1863 1864 1865 1866
static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
{
	if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
		u64 delta_irq = curr_irq_time - rq->prev_irq_time;
		rq->prev_irq_time = curr_irq_time;
		sched_rt_avg_update(rq, delta_irq);
	}
}

1867 1868 1869 1870 1871 1872 1873
#else

static u64 irq_time_cpu(int cpu)
{
	return 0;
}

1874 1875
static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }

1876 1877
#endif

1878 1879 1880
#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
1881
#include "sched_stoptask.c"
1882 1883 1884 1885
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

1916
/*
I
Ingo Molnar 已提交
1917
 * __normal_prio - return the priority that is based on the static prio
1918 1919 1920
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1921
	return p->static_prio;
1922 1923
}

1924 1925 1926 1927 1928 1929 1930
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1931
static inline int normal_prio(struct task_struct *p)
1932 1933 1934
{
	int prio;

1935
	if (task_has_rt_policy(p))
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1949
static int effective_prio(struct task_struct *p)
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1962 1963 1964 1965
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1966
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1967 1968 1969 1970
{
	return cpu_curr(task_cpu(p)) == p;
}

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1983
#ifdef CONFIG_SMP
1984 1985 1986
/*
 * Is this task likely cache-hot:
 */
1987
static int
1988 1989 1990 1991
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
1992 1993 1994
	if (p->sched_class != &fair_sched_class)
		return 0;

1995 1996 1997
	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

1998 1999 2000
	/*
	 * Buddy candidates are cache hot:
	 */
2001
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2002 2003
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2004 2005
		return 1;

2006 2007 2008 2009 2010
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2011 2012 2013 2014 2015
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2016
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2017
{
2018 2019 2020 2021 2022
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2023 2024
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2025 2026
#endif

2027
	trace_sched_migrate_task(p, new_cpu);
2028

2029 2030 2031 2032
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2033 2034

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2035 2036
}

2037
struct migration_arg {
2038
	struct task_struct *task;
L
Linus Torvalds 已提交
2039
	int dest_cpu;
2040
};
L
Linus Torvalds 已提交
2041

2042 2043
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2044 2045 2046 2047
/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2048
static bool migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2049
{
2050
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2051 2052 2053

	/*
	 * If the task is not on a runqueue (and not running), then
2054
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2055
	 */
2056
	return p->se.on_rq || task_running(rq, p);
L
Linus Torvalds 已提交
2057 2058 2059 2060 2061
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2062 2063 2064 2065 2066 2067 2068
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2069 2070 2071 2072 2073 2074
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2075
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2076 2077
{
	unsigned long flags;
I
Ingo Molnar 已提交
2078
	int running, on_rq;
R
Roland McGrath 已提交
2079
	unsigned long ncsw;
2080
	struct rq *rq;
L
Linus Torvalds 已提交
2081

2082 2083 2084 2085 2086 2087 2088 2089
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2090

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2102 2103 2104
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2105
			cpu_relax();
R
Roland McGrath 已提交
2106
		}
2107

2108 2109 2110 2111 2112 2113
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2114
		trace_sched_wait_task(p);
2115 2116
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2117
		ncsw = 0;
2118
		if (!match_state || p->state == match_state)
2119
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2120
		task_rq_unlock(rq, &flags);
2121

R
Roland McGrath 已提交
2122 2123 2124 2125 2126 2127
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2138

2139 2140 2141 2142 2143
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2144
		 * So if it was still runnable (but just not actively
2145 2146 2147 2148 2149 2150 2151
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2152

2153 2154 2155 2156 2157 2158 2159
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2160 2161

	return ncsw;
L
Linus Torvalds 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2177
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2187
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2188
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2189

T
Thomas Gleixner 已提交
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2211
#ifdef CONFIG_SMP
2212 2213 2214
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2231 2232 2233 2234 2235 2236 2237 2238 2239
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
2240 2241 2242 2243 2244
	}

	return dest_cpu;
}

2245
/*
2246
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2247
 */
2248
static inline
2249
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2250
{
2251
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2264
		     !cpu_online(cpu)))
2265
		cpu = select_fallback_rq(task_cpu(p), p);
2266 2267

	return cpu;
2268
}
2269 2270 2271 2272 2273 2274

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2275 2276
#endif

T
Tejun Heo 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
				 bool is_sync, bool is_migrate, bool is_local,
				 unsigned long en_flags)
{
	schedstat_inc(p, se.statistics.nr_wakeups);
	if (is_sync)
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
	if (is_migrate)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
	if (is_local)
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	else
		schedstat_inc(p, se.statistics.nr_wakeups_remote);

	activate_task(rq, p, en_flags);
}

static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
					int wake_flags, bool success)
{
	trace_sched_wakeup(p, success);
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
T
Tejun Heo 已提交
2316 2317 2318
	/* if a worker is waking up, notify workqueue */
	if ((p->flags & PF_WQ_WORKER) && success)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2319 2320 2321
}

/**
L
Linus Torvalds 已提交
2322
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2323
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2324
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2325
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2326 2327 2328 2329 2330 2331 2332
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2333 2334
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2335
 */
P
Peter Zijlstra 已提交
2336 2337
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2338
{
2339
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2340
	unsigned long flags;
2341
	unsigned long en_flags = ENQUEUE_WAKEUP;
2342
	struct rq *rq;
L
Linus Torvalds 已提交
2343

P
Peter Zijlstra 已提交
2344
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2345

2346
	smp_wmb();
2347
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2348
	if (!(p->state & state))
L
Linus Torvalds 已提交
2349 2350
		goto out;

I
Ingo Molnar 已提交
2351
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2352 2353 2354
		goto out_running;

	cpu = task_cpu(p);
2355
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2356 2357 2358 2359 2360

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2361 2362 2363
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2364 2365
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2366
	 */
2367 2368 2369 2370 2371 2372
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2373
	p->state = TASK_WAKING;
2374

2375
	if (p->sched_class->task_waking) {
2376
		p->sched_class->task_waking(rq, p);
2377 2378
		en_flags |= ENQUEUE_WAKING;
	}
2379

2380 2381
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2382
		set_task_cpu(p, cpu);
2383
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2384

2385 2386
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2387

2388 2389 2390 2391 2392 2393 2394
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2395
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2396

2397 2398 2399 2400 2401 2402 2403
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2404
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2405 2406 2407 2408 2409
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2410
#endif /* CONFIG_SCHEDSTATS */
2411

L
Linus Torvalds 已提交
2412 2413
out_activate:
#endif /* CONFIG_SMP */
T
Tejun Heo 已提交
2414 2415
	ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
		      cpu == this_cpu, en_flags);
L
Linus Torvalds 已提交
2416 2417
	success = 1;
out_running:
T
Tejun Heo 已提交
2418
	ttwu_post_activation(p, rq, wake_flags, success);
L
Linus Torvalds 已提交
2419 2420
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2421
	put_cpu();
L
Linus Torvalds 已提交
2422 2423 2424 2425

	return success;
}

T
Tejun Heo 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
 * Put @p on the run-queue if it's not alredy there.  The caller must
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
 * the current task.  this_rq() stays locked over invocation.
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);
	bool success = false;

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

	if (!(p->state & TASK_NORMAL))
		return;

	if (!p->se.on_rq) {
		if (likely(!task_running(rq, p))) {
			schedstat_inc(rq, ttwu_count);
			schedstat_inc(rq, ttwu_local);
		}
		ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
		success = true;
	}
	ttwu_post_activation(p, rq, 0, success);
}

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2468
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2469
{
2470
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2471 2472 2473
}
EXPORT_SYMBOL(wake_up_process);

2474
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2475 2476 2477 2478 2479 2480 2481
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2482 2483 2484 2485 2486 2487 2488
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2489
	p->se.prev_sum_exec_runtime	= 0;
2490
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2491 2492

#ifdef CONFIG_SCHEDSTATS
2493
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2494
#endif
N
Nick Piggin 已提交
2495

P
Peter Zijlstra 已提交
2496
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2497
	p->se.on_rq = 0;
2498
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2499

2500 2501 2502
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2513
	/*
2514
	 * We mark the process as running here. This guarantees that
2515 2516 2517
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2518
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2519

2520 2521 2522 2523
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2524
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2525
			p->policy = SCHED_NORMAL;
2526 2527
			p->normal_prio = p->static_prio;
		}
2528

2529 2530
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2531
			p->normal_prio = p->static_prio;
2532 2533 2534
			set_load_weight(p);
		}

2535 2536 2537 2538 2539 2540
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2541

2542 2543 2544 2545 2546
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2547 2548
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2549

P
Peter Zijlstra 已提交
2550 2551 2552
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2553 2554 2555 2556 2557 2558 2559 2560
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
	rcu_read_lock();
2561
	set_task_cpu(p, cpu);
2562
	rcu_read_unlock();
2563

2564
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2565
	if (likely(sched_info_on()))
2566
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2567
#endif
2568
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2569 2570
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2571
#ifdef CONFIG_PREEMPT
2572
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2573
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2574
#endif
2575 2576
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2577
	put_cpu();
L
Linus Torvalds 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2587
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2588 2589
{
	unsigned long flags;
I
Ingo Molnar 已提交
2590
	struct rq *rq;
2591
	int cpu __maybe_unused = get_cpu();
2592 2593

#ifdef CONFIG_SMP
2594 2595 2596
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2597 2598 2599 2600 2601
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2602 2603
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2604
	 */
2605
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2606
	set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2607

2608
	p->state = TASK_RUNNING;
2609 2610 2611 2612
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2613
	activate_task(rq, p, 0);
2614
	trace_sched_wakeup_new(p, 1);
P
Peter Zijlstra 已提交
2615
	check_preempt_curr(rq, p, WF_FORK);
2616
#ifdef CONFIG_SMP
2617 2618
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2619
#endif
I
Ingo Molnar 已提交
2620
	task_rq_unlock(rq, &flags);
2621
	put_cpu();
L
Linus Torvalds 已提交
2622 2623
}

2624 2625 2626
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2627
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2628
 * @notifier: notifier struct to register
2629 2630 2631 2632 2633 2634 2635 2636 2637
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2638
 * @notifier: notifier struct to unregister
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2668
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2680
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2681

2682 2683 2684
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2685
 * @prev: the current task that is being switched out
2686 2687 2688 2689 2690 2691 2692 2693 2694
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2695 2696 2697
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2698
{
2699
	fire_sched_out_preempt_notifiers(prev, next);
2700 2701 2702 2703
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2704 2705
/**
 * finish_task_switch - clean up after a task-switch
2706
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2707 2708
 * @prev: the thread we just switched away from.
 *
2709 2710 2711 2712
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2713 2714
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2715
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2716 2717 2718
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2719
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2720 2721 2722
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2723
	long prev_state;
L
Linus Torvalds 已提交
2724 2725 2726 2727 2728

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2729
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2730 2731
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2732
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2733 2734 2735 2736 2737
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2738
	prev_state = prev->state;
2739
	finish_arch_switch(prev);
2740 2741 2742
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2743
	perf_event_task_sched_in(current);
2744 2745 2746
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2747
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2748

2749
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2750 2751
	if (mm)
		mmdrop(mm);
2752
	if (unlikely(prev_state == TASK_DEAD)) {
2753 2754 2755
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2756
		 */
2757
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2758
		put_task_struct(prev);
2759
	}
L
Linus Torvalds 已提交
2760 2761
}

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2777
		raw_spin_lock_irqsave(&rq->lock, flags);
2778 2779
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2780
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2781 2782 2783 2784 2785 2786

		rq->post_schedule = 0;
	}
}

#else
2787

2788 2789 2790 2791 2792 2793
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2794 2795
}

2796 2797
#endif

L
Linus Torvalds 已提交
2798 2799 2800 2801
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2802
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2803 2804
	__releases(rq->lock)
{
2805 2806
	struct rq *rq = this_rq();

2807
	finish_task_switch(rq, prev);
2808

2809 2810 2811 2812 2813
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2814

2815 2816 2817 2818
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2819
	if (current->set_child_tid)
2820
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2821 2822 2823 2824 2825 2826
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2827
static inline void
2828
context_switch(struct rq *rq, struct task_struct *prev,
2829
	       struct task_struct *next)
L
Linus Torvalds 已提交
2830
{
I
Ingo Molnar 已提交
2831
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2832

2833
	prepare_task_switch(rq, prev, next);
2834
	trace_sched_switch(prev, next);
I
Ingo Molnar 已提交
2835 2836
	mm = next->mm;
	oldmm = prev->active_mm;
2837 2838 2839 2840 2841
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2842
	arch_start_context_switch(prev);
2843

2844
	if (!mm) {
L
Linus Torvalds 已提交
2845 2846 2847 2848 2849 2850
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2851
	if (!prev->mm) {
L
Linus Torvalds 已提交
2852 2853 2854
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2855 2856 2857 2858 2859 2860 2861
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2862
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2863
#endif
L
Linus Torvalds 已提交
2864 2865 2866 2867

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2868 2869 2870 2871 2872 2873 2874
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2892
}
L
Linus Torvalds 已提交
2893 2894

unsigned long nr_uninterruptible(void)
2895
{
L
Linus Torvalds 已提交
2896
	unsigned long i, sum = 0;
2897

2898
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2899
		sum += cpu_rq(i)->nr_uninterruptible;
2900 2901

	/*
L
Linus Torvalds 已提交
2902 2903
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2904
	 */
L
Linus Torvalds 已提交
2905 2906
	if (unlikely((long)sum < 0))
		sum = 0;
2907

L
Linus Torvalds 已提交
2908
	return sum;
2909 2910
}

L
Linus Torvalds 已提交
2911
unsigned long long nr_context_switches(void)
2912
{
2913 2914
	int i;
	unsigned long long sum = 0;
2915

2916
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2917
		sum += cpu_rq(i)->nr_switches;
2918

L
Linus Torvalds 已提交
2919 2920
	return sum;
}
2921

L
Linus Torvalds 已提交
2922 2923 2924
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2925

2926
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2927
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2928

L
Linus Torvalds 已提交
2929 2930
	return sum;
}
2931

2932
unsigned long nr_iowait_cpu(int cpu)
2933
{
2934
	struct rq *this = cpu_rq(cpu);
2935 2936
	return atomic_read(&this->nr_iowait);
}
2937

2938 2939 2940 2941 2942
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2943

2944

2945 2946 2947 2948 2949
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2950

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
#endif

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3019 3020
}

3021 3022
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3023
{
3024 3025 3026 3027
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3028 3029

/*
3030 3031
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3032
 */
3033
void calc_global_load(void)
3034
{
3035 3036
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
3037

3038 3039
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
3040

3041 3042
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3043

3044 3045 3046
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3047

3048 3049
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3050

3051
/*
3052 3053
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3054 3055 3056
 */
static void calc_load_account_active(struct rq *this_rq)
{
3057
	long delta;
3058

3059 3060
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3061

3062 3063 3064
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3065
		atomic_long_add(delta, &calc_load_tasks);
3066 3067

	this_rq->calc_load_update += LOAD_FREQ;
3068 3069
}

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

3137
/*
I
Ingo Molnar 已提交
3138
 * Update rq->cpu_load[] statistics. This function is usually called every
3139 3140
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
3141
 */
I
Ingo Molnar 已提交
3142
static void update_cpu_load(struct rq *this_rq)
3143
{
3144
	unsigned long this_load = this_rq->load.weight;
3145 3146
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
3147
	int i, scale;
3148

I
Ingo Molnar 已提交
3149
	this_rq->nr_load_updates++;
3150

3151 3152 3153 3154 3155 3156 3157
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
3158
	/* Update our load: */
3159 3160
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
3161
		unsigned long old_load, new_load;
3162

I
Ingo Molnar 已提交
3163
		/* scale is effectively 1 << i now, and >> i divides by scale */
3164

I
Ingo Molnar 已提交
3165
		old_load = this_rq->cpu_load[i];
3166
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
3167
		new_load = this_load;
I
Ingo Molnar 已提交
3168 3169 3170 3171 3172 3173
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
3174 3175 3176
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
3177
	}
3178 3179

	sched_avg_update(this_rq);
3180 3181 3182 3183 3184
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
3185

3186
	calc_load_account_active(this_rq);
3187 3188
}

I
Ingo Molnar 已提交
3189
#ifdef CONFIG_SMP
3190

3191
/*
P
Peter Zijlstra 已提交
3192 3193
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3194
 */
P
Peter Zijlstra 已提交
3195
void sched_exec(void)
3196
{
P
Peter Zijlstra 已提交
3197
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3198
	unsigned long flags;
3199
	struct rq *rq;
3200
	int dest_cpu;
3201

L
Linus Torvalds 已提交
3202
	rq = task_rq_lock(p, &flags);
3203 3204 3205
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3206

3207
	/*
P
Peter Zijlstra 已提交
3208
	 * select_task_rq() can race against ->cpus_allowed
3209
	 */
3210
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3211 3212
	    likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
		struct migration_arg arg = { p, dest_cpu };
3213

L
Linus Torvalds 已提交
3214
		task_rq_unlock(rq, &flags);
3215
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3216 3217
		return;
	}
3218
unlock:
L
Linus Torvalds 已提交
3219 3220
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3221

L
Linus Torvalds 已提交
3222 3223 3224 3225 3226 3227 3228
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3229
 * Return any ns on the sched_clock that have not yet been accounted in
3230
 * @p in case that task is currently running.
3231 3232
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3233
 */
3234 3235 3236 3237 3238 3239
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
3240
		ns = rq->clock_task - p->se.exec_start;
3241 3242 3243 3244 3245 3246 3247
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3248
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3249 3250
{
	unsigned long flags;
3251
	struct rq *rq;
3252
	u64 ns = 0;
3253

3254
	rq = task_rq_lock(p, &flags);
3255 3256
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3257

3258 3259
	return ns;
}
3260

3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3278

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3298
	task_rq_unlock(rq, &flags);
3299

L
Linus Torvalds 已提交
3300 3301 3302 3303 3304 3305 3306
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3307
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3308
 */
3309 3310
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3311 3312 3313 3314
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3315
	/* Add user time to process. */
L
Linus Torvalds 已提交
3316
	p->utime = cputime_add(p->utime, cputime);
3317
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3318
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3319 3320 3321 3322 3323 3324 3325

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3326 3327

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3328 3329
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3330 3331
}

3332 3333 3334 3335
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3336
 * @cputime_scaled: cputime scaled by cpu frequency
3337
 */
3338 3339
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3340 3341 3342 3343 3344 3345
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3346
	/* Add guest time to process. */
3347
	p->utime = cputime_add(p->utime, cputime);
3348
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3349
	account_group_user_time(p, cputime);
3350 3351
	p->gtime = cputime_add(p->gtime, cputime);

3352
	/* Add guest time to cpustat. */
3353 3354 3355 3356 3357 3358 3359
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3360 3361
}

L
Linus Torvalds 已提交
3362 3363 3364 3365 3366
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3367
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3368 3369
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3370
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3371 3372 3373 3374
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3375
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3376
		account_guest_time(p, cputime, cputime_scaled);
3377 3378
		return;
	}
3379

3380
	/* Add system time to process. */
L
Linus Torvalds 已提交
3381
	p->stime = cputime_add(p->stime, cputime);
3382
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3383
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3384 3385 3386 3387 3388

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
3389
	else if (in_serving_softirq())
L
Linus Torvalds 已提交
3390 3391
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3392 3393
		cpustat->system = cputime64_add(cpustat->system, tmp);

3394 3395
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3396 3397 3398 3399
	/* Account for system time used */
	acct_update_integrals(p);
}

3400
/*
L
Linus Torvalds 已提交
3401 3402
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3403
 */
3404
void account_steal_time(cputime_t cputime)
3405
{
3406 3407 3408 3409
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3410 3411
}

L
Linus Torvalds 已提交
3412
/*
3413 3414
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3415
 */
3416
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3417 3418
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3419
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3420
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3421

3422 3423 3424 3425
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3426 3427
}

3428 3429 3430 3431 3432 3433 3434 3435 3436
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3437
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3438 3439 3440
	struct rq *rq = this_rq();

	if (user_tick)
3441
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3442
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3443
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3444 3445
				    one_jiffy_scaled);
	else
3446
		account_idle_time(cputime_one_jiffy);
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3466 3467
}

3468 3469
#endif

3470 3471 3472 3473
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3474
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3475
{
3476 3477
	*ut = p->utime;
	*st = p->stime;
3478 3479
}

3480
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3481
{
3482 3483 3484 3485 3486 3487
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3488 3489
}
#else
3490 3491

#ifndef nsecs_to_cputime
3492
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3493 3494
#endif

3495
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3496
{
3497
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3498 3499 3500 3501

	/*
	 * Use CFS's precise accounting:
	 */
3502
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3503 3504

	if (total) {
3505
		u64 temp = rtime;
3506

3507
		temp *= utime;
3508
		do_div(temp, total);
3509 3510 3511
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3512

3513 3514 3515
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3516
	p->prev_utime = max(p->prev_utime, utime);
3517
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3518

3519 3520
	*ut = p->prev_utime;
	*st = p->prev_stime;
3521 3522
}

3523 3524 3525 3526
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3527
{
3528 3529 3530
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3531

3532
	thread_group_cputime(p, &cputime);
3533

3534 3535
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3536

3537
	if (total) {
3538
		u64 temp = rtime;
3539

3540
		temp *= cputime.utime;
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3552 3553 3554
}
#endif

3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3566
	struct task_struct *curr = rq->curr;
3567 3568

	sched_clock_tick();
I
Ingo Molnar 已提交
3569

3570
	raw_spin_lock(&rq->lock);
3571
	update_rq_clock(rq);
3572
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3573
	curr->sched_class->task_tick(rq, curr, 0);
3574
	raw_spin_unlock(&rq->lock);
3575

3576
	perf_event_task_tick();
3577

3578
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3579 3580
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3581
#endif
L
Linus Torvalds 已提交
3582 3583
}

3584
notrace unsigned long get_parent_ip(unsigned long addr)
3585 3586 3587 3588 3589 3590 3591 3592
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3593

3594 3595 3596
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3597
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3598
{
3599
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3600 3601 3602
	/*
	 * Underflow?
	 */
3603 3604
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3605
#endif
L
Linus Torvalds 已提交
3606
	preempt_count() += val;
3607
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3608 3609 3610
	/*
	 * Spinlock count overflowing soon?
	 */
3611 3612
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3613 3614 3615
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3616 3617 3618
}
EXPORT_SYMBOL(add_preempt_count);

3619
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3620
{
3621
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3622 3623 3624
	/*
	 * Underflow?
	 */
3625
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3626
		return;
L
Linus Torvalds 已提交
3627 3628 3629
	/*
	 * Is the spinlock portion underflowing?
	 */
3630 3631 3632
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3633
#endif
3634

3635 3636
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3637 3638 3639 3640 3641 3642 3643
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3644
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3645
 */
I
Ingo Molnar 已提交
3646
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3647
{
3648 3649
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3650 3651
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3652

I
Ingo Molnar 已提交
3653
	debug_show_held_locks(prev);
3654
	print_modules();
I
Ingo Molnar 已提交
3655 3656
	if (irqs_disabled())
		print_irqtrace_events(prev);
3657 3658 3659 3660 3661

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3662
}
L
Linus Torvalds 已提交
3663

I
Ingo Molnar 已提交
3664 3665 3666 3667 3668
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3669
	/*
I
Ingo Molnar 已提交
3670
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3671 3672 3673
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3674
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3675 3676
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3677 3678
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3679
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3680 3681
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3682 3683
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3684 3685
	}
#endif
I
Ingo Molnar 已提交
3686 3687
}

P
Peter Zijlstra 已提交
3688
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3689
{
3690 3691 3692
	if (prev->se.on_rq)
		update_rq_clock(rq);
	rq->skip_clock_update = 0;
P
Peter Zijlstra 已提交
3693
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3694 3695
}

I
Ingo Molnar 已提交
3696 3697 3698 3699
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3700
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3701
{
3702
	const struct sched_class *class;
I
Ingo Molnar 已提交
3703
	struct task_struct *p;
L
Linus Torvalds 已提交
3704 3705

	/*
I
Ingo Molnar 已提交
3706 3707
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3708
	 */
I
Ingo Molnar 已提交
3709
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3710
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3711 3712
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3713 3714
	}

3715
	for_each_class(class) {
3716
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3717 3718 3719
		if (p)
			return p;
	}
3720 3721

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3722
}
L
Linus Torvalds 已提交
3723

I
Ingo Molnar 已提交
3724 3725 3726
/*
 * schedule() is the main scheduler function.
 */
3727
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3728 3729
{
	struct task_struct *prev, *next;
3730
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3731
	struct rq *rq;
3732
	int cpu;
I
Ingo Molnar 已提交
3733

3734 3735
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3736 3737
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3738
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3739 3740 3741 3742 3743 3744
	prev = rq->curr;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3745

3746
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3747
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3748

3749
	raw_spin_lock_irq(&rq->lock);
3750
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3751

3752
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3753
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3754
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3755
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
		} else {
			/*
			 * If a worker is going to sleep, notify and
			 * ask workqueue whether it wants to wake up a
			 * task to maintain concurrency.  If so, wake
			 * up the task.
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
3770
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
T
Tejun Heo 已提交
3771
		}
I
Ingo Molnar 已提交
3772
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3773 3774
	}

3775
	pre_schedule(rq, prev);
3776

I
Ingo Molnar 已提交
3777
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3778 3779
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3780
	put_prev_task(rq, prev);
3781
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3782 3783

	if (likely(prev != next)) {
3784
		sched_info_switch(prev, next);
3785
		perf_event_task_sched_out(prev, next);
3786

L
Linus Torvalds 已提交
3787 3788 3789 3790
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3791
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3792
		/*
3793 3794 3795 3796
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
3797 3798 3799
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3800
	} else
3801
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3802

3803
	post_schedule(rq);
L
Linus Torvalds 已提交
3804

3805
	if (unlikely(reacquire_kernel_lock(prev)))
L
Linus Torvalds 已提交
3806
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
3807

L
Linus Torvalds 已提交
3808
	preempt_enable_no_resched();
3809
	if (need_resched())
L
Linus Torvalds 已提交
3810 3811 3812 3813
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3814
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
3834
		return 0;
3835 3836 3837 3838 3839 3840 3841 3842 3843
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
3844
		return 0;
3845 3846 3847 3848 3849 3850

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
3851
		return 0;
3852 3853 3854 3855 3856 3857 3858

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
3859 3860 3861 3862 3863 3864 3865 3866
		if (lock->owner != owner) {
			/*
			 * If the lock has switched to a different owner,
			 * we likely have heavy contention. Return 0 to quit
			 * optimistic spinning and not contend further:
			 */
			if (lock->owner)
				return 0;
3867
			break;
3868
		}
3869 3870 3871 3872 3873 3874 3875 3876 3877

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
3878

3879 3880 3881 3882
	return 1;
}
#endif

L
Linus Torvalds 已提交
3883 3884
#ifdef CONFIG_PREEMPT
/*
3885
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3886
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3887 3888
 * occur there and call schedule directly.
 */
3889
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3890 3891
{
	struct thread_info *ti = current_thread_info();
3892

L
Linus Torvalds 已提交
3893 3894
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3895
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3896
	 */
N
Nick Piggin 已提交
3897
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3898 3899
		return;

3900
	do {
3901
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3902
		schedule();
3903
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3904

3905 3906 3907 3908 3909
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3910
	} while (need_resched());
L
Linus Torvalds 已提交
3911 3912 3913 3914
}
EXPORT_SYMBOL(preempt_schedule);

/*
3915
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3916 3917 3918 3919 3920 3921 3922
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3923

3924
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3925 3926
	BUG_ON(ti->preempt_count || !irqs_disabled());

3927 3928 3929 3930 3931 3932
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3933

3934 3935 3936 3937 3938
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3939
	} while (need_resched());
L
Linus Torvalds 已提交
3940 3941 3942 3943
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3944
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3945
			  void *key)
L
Linus Torvalds 已提交
3946
{
P
Peter Zijlstra 已提交
3947
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3948 3949 3950 3951
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3952 3953
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3954 3955 3956
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3957
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3958 3959
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3960
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3961
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3962
{
3963
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3964

3965
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3966 3967
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3968
		if (curr->func(curr, mode, wake_flags, key) &&
3969
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3970 3971 3972 3973 3974 3975 3976 3977 3978
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3979
 * @key: is directly passed to the wakeup function
3980 3981 3982
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3983
 */
3984
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3985
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3998
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3999 4000 4001
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
4002
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
4003

4004 4005 4006 4007 4008
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
4009
/**
4010
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4011 4012 4013
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4014
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
4015 4016 4017 4018 4019 4020 4021
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
4022 4023 4024
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4025
 */
4026 4027
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4028 4029
{
	unsigned long flags;
P
Peter Zijlstra 已提交
4030
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
4031 4032 4033 4034 4035

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
4036
		wake_flags = 0;
L
Linus Torvalds 已提交
4037 4038

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
4039
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
4040 4041
	spin_unlock_irqrestore(&q->lock, flags);
}
4042 4043 4044 4045 4046 4047 4048 4049 4050
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4051 4052
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4053 4054 4055 4056 4057 4058 4059 4060
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4061 4062 4063
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4064
 */
4065
void complete(struct completion *x)
L
Linus Torvalds 已提交
4066 4067 4068 4069 4070
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4071
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4072 4073 4074 4075
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4076 4077 4078 4079 4080
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4081 4082 4083
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4084
 */
4085
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4086 4087 4088 4089 4090
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4091
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4092 4093 4094 4095
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4096 4097
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4098 4099 4100 4101
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
4102
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
4103
		do {
4104
			if (signal_pending_state(state, current)) {
4105 4106
				timeout = -ERESTARTSYS;
				break;
4107 4108
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4109 4110 4111
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4112
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4113
		__remove_wait_queue(&x->wait, &wait);
4114 4115
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4116 4117
	}
	x->done--;
4118
	return timeout ?: 1;
L
Linus Torvalds 已提交
4119 4120
}

4121 4122
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4123 4124 4125 4126
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4127
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4128
	spin_unlock_irq(&x->wait.lock);
4129 4130
	return timeout;
}
L
Linus Torvalds 已提交
4131

4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4142
void __sched wait_for_completion(struct completion *x)
4143 4144
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4145
}
4146
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4147

4148 4149 4150 4151 4152 4153 4154 4155 4156
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4157
unsigned long __sched
4158
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4159
{
4160
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4161
}
4162
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4163

4164 4165 4166 4167 4168 4169 4170
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4171
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4172
{
4173 4174 4175 4176
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4177
}
4178
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4179

4180 4181 4182 4183 4184 4185 4186 4187
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4188
unsigned long __sched
4189 4190
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4191
{
4192
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4193
}
4194
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4195

4196 4197 4198 4199 4200 4201 4202
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4203 4204 4205 4206 4207 4208 4209 4210 4211
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
unsigned long __sched
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4243
	unsigned long flags;
4244 4245
	int ret = 1;

4246
	spin_lock_irqsave(&x->wait.lock, flags);
4247 4248 4249 4250
	if (!x->done)
		ret = 0;
	else
		x->done--;
4251
	spin_unlock_irqrestore(&x->wait.lock, flags);
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4266
	unsigned long flags;
4267 4268
	int ret = 1;

4269
	spin_lock_irqsave(&x->wait.lock, flags);
4270 4271
	if (!x->done)
		ret = 0;
4272
	spin_unlock_irqrestore(&x->wait.lock, flags);
4273 4274 4275 4276
	return ret;
}
EXPORT_SYMBOL(completion_done);

4277 4278
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4279
{
I
Ingo Molnar 已提交
4280 4281 4282 4283
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4284

4285
	__set_current_state(state);
L
Linus Torvalds 已提交
4286

4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4301 4302 4303
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4304
long __sched
I
Ingo Molnar 已提交
4305
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4306
{
4307
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4308 4309 4310
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4311
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4312
{
4313
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4314 4315 4316
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4317
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4318
{
4319
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4320 4321 4322
}
EXPORT_SYMBOL(sleep_on_timeout);

4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4335
void rt_mutex_setprio(struct task_struct *p, int prio)
4336 4337
{
	unsigned long flags;
4338
	int oldprio, on_rq, running;
4339
	struct rq *rq;
4340
	const struct sched_class *prev_class;
4341 4342 4343 4344 4345

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4346
	trace_sched_pi_setprio(p, prio);
4347
	oldprio = p->prio;
4348
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4349
	on_rq = p->se.on_rq;
4350
	running = task_current(rq, p);
4351
	if (on_rq)
4352
		dequeue_task(rq, p, 0);
4353 4354
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4355 4356 4357 4358 4359 4360

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4361 4362
	p->prio = prio;

4363 4364
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4365
	if (on_rq) {
4366
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4367 4368

		check_class_changed(rq, p, prev_class, oldprio, running);
4369 4370 4371 4372 4373 4374
	}
	task_rq_unlock(rq, &flags);
}

#endif

4375
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4376
{
I
Ingo Molnar 已提交
4377
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4378
	unsigned long flags;
4379
	struct rq *rq;
L
Linus Torvalds 已提交
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4392
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4393
	 */
4394
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4395 4396 4397
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4398
	on_rq = p->se.on_rq;
4399
	if (on_rq)
4400
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4401 4402

	p->static_prio = NICE_TO_PRIO(nice);
4403
	set_load_weight(p);
4404 4405 4406
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4407

I
Ingo Molnar 已提交
4408
	if (on_rq) {
4409
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4410
		/*
4411 4412
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4413
		 */
4414
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4415 4416 4417 4418 4419 4420 4421
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4422 4423 4424 4425 4426
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4427
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4428
{
4429 4430
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4431

4432
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4433 4434 4435
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4436 4437 4438 4439 4440 4441 4442 4443 4444
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4445
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4446
{
4447
	long nice, retval;
L
Linus Torvalds 已提交
4448 4449 4450 4451 4452 4453

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4454 4455
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4456 4457 4458
	if (increment > 40)
		increment = 40;

4459
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4460 4461 4462 4463 4464
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4465 4466 4467
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4486
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4487 4488 4489 4490 4491 4492 4493 4494
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4495
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4496 4497 4498
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4499
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4514
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4515 4516 4517 4518 4519 4520 4521 4522
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4523
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4524
{
4525
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4526 4527 4528
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4529 4530
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4531
{
I
Ingo Molnar 已提交
4532
	BUG_ON(p->se.on_rq);
4533

L
Linus Torvalds 已提交
4534 4535
	p->policy = policy;
	p->rt_priority = prio;
4536 4537 4538
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4539 4540 4541 4542
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4543
	set_load_weight(p);
L
Linus Torvalds 已提交
4544 4545
}

4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4562
static int __sched_setscheduler(struct task_struct *p, int policy,
4563
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4564
{
4565
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4566
	unsigned long flags;
4567
	const struct sched_class *prev_class;
4568
	struct rq *rq;
4569
	int reset_on_fork;
L
Linus Torvalds 已提交
4570

4571 4572
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4573 4574
recheck:
	/* double check policy once rq lock held */
4575 4576
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4577
		policy = oldpolicy = p->policy;
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4588 4589
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4590 4591
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4592 4593
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4594
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4595
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4596
		return -EINVAL;
4597
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4598 4599
		return -EINVAL;

4600 4601 4602
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4603
	if (user && !capable(CAP_SYS_NICE)) {
4604
		if (rt_policy(policy)) {
4605 4606
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4617 4618 4619 4620 4621 4622
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4623

4624
		/* can't change other user's priorities */
4625
		if (!check_same_owner(p))
4626
			return -EPERM;
4627 4628 4629 4630

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4631
	}
L
Linus Torvalds 已提交
4632

4633
	if (user) {
4634
		retval = security_task_setscheduler(p);
4635 4636 4637 4638
		if (retval)
			return retval;
	}

4639 4640 4641 4642
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4643
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4644 4645 4646 4647
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4648
	rq = __task_rq_lock(p);
4649

4650 4651 4652 4653 4654 4655 4656 4657 4658
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return -EINVAL;
	}

4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0) {
			__task_rq_unlock(rq);
			raw_spin_unlock_irqrestore(&p->pi_lock, flags);
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4674 4675 4676
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4677
		__task_rq_unlock(rq);
4678
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4679 4680
		goto recheck;
	}
I
Ingo Molnar 已提交
4681
	on_rq = p->se.on_rq;
4682
	running = task_current(rq, p);
4683
	if (on_rq)
4684
		deactivate_task(rq, p, 0);
4685 4686
	if (running)
		p->sched_class->put_prev_task(rq, p);
4687

4688 4689
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4690
	oldprio = p->prio;
4691
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4692
	__setscheduler(rq, p, policy, param->sched_priority);
4693

4694 4695
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4696 4697
	if (on_rq) {
		activate_task(rq, p, 0);
4698 4699

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4700
	}
4701
	__task_rq_unlock(rq);
4702
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4703

4704 4705
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4706 4707
	return 0;
}
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4718
		       const struct sched_param *param)
4719 4720 4721
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4722 4723
EXPORT_SYMBOL_GPL(sched_setscheduler);

4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4736
			       const struct sched_param *param)
4737 4738 4739 4740
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4741 4742
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4743 4744 4745
{
	struct sched_param lparam;
	struct task_struct *p;
4746
	int retval;
L
Linus Torvalds 已提交
4747 4748 4749 4750 4751

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4752 4753 4754

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4755
	p = find_process_by_pid(pid);
4756 4757 4758
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4759

L
Linus Torvalds 已提交
4760 4761 4762 4763 4764 4765 4766 4767 4768
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4769 4770
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4771
{
4772 4773 4774 4775
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4776 4777 4778 4779 4780 4781 4782 4783
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4784
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4785 4786 4787 4788 4789 4790 4791 4792
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4793
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4794
{
4795
	struct task_struct *p;
4796
	int retval;
L
Linus Torvalds 已提交
4797 4798

	if (pid < 0)
4799
		return -EINVAL;
L
Linus Torvalds 已提交
4800 4801

	retval = -ESRCH;
4802
	rcu_read_lock();
L
Linus Torvalds 已提交
4803 4804 4805 4806
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4807 4808
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4809
	}
4810
	rcu_read_unlock();
L
Linus Torvalds 已提交
4811 4812 4813 4814
	return retval;
}

/**
4815
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4816 4817 4818
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4819
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4820 4821
{
	struct sched_param lp;
4822
	struct task_struct *p;
4823
	int retval;
L
Linus Torvalds 已提交
4824 4825

	if (!param || pid < 0)
4826
		return -EINVAL;
L
Linus Torvalds 已提交
4827

4828
	rcu_read_lock();
L
Linus Torvalds 已提交
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4839
	rcu_read_unlock();
L
Linus Torvalds 已提交
4840 4841 4842 4843 4844 4845 4846 4847 4848

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4849
	rcu_read_unlock();
L
Linus Torvalds 已提交
4850 4851 4852
	return retval;
}

4853
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4854
{
4855
	cpumask_var_t cpus_allowed, new_mask;
4856 4857
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4858

4859
	get_online_cpus();
4860
	rcu_read_lock();
L
Linus Torvalds 已提交
4861 4862 4863

	p = find_process_by_pid(pid);
	if (!p) {
4864
		rcu_read_unlock();
4865
		put_online_cpus();
L
Linus Torvalds 已提交
4866 4867 4868
		return -ESRCH;
	}

4869
	/* Prevent p going away */
L
Linus Torvalds 已提交
4870
	get_task_struct(p);
4871
	rcu_read_unlock();
L
Linus Torvalds 已提交
4872

4873 4874 4875 4876 4877 4878 4879 4880
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4881
	retval = -EPERM;
4882
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4883 4884
		goto out_unlock;

4885
	retval = security_task_setscheduler(p);
4886 4887 4888
	if (retval)
		goto out_unlock;

4889 4890
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4891
again:
4892
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4893

P
Paul Menage 已提交
4894
	if (!retval) {
4895 4896
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4897 4898 4899 4900 4901
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4902
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4903 4904 4905
			goto again;
		}
	}
L
Linus Torvalds 已提交
4906
out_unlock:
4907 4908 4909 4910
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4911
	put_task_struct(p);
4912
	put_online_cpus();
L
Linus Torvalds 已提交
4913 4914 4915 4916
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4917
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4918
{
4919 4920 4921 4922 4923
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4924 4925 4926 4927 4928 4929 4930 4931 4932
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4933 4934
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4935
{
4936
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4937 4938
	int retval;

4939 4940
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4941

4942 4943 4944 4945 4946
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4947 4948
}

4949
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4950
{
4951
	struct task_struct *p;
4952 4953
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4954 4955
	int retval;

4956
	get_online_cpus();
4957
	rcu_read_lock();
L
Linus Torvalds 已提交
4958 4959 4960 4961 4962 4963

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4964 4965 4966 4967
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4968
	rq = task_rq_lock(p, &flags);
4969
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4970
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4971 4972

out_unlock:
4973
	rcu_read_unlock();
4974
	put_online_cpus();
L
Linus Torvalds 已提交
4975

4976
	return retval;
L
Linus Torvalds 已提交
4977 4978 4979 4980 4981 4982 4983 4984
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4985 4986
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4987 4988
{
	int ret;
4989
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4990

A
Anton Blanchard 已提交
4991
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4992 4993
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4994 4995
		return -EINVAL;

4996 4997
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4998

4999 5000
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
5001
		size_t retlen = min_t(size_t, len, cpumask_size());
5002 5003

		if (copy_to_user(user_mask_ptr, mask, retlen))
5004 5005
			ret = -EFAULT;
		else
5006
			ret = retlen;
5007 5008
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5009

5010
	return ret;
L
Linus Torvalds 已提交
5011 5012 5013 5014 5015
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5016 5017
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5018
 */
5019
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5020
{
5021
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5022

5023
	schedstat_inc(rq, yld_count);
5024
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5025 5026 5027 5028 5029 5030

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5031
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5032
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
5033 5034 5035 5036 5037 5038 5039
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
5040 5041 5042 5043 5044
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
5045
static void __cond_resched(void)
L
Linus Torvalds 已提交
5046
{
5047 5048 5049
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5050 5051
}

5052
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5053
{
P
Peter Zijlstra 已提交
5054
	if (should_resched()) {
L
Linus Torvalds 已提交
5055 5056 5057 5058 5059
		__cond_resched();
		return 1;
	}
	return 0;
}
5060
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5061 5062

/*
5063
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5064 5065
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5066
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5067 5068 5069
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5070
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5071
{
P
Peter Zijlstra 已提交
5072
	int resched = should_resched();
J
Jan Kara 已提交
5073 5074
	int ret = 0;

5075 5076
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5077
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5078
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5079
		if (resched)
N
Nick Piggin 已提交
5080 5081 5082
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5083
		ret = 1;
L
Linus Torvalds 已提交
5084 5085
		spin_lock(lock);
	}
J
Jan Kara 已提交
5086
	return ret;
L
Linus Torvalds 已提交
5087
}
5088
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5089

5090
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5091 5092 5093
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5094
	if (should_resched()) {
5095
		local_bh_enable();
L
Linus Torvalds 已提交
5096 5097 5098 5099 5100 5101
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5102
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5103 5104 5105 5106

/**
 * yield - yield the current processor to other threads.
 *
5107
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5118
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5119 5120 5121 5122
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5123
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5124

5125
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5126
	atomic_inc(&rq->nr_iowait);
5127
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5128
	schedule();
5129
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5130
	atomic_dec(&rq->nr_iowait);
5131
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5132 5133 5134 5135 5136
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5137
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5138 5139
	long ret;

5140
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5141
	atomic_inc(&rq->nr_iowait);
5142
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5143
	ret = schedule_timeout(timeout);
5144
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5145
	atomic_dec(&rq->nr_iowait);
5146
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5157
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5158 5159 5160 5161 5162 5163 5164 5165 5166
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5167
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5168
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5182
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5183 5184 5185 5186 5187 5188 5189 5190 5191
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5192
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5193
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5207
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5208
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5209
{
5210
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5211
	unsigned int time_slice;
5212 5213
	unsigned long flags;
	struct rq *rq;
5214
	int retval;
L
Linus Torvalds 已提交
5215 5216 5217
	struct timespec t;

	if (pid < 0)
5218
		return -EINVAL;
L
Linus Torvalds 已提交
5219 5220

	retval = -ESRCH;
5221
	rcu_read_lock();
L
Linus Torvalds 已提交
5222 5223 5224 5225 5226 5227 5228 5229
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5230 5231 5232
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5233

5234
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5235
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5236 5237
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5238

L
Linus Torvalds 已提交
5239
out_unlock:
5240
	rcu_read_unlock();
L
Linus Torvalds 已提交
5241 5242 5243
	return retval;
}

5244
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5245

5246
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5247 5248
{
	unsigned long free = 0;
5249
	unsigned state;
L
Linus Torvalds 已提交
5250 5251

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5252
	printk(KERN_INFO "%-13.13s %c", p->comm,
5253
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5254
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5255
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5256
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5257
	else
P
Peter Zijlstra 已提交
5258
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5259 5260
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5261
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5262
	else
P
Peter Zijlstra 已提交
5263
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5264 5265
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5266
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5267
#endif
P
Peter Zijlstra 已提交
5268
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5269 5270
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5271

5272
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5273 5274
}

I
Ingo Molnar 已提交
5275
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5276
{
5277
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5278

5279
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5280 5281
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5282
#else
P
Peter Zijlstra 已提交
5283 5284
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5285 5286 5287 5288 5289 5290 5291 5292
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5293
		if (!state_filter || (p->state & state_filter))
5294
			sched_show_task(p);
L
Linus Torvalds 已提交
5295 5296
	} while_each_thread(g, p);

5297 5298
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5299 5300 5301
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5302
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5303 5304 5305
	/*
	 * Only show locks if all tasks are dumped:
	 */
5306
	if (!state_filter)
I
Ingo Molnar 已提交
5307
		debug_show_all_locks();
L
Linus Torvalds 已提交
5308 5309
}

I
Ingo Molnar 已提交
5310 5311
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5312
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5313 5314
}

5315 5316 5317 5318 5319 5320 5321 5322
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5323
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5324
{
5325
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5326 5327
	unsigned long flags;

5328
	raw_spin_lock_irqsave(&rq->lock, flags);
5329

I
Ingo Molnar 已提交
5330
	__sched_fork(idle);
5331
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5332 5333
	idle->se.exec_start = sched_clock();

5334
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5346
	__set_task_cpu(idle, cpu);
5347
	rcu_read_unlock();
L
Linus Torvalds 已提交
5348 5349

	rq->curr = rq->idle = idle;
5350 5351 5352
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5353
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5354 5355

	/* Set the preempt count _outside_ the spinlocks! */
5356 5357 5358
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5359
	task_thread_info(idle)->preempt_count = 0;
5360
#endif
I
Ingo Molnar 已提交
5361 5362 5363 5364
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5365
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5366 5367 5368 5369 5370 5371 5372
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5373
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5374
 */
5375
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5376

I
Ingo Molnar 已提交
5377 5378 5379 5380 5381 5382 5383 5384 5385
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5386
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5387
{
5388
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5403

5404 5405
	return factor;
}
I
Ingo Molnar 已提交
5406

5407 5408 5409
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5410

5411 5412 5413 5414 5415 5416 5417
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}
5418

5419 5420 5421
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5422 5423
}

L
Linus Torvalds 已提交
5424 5425 5426 5427
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5428 5429 5430 5431 5432 5433
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5434
 *    it and puts it into the right queue.
5435 5436
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5437 5438 5439 5440 5441 5442 5443 5444
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5445
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5446 5447
 * call is not atomic; no spinlocks may be held.
 */
5448
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5449 5450
{
	unsigned long flags;
5451
	struct rq *rq;
5452
	unsigned int dest_cpu;
5453
	int ret = 0;
L
Linus Torvalds 已提交
5454

P
Peter Zijlstra 已提交
5455 5456 5457 5458 5459 5460 5461
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5462
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5463 5464 5465 5466
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5467

5468
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5469 5470 5471 5472
		ret = -EINVAL;
		goto out;
	}

5473
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5474
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5475 5476 5477 5478
		ret = -EINVAL;
		goto out;
	}

5479
	if (p->sched_class->set_cpus_allowed)
5480
		p->sched_class->set_cpus_allowed(p, new_mask);
5481
	else {
5482 5483
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5484 5485
	}

L
Linus Torvalds 已提交
5486
	/* Can the task run on the task's current CPU? If so, we're done */
5487
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5488 5489
		goto out;

5490 5491 5492
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
	if (migrate_task(p, dest_cpu)) {
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5493 5494
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
5495
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5496 5497 5498 5499 5500
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5501

L
Linus Torvalds 已提交
5502 5503
	return ret;
}
5504
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5505 5506

/*
I
Ingo Molnar 已提交
5507
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5508 5509 5510 5511 5512 5513
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5514 5515
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5516
 */
5517
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5518
{
5519
	struct rq *rq_dest, *rq_src;
5520
	int ret = 0;
L
Linus Torvalds 已提交
5521

5522
	if (unlikely(!cpu_active(dest_cpu)))
5523
		return ret;
L
Linus Torvalds 已提交
5524 5525 5526 5527 5528 5529 5530

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5531
		goto done;
L
Linus Torvalds 已提交
5532
	/* Affinity changed (again). */
5533
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5534
		goto fail;
L
Linus Torvalds 已提交
5535

5536 5537 5538 5539 5540
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5541
		deactivate_task(rq_src, p, 0);
5542
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5543
		activate_task(rq_dest, p, 0);
5544
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5545
	}
L
Linus Torvalds 已提交
5546
done:
5547
	ret = 1;
L
Linus Torvalds 已提交
5548
fail:
L
Linus Torvalds 已提交
5549
	double_rq_unlock(rq_src, rq_dest);
5550
	return ret;
L
Linus Torvalds 已提交
5551 5552 5553
}

/*
5554 5555 5556
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5557
 */
5558
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5559
{
5560
	struct migration_arg *arg = data;
5561

5562 5563 5564 5565
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5566
	local_irq_disable();
5567
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5568
	local_irq_enable();
L
Linus Torvalds 已提交
5569
	return 0;
5570 5571
}

L
Linus Torvalds 已提交
5572
#ifdef CONFIG_HOTPLUG_CPU
5573

5574
/*
5575 5576
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5577
 */
5578
void idle_task_exit(void)
L
Linus Torvalds 已提交
5579
{
5580
	struct mm_struct *mm = current->active_mm;
5581

5582
	BUG_ON(cpu_online(smp_processor_id()));
5583

5584 5585 5586
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
5587 5588 5589 5590 5591 5592 5593 5594 5595
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5596
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5597
{
5598
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5599 5600 5601 5602 5603

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
5604
/*
5605
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
5606
 */
5607
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
5608
{
5609 5610
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
5611 5612
}

5613
/*
5614 5615 5616 5617 5618 5619
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5620
 */
5621
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5622
{
5623
	struct rq *rq = cpu_rq(dead_cpu);
5624 5625
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5626 5627

	/*
5628 5629 5630 5631 5632 5633 5634
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5635
	 */
5636
	rq->stop = NULL;
5637

I
Ingo Molnar 已提交
5638
	for ( ; ; ) {
5639 5640 5641 5642 5643
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5644
			break;
5645

5646
		next = pick_next_task(rq);
5647
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5648
		next->sched_class->put_prev_task(rq, next);
5649

5650 5651 5652 5653 5654 5655 5656
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5657
	}
5658

5659
	rq->stop = stop;
5660
}
5661

L
Linus Torvalds 已提交
5662 5663
#endif /* CONFIG_HOTPLUG_CPU */

5664 5665 5666
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5667 5668
	{
		.procname	= "sched_domain",
5669
		.mode		= 0555,
5670
	},
5671
	{}
5672 5673 5674
};

static struct ctl_table sd_ctl_root[] = {
5675 5676
	{
		.procname	= "kernel",
5677
		.mode		= 0555,
5678 5679
		.child		= sd_ctl_dir,
	},
5680
	{}
5681 5682 5683 5684 5685
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5686
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5687 5688 5689 5690

	return entry;
}

5691 5692
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5693
	struct ctl_table *entry;
5694

5695 5696 5697
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5698
	 * will always be set. In the lowest directory the names are
5699 5700 5701
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5702 5703
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5704 5705 5706
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5707 5708 5709 5710 5711

	kfree(*tablep);
	*tablep = NULL;
}

5712
static void
5713
set_table_entry(struct ctl_table *entry,
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5727
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5728

5729 5730 5731
	if (table == NULL)
		return NULL;

5732
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5733
		sizeof(long), 0644, proc_doulongvec_minmax);
5734
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5735
		sizeof(long), 0644, proc_doulongvec_minmax);
5736
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5737
		sizeof(int), 0644, proc_dointvec_minmax);
5738
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5739
		sizeof(int), 0644, proc_dointvec_minmax);
5740
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5741
		sizeof(int), 0644, proc_dointvec_minmax);
5742
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5743
		sizeof(int), 0644, proc_dointvec_minmax);
5744
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5745
		sizeof(int), 0644, proc_dointvec_minmax);
5746
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5747
		sizeof(int), 0644, proc_dointvec_minmax);
5748
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5749
		sizeof(int), 0644, proc_dointvec_minmax);
5750
	set_table_entry(&table[9], "cache_nice_tries",
5751 5752
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5753
	set_table_entry(&table[10], "flags", &sd->flags,
5754
		sizeof(int), 0644, proc_dointvec_minmax);
5755 5756 5757
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5758 5759 5760 5761

	return table;
}

5762
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5763 5764 5765 5766 5767 5768 5769 5770 5771
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5772 5773
	if (table == NULL)
		return NULL;
5774 5775 5776 5777 5778

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5779
		entry->mode = 0555;
5780 5781 5782 5783 5784 5785 5786 5787
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5788
static void register_sched_domain_sysctl(void)
5789
{
5790
	int i, cpu_num = num_possible_cpus();
5791 5792 5793
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5794 5795 5796
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5797 5798 5799
	if (entry == NULL)
		return;

5800
	for_each_possible_cpu(i) {
5801 5802
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5803
		entry->mode = 0555;
5804
		entry->child = sd_alloc_ctl_cpu_table(i);
5805
		entry++;
5806
	}
5807 5808

	WARN_ON(sd_sysctl_header);
5809 5810
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5811

5812
/* may be called multiple times per register */
5813 5814
static void unregister_sched_domain_sysctl(void)
{
5815 5816
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5817
	sd_sysctl_header = NULL;
5818 5819
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5820
}
5821
#else
5822 5823 5824 5825
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5826 5827 5828 5829
{
}
#endif

5830 5831 5832 5833 5834
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5835
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5855
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5856 5857 5858 5859
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5860 5861 5862 5863
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5864 5865
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5866
{
5867
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5868
	unsigned long flags;
5869
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5870

5871
	switch (action & ~CPU_TASKS_FROZEN) {
5872

L
Linus Torvalds 已提交
5873
	case CPU_UP_PREPARE:
5874
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5875
		break;
5876

L
Linus Torvalds 已提交
5877
	case CPU_ONLINE:
5878
		/* Update our root-domain */
5879
		raw_spin_lock_irqsave(&rq->lock, flags);
5880
		if (rq->rd) {
5881
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5882 5883

			set_rq_online(rq);
5884
		}
5885
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5886
		break;
5887

L
Linus Torvalds 已提交
5888
#ifdef CONFIG_HOTPLUG_CPU
5889
	case CPU_DYING:
G
Gregory Haskins 已提交
5890
		/* Update our root-domain */
5891
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5892
		if (rq->rd) {
5893
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5894
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5895
		}
5896 5897
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5898
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5899 5900 5901

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
5902
		break;
L
Linus Torvalds 已提交
5903 5904 5905 5906 5907
#endif
	}
	return NOTIFY_OK;
}

5908 5909 5910
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5911
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5912
 */
5913
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5914
	.notifier_call = migration_call,
5915
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5916 5917
};

5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5943
static int __init migration_init(void)
L
Linus Torvalds 已提交
5944 5945
{
	void *cpu = (void *)(long)smp_processor_id();
5946
	int err;
5947

5948
	/* Initialize migration for the boot CPU */
5949 5950
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5951 5952
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5953

5954 5955 5956 5957
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5958
	return 0;
L
Linus Torvalds 已提交
5959
}
5960
early_initcall(migration_init);
L
Linus Torvalds 已提交
5961 5962 5963
#endif

#ifdef CONFIG_SMP
5964

5965
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5966

5967 5968 5969 5970 5971 5972 5973 5974 5975 5976
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5977
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5978
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5979
{
I
Ingo Molnar 已提交
5980
	struct sched_group *group = sd->groups;
5981
	char str[256];
L
Linus Torvalds 已提交
5982

R
Rusty Russell 已提交
5983
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5984
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5985 5986 5987 5988

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5989
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5990
		if (sd->parent)
P
Peter Zijlstra 已提交
5991 5992
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5993
		return -1;
N
Nick Piggin 已提交
5994 5995
	}

P
Peter Zijlstra 已提交
5996
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5997

5998
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5999 6000
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6001
	}
6002
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6003 6004
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6005
	}
L
Linus Torvalds 已提交
6006

I
Ingo Molnar 已提交
6007
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6008
	do {
I
Ingo Molnar 已提交
6009
		if (!group) {
P
Peter Zijlstra 已提交
6010 6011
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6012 6013 6014
			break;
		}

6015
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6016 6017 6018
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6019 6020
			break;
		}
L
Linus Torvalds 已提交
6021

6022
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6023 6024
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6025 6026
			break;
		}
L
Linus Torvalds 已提交
6027

6028
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6029 6030
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6031 6032
			break;
		}
L
Linus Torvalds 已提交
6033

6034
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6035

R
Rusty Russell 已提交
6036
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6037

P
Peter Zijlstra 已提交
6038
		printk(KERN_CONT " %s", str);
6039
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6040 6041
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6042
		}
L
Linus Torvalds 已提交
6043

I
Ingo Molnar 已提交
6044 6045
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6046
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6047

6048
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6049
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6050

6051 6052
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6053 6054
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6055 6056
	return 0;
}
L
Linus Torvalds 已提交
6057

I
Ingo Molnar 已提交
6058 6059
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6060
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6061
	int level = 0;
L
Linus Torvalds 已提交
6062

6063 6064 6065
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6066 6067 6068 6069
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6070

I
Ingo Molnar 已提交
6071 6072
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6073
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6074 6075 6076 6077
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6078
	for (;;) {
6079
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6080
			break;
L
Linus Torvalds 已提交
6081 6082
		level++;
		sd = sd->parent;
6083
		if (!sd)
I
Ingo Molnar 已提交
6084 6085
			break;
	}
6086
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6087
}
6088
#else /* !CONFIG_SCHED_DEBUG */
6089
# define sched_domain_debug(sd, cpu) do { } while (0)
6090
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6091

6092
static int sd_degenerate(struct sched_domain *sd)
6093
{
6094
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6095 6096 6097 6098 6099 6100
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6101 6102 6103
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6104 6105 6106 6107 6108
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6109
	if (sd->flags & (SD_WAKE_AFFINE))
6110 6111 6112 6113 6114
		return 0;

	return 1;
}

6115 6116
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6117 6118 6119 6120 6121 6122
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6123
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6124 6125 6126 6127 6128 6129 6130
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6131 6132 6133
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6134 6135
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6136 6137 6138 6139 6140 6141 6142
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6143 6144
static void free_rootdomain(struct root_domain *rd)
{
6145 6146
	synchronize_sched();

6147 6148
	cpupri_cleanup(&rd->cpupri);

6149 6150 6151 6152 6153 6154
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6155 6156
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6157
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6158 6159
	unsigned long flags;

6160
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6161 6162

	if (rq->rd) {
I
Ingo Molnar 已提交
6163
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6164

6165
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6166
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6167

6168
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6169

I
Ingo Molnar 已提交
6170 6171 6172 6173 6174 6175 6176
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6177 6178 6179 6180 6181
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6182
	cpumask_set_cpu(rq->cpu, rd->span);
6183
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6184
		set_rq_online(rq);
G
Gregory Haskins 已提交
6185

6186
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6187 6188 6189

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6190 6191
}

6192
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6193 6194 6195
{
	memset(rd, 0, sizeof(*rd));

6196
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6197
		goto out;
6198
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6199
		goto free_span;
6200
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6201
		goto free_online;
6202

6203
	if (cpupri_init(&rd->cpupri) != 0)
6204
		goto free_rto_mask;
6205
	return 0;
6206

6207 6208
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6209 6210 6211 6212
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6213
out:
6214
	return -ENOMEM;
G
Gregory Haskins 已提交
6215 6216 6217 6218
}

static void init_defrootdomain(void)
{
6219
	init_rootdomain(&def_root_domain);
6220

G
Gregory Haskins 已提交
6221 6222 6223
	atomic_set(&def_root_domain.refcount, 1);
}

6224
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6225 6226 6227 6228 6229 6230 6231
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6232
	if (init_rootdomain(rd) != 0) {
6233 6234 6235
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6236 6237 6238 6239

	return rd;
}

L
Linus Torvalds 已提交
6240
/*
I
Ingo Molnar 已提交
6241
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6242 6243
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6244 6245
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6246
{
6247
	struct rq *rq = cpu_rq(cpu);
6248 6249
	struct sched_domain *tmp;

6250 6251 6252
	for (tmp = sd; tmp; tmp = tmp->parent)
		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));

6253
	/* Remove the sched domains which do not contribute to scheduling. */
6254
	for (tmp = sd; tmp; ) {
6255 6256 6257
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6258

6259
		if (sd_parent_degenerate(tmp, parent)) {
6260
			tmp->parent = parent->parent;
6261 6262
			if (parent->parent)
				parent->parent->child = tmp;
6263 6264
		} else
			tmp = tmp->parent;
6265 6266
	}

6267
	if (sd && sd_degenerate(sd)) {
6268
		sd = sd->parent;
6269 6270 6271
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6272 6273 6274

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6275
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6276
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6277 6278 6279
}

/* cpus with isolated domains */
6280
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6281 6282 6283 6284

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6285
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6286
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6287 6288 6289
	return 1;
}

I
Ingo Molnar 已提交
6290
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6291 6292

/*
6293 6294
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6295 6296
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6297 6298 6299 6300 6301
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6302
static void
6303 6304 6305
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6306
					struct sched_group **sg,
6307 6308
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6309 6310 6311 6312
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6313
	cpumask_clear(covered);
6314

6315
	for_each_cpu(i, span) {
6316
		struct sched_group *sg;
6317
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6318 6319
		int j;

6320
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6321 6322
			continue;

6323
		cpumask_clear(sched_group_cpus(sg));
6324
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6325

6326
		for_each_cpu(j, span) {
6327
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6328 6329
				continue;

6330
			cpumask_set_cpu(j, covered);
6331
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6342
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6343

6344
#ifdef CONFIG_NUMA
6345

6346 6347 6348 6349 6350
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6351
 * Find the next node to include in a given scheduling domain. Simply
6352 6353 6354 6355
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6356
static int find_next_best_node(int node, nodemask_t *used_nodes)
6357 6358 6359 6360 6361
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6362
	for (i = 0; i < nr_node_ids; i++) {
6363
		/* Start at @node */
6364
		n = (node + i) % nr_node_ids;
6365 6366 6367 6368 6369

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6370
		if (node_isset(n, *used_nodes))
6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6382
	node_set(best_node, *used_nodes);
6383 6384 6385 6386 6387 6388
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6389
 * @span: resulting cpumask
6390
 *
I
Ingo Molnar 已提交
6391
 * Given a node, construct a good cpumask for its sched_domain to span. It
6392 6393 6394
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6395
static void sched_domain_node_span(int node, struct cpumask *span)
6396
{
6397
	nodemask_t used_nodes;
6398
	int i;
6399

6400
	cpumask_clear(span);
6401
	nodes_clear(used_nodes);
6402

6403
	cpumask_or(span, span, cpumask_of_node(node));
6404
	node_set(node, used_nodes);
6405 6406

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6407
		int next_node = find_next_best_node(node, &used_nodes);
6408

6409
		cpumask_or(span, span, cpumask_of_node(next_node));
6410 6411
	}
}
6412
#endif /* CONFIG_NUMA */
6413

6414
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6415

6416 6417
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6418 6419 6420
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6432 6433 6434 6435 6436 6437 6438 6439 6440 6441
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
6442
	cpumask_var_t		this_book_map;
6443 6444 6445 6446 6447 6448
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6449 6450 6451 6452 6453
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
6454
	sa_this_book_map,
6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6467
/*
6468
 * SMT sched-domains:
6469
 */
L
Linus Torvalds 已提交
6470
#ifdef CONFIG_SCHED_SMT
6471
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6472
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6473

I
Ingo Molnar 已提交
6474
static int
6475 6476
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6477
{
6478
	if (sg)
6479
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6480 6481
	return cpu;
}
6482
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6483

6484 6485 6486
/*
 * multi-core sched-domains:
 */
6487
#ifdef CONFIG_SCHED_MC
6488 6489
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6490

I
Ingo Molnar 已提交
6491
static int
6492 6493
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6494
{
6495
	int group;
6496
#ifdef CONFIG_SCHED_SMT
6497
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6498
	group = cpumask_first(mask);
6499 6500 6501
#else
	group = cpu;
#endif
6502
	if (sg)
6503
		*sg = &per_cpu(sched_group_core, group).sg;
6504
	return group;
6505
}
6506
#endif /* CONFIG_SCHED_MC */
6507

6508 6509 6510 6511 6512 6513 6514
/*
 * book sched-domains:
 */
#ifdef CONFIG_SCHED_BOOK
static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);

I
Ingo Molnar 已提交
6515
static int
6516 6517
cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6518
{
6519 6520 6521 6522 6523 6524 6525 6526
	int group = cpu;
#ifdef CONFIG_SCHED_MC
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_SMT)
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
	group = cpumask_first(mask);
#endif
6527
	if (sg)
6528 6529
		*sg = &per_cpu(sched_group_book, group).sg;
	return group;
6530
}
6531
#endif /* CONFIG_SCHED_BOOK */
6532

6533 6534
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6535

I
Ingo Molnar 已提交
6536
static int
6537 6538
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6539
{
6540
	int group;
6541 6542 6543 6544
#ifdef CONFIG_SCHED_BOOK
	cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_MC)
6545
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6546
	group = cpumask_first(mask);
6547
#elif defined(CONFIG_SCHED_SMT)
6548
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6549
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6550
#else
6551
	group = cpu;
L
Linus Torvalds 已提交
6552
#endif
6553
	if (sg)
6554
		*sg = &per_cpu(sched_group_phys, group).sg;
6555
	return group;
L
Linus Torvalds 已提交
6556 6557 6558 6559
}

#ifdef CONFIG_NUMA
/*
6560 6561 6562
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6563
 */
6564
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6565
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6566

6567
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6568
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6569

6570 6571 6572
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6573
{
6574 6575
	int group;

6576
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6577
	group = cpumask_first(nodemask);
6578 6579

	if (sg)
6580
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6581
	return group;
L
Linus Torvalds 已提交
6582
}
6583

6584 6585 6586 6587 6588 6589 6590
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6591
	do {
6592
		for_each_cpu(j, sched_group_cpus(sg)) {
6593
			struct sched_domain *sd;
6594

6595
			sd = &per_cpu(phys_domains, j).sd;
6596
			if (j != group_first_cpu(sd->groups)) {
6597 6598 6599 6600 6601 6602
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6603

6604
			sg->cpu_power += sd->groups->cpu_power;
6605 6606 6607
		}
		sg = sg->next;
	} while (sg != group_head);
6608
}
6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6630 6631
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6632 6633 6634 6635 6636 6637 6638 6639 6640
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6641
	sg->cpu_power = 0;
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6660 6661
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6662 6663
			return -ENOMEM;
		}
6664
		sg->cpu_power = 0;
6665 6666 6667 6668 6669 6670 6671 6672 6673
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6674
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6675

6676
#ifdef CONFIG_NUMA
6677
/* Free memory allocated for various sched_group structures */
6678 6679
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6680
{
6681
	int cpu, i;
6682

6683
	for_each_cpu(cpu, cpu_map) {
6684 6685 6686 6687 6688 6689
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6690
		for (i = 0; i < nr_node_ids; i++) {
6691 6692
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6693
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6694
			if (cpumask_empty(nodemask))
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6711
#else /* !CONFIG_NUMA */
6712 6713
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6714 6715
{
}
6716
#endif /* CONFIG_NUMA */
6717

6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6732 6733
	long power;
	int weight;
6734 6735 6736

	WARN_ON(!sd || !sd->groups);

6737
	if (cpu != group_first_cpu(sd->groups))
6738 6739 6740 6741
		return;

	child = sd->child;

6742
	sd->groups->cpu_power = 0;
6743

6744 6745 6746 6747 6748
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6749 6750 6751
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6752
		 */
P
Peter Zijlstra 已提交
6753 6754
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6755
			power /= weight;
P
Peter Zijlstra 已提交
6756 6757
			power >>= SCHED_LOAD_SHIFT;
		}
6758
		sd->groups->cpu_power += power;
6759 6760 6761 6762
		return;
	}

	/*
6763
	 * Add cpu_power of each child group to this groups cpu_power.
6764 6765 6766
	 */
	group = child->groups;
	do {
6767
		sd->groups->cpu_power += group->cpu_power;
6768 6769 6770 6771
		group = group->next;
	} while (group != child->groups);
}

6772 6773 6774 6775 6776
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6777 6778 6779 6780 6781 6782
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6783
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6784

6785 6786 6787 6788 6789
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6790
	sd->level = SD_LV_##type;				\
6791
	SD_INIT_NAME(sd, type);					\
6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
6805 6806 6807
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6808

6809 6810 6811 6812
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6813 6814 6815 6816 6817 6818
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6837
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6838 6839
	} else {
		/* turn on idle balance on this domain */
6840
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6841 6842 6843
	}
}

6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
6857 6858
	case sa_this_book_map:
		free_cpumask_var(d->this_book_map); /* fall through */
6859 6860 6861 6862 6863 6864 6865
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6866
#ifdef CONFIG_NUMA
6867 6868 6869 6870 6871 6872 6873
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6874
#endif
6875 6876 6877 6878
	case sa_none:
		break;
	}
}
6879

6880 6881 6882
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6883
#ifdef CONFIG_NUMA
6884 6885 6886 6887 6888 6889 6890 6891 6892 6893
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6894
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6895
		return sa_notcovered;
6896
	}
6897
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6898
#endif
6899 6900 6901 6902 6903 6904
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
6905
	if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
6906
		return sa_this_core_map;
6907 6908
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_book_map;
6909 6910 6911 6912
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6913
		printk(KERN_WARNING "Cannot alloc root domain\n");
6914
		return sa_tmpmask;
G
Gregory Haskins 已提交
6915
	}
6916 6917
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6918

6919 6920 6921 6922
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6923
#ifdef CONFIG_NUMA
6924
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6925

6926 6927 6928 6929 6930
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6931
		set_domain_attribute(sd, attr);
6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6946
#endif
6947 6948
	return sd;
}
L
Linus Torvalds 已提交
6949

6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6965

6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982
static struct sched_domain *__build_book_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
#ifdef CONFIG_SCHED_BOOK
	sd = &per_cpu(book_domains, i).sd;
	SD_INIT(sd, BOOK);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
#endif
	return sd;
}

6983 6984 6985 6986 6987
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
6988
#ifdef CONFIG_SCHED_MC
6989 6990 6991 6992 6993 6994 6995
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6996
#endif
6997 6998
	return sd;
}
6999

7000 7001 7002 7003 7004
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
7005
#ifdef CONFIG_SCHED_SMT
7006 7007 7008 7009 7010 7011 7012
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
7013
#endif
7014 7015
	return sd;
}
L
Linus Torvalds 已提交
7016

7017 7018 7019 7020
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
7021
#ifdef CONFIG_SCHED_SMT
7022 7023 7024 7025 7026 7027 7028 7029
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7030
#endif
7031
#ifdef CONFIG_SCHED_MC
7032 7033 7034 7035 7036 7037 7038
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
7039 7040 7041 7042 7043 7044 7045 7046 7047
#endif
#ifdef CONFIG_SCHED_BOOK
	case SD_LV_BOOK: /* set up book groups */
		cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
		if (cpu == cpumask_first(d->this_book_map))
			init_sched_build_groups(d->this_book_map, cpu_map,
						&cpu_to_book_group,
						d->send_covered, d->tmpmask);
		break;
7048
#endif
7049 7050 7051 7052 7053 7054 7055
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7056
#ifdef CONFIG_NUMA
7057 7058 7059 7060 7061
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
7062 7063
	default:
		break;
7064
	}
7065
}
7066

7067 7068 7069 7070 7071 7072 7073 7074 7075
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7076
	struct sched_domain *sd;
7077
	int i;
7078
#ifdef CONFIG_NUMA
7079
	d.sd_allnodes = 0;
7080
#endif
7081

7082 7083 7084 7085
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7086

L
Linus Torvalds 已提交
7087
	/*
7088
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7089
	 */
7090
	for_each_cpu(i, cpu_map) {
7091 7092
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7093

7094
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7095
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7096
		sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7097
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7098
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7099
	}
7100

7101
	for_each_cpu(i, cpu_map) {
7102
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7103
		build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7104
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7105
	}
7106

L
Linus Torvalds 已提交
7107
	/* Set up physical groups */
7108 7109
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7110

L
Linus Torvalds 已提交
7111 7112
#ifdef CONFIG_NUMA
	/* Set up node groups */
7113 7114
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7115

7116 7117
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7118
			goto error;
L
Linus Torvalds 已提交
7119 7120 7121
#endif

	/* Calculate CPU power for physical packages and nodes */
7122
#ifdef CONFIG_SCHED_SMT
7123
	for_each_cpu(i, cpu_map) {
7124
		sd = &per_cpu(cpu_domains, i).sd;
7125
		init_sched_groups_power(i, sd);
7126
	}
L
Linus Torvalds 已提交
7127
#endif
7128
#ifdef CONFIG_SCHED_MC
7129
	for_each_cpu(i, cpu_map) {
7130
		sd = &per_cpu(core_domains, i).sd;
7131
		init_sched_groups_power(i, sd);
7132 7133
	}
#endif
7134 7135 7136 7137 7138 7139
#ifdef CONFIG_SCHED_BOOK
	for_each_cpu(i, cpu_map) {
		sd = &per_cpu(book_domains, i).sd;
		init_sched_groups_power(i, sd);
	}
#endif
7140

7141
	for_each_cpu(i, cpu_map) {
7142
		sd = &per_cpu(phys_domains, i).sd;
7143
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7144 7145
	}

7146
#ifdef CONFIG_NUMA
7147
	for (i = 0; i < nr_node_ids; i++)
7148
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7149

7150
	if (d.sd_allnodes) {
7151
		struct sched_group *sg;
7152

7153
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7154
								d.tmpmask);
7155 7156
		init_numa_sched_groups_power(sg);
	}
7157 7158
#endif

L
Linus Torvalds 已提交
7159
	/* Attach the domains */
7160
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7161
#ifdef CONFIG_SCHED_SMT
7162
		sd = &per_cpu(cpu_domains, i).sd;
7163
#elif defined(CONFIG_SCHED_MC)
7164
		sd = &per_cpu(core_domains, i).sd;
7165 7166
#elif defined(CONFIG_SCHED_BOOK)
		sd = &per_cpu(book_domains, i).sd;
L
Linus Torvalds 已提交
7167
#else
7168
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7169
#endif
7170
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7171
	}
7172

7173 7174 7175
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7176 7177

error:
7178 7179
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7180
}
P
Paul Jackson 已提交
7181

7182
static int build_sched_domains(const struct cpumask *cpu_map)
7183 7184 7185 7186
{
	return __build_sched_domains(cpu_map, NULL);
}

7187
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7188
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7189 7190
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7191 7192 7193

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7194 7195
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7196
 */
7197
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7198

7199 7200 7201 7202 7203 7204
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7205
{
7206
	return 0;
7207 7208
}

7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7234
/*
I
Ingo Molnar 已提交
7235
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7236 7237
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7238
 */
7239
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7240
{
7241 7242
	int err;

7243
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7244
	ndoms_cur = 1;
7245
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7246
	if (!doms_cur)
7247 7248
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7249
	dattr_cur = NULL;
7250
	err = build_sched_domains(doms_cur[0]);
7251
	register_sched_domain_sysctl();
7252 7253

	return err;
7254 7255
}

7256 7257
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7258
{
7259
	free_sched_groups(cpu_map, tmpmask);
7260
}
L
Linus Torvalds 已提交
7261

7262 7263 7264 7265
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7266
static void detach_destroy_domains(const struct cpumask *cpu_map)
7267
{
7268 7269
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7270 7271
	int i;

7272
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7273
		cpu_attach_domain(NULL, &def_root_domain, i);
7274
	synchronize_sched();
7275
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7276 7277
}

7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7294 7295
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7296
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7297 7298 7299
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7300
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7301 7302 7303
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7304 7305 7306
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7307 7308 7309 7310 7311 7312
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7313
 *
7314
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7315 7316
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7317
 *
P
Paul Jackson 已提交
7318 7319
 * Call with hotplug lock held
 */
7320
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7321
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7322
{
7323
	int i, j, n;
7324
	int new_topology;
P
Paul Jackson 已提交
7325

7326
	mutex_lock(&sched_domains_mutex);
7327

7328 7329 7330
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7331 7332 7333
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7334
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7335 7336 7337

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7338
		for (j = 0; j < n && !new_topology; j++) {
7339
			if (cpumask_equal(doms_cur[i], doms_new[j])
7340
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7341 7342 7343
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7344
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7345 7346 7347 7348
match1:
		;
	}

7349 7350
	if (doms_new == NULL) {
		ndoms_cur = 0;
7351
		doms_new = &fallback_doms;
7352
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7353
		WARN_ON_ONCE(dattr_new);
7354 7355
	}

P
Paul Jackson 已提交
7356 7357
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7358
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7359
			if (cpumask_equal(doms_new[i], doms_cur[j])
7360
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7361 7362 7363
				goto match2;
		}
		/* no match - add a new doms_new */
7364
		__build_sched_domains(doms_new[i],
7365
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7366 7367 7368 7369 7370
match2:
		;
	}

	/* Remember the new sched domains */
7371 7372
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7373
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7374
	doms_cur = doms_new;
7375
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7376
	ndoms_cur = ndoms_new;
7377 7378

	register_sched_domain_sysctl();
7379

7380
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7381 7382
}

7383
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7384
static void arch_reinit_sched_domains(void)
7385
{
7386
	get_online_cpus();
7387 7388 7389 7390

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7391
	rebuild_sched_domains();
7392
	put_online_cpus();
7393 7394 7395 7396
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7397
	unsigned int level = 0;
7398

7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7410 7411 7412
		return -EINVAL;

	if (smt)
7413
		sched_smt_power_savings = level;
7414
	else
7415
		sched_mc_power_savings = level;
7416

7417
	arch_reinit_sched_domains();
7418

7419
	return count;
7420 7421 7422
}

#ifdef CONFIG_SCHED_MC
7423
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7424
					   struct sysdev_class_attribute *attr,
7425
					   char *page)
7426 7427 7428
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7429
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7430
					    struct sysdev_class_attribute *attr,
7431
					    const char *buf, size_t count)
7432 7433 7434
{
	return sched_power_savings_store(buf, count, 0);
}
7435 7436 7437
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7438 7439 7440
#endif

#ifdef CONFIG_SCHED_SMT
7441
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7442
					    struct sysdev_class_attribute *attr,
7443
					    char *page)
7444 7445 7446
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7447
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7448
					     struct sysdev_class_attribute *attr,
7449
					     const char *buf, size_t count)
7450 7451 7452
{
	return sched_power_savings_store(buf, count, 1);
}
7453 7454
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7455 7456 7457
		   sched_smt_power_savings_store);
#endif

7458
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7474
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7475

L
Linus Torvalds 已提交
7476
/*
7477 7478 7479
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7480
 */
7481 7482
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7483
{
7484
	switch (action & ~CPU_TASKS_FROZEN) {
7485
	case CPU_ONLINE:
7486
	case CPU_DOWN_FAILED:
7487
		cpuset_update_active_cpus();
7488
		return NOTIFY_OK;
7489 7490 7491 7492
	default:
		return NOTIFY_DONE;
	}
}
7493

7494 7495
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7496 7497 7498 7499 7500
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
7501 7502 7503 7504 7505 7506 7507
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7508
{
P
Peter Zijlstra 已提交
7509 7510
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7511 7512
	switch (action) {
	case CPU_DOWN_PREPARE:
7513
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7514
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7515 7516 7517
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7518
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7519
	case CPU_ONLINE:
7520
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7521
		enable_runtime(cpu_rq(cpu));
7522 7523
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7524 7525 7526 7527 7528 7529 7530
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7531 7532 7533
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7534
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7535

7536 7537 7538 7539 7540
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7541
	get_online_cpus();
7542
	mutex_lock(&sched_domains_mutex);
7543
	arch_init_sched_domains(cpu_active_mask);
7544 7545 7546
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7547
	mutex_unlock(&sched_domains_mutex);
7548
	put_online_cpus();
7549

7550 7551
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7552 7553 7554 7555

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7556
	init_hrtick();
7557 7558

	/* Move init over to a non-isolated CPU */
7559
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7560
		BUG();
I
Ingo Molnar 已提交
7561
	sched_init_granularity();
7562
	free_cpumask_var(non_isolated_cpus);
7563

7564
	init_sched_rt_class();
L
Linus Torvalds 已提交
7565 7566 7567 7568
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7569
	sched_init_granularity();
L
Linus Torvalds 已提交
7570 7571 7572
}
#endif /* CONFIG_SMP */

7573 7574
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7575 7576 7577 7578 7579 7580 7581
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7582
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7583 7584
{
	cfs_rq->tasks_timeline = RB_ROOT;
7585
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7586 7587 7588
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7589
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7590 7591
}

P
Peter Zijlstra 已提交
7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7605
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7606
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7607
#ifdef CONFIG_SMP
7608
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7609 7610
#endif
#endif
P
Peter Zijlstra 已提交
7611 7612 7613
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7614
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7615 7616 7617 7618
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7619
	rt_rq->rt_runtime = 0;
7620
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7621

7622
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7623
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7624 7625
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7626 7627
}

P
Peter Zijlstra 已提交
7628
#ifdef CONFIG_FAIR_GROUP_SCHED
7629
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7630
				struct sched_entity *se, int cpu,
7631
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7632
{
7633
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7634 7635 7636 7637 7638
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7639 7640 7641 7642
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7643 7644 7645 7646 7647
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7648
	se->my_q = cfs_rq;
P
Peter Zijlstra 已提交
7649
	update_load_set(&se->load, tg->shares);
7650
	se->parent = parent;
P
Peter Zijlstra 已提交
7651
}
7652
#endif
P
Peter Zijlstra 已提交
7653

7654
#ifdef CONFIG_RT_GROUP_SCHED
7655
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7656
		struct sched_rt_entity *rt_se, int cpu,
7657
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7658
{
7659 7660
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7661 7662 7663
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7664
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7665 7666

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7667 7668 7669
	if (!rt_se)
		return;

7670 7671 7672 7673 7674
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7675
	rt_se->my_q = rt_rq;
7676
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7677 7678 7679 7680
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7681 7682
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7683
	int i, j;
7684 7685 7686 7687 7688 7689 7690
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7691
#endif
7692
#ifdef CONFIG_CPUMASK_OFFSTACK
7693
	alloc_size += num_possible_cpus() * cpumask_size();
7694 7695
#endif
	if (alloc_size) {
7696
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7697 7698 7699 7700 7701 7702 7703

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7704

7705
#endif /* CONFIG_FAIR_GROUP_SCHED */
7706 7707 7708 7709 7710
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7711 7712
		ptr += nr_cpu_ids * sizeof(void **);

7713
#endif /* CONFIG_RT_GROUP_SCHED */
7714 7715 7716 7717 7718 7719
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7720
	}
I
Ingo Molnar 已提交
7721

G
Gregory Haskins 已提交
7722 7723 7724 7725
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7726 7727 7728 7729 7730 7731
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7732
#endif /* CONFIG_RT_GROUP_SCHED */
7733

D
Dhaval Giani 已提交
7734
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7735
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7736 7737
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7738
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7739

7740
	for_each_possible_cpu(i) {
7741
		struct rq *rq;
L
Linus Torvalds 已提交
7742 7743

		rq = cpu_rq(i);
7744
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7745
		rq->nr_running = 0;
7746 7747
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7748
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7749
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7750
#ifdef CONFIG_FAIR_GROUP_SCHED
7751
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7752
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7768
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7769 7770 7771 7772
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7773
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, NULL);
7774
#endif
D
Dhaval Giani 已提交
7775 7776 7777
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7778
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7779
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7780
#ifdef CONFIG_CGROUP_SCHED
7781
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, NULL);
D
Dhaval Giani 已提交
7782
#endif
I
Ingo Molnar 已提交
7783
#endif
L
Linus Torvalds 已提交
7784

I
Ingo Molnar 已提交
7785 7786
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7787 7788 7789

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7790
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7791
		rq->sd = NULL;
G
Gregory Haskins 已提交
7792
		rq->rd = NULL;
7793
		rq->cpu_power = SCHED_LOAD_SCALE;
7794
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7795
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7796
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7797
		rq->push_cpu = 0;
7798
		rq->cpu = i;
7799
		rq->online = 0;
7800 7801
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7802
		rq_attach_root(rq, &def_root_domain);
7803 7804 7805 7806
#ifdef CONFIG_NO_HZ
		rq->nohz_balance_kick = 0;
		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
#endif
L
Linus Torvalds 已提交
7807
#endif
P
Peter Zijlstra 已提交
7808
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7809 7810 7811
		atomic_set(&rq->nr_iowait, 0);
	}

7812
	set_load_weight(&init_task);
7813

7814 7815 7816 7817
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7818
#ifdef CONFIG_SMP
7819
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7820 7821
#endif

7822
#ifdef CONFIG_RT_MUTEXES
7823
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7824 7825
#endif

L
Linus Torvalds 已提交
7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7839 7840 7841

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7842 7843 7844 7845
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7846

7847
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7848
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7849
#ifdef CONFIG_SMP
7850
#ifdef CONFIG_NO_HZ
7851 7852 7853 7854 7855
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
	atomic_set(&nohz.load_balancer, nr_cpu_ids);
	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7856
#endif
R
Rusty Russell 已提交
7857 7858 7859
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7860
#endif /* SMP */
7861

7862
	perf_event_init();
7863

7864
	scheduler_running = 1;
L
Linus Torvalds 已提交
7865 7866 7867
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7868 7869
static inline int preempt_count_equals(int preempt_offset)
{
7870
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7871 7872 7873 7874

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7875
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7876
{
7877
#ifdef in_atomic
L
Linus Torvalds 已提交
7878 7879
	static unsigned long prev_jiffy;	/* ratelimiting */

7880 7881
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7882 7883 7884 7885 7886
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7887 7888 7889 7890 7891 7892 7893
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7894 7895 7896 7897 7898

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7899 7900 7901 7902 7903 7904
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7905 7906 7907
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7908

7909 7910 7911 7912 7913 7914 7915 7916 7917 7918
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7919 7920
void normalize_rt_tasks(void)
{
7921
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7922
	unsigned long flags;
7923
	struct rq *rq;
L
Linus Torvalds 已提交
7924

7925
	read_lock_irqsave(&tasklist_lock, flags);
7926
	do_each_thread(g, p) {
7927 7928 7929 7930 7931 7932
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7933 7934
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7935 7936 7937
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7938
#endif
I
Ingo Molnar 已提交
7939 7940 7941 7942 7943 7944 7945 7946

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7947
			continue;
I
Ingo Molnar 已提交
7948
		}
L
Linus Torvalds 已提交
7949

7950
		raw_spin_lock(&p->pi_lock);
7951
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7952

7953
		normalize_task(rq, p);
7954

7955
		__task_rq_unlock(rq);
7956
		raw_spin_unlock(&p->pi_lock);
7957 7958
	} while_each_thread(g, p);

7959
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7960 7961 7962
}

#endif /* CONFIG_MAGIC_SYSRQ */
7963

7964
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7965
/*
7966
 * These functions are only useful for the IA64 MCA handling, or kdb.
7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7981
struct task_struct *curr_task(int cpu)
7982 7983 7984 7985
{
	return cpu_curr(cpu);
}

7986 7987 7988
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7989 7990 7991 7992 7993 7994
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7995 7996
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7997 7998 7999 8000 8001 8002 8003
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8004
void set_curr_task(int cpu, struct task_struct *p)
8005 8006 8007 8008 8009
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8010

8011 8012
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8027 8028
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8029 8030
{
	struct cfs_rq *cfs_rq;
8031
	struct sched_entity *se;
8032
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8033 8034
	int i;

8035
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8036 8037
	if (!tg->cfs_rq)
		goto err;
8038
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8039 8040
	if (!tg->se)
		goto err;
8041 8042

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8043 8044

	for_each_possible_cpu(i) {
8045
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8046

8047 8048
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8049 8050 8051
		if (!cfs_rq)
			goto err;

8052 8053
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8054
		if (!se)
8055
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8056

8057
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8058 8059 8060 8061
	}

	return 1;

P
Peter Zijlstra 已提交
8062
err_free_rq:
8063
	kfree(cfs_rq);
P
Peter Zijlstra 已提交
8064
err:
8065 8066 8067 8068 8069
	return 0;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;
	int i;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[i]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8084
}
8085
#else /* !CONFG_FAIR_GROUP_SCHED */
8086 8087 8088 8089
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8090 8091
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8092 8093 8094 8095 8096 8097 8098
{
	return 1;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8099
#endif /* CONFIG_FAIR_GROUP_SCHED */
8100 8101

#ifdef CONFIG_RT_GROUP_SCHED
8102 8103 8104 8105
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8106 8107
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8119 8120
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8121 8122
{
	struct rt_rq *rt_rq;
8123
	struct sched_rt_entity *rt_se;
8124 8125 8126
	struct rq *rq;
	int i;

8127
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8128 8129
	if (!tg->rt_rq)
		goto err;
8130
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8131 8132 8133
	if (!tg->rt_se)
		goto err;

8134 8135
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8136 8137 8138 8139

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8140 8141
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8142 8143
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8144

8145 8146
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8147
		if (!rt_se)
8148
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8149

8150
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8151 8152
	}

8153 8154
	return 1;

P
Peter Zijlstra 已提交
8155
err_free_rq:
8156
	kfree(rt_rq);
P
Peter Zijlstra 已提交
8157
err:
8158 8159
	return 0;
}
8160
#else /* !CONFIG_RT_GROUP_SCHED */
8161 8162 8163 8164
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8165 8166
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8167 8168 8169
{
	return 1;
}
8170
#endif /* CONFIG_RT_GROUP_SCHED */
8171

D
Dhaval Giani 已提交
8172
#ifdef CONFIG_CGROUP_SCHED
8173 8174 8175 8176 8177 8178 8179 8180
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8181
struct task_group *sched_create_group(struct task_group *parent)
8182 8183 8184 8185 8186 8187 8188 8189
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8190
	if (!alloc_fair_sched_group(tg, parent))
8191 8192
		goto err;

8193
	if (!alloc_rt_sched_group(tg, parent))
8194 8195
		goto err;

8196
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8197
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8198 8199 8200 8201 8202

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8203
	list_add_rcu(&tg->siblings, &parent->children);
8204
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8205

8206
	return tg;
S
Srivatsa Vaddagiri 已提交
8207 8208

err:
P
Peter Zijlstra 已提交
8209
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8210 8211 8212
	return ERR_PTR(-ENOMEM);
}

8213
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8214
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8215 8216
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8217
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8218 8219
}

8220
/* Destroy runqueue etc associated with a task group */
8221
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8222
{
8223
	unsigned long flags;
8224
	int i;
S
Srivatsa Vaddagiri 已提交
8225

8226 8227
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
8228
		unregister_fair_sched_group(tg, i);
8229 8230

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8231
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8232
	list_del_rcu(&tg->siblings);
8233
	spin_unlock_irqrestore(&task_group_lock, flags);
8234 8235

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8236
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8237 8238
}

8239
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8240 8241 8242
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8243 8244
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8245 8246 8247 8248 8249 8250 8251
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8252
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8253 8254
	on_rq = tsk->se.on_rq;

8255
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8256
		dequeue_task(rq, tsk, 0);
8257 8258
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8259

P
Peter Zijlstra 已提交
8260
#ifdef CONFIG_FAIR_GROUP_SCHED
8261 8262 8263
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
8264
#endif
8265
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
8266

8267 8268 8269
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8270
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8271 8272 8273

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8274
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8275

8276
#ifdef CONFIG_FAIR_GROUP_SCHED
8277
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8278 8279 8280 8281 8282
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8283
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8284 8285
		dequeue_entity(cfs_rq, se, 0);

P
Peter Zijlstra 已提交
8286
	update_load_set(&se->load, shares);
S
Srivatsa Vaddagiri 已提交
8287

8288
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8289
		enqueue_entity(cfs_rq, se, 0);
8290
}
8291

8292 8293 8294 8295 8296 8297
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8298
	raw_spin_lock_irqsave(&rq->lock, flags);
8299
	__set_se_shares(se, shares);
8300
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8301 8302
}

8303 8304
static DEFINE_MUTEX(shares_mutex);

8305
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8306 8307
{
	int i;
8308

8309 8310 8311 8312 8313 8314
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8315 8316
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8317 8318
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8319

8320
	mutex_lock(&shares_mutex);
8321
	if (tg->shares == shares)
8322
		goto done;
S
Srivatsa Vaddagiri 已提交
8323

8324
	tg->shares = shares;
8325 8326 8327 8328
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
8329
		set_se_shares(tg->se[i], shares);
8330
	}
S
Srivatsa Vaddagiri 已提交
8331

8332
done:
8333
	mutex_unlock(&shares_mutex);
8334
	return 0;
S
Srivatsa Vaddagiri 已提交
8335 8336
}

8337 8338 8339 8340
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8341
#endif
8342

8343
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8344
/*
P
Peter Zijlstra 已提交
8345
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8346
 */
P
Peter Zijlstra 已提交
8347 8348 8349 8350 8351
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8352
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8353

P
Peter Zijlstra 已提交
8354
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8355 8356
}

P
Peter Zijlstra 已提交
8357 8358
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8359
{
P
Peter Zijlstra 已提交
8360
	struct task_struct *g, *p;
8361

P
Peter Zijlstra 已提交
8362 8363 8364 8365
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8366

P
Peter Zijlstra 已提交
8367 8368
	return 0;
}
8369

P
Peter Zijlstra 已提交
8370 8371 8372 8373 8374
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8375

P
Peter Zijlstra 已提交
8376 8377 8378 8379 8380 8381
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8382

P
Peter Zijlstra 已提交
8383 8384
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8385

P
Peter Zijlstra 已提交
8386 8387 8388
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8389 8390
	}

8391 8392 8393 8394 8395
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8396

8397 8398 8399
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8400 8401
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8402

P
Peter Zijlstra 已提交
8403
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8404

8405 8406 8407 8408 8409
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8410

8411 8412 8413
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8414 8415 8416
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8417

P
Peter Zijlstra 已提交
8418 8419 8420 8421
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8422

P
Peter Zijlstra 已提交
8423
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8424
	}
P
Peter Zijlstra 已提交
8425

P
Peter Zijlstra 已提交
8426 8427 8428 8429
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8430 8431
}

P
Peter Zijlstra 已提交
8432
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8433
{
P
Peter Zijlstra 已提交
8434 8435 8436 8437 8438 8439 8440
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8441 8442
}

8443 8444
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8445
{
P
Peter Zijlstra 已提交
8446
	int i, err = 0;
P
Peter Zijlstra 已提交
8447 8448

	mutex_lock(&rt_constraints_mutex);
8449
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8450 8451
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8452
		goto unlock;
P
Peter Zijlstra 已提交
8453

8454
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8455 8456
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8457 8458 8459 8460

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8461
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8462
		rt_rq->rt_runtime = rt_runtime;
8463
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8464
	}
8465
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8466
unlock:
8467
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8468 8469 8470
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8471 8472
}

8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8485 8486 8487 8488
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8489
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8490 8491
		return -1;

8492
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8493 8494 8495
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8496 8497 8498 8499 8500 8501 8502 8503

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8504 8505 8506
	if (rt_period == 0)
		return -EINVAL;

8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8521
	u64 runtime, period;
8522 8523
	int ret = 0;

8524 8525 8526
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8527 8528 8529 8530 8531 8532 8533 8534
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8535

8536
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8537
	read_lock(&tasklist_lock);
8538
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8539
	read_unlock(&tasklist_lock);
8540 8541 8542 8543
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8544 8545 8546 8547 8548 8549 8550 8551 8552 8553

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8554
#else /* !CONFIG_RT_GROUP_SCHED */
8555 8556
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8557 8558 8559
	unsigned long flags;
	int i;

8560 8561 8562
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8563 8564 8565 8566 8567 8568 8569
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8570
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8571 8572 8573
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8574
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8575
		rt_rq->rt_runtime = global_rt_runtime();
8576
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8577
	}
8578
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8579

8580 8581
	return 0;
}
8582
#endif /* CONFIG_RT_GROUP_SCHED */
8583 8584

int sched_rt_handler(struct ctl_table *table, int write,
8585
		void __user *buffer, size_t *lenp,
8586 8587 8588 8589 8590 8591 8592 8593 8594 8595
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8596
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8613

8614
#ifdef CONFIG_CGROUP_SCHED
8615 8616

/* return corresponding task_group object of a cgroup */
8617
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8618
{
8619 8620
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8621 8622 8623
}

static struct cgroup_subsys_state *
8624
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8625
{
8626
	struct task_group *tg, *parent;
8627

8628
	if (!cgrp->parent) {
8629 8630 8631 8632
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8633 8634
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8635 8636 8637 8638 8639 8640
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8641 8642
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8643
{
8644
	struct task_group *tg = cgroup_tg(cgrp);
8645 8646 8647 8648

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8649
static int
8650
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8651
{
8652
#ifdef CONFIG_RT_GROUP_SCHED
8653
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8654 8655
		return -EINVAL;
#else
8656 8657 8658
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8659
#endif
8660 8661
	return 0;
}
8662

8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8682 8683 8684 8685
	return 0;
}

static void
8686
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8687 8688
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8689 8690
{
	sched_move_task(tsk);
8691 8692 8693 8694 8695 8696 8697 8698
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8699 8700
}

8701
#ifdef CONFIG_FAIR_GROUP_SCHED
8702
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8703
				u64 shareval)
8704
{
8705
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8706 8707
}

8708
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8709
{
8710
	struct task_group *tg = cgroup_tg(cgrp);
8711 8712 8713

	return (u64) tg->shares;
}
8714
#endif /* CONFIG_FAIR_GROUP_SCHED */
8715

8716
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8717
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8718
				s64 val)
P
Peter Zijlstra 已提交
8719
{
8720
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8721 8722
}

8723
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8724
{
8725
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8726
}
8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8738
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8739

8740
static struct cftype cpu_files[] = {
8741
#ifdef CONFIG_FAIR_GROUP_SCHED
8742 8743
	{
		.name = "shares",
8744 8745
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8746
	},
8747 8748
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8749
	{
P
Peter Zijlstra 已提交
8750
		.name = "rt_runtime_us",
8751 8752
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8753
	},
8754 8755
	{
		.name = "rt_period_us",
8756 8757
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8758
	},
8759
#endif
8760 8761 8762 8763
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8764
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8765 8766 8767
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8768 8769 8770 8771 8772 8773 8774
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8775 8776 8777
	.early_init	= 1,
};

8778
#endif	/* CONFIG_CGROUP_SCHED */
8779 8780 8781 8782 8783 8784 8785 8786 8787 8788

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8789
/* track cpu usage of a group of tasks and its child groups */
8790 8791 8792
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8793
	u64 __percpu *cpuusage;
8794
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8795
	struct cpuacct *parent;
8796 8797 8798 8799 8800
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8801
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8802
{
8803
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8816
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8817 8818
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8819
	int i;
8820 8821

	if (!ca)
8822
		goto out;
8823 8824

	ca->cpuusage = alloc_percpu(u64);
8825 8826 8827 8828 8829 8830
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8831

8832 8833 8834
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8835
	return &ca->css;
8836 8837 8838 8839 8840 8841 8842 8843 8844

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8845 8846 8847
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8848
static void
8849
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8850
{
8851
	struct cpuacct *ca = cgroup_ca(cgrp);
8852
	int i;
8853

8854 8855
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8856 8857 8858 8859
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8860 8861
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8862
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8863 8864 8865 8866 8867 8868
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8869
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8870
	data = *cpuusage;
8871
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8872 8873 8874 8875 8876 8877 8878 8879 8880
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8881
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8882 8883 8884 8885 8886

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8887
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8888
	*cpuusage = val;
8889
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8890 8891 8892 8893 8894
#else
	*cpuusage = val;
#endif
}

8895
/* return total cpu usage (in nanoseconds) of a group */
8896
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8897
{
8898
	struct cpuacct *ca = cgroup_ca(cgrp);
8899 8900 8901
	u64 totalcpuusage = 0;
	int i;

8902 8903
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8904 8905 8906 8907

	return totalcpuusage;
}

8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8920 8921
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8922 8923 8924 8925 8926

out:
	return err;
}

8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8961 8962 8963
static struct cftype files[] = {
	{
		.name = "usage",
8964 8965
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8966
	},
8967 8968 8969 8970
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8971 8972 8973 8974
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8975 8976
};

8977
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8978
{
8979
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8980 8981 8982 8983 8984 8985 8986 8987 8988 8989
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
8990
	int cpu;
8991

L
Li Zefan 已提交
8992
	if (unlikely(!cpuacct_subsys.active))
8993 8994
		return;

8995
	cpu = task_cpu(tsk);
8996 8997 8998

	rcu_read_lock();

8999 9000
	ca = task_ca(tsk);

9001
	for (; ca; ca = ca->parent) {
9002
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9003 9004
		*cpuusage += cputime;
	}
9005 9006

	rcu_read_unlock();
9007 9008
}

9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9026 9027 9028 9029 9030 9031 9032
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9033
	int batch = CPUACCT_BATCH;
9034 9035 9036 9037 9038 9039 9040 9041

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9042
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9043 9044 9045 9046 9047
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9048 9049 9050 9051 9052 9053 9054 9055
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9056 9057 9058 9059 9060

#ifndef CONFIG_SMP

void synchronize_sched_expedited(void)
{
9061
	barrier();
9062 9063 9064 9065 9066
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

9067
static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9068

9069
static int synchronize_sched_expedited_cpu_stop(void *data)
9070
{
9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
9082
	smp_mb(); /* See above comment block. */
9083
	return 0;
9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097
}

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
9098
	int snap, trycount = 0;
9099 9100

	smp_mb();  /* ensure prior mod happens before capturing snap. */
9101
	snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9102
	get_online_cpus();
9103 9104
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
9105
			     NULL) == -EAGAIN) {
9106 9107 9108 9109 9110 9111 9112
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
9113
		if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9114 9115 9116 9117 9118
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
9119
	atomic_inc(&synchronize_sched_expedited_count);
9120
	smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9121 9122 9123 9124 9125
	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */