sched.c 231.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

148 149
static inline int rt_policy(int policy)
{
150
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
151 152 153 154 155 156 157 158 159
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
160
/*
I
Ingo Molnar 已提交
161
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
162
 */
I
Ingo Molnar 已提交
163 164 165 166 167
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

168
struct rt_bandwidth {
I
Ingo Molnar 已提交
169 170 171 172 173
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
207 208
	spin_lock_init(&rt_b->rt_runtime_lock);

209 210 211 212 213
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

214 215 216
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
217 218 219 220 221 222
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

223
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
224 225 226 227 228 229 230 231 232 233 234 235
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
236 237
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
238 239 240 241 242 243 244 245 246 247 248
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

249 250 251 252 253 254
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

255
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
256

257 258
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
259 260
struct cfs_rq;

P
Peter Zijlstra 已提交
261 262
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
263
/* task group related information */
264
struct task_group {
265
#ifdef CONFIG_CGROUP_SCHED
266 267
	struct cgroup_subsys_state css;
#endif
268

269 270 271 272
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

273
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
274 275 276 277 278
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
279 280 281 282 283 284
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

285
	struct rt_bandwidth rt_bandwidth;
286
#endif
287

288
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
289
	struct list_head list;
P
Peter Zijlstra 已提交
290 291 292 293

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
294 295
};

D
Dhaval Giani 已提交
296
#ifdef CONFIG_USER_SCHED
297

298 299 300 301 302 303
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

304 305 306 307 308 309 310
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

311
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
312 313 314 315
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
316
#endif /* CONFIG_FAIR_GROUP_SCHED */
317 318 319 320

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
321
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
322
#else /* !CONFIG_USER_SCHED */
323
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
324
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
325

326
/* task_group_lock serializes add/remove of task groups and also changes to
327 328
 * a task group's cpu shares.
 */
329
static DEFINE_SPINLOCK(task_group_lock);
330

331 332 333
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
334
#else /* !CONFIG_USER_SCHED */
335
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
336
#endif /* CONFIG_USER_SCHED */
337

338
/*
339 340 341 342
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
343 344 345
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
346
#define MIN_SHARES	2
347
#define MAX_SHARES	(1UL << 18)
348

349 350 351
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
352
/* Default task group.
I
Ingo Molnar 已提交
353
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
354
 */
355
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
356 357

/* return group to which a task belongs */
358
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
359
{
360
	struct task_group *tg;
361

362
#ifdef CONFIG_USER_SCHED
363 364 365
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
366
#elif defined(CONFIG_CGROUP_SCHED)
367 368
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
369
#else
I
Ingo Molnar 已提交
370
	tg = &init_task_group;
371
#endif
372
	return tg;
S
Srivatsa Vaddagiri 已提交
373 374 375
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
376
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
377
{
378
#ifdef CONFIG_FAIR_GROUP_SCHED
379 380
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
381
#endif
P
Peter Zijlstra 已提交
382

383
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
384 385
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
386
#endif
S
Srivatsa Vaddagiri 已提交
387 388 389 390
}

#else

P
Peter Zijlstra 已提交
391
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
392 393 394 395
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
396

397
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
398

I
Ingo Molnar 已提交
399 400 401 402 403 404
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
405
	u64 min_vruntime;
I
Ingo Molnar 已提交
406 407 408

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
409 410 411 412 413 414

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
415 416
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
417
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
418

P
Peter Zijlstra 已提交
419
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
420

421
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
422 423
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
424 425
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
426 427 428 429 430 431
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
432 433
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
434 435 436

#ifdef CONFIG_SMP
	/*
437
	 * the part of load.weight contributed by tasks
438
	 */
439
	unsigned long task_weight;
440

441 442 443 444 445 446 447
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
448

449 450 451 452
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
453 454 455 456 457

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
458
#endif
I
Ingo Molnar 已提交
459 460
#endif
};
L
Linus Torvalds 已提交
461

I
Ingo Molnar 已提交
462 463 464
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
465
	unsigned long rt_nr_running;
466
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
467 468
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
469
#ifdef CONFIG_SMP
470
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
471
	int overloaded;
P
Peter Zijlstra 已提交
472
#endif
P
Peter Zijlstra 已提交
473
	int rt_throttled;
P
Peter Zijlstra 已提交
474
	u64 rt_time;
P
Peter Zijlstra 已提交
475
	u64 rt_runtime;
I
Ingo Molnar 已提交
476
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
477
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
478

479
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
480 481
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
482 483 484 485 486
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
487 488
};

G
Gregory Haskins 已提交
489 490 491 492
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
493 494
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
495 496 497 498 499 500
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
501 502
	cpumask_var_t span;
	cpumask_var_t online;
503

I
Ingo Molnar 已提交
504
	/*
505 506 507
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
508
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
509
	atomic_t rto_count;
510 511 512
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
513 514 515 516 517 518 519 520
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
521 522
};

523 524 525 526
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
527 528 529 530
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
531 532 533 534 535 536 537
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
538
struct rq {
539 540
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
541 542 543 544 545 546

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
547 548
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
549
	unsigned char idle_at_tick;
550
#ifdef CONFIG_NO_HZ
551
	unsigned long last_tick_seen;
552 553
	unsigned char in_nohz_recently;
#endif
554 555
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
556 557 558 559
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
560 561
	struct rt_rq rt;

I
Ingo Molnar 已提交
562
#ifdef CONFIG_FAIR_GROUP_SCHED
563 564
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
565 566
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
567
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
568 569 570 571 572 573 574 575 576 577
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

578
	struct task_struct *curr, *idle;
579
	unsigned long next_balance;
L
Linus Torvalds 已提交
580
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
581

582
	u64 clock;
I
Ingo Molnar 已提交
583

L
Linus Torvalds 已提交
584 585 586
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
587
	struct root_domain *rd;
L
Linus Torvalds 已提交
588 589 590 591 592
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
593 594
	/* cpu of this runqueue: */
	int cpu;
595
	int online;
L
Linus Torvalds 已提交
596

597
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
598

599
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
600 601 602
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
603
#ifdef CONFIG_SCHED_HRTICK
604 605 606 607
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
608 609 610
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
611 612 613
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
614 615
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
616 617

	/* sys_sched_yield() stats */
618 619 620 621
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
622 623

	/* schedule() stats */
624 625 626
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
627 628

	/* try_to_wake_up() stats */
629 630
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
631 632

	/* BKL stats */
633
	unsigned int bkl_count;
L
Linus Torvalds 已提交
634 635 636
#endif
};

637
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
638

639
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
640
{
641
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
642 643
}

644 645 646 647 648 649 650 651 652
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
653 654
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
655
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
656 657 658 659
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
660 661
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
662 663 664 665 666 667

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

668 669 670 671 672
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
673 674 675 676 677 678 679 680 681
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
700 701 702
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
703 704 705 706

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
707
enum {
P
Peter Zijlstra 已提交
708
#include "sched_features.h"
I
Ingo Molnar 已提交
709 710
};

P
Peter Zijlstra 已提交
711 712 713 714 715
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
716
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
717 718 719 720 721 722 723 724 725
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

726
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
727 728 729 730 731 732
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
733
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
734 735 736 737
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
738 739 740
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
741
	}
L
Li Zefan 已提交
742
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
743

L
Li Zefan 已提交
744
	return 0;
P
Peter Zijlstra 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
764
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
789 790 791 792 793
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
794
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
795 796 797 798 799
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
814

815 816 817 818 819 820
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
821 822
/*
 * ratelimit for updating the group shares.
823
 * default: 0.25ms
P
Peter Zijlstra 已提交
824
 */
825
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
826

827 828 829 830 831 832 833
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
834
/*
P
Peter Zijlstra 已提交
835
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
836 837
 * default: 1s
 */
P
Peter Zijlstra 已提交
838
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
839

840 841
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
842 843 844 845 846
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
847

848 849 850 851 852 853 854
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
855
	if (sysctl_sched_rt_runtime < 0)
856 857 858 859
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
860

L
Linus Torvalds 已提交
861
#ifndef prepare_arch_switch
862 863 864 865 866 867
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

868 869 870 871 872
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

873
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
874
static inline int task_running(struct rq *rq, struct task_struct *p)
875
{
876
	return task_current(rq, p);
877 878
}

879
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 881 882
{
}

883
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884
{
885 886 887 888
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
889 890 891 892 893 894 895
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

896 897 898 899
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
900
static inline int task_running(struct rq *rq, struct task_struct *p)
901 902 903 904
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
905
	return task_current(rq, p);
906 907 908
#endif
}

909
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

926
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 928 929 930 931 932 933 934 935 936 937 938
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
939
#endif
940 941
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
942

943 944 945 946
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
947
static inline struct rq *__task_rq_lock(struct task_struct *p)
948 949
	__acquires(rq->lock)
{
950 951 952 953 954
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
955 956 957 958
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
959 960
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
961
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
962 963
 * explicitly disabling preemption.
 */
964
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
965 966
	__acquires(rq->lock)
{
967
	struct rq *rq;
L
Linus Torvalds 已提交
968

969 970 971 972 973 974
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
975 976 977 978
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

979 980 981 982 983 984 985 986
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
987
static void __task_rq_unlock(struct rq *rq)
988 989 990 991 992
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

993
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
994 995 996 997 998 999
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1000
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1001
 */
A
Alexey Dobriyan 已提交
1002
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1003 1004
	__acquires(rq->lock)
{
1005
	struct rq *rq;
L
Linus Torvalds 已提交
1006 1007 1008 1009 1010 1011 1012 1013

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1035
	if (!cpu_active(cpu_of(rq)))
1036
		return 0;
P
Peter Zijlstra 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1057
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1058 1059 1060 1061 1062 1063
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1064
#ifdef CONFIG_SMP
1065 1066 1067 1068
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1069
{
1070
	struct rq *rq = arg;
1071

1072 1073 1074 1075
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1076 1077
}

1078 1079 1080 1081 1082 1083
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1084
{
1085 1086
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1087

1088
	hrtimer_set_expires(timer, time);
1089 1090 1091 1092 1093 1094 1095

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1110
		hrtick_clear(cpu_rq(cpu));
1111 1112 1113 1114 1115 1116
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1117
static __init void init_hrtick(void)
1118 1119 1120
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1131

A
Andrew Morton 已提交
1132
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1133 1134
{
}
1135
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1136

1137
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1138
{
1139 1140
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1141

1142 1143 1144 1145
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1146

1147 1148
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1149
}
A
Andrew Morton 已提交
1150
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1151 1152 1153 1154 1155 1156 1157 1158
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1159 1160 1161
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1162
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1163

I
Ingo Molnar 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1177
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1178 1179 1180 1181 1182
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1183
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1184 1185
		return;

1186
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1249
#endif /* CONFIG_NO_HZ */
1250

1251
#else /* !CONFIG_SMP */
1252
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1253 1254
{
	assert_spin_locked(&task_rq(p)->lock);
1255
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1256
}
1257
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1258

1259 1260 1261 1262 1263 1264 1265 1266
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1267 1268 1269
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1270
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1271

1272 1273 1274
/*
 * delta *= weight / lw
 */
1275
static unsigned long
1276 1277 1278 1279 1280
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1281 1282 1283 1284 1285 1286 1287
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1288 1289 1290 1291 1292

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1293
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1294
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1295 1296
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1297
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1298

1299
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1300 1301
}

1302
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1303 1304
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1305
	lw->inv_weight = 0;
1306 1307
}

1308
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1309 1310
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1311
	lw->inv_weight = 0;
1312 1313
}

1314 1315 1316 1317
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1318
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1319 1320 1321 1322
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1334 1335 1336
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1337 1338
 */
static const int prio_to_weight[40] = {
1339 1340 1341 1342 1343 1344 1345 1346
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1347 1348
};

1349 1350 1351 1352 1353 1354 1355
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1356
static const u32 prio_to_wmult[40] = {
1357 1358 1359 1360 1361 1362 1363 1364
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1365
};
1366

I
Ingo Molnar 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1392

1393 1394 1395 1396 1397 1398
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1409
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1410
typedef int (*tg_visitor)(struct task_group *, void *);
1411 1412 1413 1414 1415

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1416
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1417 1418
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1419
	int ret;
1420 1421 1422 1423

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1424 1425 1426
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1427 1428 1429 1430 1431 1432 1433
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1434 1435 1436
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1437 1438 1439 1440 1441

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1442
out_unlock:
1443
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1444 1445

	return ret;
1446 1447
}

P
Peter Zijlstra 已提交
1448 1449 1450
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1451
}
P
Peter Zijlstra 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1462
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1463

1464 1465
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1466 1467
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1468 1469 1470 1471 1472

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1473 1474 1475 1476 1477 1478 1479

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1480 1481
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1482
{
1483 1484 1485
	unsigned long shares;
	unsigned long rq_weight;

1486
	if (!tg->se[cpu])
1487 1488
		return;

1489
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1490

1491 1492 1493 1494 1495 1496
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1497
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1498
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1499

1500 1501 1502 1503
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1504

1505
		spin_lock_irqsave(&rq->lock, flags);
1506
		tg->cfs_rq[cpu]->shares = shares;
1507

1508 1509 1510
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1511
}
1512 1513

/*
1514 1515 1516
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1517
 */
P
Peter Zijlstra 已提交
1518
static int tg_shares_up(struct task_group *tg, void *data)
1519
{
1520
	unsigned long weight, rq_weight = 0;
1521
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1522
	struct sched_domain *sd = data;
1523
	int i;
1524

1525
	for_each_cpu(i, sched_domain_span(sd)) {
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1537
		shares += tg->cfs_rq[i]->shares;
1538 1539
	}

1540 1541 1542 1543 1544
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1545

1546
	for_each_cpu(i, sched_domain_span(sd))
1547
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1548 1549

	return 0;
1550 1551 1552
}

/*
1553 1554 1555
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1556
 */
P
Peter Zijlstra 已提交
1557
static int tg_load_down(struct task_group *tg, void *data)
1558
{
1559
	unsigned long load;
P
Peter Zijlstra 已提交
1560
	long cpu = (long)data;
1561

1562 1563 1564 1565 1566 1567 1568
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1569

1570
	tg->cfs_rq[cpu]->h_load = load;
1571

P
Peter Zijlstra 已提交
1572
	return 0;
1573 1574
}

1575
static void update_shares(struct sched_domain *sd)
1576
{
P
Peter Zijlstra 已提交
1577 1578 1579 1580 1581
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1582
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1583
	}
1584 1585
}

1586 1587 1588 1589 1590 1591 1592
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1593
static void update_h_load(long cpu)
1594
{
P
Peter Zijlstra 已提交
1595
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1596 1597 1598 1599
}

#else

1600
static inline void update_shares(struct sched_domain *sd)
1601 1602 1603
{
}

1604 1605 1606 1607
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1608 1609
#endif

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1643 1644
#endif

V
Vegard Nossum 已提交
1645
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1646 1647
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1648
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1649 1650 1651
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1652
#endif
1653

I
Ingo Molnar 已提交
1654 1655
#include "sched_stats.h"
#include "sched_idletask.c"
1656 1657
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1658 1659 1660 1661 1662
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1663 1664
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1665

1666
static void inc_nr_running(struct rq *rq)
1667 1668 1669 1670
{
	rq->nr_running++;
}

1671
static void dec_nr_running(struct rq *rq)
1672 1673 1674 1675
{
	rq->nr_running--;
}

1676 1677 1678
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1679 1680 1681 1682
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1683

I
Ingo Molnar 已提交
1684 1685 1686 1687 1688 1689 1690 1691
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1692

I
Ingo Molnar 已提交
1693 1694
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1695 1696
}

1697 1698 1699 1700 1701 1702
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1703
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1704
{
I
Ingo Molnar 已提交
1705
	sched_info_queued(p);
1706
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1707
	p->se.on_rq = 1;
1708 1709
}

1710
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1711
{
1712 1713 1714 1715 1716 1717
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1718
	sched_info_dequeued(p);
1719
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1720
	p->se.on_rq = 0;
1721 1722
}

1723
/*
I
Ingo Molnar 已提交
1724
 * __normal_prio - return the priority that is based on the static prio
1725 1726 1727
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1728
	return p->static_prio;
1729 1730
}

1731 1732 1733 1734 1735 1736 1737
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1738
static inline int normal_prio(struct task_struct *p)
1739 1740 1741
{
	int prio;

1742
	if (task_has_rt_policy(p))
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1756
static int effective_prio(struct task_struct *p)
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1769
/*
I
Ingo Molnar 已提交
1770
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1771
 */
I
Ingo Molnar 已提交
1772
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1773
{
1774
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1775
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1776

1777
	enqueue_task(rq, p, wakeup);
1778
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1779 1780 1781 1782 1783
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1784
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1785
{
1786
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1787 1788
		rq->nr_uninterruptible++;

1789
	dequeue_task(rq, p, sleep);
1790
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1791 1792 1793 1794 1795 1796
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1797
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1798 1799 1800 1801
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1802 1803
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1804
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1805
#ifdef CONFIG_SMP
1806 1807 1808 1809 1810 1811
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1812 1813
	task_thread_info(p)->cpu = cpu;
#endif
1814 1815
}

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1828
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1829

1830 1831 1832 1833 1834 1835
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1836 1837 1838
/*
 * Is this task likely cache-hot:
 */
1839
static int
1840 1841 1842 1843
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1844 1845 1846
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1847 1848 1849
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1850 1851
		return 1;

1852 1853 1854
	if (p->sched_class != &fair_sched_class)
		return 0;

1855 1856 1857 1858 1859
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1860 1861 1862 1863 1864 1865
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1866
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1867
{
I
Ingo Molnar 已提交
1868 1869
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1870 1871
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1872
	u64 clock_offset;
I
Ingo Molnar 已提交
1873 1874

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1875

1876 1877
	trace_sched_migrate_task(p, task_cpu(p), new_cpu);

I
Ingo Molnar 已提交
1878 1879 1880
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1881 1882 1883 1884
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1885 1886 1887 1888 1889
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1890
#endif
1891 1892
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1893 1894

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1895 1896
}

1897
struct migration_req {
L
Linus Torvalds 已提交
1898 1899
	struct list_head list;

1900
	struct task_struct *task;
L
Linus Torvalds 已提交
1901 1902 1903
	int dest_cpu;

	struct completion done;
1904
};
L
Linus Torvalds 已提交
1905 1906 1907 1908 1909

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1910
static int
1911
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1912
{
1913
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1914 1915 1916 1917 1918

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1919
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1920 1921 1922 1923 1924 1925 1926 1927
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1928

L
Linus Torvalds 已提交
1929 1930 1931 1932 1933 1934
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1935 1936 1937 1938 1939 1940 1941
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1942 1943 1944 1945 1946 1947
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1948
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1949 1950
{
	unsigned long flags;
I
Ingo Molnar 已提交
1951
	int running, on_rq;
R
Roland McGrath 已提交
1952
	unsigned long ncsw;
1953
	struct rq *rq;
L
Linus Torvalds 已提交
1954

1955 1956 1957 1958 1959 1960 1961 1962
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1963

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1975 1976 1977
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1978
			cpu_relax();
R
Roland McGrath 已提交
1979
		}
1980

1981 1982 1983 1984 1985 1986
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1987
		trace_sched_wait_task(rq, p);
1988 1989
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1990
		ncsw = 0;
1991
		if (!match_state || p->state == match_state)
1992
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1993
		task_rq_unlock(rq, &flags);
1994

R
Roland McGrath 已提交
1995 1996 1997 1998 1999 2000
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2011

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2025

2026 2027 2028 2029 2030 2031 2032
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2033 2034

	return ncsw;
L
Linus Torvalds 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2050
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2062 2063
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2064 2065 2066 2067
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2068
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2069
{
2070
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2071
	unsigned long total = weighted_cpuload(cpu);
2072

2073
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2074
		return total;
2075

I
Ingo Molnar 已提交
2076
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2077 2078 2079
}

/*
2080 2081
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2082
 */
A
Alexey Dobriyan 已提交
2083
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2084
{
2085
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2086
	unsigned long total = weighted_cpuload(cpu);
2087

2088
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2089
		return total;
2090

I
Ingo Molnar 已提交
2091
	return max(rq->cpu_load[type-1], total);
2092 2093
}

N
Nick Piggin 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2111
		/* Skip over this group if it has no CPUs allowed */
2112 2113
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2114
			continue;
2115

2116 2117
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2118 2119 2120 2121

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2122
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2133 2134
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2135 2136 2137 2138 2139 2140 2141 2142

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2143
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2144 2145 2146 2147 2148 2149 2150

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2151
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2152
 */
I
Ingo Molnar 已提交
2153
static int
2154
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2155 2156 2157 2158 2159
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2160
	/* Traverse only the allowed CPUs */
2161
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2162
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2188

2189
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2190 2191 2192
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2193 2194
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2195 2196
		if (tmp->flags & flag)
			sd = tmp;
2197
	}
N
Nick Piggin 已提交
2198

2199 2200 2201
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2202 2203
	while (sd) {
		struct sched_group *group;
2204 2205 2206 2207 2208 2209
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2210 2211

		group = find_idlest_group(sd, t, cpu);
2212 2213 2214 2215
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2216

2217
		new_cpu = find_idlest_cpu(group, t, cpu);
2218 2219 2220 2221 2222
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2223

2224
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2225
		cpu = new_cpu;
2226
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2227 2228
		sd = NULL;
		for_each_domain(cpu, tmp) {
2229
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2256
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2257
{
2258
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2259 2260
	unsigned long flags;
	long old_state;
2261
	struct rq *rq;
L
Linus Torvalds 已提交
2262

2263 2264 2265
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2266 2267 2268 2269 2270 2271 2272 2273
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2274
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2275 2276 2277 2278 2279 2280 2281
				update_shares(sd);
				break;
			}
		}
	}
#endif

2282
	smp_wmb();
L
Linus Torvalds 已提交
2283
	rq = task_rq_lock(p, &flags);
2284
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2285 2286 2287 2288
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2289
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2290 2291 2292
		goto out_running;

	cpu = task_cpu(p);
2293
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2294 2295 2296 2297 2298 2299
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2300 2301 2302
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2303 2304 2305 2306 2307 2308
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2309
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2310 2311 2312 2313 2314 2315
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2316 2317 2318 2319 2320 2321 2322
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2323
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2324 2325 2326 2327 2328
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2329
#endif /* CONFIG_SCHEDSTATS */
2330

L
Linus Torvalds 已提交
2331 2332
out_activate:
#endif /* CONFIG_SMP */
2333 2334 2335 2336 2337 2338 2339 2340 2341
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2342
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2343 2344 2345
	success = 1;

out_running:
2346
	trace_sched_wakeup(rq, p, success);
2347
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2348

L
Linus Torvalds 已提交
2349
	p->state = TASK_RUNNING;
2350 2351 2352 2353
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2354
out:
2355 2356
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2357 2358 2359 2360 2361
	task_rq_unlock(rq, &flags);

	return success;
}

2362
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2363
{
2364
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2365 2366 2367
}
EXPORT_SYMBOL(wake_up_process);

2368
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2369 2370 2371 2372 2373 2374 2375
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2376 2377 2378 2379 2380 2381 2382
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2383
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2384 2385
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2386 2387 2388

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2389 2390 2391 2392 2393 2394
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2395
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2396
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2397
#endif
N
Nick Piggin 已提交
2398

P
Peter Zijlstra 已提交
2399
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2400
	p->se.on_rq = 0;
2401
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2402

2403 2404 2405 2406
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2407 2408 2409 2410 2411 2412 2413
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2428
	set_task_cpu(p, cpu);
2429 2430 2431 2432 2433

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2434 2435
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2436

2437
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2438
	if (likely(sched_info_on()))
2439
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2440
#endif
2441
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2442 2443
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2444
#ifdef CONFIG_PREEMPT
2445
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2446
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2447
#endif
N
Nick Piggin 已提交
2448
	put_cpu();
L
Linus Torvalds 已提交
2449 2450 2451 2452 2453 2454 2455 2456 2457
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2458
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2459 2460
{
	unsigned long flags;
I
Ingo Molnar 已提交
2461
	struct rq *rq;
L
Linus Torvalds 已提交
2462 2463

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2464
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2465
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2466 2467 2468

	p->prio = effective_prio(p);

2469
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2470
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2471 2472
	} else {
		/*
I
Ingo Molnar 已提交
2473 2474
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2475
		 */
2476
		p->sched_class->task_new(rq, p);
2477
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2478
	}
2479
	trace_sched_wakeup_new(rq, p, 1);
2480
	check_preempt_curr(rq, p, 0);
2481 2482 2483 2484
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2485
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2486 2487
}

2488 2489 2490
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2491 2492
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2493 2494 2495 2496 2497 2498 2499 2500 2501
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2502
 * @notifier: notifier struct to unregister
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2532
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2544
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2545

2546 2547 2548
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2549
 * @prev: the current task that is being switched out
2550 2551 2552 2553 2554 2555 2556 2557 2558
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2559 2560 2561
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2562
{
2563
	fire_sched_out_preempt_notifiers(prev, next);
2564 2565 2566 2567
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2568 2569
/**
 * finish_task_switch - clean up after a task-switch
2570
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2571 2572
 * @prev: the thread we just switched away from.
 *
2573 2574 2575 2576
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2577 2578
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2579
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2580 2581 2582
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2583
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2584 2585 2586
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2587
	long prev_state;
L
Linus Torvalds 已提交
2588 2589 2590 2591 2592

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2593
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2594 2595
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2596
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2597 2598 2599 2600 2601
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2602
	prev_state = prev->state;
2603 2604
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2605 2606 2607 2608
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2609

2610
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2611 2612
	if (mm)
		mmdrop(mm);
2613
	if (unlikely(prev_state == TASK_DEAD)) {
2614 2615 2616
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2617
		 */
2618
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2619
		put_task_struct(prev);
2620
	}
L
Linus Torvalds 已提交
2621 2622 2623 2624 2625 2626
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2627
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2628 2629
	__releases(rq->lock)
{
2630 2631
	struct rq *rq = this_rq();

2632 2633 2634 2635 2636
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2637
	if (current->set_child_tid)
2638
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2639 2640 2641 2642 2643 2644
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2645
static inline void
2646
context_switch(struct rq *rq, struct task_struct *prev,
2647
	       struct task_struct *next)
L
Linus Torvalds 已提交
2648
{
I
Ingo Molnar 已提交
2649
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2650

2651
	prepare_task_switch(rq, prev, next);
2652
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2653 2654
	mm = next->mm;
	oldmm = prev->active_mm;
2655 2656 2657 2658 2659 2660 2661
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2662
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2663 2664 2665 2666 2667 2668
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2669
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2670 2671 2672
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2673 2674 2675 2676 2677 2678 2679
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2680
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2681
#endif
L
Linus Torvalds 已提交
2682 2683 2684 2685

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2686 2687 2688 2689 2690 2691 2692
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2716
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2731 2732
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2733

2734
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2744
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2745 2746 2747 2748 2749
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2765
/*
I
Ingo Molnar 已提交
2766 2767
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2768
 */
I
Ingo Molnar 已提交
2769
static void update_cpu_load(struct rq *this_rq)
2770
{
2771
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2784 2785 2786 2787 2788 2789 2790
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2791 2792
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2793 2794
}

I
Ingo Molnar 已提交
2795 2796
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2797 2798 2799 2800 2801 2802
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2803
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2804 2805 2806
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2807
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2808 2809 2810 2811
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2812
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2813
			spin_lock(&rq1->lock);
2814
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2815 2816
		} else {
			spin_lock(&rq2->lock);
2817
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2818 2819
		}
	}
2820 2821
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2822 2823 2824 2825 2826 2827 2828 2829
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2830
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2844
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2845 2846
 * the cpu_allowed mask is restored.
 */
2847
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2848
{
2849
	struct migration_req req;
L
Linus Torvalds 已提交
2850
	unsigned long flags;
2851
	struct rq *rq;
L
Linus Torvalds 已提交
2852 2853

	rq = task_rq_lock(p, &flags);
2854
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2855
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2856 2857 2858 2859 2860 2861
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2862

L
Linus Torvalds 已提交
2863 2864 2865 2866 2867
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2868

L
Linus Torvalds 已提交
2869 2870 2871 2872 2873 2874 2875
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2876 2877
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2878 2879 2880 2881
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2882
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2883
	put_cpu();
N
Nick Piggin 已提交
2884 2885
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2886 2887 2888 2889 2890 2891
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2892 2893
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2894
{
2895
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2896
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2897
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2898 2899 2900 2901
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2902
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2903 2904 2905 2906 2907
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2908
static
2909
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2910
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2911
		     int *all_pinned)
L
Linus Torvalds 已提交
2912 2913 2914 2915 2916 2917 2918
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2919
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2920
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2921
		return 0;
2922
	}
2923 2924
	*all_pinned = 0;

2925 2926
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2927
		return 0;
2928
	}
L
Linus Torvalds 已提交
2929

2930 2931 2932 2933 2934 2935
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2936 2937
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2938
#ifdef CONFIG_SCHEDSTATS
2939
		if (task_hot(p, rq->clock, sd)) {
2940
			schedstat_inc(sd, lb_hot_gained[idle]);
2941 2942
			schedstat_inc(p, se.nr_forced_migrations);
		}
2943 2944 2945 2946
#endif
		return 1;
	}

2947 2948
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2949
		return 0;
2950
	}
L
Linus Torvalds 已提交
2951 2952 2953
	return 1;
}

2954 2955 2956 2957 2958
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2959
{
2960
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2961 2962
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2963

2964
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2965 2966
		goto out;

2967 2968
	pinned = 1;

L
Linus Torvalds 已提交
2969
	/*
I
Ingo Molnar 已提交
2970
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2971
	 */
I
Ingo Molnar 已提交
2972 2973
	p = iterator->start(iterator->arg);
next:
2974
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2975
		goto out;
2976 2977

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2978 2979 2980
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2981 2982
	}

I
Ingo Molnar 已提交
2983
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2984
	pulled++;
I
Ingo Molnar 已提交
2985
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2986

2987
	/*
2988
	 * We only want to steal up to the prescribed amount of weighted load.
2989
	 */
2990
	if (rem_load_move > 0) {
2991 2992
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2993 2994
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2995 2996 2997
	}
out:
	/*
2998
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2999 3000 3001 3002
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3003 3004 3005

	if (all_pinned)
		*all_pinned = pinned;
3006 3007

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3008 3009
}

I
Ingo Molnar 已提交
3010
/*
P
Peter Williams 已提交
3011 3012 3013
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3014 3015 3016 3017
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3018
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3019 3020 3021
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3022
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3023
	unsigned long total_load_moved = 0;
3024
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3025 3026

	do {
P
Peter Williams 已提交
3027 3028
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3029
				max_load_move - total_load_moved,
3030
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3031
		class = class->next;
3032 3033 3034 3035

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3036
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3037

P
Peter Williams 已提交
3038 3039 3040
	return total_load_moved > 0;
}

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3077
	const struct sched_class *class;
P
Peter Williams 已提交
3078 3079

	for (class = sched_class_highest; class; class = class->next)
3080
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3081 3082 3083
			return 1;

	return 0;
I
Ingo Molnar 已提交
3084 3085
}

L
Linus Torvalds 已提交
3086 3087
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3088 3089
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3090 3091 3092
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3093
		   unsigned long *imbalance, enum cpu_idle_type idle,
3094
		   int *sd_idle, const struct cpumask *cpus, int *balance)
L
Linus Torvalds 已提交
3095 3096 3097
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3098
	unsigned long max_pull;
3099 3100
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3101
	int load_idx, group_imb = 0;
3102 3103 3104 3105 3106 3107
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3108 3109

	max_load = this_load = total_load = total_pwr = 0;
3110 3111
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3112

I
Ingo Molnar 已提交
3113
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3114
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3115
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3116 3117 3118
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3119 3120

	do {
3121
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3122 3123
		int local_group;
		int i;
3124
		int __group_imb = 0;
3125
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3126
		unsigned long sum_nr_running, sum_weighted_load;
3127 3128
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3129

3130 3131
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
L
Linus Torvalds 已提交
3132

3133
		if (local_group)
3134
			balance_cpu = cpumask_first(sched_group_cpus(group));
3135

L
Linus Torvalds 已提交
3136
		/* Tally up the load of all CPUs in the group */
3137
		sum_weighted_load = sum_nr_running = avg_load = 0;
3138 3139
		sum_avg_load_per_task = avg_load_per_task = 0;

3140 3141
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3142

3143 3144
		for_each_cpu_and(i, sched_group_cpus(group), cpus) {
			struct rq *rq = cpu_rq(i);
3145

3146
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3147 3148
				*sd_idle = 0;

L
Linus Torvalds 已提交
3149
			/* Bias balancing toward cpus of our domain */
3150 3151 3152 3153 3154 3155
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3156
				load = target_load(i, load_idx);
3157
			} else {
N
Nick Piggin 已提交
3158
				load = source_load(i, load_idx);
3159 3160 3161 3162 3163
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3164 3165

			avg_load += load;
3166
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3167
			sum_weighted_load += weighted_cpuload(i);
3168 3169

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3170 3171
		}

3172 3173 3174
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3175 3176
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3177
		 */
3178 3179
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3180 3181 3182 3183
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3184
		total_load += avg_load;
3185
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3186 3187

		/* Adjust by relative CPU power of the group */
3188 3189
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3190

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3205 3206
			__group_imb = 1;

3207
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3208

L
Linus Torvalds 已提交
3209 3210 3211
		if (local_group) {
			this_load = avg_load;
			this = group;
3212 3213 3214
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3215
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3216 3217
			max_load = avg_load;
			busiest = group;
3218 3219
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3220
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3221
		}
3222 3223 3224 3225 3226 3227

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3228 3229 3230
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3231 3232 3233 3234 3235 3236 3237 3238 3239

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3240
		/*
3241 3242
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3243 3244
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3245
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3246
			goto group_next;
3247

I
Ingo Molnar 已提交
3248
		/*
3249
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3250 3251 3252 3253 3254
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3255
		     cpumask_first(sched_group_cpus(group)) >
3256
		     cpumask_first(sched_group_cpus(group_min)))) {
I
Ingo Molnar 已提交
3257 3258
			group_min = group;
			min_nr_running = sum_nr_running;
3259 3260
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3261
		}
3262

I
Ingo Molnar 已提交
3263
		/*
3264
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3265 3266 3267 3268 3269 3270
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
3271
			     cpumask_first(sched_group_cpus(group)) <
3272
			     cpumask_first(sched_group_cpus(group_leader)))) {
I
Ingo Molnar 已提交
3273 3274 3275
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3276
		}
3277 3278
group_next:
#endif
L
Linus Torvalds 已提交
3279 3280 3281
		group = group->next;
	} while (group != sd->groups);

3282
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3283 3284 3285 3286 3287 3288 3289 3290
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3291
	busiest_load_per_task /= busiest_nr_running;
3292 3293 3294
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3295 3296 3297 3298 3299 3300 3301 3302
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3303
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3304 3305
	 * appear as very large values with unsigned longs.
	 */
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3318 3319

	/* Don't want to pull so many tasks that a group would go idle */
3320
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3321

L
Linus Torvalds 已提交
3322
	/* How much load to actually move to equalise the imbalance */
3323 3324
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3325 3326
			/ SCHED_LOAD_SCALE;

3327 3328 3329 3330 3331 3332
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3333
	if (*imbalance < busiest_load_per_task) {
3334
		unsigned long tmp, pwr_now, pwr_move;
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3345
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3346

3347
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3348
					busiest_load_per_task * imbn) {
3349
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3359 3360 3361 3362
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3363 3364 3365
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3366 3367
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3368
		if (max_load > tmp)
3369
			pwr_move += busiest->__cpu_power *
3370
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3371 3372

		/* Amount of load we'd add */
3373
		if (max_load * busiest->__cpu_power <
3374
				busiest_load_per_task * SCHED_LOAD_SCALE)
3375 3376
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3377
		else
3378 3379 3380 3381
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3382 3383 3384
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3385 3386
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3387 3388 3389 3390 3391
	}

	return busiest;

out_balanced:
3392
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3393
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3394
		goto ret;
L
Linus Torvalds 已提交
3395

3396 3397
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
3398 3399
		if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
			cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
I
Ingo Molnar 已提交
3400
				cpumask_first(sched_group_cpus(group_leader));
3401
		}
3402 3403 3404
		return group_min;
	}
#endif
3405
ret:
L
Linus Torvalds 已提交
3406 3407 3408 3409 3410 3411 3412
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3413
static struct rq *
I
Ingo Molnar 已提交
3414
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3415
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3416
{
3417
	struct rq *busiest = NULL, *rq;
3418
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3419 3420
	int i;

3421
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3422
		unsigned long wl;
3423

3424
		if (!cpumask_test_cpu(i, cpus))
3425 3426
			continue;

3427
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3428
		wl = weighted_cpuload(i);
3429

I
Ingo Molnar 已提交
3430
		if (rq->nr_running == 1 && wl > imbalance)
3431
			continue;
L
Linus Torvalds 已提交
3432

I
Ingo Molnar 已提交
3433 3434
		if (wl > max_load) {
			max_load = wl;
3435
			busiest = rq;
L
Linus Torvalds 已提交
3436 3437 3438 3439 3440 3441
		}
	}

	return busiest;
}

3442 3443 3444 3445 3446 3447
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3448 3449 3450 3451
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3452
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3453
			struct sched_domain *sd, enum cpu_idle_type idle,
3454
			int *balance, struct cpumask *cpus)
L
Linus Torvalds 已提交
3455
{
P
Peter Williams 已提交
3456
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3457 3458
	struct sched_group *group;
	unsigned long imbalance;
3459
	struct rq *busiest;
3460
	unsigned long flags;
N
Nick Piggin 已提交
3461

3462
	cpumask_setall(cpus);
3463

3464 3465 3466
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3467
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3468
	 * portraying it as CPU_NOT_IDLE.
3469
	 */
I
Ingo Molnar 已提交
3470
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3471
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3472
		sd_idle = 1;
L
Linus Torvalds 已提交
3473

3474
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3475

3476
redo:
3477
	update_shares(sd);
3478
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3479
				   cpus, balance);
3480

3481
	if (*balance == 0)
3482 3483
		goto out_balanced;

L
Linus Torvalds 已提交
3484 3485 3486 3487 3488
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3489
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3490 3491 3492 3493 3494
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3495
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3496 3497 3498

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3499
	ld_moved = 0;
L
Linus Torvalds 已提交
3500 3501 3502 3503
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3504
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3505 3506
		 * correctly treated as an imbalance.
		 */
3507
		local_irq_save(flags);
N
Nick Piggin 已提交
3508
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3509
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3510
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3511
		double_rq_unlock(this_rq, busiest);
3512
		local_irq_restore(flags);
3513

3514 3515 3516
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3517
		if (ld_moved && this_cpu != smp_processor_id())
3518 3519
			resched_cpu(this_cpu);

3520
		/* All tasks on this runqueue were pinned by CPU affinity */
3521
		if (unlikely(all_pinned)) {
3522 3523
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3524
				goto redo;
3525
			goto out_balanced;
3526
		}
L
Linus Torvalds 已提交
3527
	}
3528

P
Peter Williams 已提交
3529
	if (!ld_moved) {
L
Linus Torvalds 已提交
3530 3531 3532 3533 3534
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3535
			spin_lock_irqsave(&busiest->lock, flags);
3536 3537 3538 3539

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
3540 3541
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
3542
				spin_unlock_irqrestore(&busiest->lock, flags);
3543 3544 3545 3546
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3547 3548 3549
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3550
				active_balance = 1;
L
Linus Torvalds 已提交
3551
			}
3552
			spin_unlock_irqrestore(&busiest->lock, flags);
3553
			if (active_balance)
L
Linus Torvalds 已提交
3554 3555 3556 3557 3558 3559
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3560
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3561
		}
3562
	} else
L
Linus Torvalds 已提交
3563 3564
		sd->nr_balance_failed = 0;

3565
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3566 3567
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3568 3569 3570 3571 3572 3573 3574 3575 3576
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3577 3578
	}

P
Peter Williams 已提交
3579
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3580
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3581 3582 3583
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3584 3585 3586 3587

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3588
	sd->nr_balance_failed = 0;
3589 3590

out_one_pinned:
L
Linus Torvalds 已提交
3591
	/* tune up the balancing interval */
3592 3593
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3594 3595
		sd->balance_interval *= 2;

3596
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3597
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3598 3599 3600 3601
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3602 3603
	if (ld_moved)
		update_shares(sd);
3604
	return ld_moved;
L
Linus Torvalds 已提交
3605 3606 3607 3608 3609 3610
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3611
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3612 3613
 * this_rq is locked.
 */
3614
static int
3615
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3616
			struct cpumask *cpus)
L
Linus Torvalds 已提交
3617 3618
{
	struct sched_group *group;
3619
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3620
	unsigned long imbalance;
P
Peter Williams 已提交
3621
	int ld_moved = 0;
N
Nick Piggin 已提交
3622
	int sd_idle = 0;
3623
	int all_pinned = 0;
3624

3625
	cpumask_setall(cpus);
N
Nick Piggin 已提交
3626

3627 3628 3629 3630
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3631
	 * portraying it as CPU_NOT_IDLE.
3632 3633 3634
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3635
		sd_idle = 1;
L
Linus Torvalds 已提交
3636

3637
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3638
redo:
3639
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3640
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3641
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3642
	if (!group) {
I
Ingo Molnar 已提交
3643
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3644
		goto out_balanced;
L
Linus Torvalds 已提交
3645 3646
	}

3647
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3648
	if (!busiest) {
I
Ingo Molnar 已提交
3649
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3650
		goto out_balanced;
L
Linus Torvalds 已提交
3651 3652
	}

N
Nick Piggin 已提交
3653 3654
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3655
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3656

P
Peter Williams 已提交
3657
	ld_moved = 0;
3658 3659 3660
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3661 3662
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3663
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3664 3665
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3666
		double_unlock_balance(this_rq, busiest);
3667

3668
		if (unlikely(all_pinned)) {
3669 3670
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3671 3672
				goto redo;
		}
3673 3674
	}

P
Peter Williams 已提交
3675
	if (!ld_moved) {
3676
		int active_balance = 0;
3677

I
Ingo Molnar 已提交
3678
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3679 3680
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3681
			return -1;
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
3718
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
3731 3732 3733 3734
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
3735 3736
		if (active_balance)
			wake_up_process(busiest->migration_thread);
3737
		spin_lock(&this_rq->lock);
3738

N
Nick Piggin 已提交
3739
	} else
3740
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3741

3742
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3743
	return ld_moved;
3744 3745

out_balanced:
I
Ingo Molnar 已提交
3746
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3747
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3748
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3749
		return -1;
3750
	sd->nr_balance_failed = 0;
3751

3752
	return 0;
L
Linus Torvalds 已提交
3753 3754 3755 3756 3757 3758
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3759
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3760 3761
{
	struct sched_domain *sd;
3762
	int pulled_task = 0;
I
Ingo Molnar 已提交
3763
	unsigned long next_balance = jiffies + HZ;
3764 3765 3766 3767
	cpumask_var_t tmpmask;

	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
3768 3769

	for_each_domain(this_cpu, sd) {
3770 3771 3772 3773 3774 3775
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3776
			/* If we've pulled tasks over stop searching: */
3777
			pulled_task = load_balance_newidle(this_cpu, this_rq,
3778
							   sd, tmpmask);
3779 3780 3781 3782 3783 3784

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3785
	}
I
Ingo Molnar 已提交
3786
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3787 3788 3789 3790 3791
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3792
	}
3793
	free_cpumask_var(tmpmask);
L
Linus Torvalds 已提交
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3804
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3805
{
3806
	int target_cpu = busiest_rq->push_cpu;
3807 3808
	struct sched_domain *sd;
	struct rq *target_rq;
3809

3810
	/* Is there any task to move? */
3811 3812 3813 3814
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3815 3816

	/*
3817
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3818
	 * we need to fix it. Originally reported by
3819
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3820
	 */
3821
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3822

3823 3824
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3825 3826
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3827 3828

	/* Search for an sd spanning us and the target CPU. */
3829
	for_each_domain(target_cpu, sd) {
3830
		if ((sd->flags & SD_LOAD_BALANCE) &&
3831
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3832
				break;
3833
	}
3834

3835
	if (likely(sd)) {
3836
		schedstat_inc(sd, alb_count);
3837

P
Peter Williams 已提交
3838 3839
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3840 3841 3842 3843
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3844
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3845 3846
}

3847 3848 3849
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
3850
	cpumask_var_t cpu_mask;
3851 3852 3853 3854
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

3855
/*
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3866
 *
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
3880
		cpumask_set_cpu(cpu, nohz.cpu_mask);
3881 3882 3883 3884 3885
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3886
		if (!cpu_active(cpu) &&
3887 3888 3889 3890 3891 3892 3893
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
3894
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
3907
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3908 3909
			return 0;

3910
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3923 3924 3925 3926 3927
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3928
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3929
{
3930 3931
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3932 3933
	unsigned long interval;
	struct sched_domain *sd;
3934
	/* Earliest time when we have to do rebalance again */
3935
	unsigned long next_balance = jiffies + 60*HZ;
3936
	int update_next_balance = 0;
3937
	int need_serialize;
3938 3939 3940 3941 3942
	cpumask_var_t tmp;

	/* Fails alloc?  Rebalancing probably not a priority right now. */
	if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
3943

3944
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3945 3946 3947 3948
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3949
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3950 3951 3952 3953 3954 3955
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3956 3957 3958
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3959
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3960

3961
		if (need_serialize) {
3962 3963 3964 3965
			if (!spin_trylock(&balancing))
				goto out;
		}

3966
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3967
			if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3968 3969
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3970 3971 3972
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3973
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3974
			}
3975
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3976
		}
3977
		if (need_serialize)
3978 3979
			spin_unlock(&balancing);
out:
3980
		if (time_after(next_balance, sd->last_balance + interval)) {
3981
			next_balance = sd->last_balance + interval;
3982 3983
			update_next_balance = 1;
		}
3984 3985 3986 3987 3988 3989 3990 3991

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3992
	}
3993 3994 3995 3996 3997 3998 3999 4000

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4001 4002

	free_cpumask_var(tmp);
4003 4004 4005 4006 4007 4008 4009 4010 4011
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4012 4013 4014 4015
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4016

I
Ingo Molnar 已提交
4017
	rebalance_domains(this_cpu, idle);
4018 4019 4020 4021 4022 4023 4024

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4025 4026
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4027 4028 4029
		struct rq *rq;
		int balance_cpu;

4030 4031 4032 4033
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4034 4035 4036 4037 4038 4039 4040 4041
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4042
			rebalance_domains(balance_cpu, CPU_IDLE);
4043 4044

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4045 4046
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4059
static inline void trigger_load_balance(struct rq *rq, int cpu)
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4071
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
4084
			int ilb = cpumask_first(nohz.cpu_mask);
4085

4086
			if (ilb < nr_cpu_ids)
4087 4088 4089 4090 4091 4092 4093 4094 4095
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4096
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4097 4098 4099 4100 4101 4102 4103 4104 4105
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4106
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4107 4108 4109 4110
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4111
}
I
Ingo Molnar 已提交
4112 4113 4114

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4115 4116 4117
/*
 * on UP we do not need to balance between CPUs:
 */
4118
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4119 4120
{
}
I
Ingo Molnar 已提交
4121

L
Linus Torvalds 已提交
4122 4123 4124 4125 4126 4127 4128
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4129 4130
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4131
 */
4132
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4133 4134
{
	unsigned long flags;
4135
	struct rq *rq;
4136
	u64 ns = 0;
4137

4138
	rq = task_rq_lock(p, &flags);
4139

4140
	if (task_current(rq, p)) {
4141 4142
		u64 delta_exec;

I
Ingo Molnar 已提交
4143 4144
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4145
		if ((s64)delta_exec > 0)
4146
			ns = delta_exec;
4147
	}
4148

4149
	task_rq_unlock(rq, &flags);
4150

L
Linus Torvalds 已提交
4151 4152 4153 4154 4155 4156 4157
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4158
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4159
 */
4160 4161
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4162 4163 4164 4165
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4166
	/* Add user time to process. */
L
Linus Torvalds 已提交
4167
	p->utime = cputime_add(p->utime, cputime);
4168
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4169
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4170 4171 4172 4173 4174 4175 4176

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4177 4178
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4179 4180
}

4181 4182 4183 4184
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4185
 * @cputime_scaled: cputime scaled by cpu frequency
4186
 */
4187 4188
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4189 4190 4191 4192 4193 4194
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4195
	/* Add guest time to process. */
4196
	p->utime = cputime_add(p->utime, cputime);
4197
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4198
	account_group_user_time(p, cputime);
4199 4200
	p->gtime = cputime_add(p->gtime, cputime);

4201
	/* Add guest time to cpustat. */
4202 4203 4204 4205
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4206 4207 4208 4209 4210
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4211
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4212 4213
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4214
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4215 4216 4217 4218
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4219
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4220
		account_guest_time(p, cputime, cputime_scaled);
4221 4222
		return;
	}
4223

4224
	/* Add system time to process. */
L
Linus Torvalds 已提交
4225
	p->stime = cputime_add(p->stime, cputime);
4226
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4227
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4228 4229 4230 4231 4232 4233 4234 4235

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4236 4237
		cpustat->system = cputime64_add(cpustat->system, tmp);

L
Linus Torvalds 已提交
4238 4239 4240 4241
	/* Account for system time used */
	acct_update_integrals(p);
}

4242
/*
L
Linus Torvalds 已提交
4243 4244
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
4245
 */
4246
void account_steal_time(cputime_t cputime)
4247
{
4248 4249 4250 4251
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4252 4253
}

L
Linus Torvalds 已提交
4254
/*
4255 4256
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
4257
 */
4258
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
4259 4260
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4261
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
4262
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4263

4264 4265 4266 4267
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
4268 4269
}

4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
	else if (p != rq->idle)
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
4309 4310
}

4311 4312
#endif

4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4383
	struct task_struct *curr = rq->curr;
4384 4385

	sched_clock_tick();
I
Ingo Molnar 已提交
4386 4387

	spin_lock(&rq->lock);
4388
	update_rq_clock(rq);
4389
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4390
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4391
	spin_unlock(&rq->lock);
4392

4393
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4394 4395
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4396
#endif
L
Linus Torvalds 已提交
4397 4398
}

4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4411

4412
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4413
{
4414
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4415 4416 4417
	/*
	 * Underflow?
	 */
4418 4419
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4420
#endif
L
Linus Torvalds 已提交
4421
	preempt_count() += val;
4422
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4423 4424 4425
	/*
	 * Spinlock count overflowing soon?
	 */
4426 4427
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4428 4429 4430
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4431 4432 4433
}
EXPORT_SYMBOL(add_preempt_count);

4434
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4435
{
4436
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4437 4438 4439
	/*
	 * Underflow?
	 */
N
Nick Piggin 已提交
4440
       if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
4441
		return;
L
Linus Torvalds 已提交
4442 4443 4444
	/*
	 * Is the spinlock portion underflowing?
	 */
4445 4446 4447
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4448
#endif
4449

4450 4451
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4452 4453 4454 4455 4456 4457 4458
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4459
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4460
 */
I
Ingo Molnar 已提交
4461
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4462
{
4463 4464 4465 4466 4467
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4468
	debug_show_held_locks(prev);
4469
	print_modules();
I
Ingo Molnar 已提交
4470 4471
	if (irqs_disabled())
		print_irqtrace_events(prev);
4472 4473 4474 4475 4476

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4477
}
L
Linus Torvalds 已提交
4478

I
Ingo Molnar 已提交
4479 4480 4481 4482 4483
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4484
	/*
I
Ingo Molnar 已提交
4485
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4486 4487 4488
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4489
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4490 4491
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4492 4493
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4494
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4495 4496
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4497 4498
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4499 4500
	}
#endif
I
Ingo Molnar 已提交
4501 4502 4503 4504 4505 4506
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4507
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4508
{
4509
	const struct sched_class *class;
I
Ingo Molnar 已提交
4510
	struct task_struct *p;
L
Linus Torvalds 已提交
4511 4512

	/*
I
Ingo Molnar 已提交
4513 4514
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4515
	 */
I
Ingo Molnar 已提交
4516
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4517
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4518 4519
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4520 4521
	}

I
Ingo Molnar 已提交
4522 4523
	class = sched_class_highest;
	for ( ; ; ) {
4524
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4525 4526 4527 4528 4529 4530 4531 4532 4533
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4534

I
Ingo Molnar 已提交
4535 4536 4537 4538 4539 4540
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4541
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4542
	struct rq *rq;
4543
	int cpu;
I
Ingo Molnar 已提交
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4557

4558
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4559
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4560

4561
	spin_lock_irq(&rq->lock);
4562
	update_rq_clock(rq);
4563
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4564 4565

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4566
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4567
			prev->state = TASK_RUNNING;
4568
		else
4569
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4570
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4571 4572
	}

4573 4574 4575 4576
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4577

I
Ingo Molnar 已提交
4578
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4579 4580
		idle_balance(cpu, rq);

4581
	prev->sched_class->put_prev_task(rq, prev);
4582
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4583 4584

	if (likely(prev != next)) {
4585 4586
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4587 4588 4589 4590
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4591
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4592 4593 4594 4595 4596 4597
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4598 4599 4600
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4601
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4602
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4603

L
Linus Torvalds 已提交
4604 4605 4606 4607 4608 4609 4610 4611
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4612
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4613
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4614 4615 4616 4617 4618
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4619

L
Linus Torvalds 已提交
4620 4621
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4622
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4623
	 */
N
Nick Piggin 已提交
4624
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4625 4626
		return;

4627 4628 4629 4630
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4631

4632 4633 4634 4635 4636 4637
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4638 4639 4640 4641
}
EXPORT_SYMBOL(preempt_schedule);

/*
4642
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4643 4644 4645 4646 4647 4648 4649
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4650

4651
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4652 4653
	BUG_ON(ti->preempt_count || !irqs_disabled());

4654 4655 4656 4657 4658 4659
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4660

4661 4662 4663 4664 4665 4666
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4667 4668 4669 4670
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4671 4672
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4673
{
4674
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4675 4676 4677 4678
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4679 4680
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4681 4682 4683
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4684
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4685 4686 4687 4688 4689
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4690
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4691

4692
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4693 4694
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4695
		if (curr->func(curr, mode, sync, key) &&
4696
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4697 4698 4699 4700 4701 4702 4703 4704 4705
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4706
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4707
 */
4708
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4709
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4722
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4723 4724 4725 4726 4727
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4728
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4740
void
I
Ingo Molnar 已提交
4741
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4758 4759 4760 4761 4762 4763 4764 4765 4766
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4767
void complete(struct completion *x)
L
Linus Torvalds 已提交
4768 4769 4770 4771 4772
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4773
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4774 4775 4776 4777
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4778 4779 4780 4781 4782 4783
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4784
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4785 4786 4787 4788 4789
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4790
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4791 4792 4793 4794
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4795 4796
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4797 4798 4799 4800 4801 4802 4803
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4804
			if (signal_pending_state(state, current)) {
4805 4806
				timeout = -ERESTARTSYS;
				break;
4807 4808
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4809 4810 4811
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4812
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4813
		__remove_wait_queue(&x->wait, &wait);
4814 4815
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4816 4817
	}
	x->done--;
4818
	return timeout ?: 1;
L
Linus Torvalds 已提交
4819 4820
}

4821 4822
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4823 4824 4825 4826
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4827
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4828
	spin_unlock_irq(&x->wait.lock);
4829 4830
	return timeout;
}
L
Linus Torvalds 已提交
4831

4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4842
void __sched wait_for_completion(struct completion *x)
4843 4844
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4845
}
4846
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4847

4848 4849 4850 4851 4852 4853 4854 4855 4856
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4857
unsigned long __sched
4858
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4859
{
4860
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4861
}
4862
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4863

4864 4865 4866 4867 4868 4869 4870
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4871
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4872
{
4873 4874 4875 4876
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4877
}
4878
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4879

4880 4881 4882 4883 4884 4885 4886 4887
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4888
unsigned long __sched
4889 4890
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4891
{
4892
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4893
}
4894
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4895

4896 4897 4898 4899 4900 4901 4902
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4903 4904 4905 4906 4907 4908 4909 4910 4911
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4958 4959
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4960
{
I
Ingo Molnar 已提交
4961 4962 4963 4964
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4965

4966
	__set_current_state(state);
L
Linus Torvalds 已提交
4967

4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4982 4983 4984
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4985
long __sched
I
Ingo Molnar 已提交
4986
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4987
{
4988
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4989 4990 4991
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4992
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4993
{
4994
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4995 4996 4997
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4998
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4999
{
5000
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5001 5002 5003
}
EXPORT_SYMBOL(sleep_on_timeout);

5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5016
void rt_mutex_setprio(struct task_struct *p, int prio)
5017 5018
{
	unsigned long flags;
5019
	int oldprio, on_rq, running;
5020
	struct rq *rq;
5021
	const struct sched_class *prev_class = p->sched_class;
5022 5023 5024 5025

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5026
	update_rq_clock(rq);
5027

5028
	oldprio = p->prio;
I
Ingo Molnar 已提交
5029
	on_rq = p->se.on_rq;
5030
	running = task_current(rq, p);
5031
	if (on_rq)
5032
		dequeue_task(rq, p, 0);
5033 5034
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5035 5036 5037 5038 5039 5040

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5041 5042
	p->prio = prio;

5043 5044
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5045
	if (on_rq) {
5046
		enqueue_task(rq, p, 0);
5047 5048

		check_class_changed(rq, p, prev_class, oldprio, running);
5049 5050 5051 5052 5053 5054
	}
	task_rq_unlock(rq, &flags);
}

#endif

5055
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5056
{
I
Ingo Molnar 已提交
5057
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5058
	unsigned long flags;
5059
	struct rq *rq;
L
Linus Torvalds 已提交
5060 5061 5062 5063 5064 5065 5066 5067

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5068
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5069 5070 5071 5072
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5073
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5074
	 */
5075
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5076 5077 5078
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5079
	on_rq = p->se.on_rq;
5080
	if (on_rq)
5081
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5082 5083

	p->static_prio = NICE_TO_PRIO(nice);
5084
	set_load_weight(p);
5085 5086 5087
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5088

I
Ingo Molnar 已提交
5089
	if (on_rq) {
5090
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5091
		/*
5092 5093
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5094
		 */
5095
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5096 5097 5098 5099 5100 5101 5102
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5103 5104 5105 5106 5107
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5108
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5109
{
5110 5111
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5112

M
Matt Mackall 已提交
5113 5114 5115 5116
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5128
	long nice, retval;
L
Linus Torvalds 已提交
5129 5130 5131 5132 5133 5134

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5135 5136
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5137 5138 5139 5140 5141 5142 5143 5144 5145
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5146 5147 5148
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5167
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5168 5169 5170 5171 5172 5173 5174 5175
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5176
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5177 5178 5179
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5180
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5195
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5196 5197 5198 5199 5200 5201 5202 5203
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5204
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5205
{
5206
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5207 5208 5209
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5210 5211
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5212
{
I
Ingo Molnar 已提交
5213
	BUG_ON(p->se.on_rq);
5214

L
Linus Torvalds 已提交
5215
	p->policy = policy;
I
Ingo Molnar 已提交
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5228
	p->rt_priority = prio;
5229 5230 5231
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5232
	set_load_weight(p);
L
Linus Torvalds 已提交
5233 5234
}

5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

5251 5252
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5253
{
5254
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5255
	unsigned long flags;
5256
	const struct sched_class *prev_class = p->sched_class;
5257
	struct rq *rq;
L
Linus Torvalds 已提交
5258

5259 5260
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5261 5262 5263 5264 5265
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5266 5267
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5268
		return -EINVAL;
L
Linus Torvalds 已提交
5269 5270
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5271 5272
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5273 5274
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5275
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5276
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5277
		return -EINVAL;
5278
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5279 5280
		return -EINVAL;

5281 5282 5283
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5284
	if (user && !capable(CAP_SYS_NICE)) {
5285
		if (rt_policy(policy)) {
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5302 5303 5304 5305 5306 5307
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5308

5309
		/* can't change other user's priorities */
5310
		if (!check_same_owner(p))
5311 5312
			return -EPERM;
	}
L
Linus Torvalds 已提交
5313

5314
	if (user) {
5315
#ifdef CONFIG_RT_GROUP_SCHED
5316 5317 5318 5319
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5320 5321
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5322
			return -EPERM;
5323 5324
#endif

5325 5326 5327 5328 5329
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5330 5331 5332 5333 5334
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5335 5336 5337 5338
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5339
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5340 5341 5342
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5343 5344
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5345 5346
		goto recheck;
	}
I
Ingo Molnar 已提交
5347
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5348
	on_rq = p->se.on_rq;
5349
	running = task_current(rq, p);
5350
	if (on_rq)
5351
		deactivate_task(rq, p, 0);
5352 5353
	if (running)
		p->sched_class->put_prev_task(rq, p);
5354

L
Linus Torvalds 已提交
5355
	oldprio = p->prio;
I
Ingo Molnar 已提交
5356
	__setscheduler(rq, p, policy, param->sched_priority);
5357

5358 5359
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5360 5361
	if (on_rq) {
		activate_task(rq, p, 0);
5362 5363

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5364
	}
5365 5366 5367
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5368 5369
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5370 5371
	return 0;
}
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5386 5387
EXPORT_SYMBOL_GPL(sched_setscheduler);

5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5405 5406
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5407 5408 5409
{
	struct sched_param lparam;
	struct task_struct *p;
5410
	int retval;
L
Linus Torvalds 已提交
5411 5412 5413 5414 5415

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5416 5417 5418

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5419
	p = find_process_by_pid(pid);
5420 5421 5422
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5423

L
Linus Torvalds 已提交
5424 5425 5426 5427 5428 5429 5430 5431 5432
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5433 5434
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5435
{
5436 5437 5438 5439
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5459
	struct task_struct *p;
5460
	int retval;
L
Linus Torvalds 已提交
5461 5462

	if (pid < 0)
5463
		return -EINVAL;
L
Linus Torvalds 已提交
5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5485
	struct task_struct *p;
5486
	int retval;
L
Linus Torvalds 已提交
5487 5488

	if (!param || pid < 0)
5489
		return -EINVAL;
L
Linus Torvalds 已提交
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5516
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5517
{
5518
	cpumask_var_t cpus_allowed, new_mask;
5519 5520
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5521

5522
	get_online_cpus();
L
Linus Torvalds 已提交
5523 5524 5525 5526 5527
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5528
		put_online_cpus();
L
Linus Torvalds 已提交
5529 5530 5531 5532 5533
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5534
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5535 5536 5537 5538 5539
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

5540 5541 5542 5543 5544 5545 5546 5547
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5548
	retval = -EPERM;
5549
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
5550 5551
		goto out_unlock;

5552 5553 5554 5555
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5556 5557
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
5558
 again:
5559
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5560

P
Paul Menage 已提交
5561
	if (!retval) {
5562 5563
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5564 5565 5566 5567 5568
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5569
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5570 5571 5572
			goto again;
		}
	}
L
Linus Torvalds 已提交
5573
out_unlock:
5574 5575 5576 5577
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5578
	put_task_struct(p);
5579
	put_online_cpus();
L
Linus Torvalds 已提交
5580 5581 5582 5583
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5584
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5585
{
5586 5587 5588 5589 5590
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
5603
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5604 5605
	int retval;

5606 5607
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5608

5609 5610 5611 5612 5613
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5614 5615
}

5616
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5617
{
5618
	struct task_struct *p;
L
Linus Torvalds 已提交
5619 5620
	int retval;

5621
	get_online_cpus();
L
Linus Torvalds 已提交
5622 5623 5624 5625 5626 5627 5628
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5629 5630 5631 5632
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5633
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
5634 5635 5636

out_unlock:
	read_unlock(&tasklist_lock);
5637
	put_online_cpus();
L
Linus Torvalds 已提交
5638

5639
	return retval;
L
Linus Torvalds 已提交
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
5652
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5653

5654
	if (len < cpumask_size())
L
Linus Torvalds 已提交
5655 5656
		return -EINVAL;

5657 5658
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5659

5660 5661 5662 5663 5664 5665 5666 5667
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5668

5669
	return ret;
L
Linus Torvalds 已提交
5670 5671 5672 5673 5674
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5675 5676
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5677 5678 5679
 */
asmlinkage long sys_sched_yield(void)
{
5680
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5681

5682
	schedstat_inc(rq, yld_count);
5683
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5684 5685 5686 5687 5688 5689

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5690
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5691 5692 5693 5694 5695 5696 5697 5698
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5699
static void __cond_resched(void)
L
Linus Torvalds 已提交
5700
{
5701 5702 5703
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5704 5705 5706 5707 5708
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5709 5710 5711 5712 5713 5714 5715
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5716
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5717
{
5718 5719
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5720 5721 5722 5723 5724
		__cond_resched();
		return 1;
	}
	return 0;
}
5725
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5726 5727 5728 5729 5730

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5731
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5732 5733 5734
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5735
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5736
{
N
Nick Piggin 已提交
5737
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5738 5739
	int ret = 0;

N
Nick Piggin 已提交
5740
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5741
		spin_unlock(lock);
N
Nick Piggin 已提交
5742 5743 5744 5745
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5746
		ret = 1;
L
Linus Torvalds 已提交
5747 5748
		spin_lock(lock);
	}
J
Jan Kara 已提交
5749
	return ret;
L
Linus Torvalds 已提交
5750 5751 5752 5753 5754 5755 5756
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5757
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5758
		local_bh_enable();
L
Linus Torvalds 已提交
5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5770
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5781
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5782 5783 5784 5785 5786 5787 5788
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5789
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5790

5791
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5792 5793 5794
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5795
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5796 5797 5798 5799 5800
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5801
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5802 5803
	long ret;

5804
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5805 5806 5807
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5808
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5829
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5830
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5854
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5855
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5872
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5873
	unsigned int time_slice;
5874
	int retval;
L
Linus Torvalds 已提交
5875 5876 5877
	struct timespec t;

	if (pid < 0)
5878
		return -EINVAL;
L
Linus Torvalds 已提交
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5890 5891 5892 5893 5894 5895
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5896
		time_slice = DEF_TIMESLICE;
5897
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5898 5899 5900 5901 5902
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5903 5904
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5905 5906
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5907
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5908
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5909 5910
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5911

L
Linus Torvalds 已提交
5912 5913 5914 5915 5916
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5917
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5918

5919
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5920 5921
{
	unsigned long free = 0;
5922
	unsigned state;
L
Linus Torvalds 已提交
5923 5924

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5925
	printk(KERN_INFO "%-13.13s %c", p->comm,
5926
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5927
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5928
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5929
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5930
	else
I
Ingo Molnar 已提交
5931
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5932 5933
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5934
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5935
	else
I
Ingo Molnar 已提交
5936
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5937 5938 5939
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5940
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5941 5942
		while (!*n)
			n++;
5943
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5944 5945
	}
#endif
5946
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5947
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5948

5949
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5950 5951
}

I
Ingo Molnar 已提交
5952
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5953
{
5954
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5955

5956 5957 5958
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5959
#else
5960 5961
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5962 5963 5964 5965 5966 5967 5968 5969
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5970
		if (!state_filter || (p->state & state_filter))
5971
			sched_show_task(p);
L
Linus Torvalds 已提交
5972 5973
	} while_each_thread(g, p);

5974 5975
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5976 5977 5978
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5979
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5980 5981 5982 5983 5984
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5985 5986
}

I
Ingo Molnar 已提交
5987 5988
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5989
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5990 5991
}

5992 5993 5994 5995 5996 5997 5998 5999
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6000
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6001
{
6002
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6003 6004
	unsigned long flags;

6005 6006
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6007 6008 6009
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6010
	idle->prio = idle->normal_prio = MAX_PRIO;
6011
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6012
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6013 6014

	rq->curr = rq->idle = idle;
6015 6016 6017
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6018 6019 6020
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6021 6022 6023
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6024
	task_thread_info(idle)->preempt_count = 0;
6025
#endif
I
Ingo Molnar 已提交
6026 6027 6028 6029
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6030
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6031 6032 6033 6034 6035 6036 6037
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6038
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6039
 */
6040
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6041

I
Ingo Molnar 已提交
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6065 6066

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6067 6068
}

L
Linus Torvalds 已提交
6069 6070 6071 6072
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6073
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6092
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6093 6094
 * call is not atomic; no spinlocks may be held.
 */
6095
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6096
{
6097
	struct migration_req req;
L
Linus Torvalds 已提交
6098
	unsigned long flags;
6099
	struct rq *rq;
6100
	int ret = 0;
L
Linus Torvalds 已提交
6101 6102

	rq = task_rq_lock(p, &flags);
6103
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6104 6105 6106 6107
		ret = -EINVAL;
		goto out;
	}

6108
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6109
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6110 6111 6112 6113
		ret = -EINVAL;
		goto out;
	}

6114
	if (p->sched_class->set_cpus_allowed)
6115
		p->sched_class->set_cpus_allowed(p, new_mask);
6116
	else {
6117 6118
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6119 6120
	}

L
Linus Torvalds 已提交
6121
	/* Can the task run on the task's current CPU? If so, we're done */
6122
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6123 6124
		goto out;

R
Rusty Russell 已提交
6125
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6126 6127 6128 6129 6130 6131 6132 6133 6134
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6135

L
Linus Torvalds 已提交
6136 6137
	return ret;
}
6138
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6139 6140

/*
I
Ingo Molnar 已提交
6141
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6142 6143 6144 6145 6146 6147
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6148 6149
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6150
 */
6151
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6152
{
6153
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6154
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6155

6156
	if (unlikely(!cpu_active(dest_cpu)))
6157
		return ret;
L
Linus Torvalds 已提交
6158 6159 6160 6161 6162 6163 6164

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6165
		goto done;
L
Linus Torvalds 已提交
6166
	/* Affinity changed (again). */
6167
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6168
		goto fail;
L
Linus Torvalds 已提交
6169

I
Ingo Molnar 已提交
6170
	on_rq = p->se.on_rq;
6171
	if (on_rq)
6172
		deactivate_task(rq_src, p, 0);
6173

L
Linus Torvalds 已提交
6174
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6175 6176
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6177
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6178
	}
L
Linus Torvalds 已提交
6179
done:
6180
	ret = 1;
L
Linus Torvalds 已提交
6181
fail:
L
Linus Torvalds 已提交
6182
	double_rq_unlock(rq_src, rq_dest);
6183
	return ret;
L
Linus Torvalds 已提交
6184 6185 6186 6187 6188 6189 6190
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6191
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6192 6193
{
	int cpu = (long)data;
6194
	struct rq *rq;
L
Linus Torvalds 已提交
6195 6196 6197 6198 6199 6200

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6201
		struct migration_req *req;
L
Linus Torvalds 已提交
6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6224
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6225 6226
		list_del_init(head->next);

N
Nick Piggin 已提交
6227 6228 6229
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6259
/*
6260
 * Figure out where task on dead CPU should go, use force if necessary.
6261
 */
6262
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6263
{
6264
	int dest_cpu;
6265
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
6282

6283 6284 6285 6286 6287 6288 6289 6290 6291
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
6292
		}
6293 6294 6295 6296 6297 6298
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
6299 6300 6301 6302 6303 6304 6305 6306 6307
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6308
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6309
{
R
Rusty Russell 已提交
6310
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6324
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6325

6326
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6327

6328 6329
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6330 6331
			continue;

6332 6333 6334
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6335

6336
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6337 6338
}

I
Ingo Molnar 已提交
6339 6340
/*
 * Schedules idle task to be the next runnable task on current CPU.
6341 6342
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6343 6344 6345
 */
void sched_idle_next(void)
{
6346
	int this_cpu = smp_processor_id();
6347
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6348 6349 6350 6351
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6352
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6353

6354 6355 6356
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6357 6358 6359
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6360
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6361

6362 6363
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6364 6365 6366 6367

	spin_unlock_irqrestore(&rq->lock, flags);
}

6368 6369
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6383
/* called under rq->lock with disabled interrupts */
6384
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6385
{
6386
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6387 6388

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6389
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6390 6391

	/* Cannot have done final schedule yet: would have vanished. */
6392
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6393

6394
	get_task_struct(p);
L
Linus Torvalds 已提交
6395 6396 6397

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6398
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6399 6400
	 * fine.
	 */
6401
	spin_unlock_irq(&rq->lock);
6402
	move_task_off_dead_cpu(dead_cpu, p);
6403
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6404

6405
	put_task_struct(p);
L
Linus Torvalds 已提交
6406 6407 6408 6409 6410
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6411
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6412
	struct task_struct *next;
6413

I
Ingo Molnar 已提交
6414 6415 6416
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6417
		update_rq_clock(rq);
6418
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6419 6420
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6421
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6422
		migrate_dead(dead_cpu, next);
6423

L
Linus Torvalds 已提交
6424 6425 6426 6427
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6428 6429 6430
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6431 6432
	{
		.procname	= "sched_domain",
6433
		.mode		= 0555,
6434
	},
I
Ingo Molnar 已提交
6435
	{0, },
6436 6437 6438
};

static struct ctl_table sd_ctl_root[] = {
6439
	{
6440
		.ctl_name	= CTL_KERN,
6441
		.procname	= "kernel",
6442
		.mode		= 0555,
6443 6444
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6445
	{0, },
6446 6447 6448 6449 6450
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6451
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6452 6453 6454 6455

	return entry;
}

6456 6457
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6458
	struct ctl_table *entry;
6459

6460 6461 6462
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6463
	 * will always be set. In the lowest directory the names are
6464 6465 6466
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6467 6468
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6469 6470 6471
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6472 6473 6474 6475 6476

	kfree(*tablep);
	*tablep = NULL;
}

6477
static void
6478
set_table_entry(struct ctl_table *entry,
6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6492
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6493

6494 6495 6496
	if (table == NULL)
		return NULL;

6497
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6498
		sizeof(long), 0644, proc_doulongvec_minmax);
6499
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6500
		sizeof(long), 0644, proc_doulongvec_minmax);
6501
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6502
		sizeof(int), 0644, proc_dointvec_minmax);
6503
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6504
		sizeof(int), 0644, proc_dointvec_minmax);
6505
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6506
		sizeof(int), 0644, proc_dointvec_minmax);
6507
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6508
		sizeof(int), 0644, proc_dointvec_minmax);
6509
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6510
		sizeof(int), 0644, proc_dointvec_minmax);
6511
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6512
		sizeof(int), 0644, proc_dointvec_minmax);
6513
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6514
		sizeof(int), 0644, proc_dointvec_minmax);
6515
	set_table_entry(&table[9], "cache_nice_tries",
6516 6517
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6518
	set_table_entry(&table[10], "flags", &sd->flags,
6519
		sizeof(int), 0644, proc_dointvec_minmax);
6520 6521 6522
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6523 6524 6525 6526

	return table;
}

6527
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6528 6529 6530 6531 6532 6533 6534 6535 6536
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6537 6538
	if (table == NULL)
		return NULL;
6539 6540 6541 6542 6543

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6544
		entry->mode = 0555;
6545 6546 6547 6548 6549 6550 6551 6552
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6553
static void register_sched_domain_sysctl(void)
6554 6555 6556 6557 6558
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6559 6560 6561
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6562 6563 6564
	if (entry == NULL)
		return;

6565
	for_each_online_cpu(i) {
6566 6567
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6568
		entry->mode = 0555;
6569
		entry->child = sd_alloc_ctl_cpu_table(i);
6570
		entry++;
6571
	}
6572 6573

	WARN_ON(sd_sysctl_header);
6574 6575
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6576

6577
/* may be called multiple times per register */
6578 6579
static void unregister_sched_domain_sysctl(void)
{
6580 6581
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6582
	sd_sysctl_header = NULL;
6583 6584
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6585
}
6586
#else
6587 6588 6589 6590
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6591 6592 6593 6594
{
}
#endif

6595 6596 6597 6598 6599
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6600
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6620
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6621 6622 6623 6624
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6625 6626 6627 6628
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6629 6630
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6631 6632
{
	struct task_struct *p;
6633
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6634
	unsigned long flags;
6635
	struct rq *rq;
L
Linus Torvalds 已提交
6636 6637

	switch (action) {
6638

L
Linus Torvalds 已提交
6639
	case CPU_UP_PREPARE:
6640
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6641
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6642 6643 6644 6645 6646
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6647
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6648 6649 6650
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6651

L
Linus Torvalds 已提交
6652
	case CPU_ONLINE:
6653
	case CPU_ONLINE_FROZEN:
6654
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6655
		wake_up_process(cpu_rq(cpu)->migration_thread);
6656 6657 6658 6659 6660

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6661
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6662 6663

			set_rq_online(rq);
6664 6665
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6666
		break;
6667

L
Linus Torvalds 已提交
6668 6669
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6670
	case CPU_UP_CANCELED_FROZEN:
6671 6672
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6673
		/* Unbind it from offline cpu so it can run. Fall thru. */
6674
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
6675
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6676 6677 6678
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6679

L
Linus Torvalds 已提交
6680
	case CPU_DEAD:
6681
	case CPU_DEAD_FROZEN:
6682
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6683 6684 6685 6686 6687
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6688
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6689
		update_rq_clock(rq);
6690
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6691
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6692 6693
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6694
		migrate_dead_tasks(cpu);
6695
		spin_unlock_irq(&rq->lock);
6696
		cpuset_unlock();
L
Linus Torvalds 已提交
6697 6698 6699
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6700 6701 6702 6703 6704
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6705 6706
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6707 6708
			struct migration_req *req;

L
Linus Torvalds 已提交
6709
			req = list_entry(rq->migration_queue.next,
6710
					 struct migration_req, list);
L
Linus Torvalds 已提交
6711
			list_del_init(&req->list);
B
Brian King 已提交
6712
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
6713
			complete(&req->done);
B
Brian King 已提交
6714
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6715 6716 6717
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6718

6719 6720
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6721 6722 6723 6724
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6725
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6726
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6727 6728 6729
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6730 6731 6732 6733 6734 6735 6736 6737
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6738
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6739 6740 6741 6742
	.notifier_call = migration_call,
	.priority = 10
};

6743
static int __init migration_init(void)
L
Linus Torvalds 已提交
6744 6745
{
	void *cpu = (void *)(long)smp_processor_id();
6746
	int err;
6747 6748

	/* Start one for the boot CPU: */
6749 6750
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6751 6752
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6753 6754

	return err;
L
Linus Torvalds 已提交
6755
}
6756
early_initcall(migration_init);
L
Linus Torvalds 已提交
6757 6758 6759
#endif

#ifdef CONFIG_SMP
6760

6761
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6762

6763
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6764
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6765
{
I
Ingo Molnar 已提交
6766
	struct sched_group *group = sd->groups;
6767
	char str[256];
L
Linus Torvalds 已提交
6768

R
Rusty Russell 已提交
6769
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6770
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6771 6772 6773 6774 6775 6776 6777 6778 6779

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6780 6781
	}

6782
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6783

6784
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
6785 6786 6787
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
6788
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6789 6790 6791
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6792

I
Ingo Molnar 已提交
6793
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6794
	do {
I
Ingo Molnar 已提交
6795 6796 6797
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6798 6799 6800
			break;
		}

I
Ingo Molnar 已提交
6801 6802 6803 6804 6805 6806
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6807

6808
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6809 6810 6811 6812
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6813

6814
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6815 6816 6817 6818
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6819

6820
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6821

R
Rusty Russell 已提交
6822
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
I
Ingo Molnar 已提交
6823
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6824

I
Ingo Molnar 已提交
6825 6826 6827
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6828

6829
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
6830
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6831

6832 6833
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
6834 6835 6836 6837
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6838

I
Ingo Molnar 已提交
6839 6840
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6841
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6842
	int level = 0;
L
Linus Torvalds 已提交
6843

I
Ingo Molnar 已提交
6844 6845 6846 6847
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6848

I
Ingo Molnar 已提交
6849 6850
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6851
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6852 6853 6854 6855
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6856
	for (;;) {
6857
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6858
			break;
L
Linus Torvalds 已提交
6859 6860
		level++;
		sd = sd->parent;
6861
		if (!sd)
I
Ingo Molnar 已提交
6862 6863
			break;
	}
6864
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6865
}
6866
#else /* !CONFIG_SCHED_DEBUG */
6867
# define sched_domain_debug(sd, cpu) do { } while (0)
6868
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6869

6870
static int sd_degenerate(struct sched_domain *sd)
6871
{
6872
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6873 6874 6875 6876 6877 6878
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6879 6880 6881
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6895 6896
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6897 6898 6899 6900 6901 6902
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6903
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6915 6916 6917
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6918 6919
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6920 6921 6922 6923 6924 6925 6926
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6927 6928
static void free_rootdomain(struct root_domain *rd)
{
6929 6930
	cpupri_cleanup(&rd->cpupri);

6931 6932 6933 6934 6935 6936
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6937 6938 6939 6940 6941 6942 6943 6944 6945
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6946
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6947
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6948

6949
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6950

G
Gregory Haskins 已提交
6951
		if (atomic_dec_and_test(&old_rd->refcount))
6952
			free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6953 6954 6955 6956 6957
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6958 6959
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6960
		set_rq_online(rq);
G
Gregory Haskins 已提交
6961 6962 6963 6964

	spin_unlock_irqrestore(&rq->lock, flags);
}

L
Li Zefan 已提交
6965
static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6966 6967 6968
{
	memset(rd, 0, sizeof(*rd));

6969 6970 6971 6972
	if (bootmem) {
		alloc_bootmem_cpumask_var(&def_root_domain.span);
		alloc_bootmem_cpumask_var(&def_root_domain.online);
		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6973
		cpupri_init(&rd->cpupri, true);
6974 6975 6976 6977
		return 0;
	}

	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6978
		goto out;
6979 6980 6981 6982
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_online;
6983

6984 6985
	if (cpupri_init(&rd->cpupri, false) != 0)
		goto free_rto_mask;
6986
	return 0;
6987

6988 6989
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6990 6991 6992 6993
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6994
out:
6995
	return -ENOMEM;
G
Gregory Haskins 已提交
6996 6997 6998 6999
}

static void init_defrootdomain(void)
{
7000 7001
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7002 7003 7004
	atomic_set(&def_root_domain.refcount, 1);
}

7005
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7006 7007 7008 7009 7010 7011 7012
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7013 7014 7015 7016
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7017 7018 7019 7020

	return rd;
}

L
Linus Torvalds 已提交
7021
/*
I
Ingo Molnar 已提交
7022
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7023 7024
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7025 7026
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7027
{
7028
	struct rq *rq = cpu_rq(cpu);
7029 7030 7031
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7032
	for (tmp = sd; tmp; ) {
7033 7034 7035
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7036

7037
		if (sd_parent_degenerate(tmp, parent)) {
7038
			tmp->parent = parent->parent;
7039 7040
			if (parent->parent)
				parent->parent->child = tmp;
7041 7042
		} else
			tmp = tmp->parent;
7043 7044
	}

7045
	if (sd && sd_degenerate(sd)) {
7046
		sd = sd->parent;
7047 7048 7049
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7050 7051 7052

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7053
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7054
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7055 7056 7057
}

/* cpus with isolated domains */
7058
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7059 7060 7061 7062

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7063
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7064 7065 7066
	return 1;
}

I
Ingo Molnar 已提交
7067
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7068 7069

/*
7070 7071
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7072 7073
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7074 7075 7076 7077 7078
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7079
static void
7080 7081 7082
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7083
					struct sched_group **sg,
7084 7085
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7086 7087 7088 7089
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7090
	cpumask_clear(covered);
7091

7092
	for_each_cpu(i, span) {
7093
		struct sched_group *sg;
7094
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7095 7096
		int j;

7097
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7098 7099
			continue;

7100
		cpumask_clear(sched_group_cpus(sg));
7101
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7102

7103
		for_each_cpu(j, span) {
7104
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7105 7106
				continue;

7107
			cpumask_set_cpu(j, covered);
7108
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7109 7110 7111 7112 7113 7114 7115 7116 7117 7118
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7119
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7120

7121
#ifdef CONFIG_NUMA
7122

7123 7124 7125 7126 7127
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7128
 * Find the next node to include in a given scheduling domain. Simply
7129 7130 7131 7132
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7133
static int find_next_best_node(int node, nodemask_t *used_nodes)
7134 7135 7136 7137 7138
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7139
	for (i = 0; i < nr_node_ids; i++) {
7140
		/* Start at @node */
7141
		n = (node + i) % nr_node_ids;
7142 7143 7144 7145 7146

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7147
		if (node_isset(n, *used_nodes))
7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7159
	node_set(best_node, *used_nodes);
7160 7161 7162 7163 7164 7165
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7166
 * @span: resulting cpumask
7167
 *
I
Ingo Molnar 已提交
7168
 * Given a node, construct a good cpumask for its sched_domain to span. It
7169 7170 7171
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7172
static void sched_domain_node_span(int node, struct cpumask *span)
7173
{
7174
	nodemask_t used_nodes;
7175
	int i;
7176

7177
	cpumask_clear(span);
7178
	nodes_clear(used_nodes);
7179

7180
	cpumask_or(span, span, cpumask_of_node(node));
7181
	node_set(node, used_nodes);
7182 7183

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7184
		int next_node = find_next_best_node(node, &used_nodes);
7185

7186
		cpumask_or(span, span, cpumask_of_node(next_node));
7187 7188
	}
}
7189
#endif /* CONFIG_NUMA */
7190

7191
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7192

7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
 * for nr_cpu_ids < CONFIG_NR_CPUS.
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

7208
/*
7209
 * SMT sched-domains:
7210
 */
L
Linus Torvalds 已提交
7211
#ifdef CONFIG_SCHED_SMT
7212 7213
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7214

I
Ingo Molnar 已提交
7215
static int
7216 7217
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
7218
{
7219
	if (sg)
7220
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
7221 7222
	return cpu;
}
7223
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7224

7225 7226 7227
/*
 * multi-core sched-domains:
 */
7228
#ifdef CONFIG_SCHED_MC
7229 7230
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7231
#endif /* CONFIG_SCHED_MC */
7232 7233

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7234
static int
7235 7236
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
7237
{
7238
	int group;
7239

7240 7241
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
7242
	if (sg)
7243
		*sg = &per_cpu(sched_group_core, group).sg;
7244
	return group;
7245 7246
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7247
static int
7248 7249
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
7250
{
7251
	if (sg)
7252
		*sg = &per_cpu(sched_group_core, cpu).sg;
7253 7254 7255 7256
	return cpu;
}
#endif

7257 7258
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7259

I
Ingo Molnar 已提交
7260
static int
7261 7262
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
7263
{
7264
	int group;
7265
#ifdef CONFIG_SCHED_MC
7266
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7267
	group = cpumask_first(mask);
7268
#elif defined(CONFIG_SCHED_SMT)
7269 7270
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
7271
#else
7272
	group = cpu;
L
Linus Torvalds 已提交
7273
#endif
7274
	if (sg)
7275
		*sg = &per_cpu(sched_group_phys, group).sg;
7276
	return group;
L
Linus Torvalds 已提交
7277 7278 7279 7280
}

#ifdef CONFIG_NUMA
/*
7281 7282 7283
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7284
 */
7285
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7286
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7287

7288
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7289
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7290

7291 7292 7293
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
7294
{
7295 7296
	int group;

7297
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7298
	group = cpumask_first(nodemask);
7299 7300

	if (sg)
7301
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7302
	return group;
L
Linus Torvalds 已提交
7303
}
7304

7305 7306 7307 7308 7309 7310 7311
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7312
	do {
7313
		for_each_cpu(j, sched_group_cpus(sg)) {
7314
			struct sched_domain *sd;
7315

7316
			sd = &per_cpu(phys_domains, j).sd;
7317
			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7318 7319 7320 7321 7322 7323
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7324

7325 7326 7327 7328
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7329
}
7330
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7331

7332
#ifdef CONFIG_NUMA
7333
/* Free memory allocated for various sched_group structures */
7334 7335
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7336
{
7337
	int cpu, i;
7338

7339
	for_each_cpu(cpu, cpu_map) {
7340 7341 7342 7343 7344 7345
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7346
		for (i = 0; i < nr_node_ids; i++) {
7347 7348
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7349
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7350
			if (cpumask_empty(nodemask))
7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7367
#else /* !CONFIG_NUMA */
7368 7369
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7370 7371
{
}
7372
#endif /* CONFIG_NUMA */
7373

7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

7395
	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7396 7397 7398 7399
		return;

	child = sd->child;

7400 7401
	sd->groups->__cpu_power = 0;

7402 7403 7404 7405 7406 7407 7408 7409 7410 7411
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7412
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7413 7414 7415 7416 7417 7418 7419 7420
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7421
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7422 7423 7424 7425
		group = group->next;
	} while (group != child->groups);
}

7426 7427 7428 7429 7430
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7431 7432 7433 7434 7435 7436
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7437
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7438

7439 7440 7441 7442 7443
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7444
	sd->level = SD_LV_##type;				\
7445
	SD_INIT_NAME(sd, type);					\
7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

7460 7461 7462 7463
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7464 7465 7466 7467 7468 7469
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7495
/*
7496 7497
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7498
 */
7499
static int __build_sched_domains(const struct cpumask *cpu_map,
7500
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7501
{
7502
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
7503
	struct root_domain *rd;
7504 7505
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
7506
#ifdef CONFIG_NUMA
7507
	cpumask_var_t domainspan, covered, notcovered;
7508
	struct sched_group **sched_group_nodes = NULL;
7509
	int sd_allnodes = 0;
7510

7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
7531 7532 7533
	/*
	 * Allocate the per-node list of sched groups
	 */
7534
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7535
				    GFP_KERNEL);
7536 7537
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7538
		goto free_tmpmask;
7539 7540
	}
#endif
L
Linus Torvalds 已提交
7541

7542
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7543 7544
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7545
		goto free_sched_groups;
G
Gregory Haskins 已提交
7546 7547
	}

7548
#ifdef CONFIG_NUMA
7549
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7550 7551
#endif

L
Linus Torvalds 已提交
7552
	/*
7553
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7554
	 */
7555
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7556 7557
		struct sched_domain *sd = NULL, *p;

7558
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
7559 7560

#ifdef CONFIG_NUMA
7561 7562
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7563
			sd = &per_cpu(allnodes_domains, i);
7564
			SD_INIT(sd, ALLNODES);
7565
			set_domain_attribute(sd, attr);
7566
			cpumask_copy(sched_domain_span(sd), cpu_map);
7567
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7568
			p = sd;
7569
			sd_allnodes = 1;
7570 7571 7572
		} else
			p = NULL;

L
Linus Torvalds 已提交
7573
		sd = &per_cpu(node_domains, i);
7574
		SD_INIT(sd, NODE);
7575
		set_domain_attribute(sd, attr);
7576
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7577
		sd->parent = p;
7578 7579
		if (p)
			p->child = sd;
7580 7581
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7582 7583 7584
#endif

		p = sd;
7585
		sd = &per_cpu(phys_domains, i).sd;
7586
		SD_INIT(sd, CPU);
7587
		set_domain_attribute(sd, attr);
7588
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
7589
		sd->parent = p;
7590 7591
		if (p)
			p->child = sd;
7592
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7593

7594 7595
#ifdef CONFIG_SCHED_MC
		p = sd;
7596
		sd = &per_cpu(core_domains, i).sd;
7597
		SD_INIT(sd, MC);
7598
		set_domain_attribute(sd, attr);
7599 7600
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
7601
		sd->parent = p;
7602
		p->child = sd;
7603
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7604 7605
#endif

L
Linus Torvalds 已提交
7606 7607
#ifdef CONFIG_SCHED_SMT
		p = sd;
7608
		sd = &per_cpu(cpu_domains, i).sd;
7609
		SD_INIT(sd, SIBLING);
7610
		set_domain_attribute(sd, attr);
7611 7612
		cpumask_and(sched_domain_span(sd),
			    &per_cpu(cpu_sibling_map, i), cpu_map);
L
Linus Torvalds 已提交
7613
		sd->parent = p;
7614
		p->child = sd;
7615
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7616 7617 7618 7619 7620
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7621
	for_each_cpu(i, cpu_map) {
7622 7623 7624
		cpumask_and(this_sibling_map,
			    &per_cpu(cpu_sibling_map, i), cpu_map);
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
7625 7626
			continue;

I
Ingo Molnar 已提交
7627
		init_sched_build_groups(this_sibling_map, cpu_map,
7628 7629
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7630 7631 7632
	}
#endif

7633 7634
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7635
	for_each_cpu(i, cpu_map) {
7636
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7637
		if (i != cpumask_first(this_core_map))
7638
			continue;
7639

I
Ingo Molnar 已提交
7640
		init_sched_build_groups(this_core_map, cpu_map,
7641 7642
					&cpu_to_core_group,
					send_covered, tmpmask);
7643 7644 7645
	}
#endif

L
Linus Torvalds 已提交
7646
	/* Set up physical groups */
7647
	for (i = 0; i < nr_node_ids; i++) {
7648
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7649
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
7650 7651
			continue;

7652 7653 7654
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7655 7656 7657 7658
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7659 7660 7661 7662 7663
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7664

7665
	for (i = 0; i < nr_node_ids; i++) {
7666 7667 7668 7669
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

7670
		cpumask_clear(covered);
7671
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7672
		if (cpumask_empty(nodemask)) {
7673
			sched_group_nodes[i] = NULL;
7674
			continue;
7675
		}
7676

7677
		sched_domain_node_span(i, domainspan);
7678
		cpumask_and(domainspan, domainspan, cpu_map);
7679

7680 7681
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
7682 7683 7684 7685 7686
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7687
		sched_group_nodes[i] = sg;
7688
		for_each_cpu(j, nodemask) {
7689
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7690

7691 7692 7693
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7694
		sg->__cpu_power = 0;
7695
		cpumask_copy(sched_group_cpus(sg), nodemask);
7696
		sg->next = sg;
7697
		cpumask_or(covered, covered, nodemask);
7698 7699
		prev = sg;

7700 7701
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
7702

7703 7704 7705 7706
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
7707 7708
				break;

7709
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7710
			if (cpumask_empty(tmpmask))
7711 7712
				continue;

7713 7714
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
7715
					  GFP_KERNEL, i);
7716 7717 7718
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7719
				goto error;
7720
			}
7721
			sg->__cpu_power = 0;
7722
			cpumask_copy(sched_group_cpus(sg), tmpmask);
7723
			sg->next = prev->next;
7724
			cpumask_or(covered, covered, tmpmask);
7725 7726 7727 7728
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7729 7730 7731
#endif

	/* Calculate CPU power for physical packages and nodes */
7732
#ifdef CONFIG_SCHED_SMT
7733
	for_each_cpu(i, cpu_map) {
7734
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
7735

7736
		init_sched_groups_power(i, sd);
7737
	}
L
Linus Torvalds 已提交
7738
#endif
7739
#ifdef CONFIG_SCHED_MC
7740
	for_each_cpu(i, cpu_map) {
7741
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
7742

7743
		init_sched_groups_power(i, sd);
7744 7745
	}
#endif
7746

7747
	for_each_cpu(i, cpu_map) {
7748
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
7749

7750
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7751 7752
	}

7753
#ifdef CONFIG_NUMA
7754
	for (i = 0; i < nr_node_ids; i++)
7755
		init_numa_sched_groups_power(sched_group_nodes[i]);
7756

7757 7758
	if (sd_allnodes) {
		struct sched_group *sg;
7759

7760
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7761
								tmpmask);
7762 7763
		init_numa_sched_groups_power(sg);
	}
7764 7765
#endif

L
Linus Torvalds 已提交
7766
	/* Attach the domains */
7767
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7768 7769
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
7770
		sd = &per_cpu(cpu_domains, i).sd;
7771
#elif defined(CONFIG_SCHED_MC)
7772
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7773
#else
7774
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7775
#endif
G
Gregory Haskins 已提交
7776
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7777
	}
7778

7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
7807

7808
#ifdef CONFIG_NUMA
7809
error:
7810
	free_sched_groups(cpu_map, tmpmask);
7811
	free_rootdomain(rd);
7812
	goto free_tmpmask;
7813
#endif
L
Linus Torvalds 已提交
7814
}
P
Paul Jackson 已提交
7815

7816
static int build_sched_domains(const struct cpumask *cpu_map)
7817 7818 7819 7820
{
	return __build_sched_domains(cpu_map, NULL);
}

7821
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7822
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7823 7824
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7825 7826 7827

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7828 7829
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7830
 */
7831
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7832

7833 7834 7835 7836 7837 7838
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7839
{
7840
	return 0;
7841 7842
}

7843
/*
I
Ingo Molnar 已提交
7844
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7845 7846
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7847
 */
7848
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7849
{
7850 7851
	int err;

7852
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7853
	ndoms_cur = 1;
7854
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
7855
	if (!doms_cur)
7856
		doms_cur = fallback_doms;
7857
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7858
	dattr_cur = NULL;
7859
	err = build_sched_domains(doms_cur);
7860
	register_sched_domain_sysctl();
7861 7862

	return err;
7863 7864
}

7865 7866
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7867
{
7868
	free_sched_groups(cpu_map, tmpmask);
7869
}
L
Linus Torvalds 已提交
7870

7871 7872 7873 7874
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7875
static void detach_destroy_domains(const struct cpumask *cpu_map)
7876
{
7877 7878
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7879 7880
	int i;

7881
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7882
		cpu_attach_domain(NULL, &def_root_domain, i);
7883
	synchronize_sched();
7884
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7885 7886
}

7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7903 7904
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7905
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7906 7907 7908
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7909
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7910 7911 7912
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7913 7914 7915
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7916 7917
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
7918 7919 7920 7921
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
7922
 *
7923
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7924 7925
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7926
 *
P
Paul Jackson 已提交
7927 7928
 * Call with hotplug lock held
 */
7929 7930
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7931
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7932
{
7933
	int i, j, n;
7934
	int new_topology;
P
Paul Jackson 已提交
7935

7936
	mutex_lock(&sched_domains_mutex);
7937

7938 7939 7940
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7941 7942 7943
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7944
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7945 7946 7947

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7948
		for (j = 0; j < n && !new_topology; j++) {
7949
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
7950
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7951 7952 7953 7954 7955 7956 7957 7958
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7959 7960
	if (doms_new == NULL) {
		ndoms_cur = 0;
7961
		doms_new = fallback_doms;
7962
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7963
		WARN_ON_ONCE(dattr_new);
7964 7965
	}

P
Paul Jackson 已提交
7966 7967
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7968
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7969
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
7970
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7971 7972 7973
				goto match2;
		}
		/* no match - add a new doms_new */
7974 7975
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7976 7977 7978 7979 7980
match2:
		;
	}

	/* Remember the new sched domains */
7981
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
7982
		kfree(doms_cur);
7983
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7984
	doms_cur = doms_new;
7985
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7986
	ndoms_cur = ndoms_new;
7987 7988

	register_sched_domain_sysctl();
7989

7990
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7991 7992
}

7993
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7994
static void arch_reinit_sched_domains(void)
7995
{
7996
	get_online_cpus();
7997 7998 7999 8000

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8001
	rebuild_sched_domains();
8002
	put_online_cpus();
8003 8004 8005 8006
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8007
	unsigned int level = 0;
8008

8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8020 8021 8022
		return -EINVAL;

	if (smt)
8023
		sched_smt_power_savings = level;
8024
	else
8025
		sched_mc_power_savings = level;
8026

8027
	arch_reinit_sched_domains();
8028

8029
	return count;
8030 8031 8032
}

#ifdef CONFIG_SCHED_MC
8033 8034
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8035 8036 8037
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8038
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8039
					    const char *buf, size_t count)
8040 8041 8042
{
	return sched_power_savings_store(buf, count, 0);
}
8043 8044 8045
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8046 8047 8048
#endif

#ifdef CONFIG_SCHED_SMT
8049 8050
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8051 8052 8053
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8054
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8055
					     const char *buf, size_t count)
8056 8057 8058
{
	return sched_power_savings_store(buf, count, 1);
}
8059 8060
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8061 8062 8063
		   sched_smt_power_savings_store);
#endif

8064
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8080
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8081

8082
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8083
/*
8084 8085
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8086 8087 8088
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8089 8090 8091 8092 8093 8094
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8095
		partition_sched_domains(1, NULL, NULL);
8096 8097 8098 8099 8100 8101 8102 8103 8104 8105
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8106
{
P
Peter Zijlstra 已提交
8107 8108
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8109 8110
	switch (action) {
	case CPU_DOWN_PREPARE:
8111
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8112
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8113 8114 8115
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8116
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8117
	case CPU_ONLINE:
8118
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8119
		enable_runtime(cpu_rq(cpu));
8120 8121
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8122 8123 8124 8125 8126 8127 8128
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8129 8130 8131
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8132

8133 8134 8135 8136 8137
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8138
	get_online_cpus();
8139
	mutex_lock(&sched_domains_mutex);
8140 8141 8142 8143
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8144
	mutex_unlock(&sched_domains_mutex);
8145
	put_online_cpus();
8146 8147

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8148 8149
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8150 8151 8152 8153 8154
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8155
	init_hrtick();
8156 8157

	/* Move init over to a non-isolated CPU */
8158
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8159
		BUG();
I
Ingo Molnar 已提交
8160
	sched_init_granularity();
8161
	free_cpumask_var(non_isolated_cpus);
8162 8163

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8164
	init_sched_rt_class();
L
Linus Torvalds 已提交
8165 8166 8167 8168
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8169
	sched_init_granularity();
L
Linus Torvalds 已提交
8170 8171 8172 8173 8174 8175 8176 8177 8178 8179
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8180
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8181 8182
{
	cfs_rq->tasks_timeline = RB_ROOT;
8183
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8184 8185 8186
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8187
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8188 8189
}

P
Peter Zijlstra 已提交
8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8203
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8204 8205
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8206 8207 8208 8209 8210 8211 8212
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8213 8214
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8215

8216
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8217
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8218 8219
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8220 8221
}

P
Peter Zijlstra 已提交
8222
#ifdef CONFIG_FAIR_GROUP_SCHED
8223 8224 8225
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8226
{
8227
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8228 8229 8230 8231 8232 8233 8234
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8235 8236 8237 8238
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8239 8240 8241 8242 8243
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8244 8245
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8246
	se->load.inv_weight = 0;
8247
	se->parent = parent;
P
Peter Zijlstra 已提交
8248
}
8249
#endif
P
Peter Zijlstra 已提交
8250

8251
#ifdef CONFIG_RT_GROUP_SCHED
8252 8253 8254
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8255
{
8256 8257
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8258 8259 8260 8261
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8262
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8263 8264 8265 8266
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8267 8268 8269
	if (!rt_se)
		return;

8270 8271 8272 8273 8274
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8275
	rt_se->my_q = rt_rq;
8276
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8277 8278 8279 8280
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8281 8282
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8283
	int i, j;
8284 8285 8286 8287 8288 8289 8290
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8291 8292 8293
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8294 8295 8296 8297 8298 8299
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8300
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8301 8302 8303 8304 8305 8306 8307

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8308 8309 8310 8311 8312 8313 8314

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8315 8316
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8317 8318 8319 8320 8321
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8322 8323 8324 8325 8326 8327 8328 8329
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8330 8331
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8332
	}
I
Ingo Molnar 已提交
8333

G
Gregory Haskins 已提交
8334 8335 8336 8337
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8338 8339 8340 8341 8342 8343
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8344 8345 8346
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8347 8348
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8349

8350
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8351
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8352 8353 8354 8355 8356 8357
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8358 8359
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8360

8361
	for_each_possible_cpu(i) {
8362
		struct rq *rq;
L
Linus Torvalds 已提交
8363 8364 8365

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8366
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8367
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8368
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8369
#ifdef CONFIG_FAIR_GROUP_SCHED
8370
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8371
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8392
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8393
#elif defined CONFIG_USER_SCHED
8394 8395
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8407
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8408
				&per_cpu(init_cfs_rq, i),
8409 8410
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8411

8412
#endif
D
Dhaval Giani 已提交
8413 8414 8415
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8416
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8417
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8418
#ifdef CONFIG_CGROUP_SCHED
8419
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8420
#elif defined CONFIG_USER_SCHED
8421
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8422
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8423
				&per_cpu(init_rt_rq, i),
8424 8425
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8426
#endif
I
Ingo Molnar 已提交
8427
#endif
L
Linus Torvalds 已提交
8428

I
Ingo Molnar 已提交
8429 8430
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8431
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8432
		rq->sd = NULL;
G
Gregory Haskins 已提交
8433
		rq->rd = NULL;
L
Linus Torvalds 已提交
8434
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8435
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8436
		rq->push_cpu = 0;
8437
		rq->cpu = i;
8438
		rq->online = 0;
L
Linus Torvalds 已提交
8439 8440
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8441
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8442
#endif
P
Peter Zijlstra 已提交
8443
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8444 8445 8446
		atomic_set(&rq->nr_iowait, 0);
	}

8447
	set_load_weight(&init_task);
8448

8449 8450 8451 8452
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8453
#ifdef CONFIG_SMP
8454
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8455 8456
#endif

8457 8458 8459 8460
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8474 8475 8476 8477
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8478

8479 8480
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
	alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8481
#ifdef CONFIG_SMP
8482 8483 8484
#ifdef CONFIG_NO_HZ
	alloc_bootmem_cpumask_var(&nohz.cpu_mask);
#endif
8485
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
8486
#endif /* SMP */
8487

8488
	scheduler_running = 1;
L
Linus Torvalds 已提交
8489 8490 8491 8492 8493
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8494
#ifdef in_atomic
L
Linus Torvalds 已提交
8495 8496
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8516 8517 8518 8519 8520 8521
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8522 8523 8524
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8525

8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8537 8538
void normalize_rt_tasks(void)
{
8539
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8540
	unsigned long flags;
8541
	struct rq *rq;
L
Linus Torvalds 已提交
8542

8543
	read_lock_irqsave(&tasklist_lock, flags);
8544
	do_each_thread(g, p) {
8545 8546 8547 8548 8549 8550
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8551 8552
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8553 8554 8555
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8556
#endif
I
Ingo Molnar 已提交
8557 8558 8559 8560 8561 8562 8563 8564

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8565
			continue;
I
Ingo Molnar 已提交
8566
		}
L
Linus Torvalds 已提交
8567

8568
		spin_lock(&p->pi_lock);
8569
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8570

8571
		normalize_task(rq, p);
8572

8573
		__task_rq_unlock(rq);
8574
		spin_unlock(&p->pi_lock);
8575 8576
	} while_each_thread(g, p);

8577
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8578 8579 8580
}

#endif /* CONFIG_MAGIC_SYSRQ */
8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8599
struct task_struct *curr_task(int cpu)
8600 8601 8602 8603 8604 8605 8606 8607 8608 8609
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8610 8611
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8612 8613 8614 8615 8616 8617 8618
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8619
void set_curr_task(int cpu, struct task_struct *p)
8620 8621 8622 8623 8624
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8625

8626 8627
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8642 8643
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8644 8645
{
	struct cfs_rq *cfs_rq;
8646
	struct sched_entity *se;
8647
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8648 8649
	int i;

8650
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8651 8652
	if (!tg->cfs_rq)
		goto err;
8653
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8654 8655
	if (!tg->se)
		goto err;
8656 8657

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8658 8659

	for_each_possible_cpu(i) {
8660
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8661

8662 8663
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8664 8665 8666
		if (!cfs_rq)
			goto err;

8667 8668
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8669 8670 8671
		if (!se)
			goto err;

8672
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8691
#else /* !CONFG_FAIR_GROUP_SCHED */
8692 8693 8694 8695
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8696 8697
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8709
#endif /* CONFIG_FAIR_GROUP_SCHED */
8710 8711

#ifdef CONFIG_RT_GROUP_SCHED
8712 8713 8714 8715
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8716 8717
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8729 8730
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8731 8732
{
	struct rt_rq *rt_rq;
8733
	struct sched_rt_entity *rt_se;
8734 8735 8736
	struct rq *rq;
	int i;

8737
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8738 8739
	if (!tg->rt_rq)
		goto err;
8740
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8741 8742 8743
	if (!tg->rt_se)
		goto err;

8744 8745
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8746 8747 8748 8749

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8750 8751
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8752 8753
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8754

8755 8756
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8757 8758
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8759

8760
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8761 8762
	}

8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8779
#else /* !CONFIG_RT_GROUP_SCHED */
8780 8781 8782 8783
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8784 8785
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8797
#endif /* CONFIG_RT_GROUP_SCHED */
8798

8799
#ifdef CONFIG_GROUP_SCHED
8800 8801 8802 8803 8804 8805 8806 8807
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8808
struct task_group *sched_create_group(struct task_group *parent)
8809 8810 8811 8812 8813 8814 8815 8816 8817
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8818
	if (!alloc_fair_sched_group(tg, parent))
8819 8820
		goto err;

8821
	if (!alloc_rt_sched_group(tg, parent))
8822 8823
		goto err;

8824
	spin_lock_irqsave(&task_group_lock, flags);
8825
	for_each_possible_cpu(i) {
8826 8827
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8828
	}
P
Peter Zijlstra 已提交
8829
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8830 8831 8832 8833 8834

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8835
	list_add_rcu(&tg->siblings, &parent->children);
8836
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8837

8838
	return tg;
S
Srivatsa Vaddagiri 已提交
8839 8840

err:
P
Peter Zijlstra 已提交
8841
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8842 8843 8844
	return ERR_PTR(-ENOMEM);
}

8845
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8846
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8847 8848
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8849
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8850 8851
}

8852
/* Destroy runqueue etc associated with a task group */
8853
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8854
{
8855
	unsigned long flags;
8856
	int i;
S
Srivatsa Vaddagiri 已提交
8857

8858
	spin_lock_irqsave(&task_group_lock, flags);
8859
	for_each_possible_cpu(i) {
8860 8861
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8862
	}
P
Peter Zijlstra 已提交
8863
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8864
	list_del_rcu(&tg->siblings);
8865
	spin_unlock_irqrestore(&task_group_lock, flags);
8866 8867

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8868
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8869 8870
}

8871
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8872 8873 8874
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8875 8876
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8877 8878 8879 8880 8881 8882 8883 8884 8885
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8886
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8887 8888
	on_rq = tsk->se.on_rq;

8889
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8890
		dequeue_task(rq, tsk, 0);
8891 8892
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8893

P
Peter Zijlstra 已提交
8894
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8895

P
Peter Zijlstra 已提交
8896 8897 8898 8899 8900
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8901 8902 8903
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8904
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8905 8906 8907

	task_rq_unlock(rq, &flags);
}
8908
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8909

8910
#ifdef CONFIG_FAIR_GROUP_SCHED
8911
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8912 8913 8914 8915 8916
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8917
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8918 8919 8920
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8921
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8922

8923
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8924
		enqueue_entity(cfs_rq, se, 0);
8925
}
8926

8927 8928 8929 8930 8931 8932 8933 8934 8935
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8936 8937
}

8938 8939
static DEFINE_MUTEX(shares_mutex);

8940
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8941 8942
{
	int i;
8943
	unsigned long flags;
8944

8945 8946 8947 8948 8949 8950
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8951 8952
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8953 8954
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8955

8956
	mutex_lock(&shares_mutex);
8957
	if (tg->shares == shares)
8958
		goto done;
S
Srivatsa Vaddagiri 已提交
8959

8960
	spin_lock_irqsave(&task_group_lock, flags);
8961 8962
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8963
	list_del_rcu(&tg->siblings);
8964
	spin_unlock_irqrestore(&task_group_lock, flags);
8965 8966 8967 8968 8969 8970 8971 8972

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8973
	tg->shares = shares;
8974 8975 8976 8977 8978
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8979
		set_se_shares(tg->se[i], shares);
8980
	}
S
Srivatsa Vaddagiri 已提交
8981

8982 8983 8984 8985
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8986
	spin_lock_irqsave(&task_group_lock, flags);
8987 8988
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8989
	list_add_rcu(&tg->siblings, &tg->parent->children);
8990
	spin_unlock_irqrestore(&task_group_lock, flags);
8991
done:
8992
	mutex_unlock(&shares_mutex);
8993
	return 0;
S
Srivatsa Vaddagiri 已提交
8994 8995
}

8996 8997 8998 8999
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9000
#endif
9001

9002
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9003
/*
P
Peter Zijlstra 已提交
9004
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9005
 */
P
Peter Zijlstra 已提交
9006 9007 9008 9009 9010
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9011
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9012

P
Peter Zijlstra 已提交
9013
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9014 9015
}

P
Peter Zijlstra 已提交
9016 9017
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9018
{
P
Peter Zijlstra 已提交
9019
	struct task_struct *g, *p;
9020

P
Peter Zijlstra 已提交
9021 9022 9023 9024
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9025

P
Peter Zijlstra 已提交
9026 9027
	return 0;
}
9028

P
Peter Zijlstra 已提交
9029 9030 9031 9032 9033
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9034

P
Peter Zijlstra 已提交
9035 9036 9037 9038 9039 9040
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9041

P
Peter Zijlstra 已提交
9042 9043
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9044

P
Peter Zijlstra 已提交
9045 9046 9047
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9048 9049
	}

9050 9051 9052 9053 9054
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9055

9056 9057 9058
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9059 9060
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9061

P
Peter Zijlstra 已提交
9062
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9063

9064 9065 9066 9067 9068
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9069

9070 9071 9072
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9073 9074 9075
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9076

P
Peter Zijlstra 已提交
9077 9078 9079 9080
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9081

P
Peter Zijlstra 已提交
9082
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9083
	}
P
Peter Zijlstra 已提交
9084

P
Peter Zijlstra 已提交
9085 9086 9087 9088
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9089 9090
}

P
Peter Zijlstra 已提交
9091
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9092
{
P
Peter Zijlstra 已提交
9093 9094 9095 9096 9097 9098 9099
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9100 9101
}

9102 9103
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9104
{
P
Peter Zijlstra 已提交
9105
	int i, err = 0;
P
Peter Zijlstra 已提交
9106 9107

	mutex_lock(&rt_constraints_mutex);
9108
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
9109 9110
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
9111
		goto unlock;
P
Peter Zijlstra 已提交
9112 9113

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9114 9115
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
9116 9117 9118 9119 9120 9121 9122 9123 9124

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
9125
 unlock:
9126
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
9127 9128 9129
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
9130 9131
}

9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9144 9145 9146 9147
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9148
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9149 9150
		return -1;

9151
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9152 9153 9154
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9155 9156 9157 9158 9159 9160 9161 9162

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9163 9164 9165
	if (rt_period == 0)
		return -EINVAL;

9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9180
	u64 runtime, period;
9181 9182
	int ret = 0;

9183 9184 9185
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9186 9187 9188 9189 9190 9191 9192 9193
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9194

9195
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9196
	read_lock(&tasklist_lock);
9197
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9198
	read_unlock(&tasklist_lock);
9199 9200 9201 9202
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9203
#else /* !CONFIG_RT_GROUP_SCHED */
9204 9205
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9206 9207 9208
	unsigned long flags;
	int i;

9209 9210 9211
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9212 9213 9214 9215 9216 9217 9218 9219 9220 9221
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9222 9223
	return 0;
}
9224
#endif /* CONFIG_RT_GROUP_SCHED */
9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9255

9256
#ifdef CONFIG_CGROUP_SCHED
9257 9258

/* return corresponding task_group object of a cgroup */
9259
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9260
{
9261 9262
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9263 9264 9265
}

static struct cgroup_subsys_state *
9266
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9267
{
9268
	struct task_group *tg, *parent;
9269

9270
	if (!cgrp->parent) {
9271 9272 9273 9274
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9275 9276
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9277 9278 9279 9280 9281 9282
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9283 9284
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9285
{
9286
	struct task_group *tg = cgroup_tg(cgrp);
9287 9288 9289 9290

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9291 9292 9293
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9294
{
9295 9296
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9297
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9298 9299
		return -EINVAL;
#else
9300 9301 9302
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9303
#endif
9304 9305 9306 9307 9308

	return 0;
}

static void
9309
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9310 9311 9312 9313 9314
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9315
#ifdef CONFIG_FAIR_GROUP_SCHED
9316
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9317
				u64 shareval)
9318
{
9319
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9320 9321
}

9322
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9323
{
9324
	struct task_group *tg = cgroup_tg(cgrp);
9325 9326 9327

	return (u64) tg->shares;
}
9328
#endif /* CONFIG_FAIR_GROUP_SCHED */
9329

9330
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9331
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9332
				s64 val)
P
Peter Zijlstra 已提交
9333
{
9334
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9335 9336
}

9337
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9338
{
9339
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9340
}
9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9352
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9353

9354
static struct cftype cpu_files[] = {
9355
#ifdef CONFIG_FAIR_GROUP_SCHED
9356 9357
	{
		.name = "shares",
9358 9359
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9360
	},
9361 9362
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9363
	{
P
Peter Zijlstra 已提交
9364
		.name = "rt_runtime_us",
9365 9366
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9367
	},
9368 9369
	{
		.name = "rt_period_us",
9370 9371
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9372
	},
9373
#endif
9374 9375 9376 9377
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9378
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9379 9380 9381
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9382 9383 9384 9385 9386 9387 9388
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9389 9390 9391
	.early_init	= 1,
};

9392
#endif	/* CONFIG_CGROUP_SCHED */
9393 9394 9395 9396 9397 9398 9399 9400 9401 9402

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9403
/* track cpu usage of a group of tasks and its child groups */
9404 9405 9406 9407
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
9408
	struct cpuacct *parent;
9409 9410 9411 9412 9413
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9414
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9415
{
9416
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9429
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

9442 9443 9444
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9445 9446 9447 9448
	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9449
static void
9450
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9451
{
9452
	struct cpuacct *ca = cgroup_ca(cgrp);
9453 9454 9455 9456 9457

	free_percpu(ca->cpuusage);
	kfree(ca);
}

9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

9493
/* return total cpu usage (in nanoseconds) of a group */
9494
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9495
{
9496
	struct cpuacct *ca = cgroup_ca(cgrp);
9497 9498 9499
	u64 totalcpuusage = 0;
	int i;

9500 9501
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9502 9503 9504 9505

	return totalcpuusage;
}

9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9518 9519
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9520 9521 9522 9523 9524

out:
	return err;
}

9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9540 9541 9542
static struct cftype files[] = {
	{
		.name = "usage",
9543 9544
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9545
	},
9546 9547 9548 9549 9550
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},

9551 9552
};

9553
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9554
{
9555
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9556 9557 9558 9559 9560 9561 9562 9563 9564 9565
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9566
	int cpu;
9567 9568 9569 9570

	if (!cpuacct_subsys.active)
		return;

9571
	cpu = task_cpu(tsk);
9572 9573
	ca = task_ca(tsk);

9574 9575
	for (; ca; ca = ca->parent) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587
		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */