sched.c 169.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
J
Jens Axboe 已提交
64
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
65

66
#include <asm/tlb.h>
L
Linus Torvalds 已提交
67

68 69 70 71 72 73 74 75 76 77
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
D
Dmitry Adamushko 已提交
99
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (1000000000 / HZ))
L
Linus Torvalds 已提交
100 101
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

134 135 136 137 138 139 140 141 142 143 144 145
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
146
/*
I
Ingo Molnar 已提交
147
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
148
 */
I
Ingo Molnar 已提交
149 150 151 152 153
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
154 155 156 157 158
#ifdef CONFIG_FAIR_GROUP_SCHED

struct cfs_rq;

/* task group related information */
159
struct task_group {
S
Srivatsa Vaddagiri 已提交
160 161 162 163 164
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
165 166
	/* spinlock to serialize modification to shares */
	spinlock_t lock;
S
Srivatsa Vaddagiri 已提交
167 168 169 170 171 172 173
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

174 175
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
176 177

/* Default task group.
I
Ingo Molnar 已提交
178
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
179
 */
180
struct task_group init_task_group = {
I
Ingo Molnar 已提交
181 182 183
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
184

185
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
186
# define INIT_TASK_GRP_LOAD	2*NICE_0_LOAD
187
#else
I
Ingo Molnar 已提交
188
# define INIT_TASK_GRP_LOAD	NICE_0_LOAD
189 190
#endif

191
static int init_task_group_load = INIT_TASK_GRP_LOAD;
S
Srivatsa Vaddagiri 已提交
192 193

/* return group to which a task belongs */
194
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
195
{
196
	struct task_group *tg;
197

198 199 200
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
#else
201
	tg  = &init_task_group;
202
#endif
203 204

	return tg;
S
Srivatsa Vaddagiri 已提交
205 206 207 208 209
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_cfs_rq(struct task_struct *p)
{
210 211
	p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
	p->se.parent = task_group(p)->se[task_cpu(p)];
S
Srivatsa Vaddagiri 已提交
212 213 214 215 216 217 218 219
}

#else

static inline void set_task_cfs_rq(struct task_struct *p) { }

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
220 221 222 223 224 225
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
226
	u64 min_vruntime;
I
Ingo Molnar 已提交
227 228 229 230 231 232 233 234

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
235 236 237

	unsigned long nr_spread_over;

238
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
239 240 241 242 243 244 245 246 247 248
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
249
	struct task_group *tg;    /* group that "owns" this runqueue */
250
	struct rcu_head rcu;
I
Ingo Molnar 已提交
251 252
#endif
};
L
Linus Torvalds 已提交
253

I
Ingo Molnar 已提交
254 255 256 257 258 259 260
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
261 262 263 264 265 266 267
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
268
struct rq {
I
Ingo Molnar 已提交
269
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
270 271 272 273 274 275

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
276 277
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
278
	unsigned char idle_at_tick;
279 280 281
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
282
	struct load_weight load;	/* capture load from *all* tasks on this cpu */
I
Ingo Molnar 已提交
283 284 285 286 287 288
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
289
#endif
I
Ingo Molnar 已提交
290
	struct rt_rq  rt;
L
Linus Torvalds 已提交
291 292 293 294 295 296 297 298 299

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

300
	struct task_struct *curr, *idle;
301
	unsigned long next_balance;
L
Linus Torvalds 已提交
302
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
303 304 305 306 307

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
308 309
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
310
	u64 tick_timestamp;
I
Ingo Molnar 已提交
311

L
Linus Torvalds 已提交
312 313 314 315 316 317 318 319
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
320
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
321

322
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
323 324 325 326 327 328 329 330 331 332 333
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
334
	unsigned long yld_count;
L
Linus Torvalds 已提交
335 336 337

	/* schedule() stats */
	unsigned long sched_switch;
338
	unsigned long sched_count;
L
Linus Torvalds 已提交
339 340 341
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
342
	unsigned long ttwu_count;
L
Linus Torvalds 已提交
343
	unsigned long ttwu_local;
I
Ingo Molnar 已提交
344 345

	/* BKL stats */
346
	unsigned long bkl_count;
L
Linus Torvalds 已提交
347
#endif
348
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
349 350
};

351
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
352
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
353

I
Ingo Molnar 已提交
354 355 356 357 358
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

359 360 361 362 363 364 365 366 367
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
368
/*
I
Ingo Molnar 已提交
369 370
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
371
 */
I
Ingo Molnar 已提交
372
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
373 374 375 376 377 378
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
379 380 381
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
382 383 384 385 386 387 388 389 390 391
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
392 393 394 395 396
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
397 398 399 400 401 402 403 404 405 406
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
407
}
I
Ingo Molnar 已提交
408

I
Ingo Molnar 已提交
409 410 411 412
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
413 414
}

N
Nick Piggin 已提交
415 416
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
417
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
418 419 420 421
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
422 423
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
424 425 426 427 428 429

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
443 444
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_START_DEBIT		= 2,
445
	SCHED_FEAT_TREE_AVG             = 4,
446
	SCHED_FEAT_APPROX_AVG           = 8,
447
	SCHED_FEAT_WAKEUP_PREEMPT	= 16,
448
	SCHED_FEAT_PREEMPT_RESTRICT	= 32,
I
Ingo Molnar 已提交
449 450 451 452
};

const_debug unsigned int sysctl_sched_features =
		SCHED_FEAT_NEW_FAIR_SLEEPERS	*1 |
P
Peter Zijlstra 已提交
453
		SCHED_FEAT_START_DEBIT		*1 |
454
		SCHED_FEAT_TREE_AVG		*0 |
455
		SCHED_FEAT_APPROX_AVG		*0 |
456 457
		SCHED_FEAT_WAKEUP_PREEMPT	*1 |
		SCHED_FEAT_PREEMPT_RESTRICT	*1;
I
Ingo Molnar 已提交
458 459 460

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

461 462 463 464 465 466 467 468
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
469
	struct rq *rq;
470

471
	local_irq_save(flags);
I
Ingo Molnar 已提交
472 473 474
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
475
	local_irq_restore(flags);
476 477 478

	return now;
}
P
Paul E. McKenney 已提交
479
EXPORT_SYMBOL_GPL(cpu_clock);
480

L
Linus Torvalds 已提交
481
#ifndef prepare_arch_switch
482 483 484 485 486 487 488
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
489
static inline int task_running(struct rq *rq, struct task_struct *p)
490 491 492 493
{
	return rq->curr == p;
}

494
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
495 496 497
{
}

498
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
499
{
500 501 502 503
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
504 505 506 507 508 509 510
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

511 512 513 514
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
515
static inline int task_running(struct rq *rq, struct task_struct *p)
516 517 518 519 520 521 522 523
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

524
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

541
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
542 543 544 545 546 547 548 549 550 551 552 553
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
554
#endif
555 556
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
557

558 559 560 561
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
562
static inline struct rq *__task_rq_lock(struct task_struct *p)
563 564
	__acquires(rq->lock)
{
565 566 567 568 569
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
570 571 572 573
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
574 575 576 577 578
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
579
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
580 581
	__acquires(rq->lock)
{
582
	struct rq *rq;
L
Linus Torvalds 已提交
583

584 585 586 587 588 589
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
590 591 592 593
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
594
static void __task_rq_unlock(struct rq *rq)
595 596 597 598 599
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

600
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
601 602 603 604 605 606
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
607
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
608
 */
A
Alexey Dobriyan 已提交
609
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
610 611
	__acquires(rq->lock)
{
612
	struct rq *rq;
L
Linus Torvalds 已提交
613 614 615 616 617 618 619 620

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

621
/*
622
 * We are going deep-idle (irqs are disabled):
623
 */
624
void sched_clock_idle_sleep_event(void)
625
{
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
642

643 644 645 646 647 648 649 650 651 652 653
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
654
}
655
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
656

I
Ingo Molnar 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

709 710 711 712 713 714 715 716
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
717 718 719
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
720
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
721

722
static unsigned long
723 724 725 726 727 728
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
729
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
730 731 732 733 734

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
735
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
736
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
737 738
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
739
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
740

741
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
742 743 744 745 746 747 748 749
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

750
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
751 752 753 754
{
	lw->weight += inc;
}

755
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
756 757 758 759
{
	lw->weight -= dec;
}

760 761 762 763 764 765 766 767 768
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
769 770 771 772 773 774 775 776 777 778 779
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
780 781 782
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
783 784
 */
static const int prio_to_weight[40] = {
785 786 787 788 789 790 791 792
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
793 794
};

795 796 797 798 799 800 801
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
802
static const u32 prio_to_wmult[40] = {
803 804 805 806 807 808 809 810
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
811
};
812

I
Ingo Molnar 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
830
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
831 832 833

#include "sched_stats.h"
#include "sched_idletask.c"
834 835
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
836 837 838 839 840 841
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

842 843 844 845
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
846
 * total load (rq->load.weight) on the runqueue, while
847 848 849 850 851 852 853
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
854
 * This function is called /before/ updating rq->load
855 856
 * and when switching tasks.
 */
857
static inline void inc_load(struct rq *rq, const struct task_struct *p)
858
{
859
	update_load_add(&rq->load, p->se.load.weight);
860 861
}

862
static inline void dec_load(struct rq *rq, const struct task_struct *p)
863
{
864
	update_load_sub(&rq->load, p->se.load.weight);
865 866
}

867
static void inc_nr_running(struct task_struct *p, struct rq *rq)
868 869
{
	rq->nr_running++;
870
	inc_load(rq, p);
871 872
}

873
static void dec_nr_running(struct task_struct *p, struct rq *rq)
874 875
{
	rq->nr_running--;
876
	dec_load(rq, p);
877 878
}

879 880 881
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
882 883 884 885
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
886

I
Ingo Molnar 已提交
887 888 889 890 891 892 893 894
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
895

I
Ingo Molnar 已提交
896 897
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
898 899
}

900
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
901
{
I
Ingo Molnar 已提交
902
	sched_info_queued(p);
903
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
904
	p->se.on_rq = 1;
905 906
}

907
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
908
{
909
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
910
	p->se.on_rq = 0;
911 912
}

913
/*
I
Ingo Molnar 已提交
914
 * __normal_prio - return the priority that is based on the static prio
915 916 917
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
918
	return p->static_prio;
919 920
}

921 922 923 924 925 926 927
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
928
static inline int normal_prio(struct task_struct *p)
929 930 931
{
	int prio;

932
	if (task_has_rt_policy(p))
933 934 935 936 937 938 939 940 941 942 943 944 945
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
946
static int effective_prio(struct task_struct *p)
947 948 949 950 951 952 953 954 955 956 957 958
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
959
/*
I
Ingo Molnar 已提交
960
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
961
 */
I
Ingo Molnar 已提交
962
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
963
{
I
Ingo Molnar 已提交
964 965
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
966

967
	enqueue_task(rq, p, wakeup);
968
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
969 970 971 972 973
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
974
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
975
{
I
Ingo Molnar 已提交
976 977 978
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

979
	dequeue_task(rq, p, sleep);
980
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
981 982 983 984 985 986
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
987
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
988 989 990 991
{
	return cpu_curr(task_cpu(p)) == p;
}

992 993 994
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
995
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
996 997 998 999 1000 1001 1002
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
#endif
S
Srivatsa Vaddagiri 已提交
1003
	set_task_cfs_rq(p);
1004 1005
}

L
Linus Torvalds 已提交
1006
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1019 1020 1021 1022 1023
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1024 1025 1026 1027 1028 1029
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1030
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1031
{
I
Ingo Molnar 已提交
1032 1033
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1034 1035
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1036
	u64 clock_offset;
I
Ingo Molnar 已提交
1037 1038

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1039 1040 1041 1042

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1043 1044 1045 1046
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1047 1048 1049 1050 1051
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1052
#endif
1053 1054
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1055 1056

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1057 1058
}

1059
struct migration_req {
L
Linus Torvalds 已提交
1060 1061
	struct list_head list;

1062
	struct task_struct *task;
L
Linus Torvalds 已提交
1063 1064 1065
	int dest_cpu;

	struct completion done;
1066
};
L
Linus Torvalds 已提交
1067 1068 1069 1070 1071

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1072
static int
1073
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1074
{
1075
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1076 1077 1078 1079 1080

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1081
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1082 1083 1084 1085 1086 1087 1088 1089
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1090

L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1103
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1104 1105
{
	unsigned long flags;
I
Ingo Molnar 已提交
1106
	int running, on_rq;
1107
	struct rq *rq;
L
Linus Torvalds 已提交
1108

1109 1110 1111 1112 1113 1114 1115 1116
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1141

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1166

1167 1168 1169 1170 1171 1172 1173
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1189
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1201 1202
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1203 1204 1205 1206
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1207
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1208
{
1209
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1210
	unsigned long total = weighted_cpuload(cpu);
1211

1212
	if (type == 0)
I
Ingo Molnar 已提交
1213
		return total;
1214

I
Ingo Molnar 已提交
1215
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1216 1217 1218
}

/*
1219 1220
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1221
 */
A
Alexey Dobriyan 已提交
1222
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1223
{
1224
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1225
	unsigned long total = weighted_cpuload(cpu);
1226

N
Nick Piggin 已提交
1227
	if (type == 0)
I
Ingo Molnar 已提交
1228
		return total;
1229

I
Ingo Molnar 已提交
1230
	return max(rq->cpu_load[type-1], total);
1231 1232 1233 1234 1235 1236 1237
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1238
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1239
	unsigned long total = weighted_cpuload(cpu);
1240 1241
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1242
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1243 1244
}

N
Nick Piggin 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1262 1263
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1264
			continue;
1265

N
Nick Piggin 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1282 1283
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1284 1285 1286 1287 1288 1289 1290 1291

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1292
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1293 1294 1295 1296 1297 1298 1299

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1300
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1301
 */
I
Ingo Molnar 已提交
1302 1303
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1304
{
1305
	cpumask_t tmp;
N
Nick Piggin 已提交
1306 1307 1308 1309
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1310 1311 1312 1313
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1314
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1340

1341
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1342 1343 1344
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1345 1346
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1347 1348
		if (tmp->flags & flag)
			sd = tmp;
1349
	}
N
Nick Piggin 已提交
1350 1351 1352 1353

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1354 1355 1356 1357 1358 1359
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1360 1361 1362

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1363 1364 1365 1366
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1367

1368
		new_cpu = find_idlest_cpu(group, t, cpu);
1369 1370 1371 1372 1373
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1374

1375
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1402
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1403 1404 1405 1406 1407
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1418 1419 1420 1421
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1422
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1423
			for_each_cpu_mask(i, tmp) {
1424 1425 1426 1427 1428
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1429
					return i;
1430
				}
L
Linus Torvalds 已提交
1431
			}
I
Ingo Molnar 已提交
1432
		} else {
N
Nick Piggin 已提交
1433
			break;
I
Ingo Molnar 已提交
1434
		}
L
Linus Torvalds 已提交
1435 1436 1437 1438
	}
	return cpu;
}
#else
1439
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1459
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1460
{
1461
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1462 1463
	unsigned long flags;
	long old_state;
1464
	struct rq *rq;
L
Linus Torvalds 已提交
1465
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1466
	struct sched_domain *sd, *this_sd = NULL;
1467
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1468 1469 1470 1471 1472 1473 1474 1475
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1476
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1477 1478 1479
		goto out_running;

	cpu = task_cpu(p);
1480
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1481 1482 1483 1484 1485 1486
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1487 1488
	new_cpu = cpu;

1489
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1490 1491
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1492 1493 1494 1495 1496 1497 1498 1499
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1500 1501 1502
		}
	}

N
Nick Piggin 已提交
1503
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1504 1505 1506
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1507
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1508
	 */
N
Nick Piggin 已提交
1509 1510 1511
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1512

1513 1514
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1515 1516
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1517

N
Nick Piggin 已提交
1518 1519
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1520 1521
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1522 1523
			unsigned long tl_per_task;

I
Ingo Molnar 已提交
1524 1525 1526 1527 1528 1529
			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

1530
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1531
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1532

L
Linus Torvalds 已提交
1533
			/*
1534 1535 1536
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1537
			 */
1538
			if (sync)
I
Ingo Molnar 已提交
1539
				tl -= current->se.load.weight;
1540 1541

			if ((tl <= load &&
1542
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1543
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1544 1545 1546 1547 1548 1549
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1550
				schedstat_inc(p, se.nr_wakeups_affine);
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1562
				schedstat_inc(p, se.nr_wakeups_passive);
1563 1564
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1579
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1580 1581 1582 1583 1584 1585 1586 1587
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1588 1589 1590 1591 1592 1593 1594 1595 1596
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1597
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1598
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1599
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1610
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1611 1612 1613 1614 1615 1616
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1617
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1618 1619 1620 1621 1622 1623 1624
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1625 1626 1627 1628 1629 1630 1631
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1632
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1633 1634 1635

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1636 1637 1638 1639 1640 1641
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1642
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1643
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1644
#endif
N
Nick Piggin 已提交
1645

I
Ingo Molnar 已提交
1646 1647
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1648

1649 1650 1651 1652
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1653 1654 1655 1656 1657 1658 1659
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1674
	set_task_cpu(p, cpu);
1675 1676 1677 1678 1679

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1680 1681
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1682

1683
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1684
	if (likely(sched_info_on()))
1685
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1686
#endif
1687
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1688 1689
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1690
#ifdef CONFIG_PREEMPT
1691
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1692
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1693
#endif
N
Nick Piggin 已提交
1694
	put_cpu();
L
Linus Torvalds 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1704
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1705 1706
{
	unsigned long flags;
I
Ingo Molnar 已提交
1707
	struct rq *rq;
L
Linus Torvalds 已提交
1708 1709

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1710
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1711
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1712 1713 1714

	p->prio = effective_prio(p);

1715
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1716
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1717 1718
	} else {
		/*
I
Ingo Molnar 已提交
1719 1720
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1721
		 */
1722
		p->sched_class->task_new(rq, p);
1723
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1724
	}
I
Ingo Molnar 已提交
1725 1726
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1727 1728
}

1729 1730 1731
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1732 1733
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1734 1735 1736 1737 1738 1739 1740 1741 1742
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1743
 * @notifier: notifier struct to unregister
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1787 1788 1789
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1790
 * @prev: the current task that is being switched out
1791 1792 1793 1794 1795 1796 1797 1798 1799
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1800 1801 1802
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1803
{
1804
	fire_sched_out_preempt_notifiers(prev, next);
1805 1806 1807 1808
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1809 1810
/**
 * finish_task_switch - clean up after a task-switch
1811
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1812 1813
 * @prev: the thread we just switched away from.
 *
1814 1815 1816 1817
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1818 1819 1820 1821 1822 1823
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1824
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1825 1826 1827
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1828
	long prev_state;
L
Linus Torvalds 已提交
1829 1830 1831 1832 1833

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1834
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1835 1836
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1837
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1838 1839 1840 1841 1842
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1843
	prev_state = prev->state;
1844 1845
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1846
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1847 1848
	if (mm)
		mmdrop(mm);
1849
	if (unlikely(prev_state == TASK_DEAD)) {
1850 1851 1852
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1853
		 */
1854
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1855
		put_task_struct(prev);
1856
	}
L
Linus Torvalds 已提交
1857 1858 1859 1860 1861 1862
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1863
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1864 1865
	__releases(rq->lock)
{
1866 1867
	struct rq *rq = this_rq();

1868 1869 1870 1871 1872
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878 1879 1880
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1881
static inline void
1882
context_switch(struct rq *rq, struct task_struct *prev,
1883
	       struct task_struct *next)
L
Linus Torvalds 已提交
1884
{
I
Ingo Molnar 已提交
1885
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1886

1887
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1888 1889
	mm = next->mm;
	oldmm = prev->active_mm;
1890 1891 1892 1893 1894 1895 1896
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1897
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1898 1899 1900 1901 1902 1903
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1904
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1905 1906 1907
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1908 1909 1910 1911 1912 1913 1914
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1915
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1916
#endif
L
Linus Torvalds 已提交
1917 1918 1919 1920

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1921 1922 1923 1924 1925 1926 1927
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1951
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1966 1967
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1968

1969
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1979
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1980 1981 1982 1983 1984
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2000
/*
I
Ingo Molnar 已提交
2001 2002
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2003
 */
I
Ingo Molnar 已提交
2004
static void update_cpu_load(struct rq *this_rq)
2005
{
2006
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2019 2020 2021 2022 2023 2024 2025
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2026 2027
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2028 2029
}

I
Ingo Molnar 已提交
2030 2031
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2032 2033 2034 2035 2036 2037
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2038
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2039 2040 2041
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2042
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2043 2044 2045 2046
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2047
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2048 2049 2050 2051 2052 2053 2054
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2055 2056
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2057 2058 2059 2060 2061 2062 2063 2064
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2065
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2079
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2080 2081 2082 2083
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2084 2085 2086 2087 2088
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2089
	if (unlikely(!spin_trylock(&busiest->lock))) {
2090
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2105
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2106
{
2107
	struct migration_req req;
L
Linus Torvalds 已提交
2108
	unsigned long flags;
2109
	struct rq *rq;
L
Linus Torvalds 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2120

L
Linus Torvalds 已提交
2121 2122 2123 2124 2125
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2126

L
Linus Torvalds 已提交
2127 2128 2129 2130 2131 2132 2133
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2134 2135
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2136 2137 2138 2139
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2140
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2141
	put_cpu();
N
Nick Piggin 已提交
2142 2143
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2144 2145 2146 2147 2148 2149
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2150 2151
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2152
{
2153
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2154
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2155
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2156 2157 2158 2159
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2160
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2161 2162 2163 2164 2165
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2166
static
2167
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2168
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2169
		     int *all_pinned)
L
Linus Torvalds 已提交
2170 2171 2172 2173 2174 2175 2176
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2177 2178
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2179
		return 0;
2180
	}
2181 2182
	*all_pinned = 0;

2183 2184
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2185
		return 0;
2186
	}
L
Linus Torvalds 已提交
2187

2188 2189 2190 2191 2192 2193
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2194 2195
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2196
#ifdef CONFIG_SCHEDSTATS
2197
		if (task_hot(p, rq->clock, sd)) {
2198
			schedstat_inc(sd, lb_hot_gained[idle]);
2199 2200
			schedstat_inc(p, se.nr_forced_migrations);
		}
2201 2202 2203 2204
#endif
		return 1;
	}

2205 2206
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2207
		return 0;
2208
	}
L
Linus Torvalds 已提交
2209 2210 2211
	return 1;
}

I
Ingo Molnar 已提交
2212
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2213
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2214
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2215
		      int *all_pinned, unsigned long *load_moved,
2216
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2217
{
I
Ingo Molnar 已提交
2218 2219 2220
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2221

2222
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2223 2224
		goto out;

2225 2226
	pinned = 1;

L
Linus Torvalds 已提交
2227
	/*
I
Ingo Molnar 已提交
2228
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2229
	 */
I
Ingo Molnar 已提交
2230 2231 2232
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2233
		goto out;
2234 2235 2236 2237 2238
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2239 2240
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2241
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2242 2243 2244
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2245 2246
	}

I
Ingo Molnar 已提交
2247
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2248
	pulled++;
I
Ingo Molnar 已提交
2249
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2250

2251 2252 2253 2254 2255
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2256 2257
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2258 2259
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2260 2261 2262 2263 2264 2265 2266 2267
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2268 2269 2270

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2271
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2272 2273 2274
	return pulled;
}

I
Ingo Molnar 已提交
2275
/*
P
Peter Williams 已提交
2276 2277 2278
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2279 2280 2281 2282
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2283
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2284 2285 2286
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2287
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2288
	unsigned long total_load_moved = 0;
2289
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2290 2291

	do {
P
Peter Williams 已提交
2292 2293 2294
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2295
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2296
		class = class->next;
P
Peter Williams 已提交
2297
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2298

P
Peter Williams 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2312
	const struct sched_class *class;
2313
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2314 2315 2316

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2317 2318
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2319 2320 2321
			return 1;

	return 0;
I
Ingo Molnar 已提交
2322 2323
}

L
Linus Torvalds 已提交
2324 2325
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2326 2327
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2328 2329 2330
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2331 2332
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2333 2334 2335
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2336
	unsigned long max_pull;
2337 2338
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2339
	int load_idx, group_imb = 0;
2340 2341 2342 2343 2344 2345
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2346 2347

	max_load = this_load = total_load = total_pwr = 0;
2348 2349
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2350
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2351
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2352
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2353 2354 2355
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2356 2357

	do {
2358
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2359 2360
		int local_group;
		int i;
2361
		int __group_imb = 0;
2362
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2363
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2364 2365 2366

		local_group = cpu_isset(this_cpu, group->cpumask);

2367 2368 2369
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2370
		/* Tally up the load of all CPUs in the group */
2371
		sum_weighted_load = sum_nr_running = avg_load = 0;
2372 2373
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2374 2375

		for_each_cpu_mask(i, group->cpumask) {
2376 2377 2378 2379 2380 2381
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2382

2383
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2384 2385
				*sd_idle = 0;

L
Linus Torvalds 已提交
2386
			/* Bias balancing toward cpus of our domain */
2387 2388 2389 2390 2391 2392
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2393
				load = target_load(i, load_idx);
2394
			} else {
N
Nick Piggin 已提交
2395
				load = source_load(i, load_idx);
2396 2397 2398 2399 2400
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2401 2402

			avg_load += load;
2403
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2404
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2405 2406
		}

2407 2408 2409
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2410 2411
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2412
		 */
2413 2414
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2415 2416 2417 2418
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2419
		total_load += avg_load;
2420
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2421 2422

		/* Adjust by relative CPU power of the group */
2423 2424
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2425

2426 2427 2428
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2429
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2430

L
Linus Torvalds 已提交
2431 2432 2433
		if (local_group) {
			this_load = avg_load;
			this = group;
2434 2435 2436
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2437
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2438 2439
			max_load = avg_load;
			busiest = group;
2440 2441
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2442
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2443
		}
2444 2445 2446 2447 2448 2449

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2450 2451 2452
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2453 2454 2455 2456 2457 2458 2459 2460 2461

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2462
		/*
2463 2464
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2465 2466
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2467
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2468
			goto group_next;
2469

I
Ingo Molnar 已提交
2470
		/*
2471
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2472 2473 2474 2475 2476
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2477 2478
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2479 2480
			group_min = group;
			min_nr_running = sum_nr_running;
2481 2482
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2483
		}
2484

I
Ingo Molnar 已提交
2485
		/*
2486
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2498
		}
2499 2500
group_next:
#endif
L
Linus Torvalds 已提交
2501 2502 2503
		group = group->next;
	} while (group != sd->groups);

2504
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2505 2506 2507 2508 2509 2510 2511 2512
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2513
	busiest_load_per_task /= busiest_nr_running;
2514 2515 2516
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2540 2541

	/* Don't want to pull so many tasks that a group would go idle */
2542
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2543

L
Linus Torvalds 已提交
2544
	/* How much load to actually move to equalise the imbalance */
2545 2546
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2547 2548
			/ SCHED_LOAD_SCALE;

2549 2550 2551 2552 2553 2554
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2555
	if (*imbalance < busiest_load_per_task) {
2556
		unsigned long tmp, pwr_now, pwr_move;
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2568

I
Ingo Molnar 已提交
2569 2570
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2571
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2572 2573 2574 2575 2576 2577 2578 2579 2580
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2581 2582 2583 2584
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2585 2586 2587
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2588 2589
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2590
		if (max_load > tmp)
2591
			pwr_move += busiest->__cpu_power *
2592
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2593 2594

		/* Amount of load we'd add */
2595
		if (max_load * busiest->__cpu_power <
2596
				busiest_load_per_task * SCHED_LOAD_SCALE)
2597 2598
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2599
		else
2600 2601 2602 2603
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2604 2605 2606
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2607 2608
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2609 2610 2611 2612 2613
	}

	return busiest;

out_balanced:
2614
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2615
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2616
		goto ret;
L
Linus Torvalds 已提交
2617

2618 2619 2620 2621 2622
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2623
ret:
L
Linus Torvalds 已提交
2624 2625 2626 2627 2628 2629 2630
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2631
static struct rq *
I
Ingo Molnar 已提交
2632
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2633
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2634
{
2635
	struct rq *busiest = NULL, *rq;
2636
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2637 2638 2639
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2640
		unsigned long wl;
2641 2642 2643 2644

		if (!cpu_isset(i, *cpus))
			continue;

2645
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2646
		wl = weighted_cpuload(i);
2647

I
Ingo Molnar 已提交
2648
		if (rq->nr_running == 1 && wl > imbalance)
2649
			continue;
L
Linus Torvalds 已提交
2650

I
Ingo Molnar 已提交
2651 2652
		if (wl > max_load) {
			max_load = wl;
2653
			busiest = rq;
L
Linus Torvalds 已提交
2654 2655 2656 2657 2658 2659
		}
	}

	return busiest;
}

2660 2661 2662 2663 2664 2665
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2666 2667 2668 2669
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2670
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2671
			struct sched_domain *sd, enum cpu_idle_type idle,
2672
			int *balance)
L
Linus Torvalds 已提交
2673
{
P
Peter Williams 已提交
2674
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2675 2676
	struct sched_group *group;
	unsigned long imbalance;
2677
	struct rq *busiest;
2678
	cpumask_t cpus = CPU_MASK_ALL;
2679
	unsigned long flags;
N
Nick Piggin 已提交
2680

2681 2682 2683
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2684
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2685
	 * portraying it as CPU_NOT_IDLE.
2686
	 */
I
Ingo Molnar 已提交
2687
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2688
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2689
		sd_idle = 1;
L
Linus Torvalds 已提交
2690

2691
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2692

2693 2694
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2695 2696
				   &cpus, balance);

2697
	if (*balance == 0)
2698 2699
		goto out_balanced;

L
Linus Torvalds 已提交
2700 2701 2702 2703 2704
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2705
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2706 2707 2708 2709 2710
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2711
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2712 2713 2714

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2715
	ld_moved = 0;
L
Linus Torvalds 已提交
2716 2717 2718 2719
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2720
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2721 2722
		 * correctly treated as an imbalance.
		 */
2723
		local_irq_save(flags);
N
Nick Piggin 已提交
2724
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2725
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2726
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2727
		double_rq_unlock(this_rq, busiest);
2728
		local_irq_restore(flags);
2729

2730 2731 2732
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2733
		if (ld_moved && this_cpu != smp_processor_id())
2734 2735
			resched_cpu(this_cpu);

2736
		/* All tasks on this runqueue were pinned by CPU affinity */
2737 2738 2739 2740
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2741
			goto out_balanced;
2742
		}
L
Linus Torvalds 已提交
2743
	}
2744

P
Peter Williams 已提交
2745
	if (!ld_moved) {
L
Linus Torvalds 已提交
2746 2747 2748 2749 2750
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2751
			spin_lock_irqsave(&busiest->lock, flags);
2752 2753 2754 2755 2756

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2757
				spin_unlock_irqrestore(&busiest->lock, flags);
2758 2759 2760 2761
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2762 2763 2764
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2765
				active_balance = 1;
L
Linus Torvalds 已提交
2766
			}
2767
			spin_unlock_irqrestore(&busiest->lock, flags);
2768
			if (active_balance)
L
Linus Torvalds 已提交
2769 2770 2771 2772 2773 2774
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2775
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2776
		}
2777
	} else
L
Linus Torvalds 已提交
2778 2779
		sd->nr_balance_failed = 0;

2780
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2781 2782
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2783 2784 2785 2786 2787 2788 2789 2790 2791
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2792 2793
	}

P
Peter Williams 已提交
2794
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2795
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2796
		return -1;
P
Peter Williams 已提交
2797
	return ld_moved;
L
Linus Torvalds 已提交
2798 2799 2800 2801

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2802
	sd->nr_balance_failed = 0;
2803 2804

out_one_pinned:
L
Linus Torvalds 已提交
2805
	/* tune up the balancing interval */
2806 2807
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2808 2809
		sd->balance_interval *= 2;

2810
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2811
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2812
		return -1;
L
Linus Torvalds 已提交
2813 2814 2815 2816 2817 2818 2819
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2820
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2821 2822
 * this_rq is locked.
 */
2823
static int
2824
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2825 2826
{
	struct sched_group *group;
2827
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2828
	unsigned long imbalance;
P
Peter Williams 已提交
2829
	int ld_moved = 0;
N
Nick Piggin 已提交
2830
	int sd_idle = 0;
2831
	int all_pinned = 0;
2832
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2833

2834 2835 2836 2837
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2838
	 * portraying it as CPU_NOT_IDLE.
2839 2840 2841
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2842
		sd_idle = 1;
L
Linus Torvalds 已提交
2843

2844
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2845
redo:
I
Ingo Molnar 已提交
2846
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2847
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2848
	if (!group) {
I
Ingo Molnar 已提交
2849
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2850
		goto out_balanced;
L
Linus Torvalds 已提交
2851 2852
	}

I
Ingo Molnar 已提交
2853
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2854
				&cpus);
N
Nick Piggin 已提交
2855
	if (!busiest) {
I
Ingo Molnar 已提交
2856
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2857
		goto out_balanced;
L
Linus Torvalds 已提交
2858 2859
	}

N
Nick Piggin 已提交
2860 2861
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2862
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2863

P
Peter Williams 已提交
2864
	ld_moved = 0;
2865 2866 2867
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2868 2869
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2870
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2871 2872
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2873
		spin_unlock(&busiest->lock);
2874

2875
		if (unlikely(all_pinned)) {
2876 2877 2878 2879
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2880 2881
	}

P
Peter Williams 已提交
2882
	if (!ld_moved) {
I
Ingo Molnar 已提交
2883
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2884 2885
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2886 2887
			return -1;
	} else
2888
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2889

P
Peter Williams 已提交
2890
	return ld_moved;
2891 2892

out_balanced:
I
Ingo Molnar 已提交
2893
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2894
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2895
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2896
		return -1;
2897
	sd->nr_balance_failed = 0;
2898

2899
	return 0;
L
Linus Torvalds 已提交
2900 2901 2902 2903 2904 2905
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2906
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2907 2908
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2909 2910
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2911 2912

	for_each_domain(this_cpu, sd) {
2913 2914 2915 2916 2917 2918
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2919
			/* If we've pulled tasks over stop searching: */
2920
			pulled_task = load_balance_newidle(this_cpu,
2921 2922 2923 2924 2925 2926 2927
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2928
	}
I
Ingo Molnar 已提交
2929
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2930 2931 2932 2933 2934
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2935
	}
L
Linus Torvalds 已提交
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2946
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2947
{
2948
	int target_cpu = busiest_rq->push_cpu;
2949 2950
	struct sched_domain *sd;
	struct rq *target_rq;
2951

2952
	/* Is there any task to move? */
2953 2954 2955 2956
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2957 2958

	/*
2959 2960 2961
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2962
	 */
2963
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2964

2965 2966
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2967 2968
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2969 2970

	/* Search for an sd spanning us and the target CPU. */
2971
	for_each_domain(target_cpu, sd) {
2972
		if ((sd->flags & SD_LOAD_BALANCE) &&
2973
		    cpu_isset(busiest_cpu, sd->span))
2974
				break;
2975
	}
2976

2977
	if (likely(sd)) {
2978
		schedstat_inc(sd, alb_count);
2979

P
Peter Williams 已提交
2980 2981
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2982 2983 2984 2985
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2986
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2987 2988
}

2989 2990 2991 2992 2993 2994 2995 2996 2997
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2998
/*
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3009
 *
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3066 3067 3068 3069 3070
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3071
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3072
{
3073 3074
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3075 3076
	unsigned long interval;
	struct sched_domain *sd;
3077
	/* Earliest time when we have to do rebalance again */
3078
	unsigned long next_balance = jiffies + 60*HZ;
3079
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3080

3081
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3082 3083 3084 3085
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3086
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3087 3088 3089 3090 3091 3092
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3093 3094 3095
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3096

3097 3098 3099 3100 3101
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3102
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3103
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3104 3105
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3106 3107 3108
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3109
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3110
			}
3111
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3112
		}
3113 3114 3115
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3116
		if (time_after(next_balance, sd->last_balance + interval)) {
3117
			next_balance = sd->last_balance + interval;
3118 3119
			update_next_balance = 1;
		}
3120 3121 3122 3123 3124 3125 3126 3127

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3128
	}
3129 3130 3131 3132 3133 3134 3135 3136

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3137 3138 3139 3140 3141 3142 3143 3144 3145
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3146 3147 3148 3149
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3150

I
Ingo Molnar 已提交
3151
	rebalance_domains(this_cpu, idle);
3152 3153 3154 3155 3156 3157 3158

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3159 3160
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3161 3162 3163 3164
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3165
		cpu_clear(this_cpu, cpus);
3166 3167 3168 3169 3170 3171 3172 3173 3174
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3175
			rebalance_domains(balance_cpu, CPU_IDLE);
3176 3177

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3178 3179
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3192
static inline void trigger_load_balance(struct rq *rq, int cpu)
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3244
}
I
Ingo Molnar 已提交
3245 3246 3247

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3248 3249 3250
/*
 * on UP we do not need to balance between CPUs:
 */
3251
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3252 3253
{
}
I
Ingo Molnar 已提交
3254 3255 3256 3257 3258 3259

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3260
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3261 3262 3263 3264 3265 3266
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3267 3268 3269 3270 3271 3272 3273
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3274 3275
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3276
 */
3277
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3278 3279
{
	unsigned long flags;
3280 3281
	u64 ns, delta_exec;
	struct rq *rq;
3282

3283 3284 3285
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3286 3287
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3288 3289 3290 3291
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3292

L
Linus Torvalds 已提交
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
void account_guest_time(struct task_struct *p, cputime_t cputime)
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3346
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3347 3348
	cputime64_t tmp;

3349 3350 3351 3352 3353 3354
	if (p->flags & PF_VCPU) {
		account_guest_time(p, cputime);
		p->flags &= ~PF_VCPU;
		return;
	}

L
Linus Torvalds 已提交
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3382
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3405
	struct task_struct *curr = rq->curr;
3406
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3407 3408

	spin_lock(&rq->lock);
3409
	__update_rq_clock(rq);
3410 3411 3412 3413 3414 3415
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3416
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3417 3418 3419
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3420

3421
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3422 3423
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3424
#endif
L
Linus Torvalds 已提交
3425 3426 3427 3428 3429 3430 3431 3432 3433
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3434 3435
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3436 3437 3438 3439
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3440 3441
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3442 3443 3444 3445 3446 3447 3448 3449
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3450 3451
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3452 3453 3454
	/*
	 * Is the spinlock portion underflowing?
	 */
3455 3456 3457 3458
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3459 3460 3461 3462 3463 3464 3465
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3466
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3467
 */
I
Ingo Molnar 已提交
3468
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3469
{
I
Ingo Molnar 已提交
3470 3471 3472 3473 3474 3475 3476
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3477

I
Ingo Molnar 已提交
3478 3479 3480 3481 3482
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3483 3484 3485 3486 3487
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3488 3489 3490
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3491 3492
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3493
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3494 3495
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3496 3497
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3498 3499
	}
#endif
I
Ingo Molnar 已提交
3500 3501 3502 3503 3504 3505
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3506
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3507
{
3508
	const struct sched_class *class;
I
Ingo Molnar 已提交
3509
	struct task_struct *p;
L
Linus Torvalds 已提交
3510 3511

	/*
I
Ingo Molnar 已提交
3512 3513
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3514
	 */
I
Ingo Molnar 已提交
3515
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3516
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3517 3518
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3519 3520
	}

I
Ingo Molnar 已提交
3521 3522
	class = sched_class_highest;
	for ( ; ; ) {
3523
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3524 3525 3526 3527 3528 3529 3530 3531 3532
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3533

I
Ingo Molnar 已提交
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3556

3557 3558 3559 3560
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3561
	__update_rq_clock(rq);
3562 3563
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3564 3565 3566

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3567
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3568
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3569
		} else {
3570
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3571
		}
I
Ingo Molnar 已提交
3572
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3573 3574
	}

I
Ingo Molnar 已提交
3575
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3576 3577
		idle_balance(cpu, rq);

3578
	prev->sched_class->put_prev_task(rq, prev);
3579
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3580 3581

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3582

L
Linus Torvalds 已提交
3583 3584 3585 3586 3587
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3588
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3589 3590 3591
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3592 3593 3594
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3595
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3596
	}
L
Linus Torvalds 已提交
3597 3598 3599 3600 3601 3602 3603 3604
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3605
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3620
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3621 3622
		return;

3623 3624 3625 3626 3627 3628 3629 3630
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3631
#ifdef CONFIG_PREEMPT_BKL
3632 3633
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3634
#endif
3635
		schedule();
L
Linus Torvalds 已提交
3636
#ifdef CONFIG_PREEMPT_BKL
3637
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3638
#endif
3639
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3640

3641 3642 3643 3644 3645 3646
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3647 3648 3649 3650
}
EXPORT_SYMBOL(preempt_schedule);

/*
3651
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3663
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3664 3665
	BUG_ON(ti->preempt_count || !irqs_disabled());

3666 3667 3668 3669 3670 3671 3672 3673
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3674
#ifdef CONFIG_PREEMPT_BKL
3675 3676
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3677
#endif
3678 3679 3680
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3681
#ifdef CONFIG_PREEMPT_BKL
3682
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3683
#endif
3684
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3685

3686 3687 3688 3689 3690 3691
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3692 3693 3694 3695
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3696 3697
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3698
{
3699
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3715
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3716

3717
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3718 3719
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3720
		if (curr->func(curr, mode, sync, key) &&
3721
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3722 3723 3724 3725 3726 3727 3728 3729 3730
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3731
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3732 3733
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3734
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3753
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3765 3766
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3807 3808
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3809 3810 3811 3812 3813 3814 3815
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3816 3817 3818 3819 3820 3821
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3822 3823 3824 3825 3826
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3827
				return timeout;
L
Linus Torvalds 已提交
3828 3829 3830 3831 3832 3833 3834 3835
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3836 3837
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3838 3839 3840 3841
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3842
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3843
	spin_unlock_irq(&x->wait.lock);
3844 3845
	return timeout;
}
L
Linus Torvalds 已提交
3846

3847 3848 3849
void fastcall __sched wait_for_completion(struct completion *x)
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3850
}
3851
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3852 3853

unsigned long fastcall __sched
3854
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3855
{
3856
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3857
}
3858
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3859

3860
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3861
{
3862
	return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3863
}
3864
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3865

3866 3867 3868
unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3869
{
3870
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3871
}
3872
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3873

3874 3875
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3876
{
I
Ingo Molnar 已提交
3877 3878 3879 3880
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3881

3882
	__set_current_state(state);
L
Linus Torvalds 已提交
3883

3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3898 3899 3900
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3901
long __sched
I
Ingo Molnar 已提交
3902
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3903
{
3904
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3905 3906 3907
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3908
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3909
{
3910
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3911 3912 3913
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3914
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3915
{
3916
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3917 3918 3919
}
EXPORT_SYMBOL(sleep_on_timeout);

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3932
void rt_mutex_setprio(struct task_struct *p, int prio)
3933 3934
{
	unsigned long flags;
3935
	int oldprio, on_rq, running;
3936
	struct rq *rq;
3937 3938 3939 3940

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3941
	update_rq_clock(rq);
3942

3943
	oldprio = p->prio;
I
Ingo Molnar 已提交
3944
	on_rq = p->se.on_rq;
3945 3946
	running = task_running(rq, p);
	if (on_rq) {
3947
		dequeue_task(rq, p, 0);
3948 3949 3950
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
3951 3952 3953 3954 3955 3956

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3957 3958
	p->prio = prio;

I
Ingo Molnar 已提交
3959
	if (on_rq) {
3960 3961
		if (running)
			p->sched_class->set_curr_task(rq);
3962
		enqueue_task(rq, p, 0);
3963 3964
		/*
		 * Reschedule if we are currently running on this runqueue and
3965 3966
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3967
		 */
3968
		if (running) {
3969 3970
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3971 3972 3973
		} else {
			check_preempt_curr(rq, p);
		}
3974 3975 3976 3977 3978 3979
	}
	task_rq_unlock(rq, &flags);
}

#endif

3980
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3981
{
I
Ingo Molnar 已提交
3982
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3983
	unsigned long flags;
3984
	struct rq *rq;
L
Linus Torvalds 已提交
3985 3986 3987 3988 3989 3990 3991 3992

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3993
	update_rq_clock(rq);
L
Linus Torvalds 已提交
3994 3995 3996 3997
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3998
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3999
	 */
4000
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4001 4002 4003
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4004 4005
	on_rq = p->se.on_rq;
	if (on_rq) {
4006
		dequeue_task(rq, p, 0);
4007
		dec_load(rq, p);
4008
	}
L
Linus Torvalds 已提交
4009 4010

	p->static_prio = NICE_TO_PRIO(nice);
4011
	set_load_weight(p);
4012 4013 4014
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4015

I
Ingo Molnar 已提交
4016
	if (on_rq) {
4017
		enqueue_task(rq, p, 0);
4018
		inc_load(rq, p);
L
Linus Torvalds 已提交
4019
		/*
4020 4021
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4022
		 */
4023
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4024 4025 4026 4027 4028 4029 4030
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4031 4032 4033 4034 4035
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4036
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4037
{
4038 4039
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4040

M
Matt Mackall 已提交
4041 4042 4043 4044
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4056
	long nice, retval;
L
Linus Torvalds 已提交
4057 4058 4059 4060 4061 4062

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4063 4064
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4065 4066 4067 4068 4069 4070 4071 4072 4073
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4074 4075 4076
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4095
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4096 4097 4098 4099 4100 4101 4102 4103
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4104
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4123
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4124 4125 4126 4127 4128 4129 4130 4131
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4132
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4133 4134 4135 4136 4137
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4138 4139
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4140
{
I
Ingo Molnar 已提交
4141
	BUG_ON(p->se.on_rq);
4142

L
Linus Torvalds 已提交
4143
	p->policy = policy;
I
Ingo Molnar 已提交
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4156
	p->rt_priority = prio;
4157 4158 4159
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4160
	set_load_weight(p);
L
Linus Torvalds 已提交
4161 4162 4163
}

/**
4164
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4165 4166 4167
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4168
 *
4169
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4170
 */
I
Ingo Molnar 已提交
4171 4172
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4173
{
4174
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4175
	unsigned long flags;
4176
	struct rq *rq;
L
Linus Torvalds 已提交
4177

4178 4179
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4180 4181 4182 4183 4184
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4185 4186
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4187
		return -EINVAL;
L
Linus Torvalds 已提交
4188 4189
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4190 4191
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4192 4193
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4194
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4195
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4196
		return -EINVAL;
4197
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4198 4199
		return -EINVAL;

4200 4201 4202 4203
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4204
		if (rt_policy(policy)) {
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4221 4222 4223 4224 4225 4226
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4227

4228 4229 4230 4231 4232
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4233 4234 4235 4236

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4237 4238 4239 4240 4241
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4242 4243 4244 4245
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4246
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4247 4248 4249
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4250 4251
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4252 4253
		goto recheck;
	}
I
Ingo Molnar 已提交
4254
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4255
	on_rq = p->se.on_rq;
4256 4257
	running = task_running(rq, p);
	if (on_rq) {
4258
		deactivate_task(rq, p, 0);
4259 4260 4261
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4262

L
Linus Torvalds 已提交
4263
	oldprio = p->prio;
I
Ingo Molnar 已提交
4264
	__setscheduler(rq, p, policy, param->sched_priority);
4265

I
Ingo Molnar 已提交
4266
	if (on_rq) {
4267 4268
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4269
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4270 4271
		/*
		 * Reschedule if we are currently running on this runqueue and
4272 4273
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4274
		 */
4275
		if (running) {
4276 4277
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4278 4279 4280
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4281
	}
4282 4283 4284
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4285 4286
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4287 4288 4289 4290
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4291 4292
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4293 4294 4295
{
	struct sched_param lparam;
	struct task_struct *p;
4296
	int retval;
L
Linus Torvalds 已提交
4297 4298 4299 4300 4301

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4302 4303 4304

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4305
	p = find_process_by_pid(pid);
4306 4307 4308
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4309

L
Linus Torvalds 已提交
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4322 4323 4324 4325
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4345
	struct task_struct *p;
4346
	int retval;
L
Linus Torvalds 已提交
4347 4348

	if (pid < 0)
4349
		return -EINVAL;
L
Linus Torvalds 已提交
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4371
	struct task_struct *p;
4372
	int retval;
L
Linus Torvalds 已提交
4373 4374

	if (!param || pid < 0)
4375
		return -EINVAL;
L
Linus Torvalds 已提交
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4405 4406
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4407

4408
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4409 4410 4411 4412 4413
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4414
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4431 4432 4433 4434
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4435 4436 4437 4438 4439 4440
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4441
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4482
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4483 4484 4485
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4486
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4487 4488
EXPORT_SYMBOL(cpu_online_map);

4489
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4490
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4491 4492 4493 4494
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4495
	struct task_struct *p;
L
Linus Torvalds 已提交
4496 4497
	int retval;

4498
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4499 4500 4501 4502 4503 4504 4505
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4506 4507 4508 4509
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4510
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4511 4512 4513

out_unlock:
	read_unlock(&tasklist_lock);
4514
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4515

4516
	return retval;
L
Linus Torvalds 已提交
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4547 4548
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4549 4550 4551
 */
asmlinkage long sys_sched_yield(void)
{
4552
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4553

4554
	schedstat_inc(rq, yld_count);
4555
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4556 4557 4558 4559 4560 4561

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4562
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4563 4564 4565 4566 4567 4568 4569 4570
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4571
static void __cond_resched(void)
L
Linus Torvalds 已提交
4572
{
4573 4574 4575
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4576 4577 4578 4579 4580
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4581 4582 4583 4584 4585 4586 4587 4588 4589
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4590 4591
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4607
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4608
{
J
Jan Kara 已提交
4609 4610
	int ret = 0;

L
Linus Torvalds 已提交
4611 4612 4613
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4614
		ret = 1;
L
Linus Torvalds 已提交
4615 4616
		spin_lock(lock);
	}
4617
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4618
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4619 4620 4621
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4622
		ret = 1;
L
Linus Torvalds 已提交
4623 4624
		spin_lock(lock);
	}
J
Jan Kara 已提交
4625
	return ret;
L
Linus Torvalds 已提交
4626 4627 4628 4629 4630 4631 4632
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4633
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4634
		local_bh_enable();
L
Linus Torvalds 已提交
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4646
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4665
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4666

4667
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4668 4669 4670
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4671
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4672 4673 4674 4675 4676
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4677
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4678 4679
	long ret;

4680
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4681 4682 4683
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4684
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4705
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4706
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4730
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4731
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4748
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4749
	unsigned int time_slice;
4750
	int retval;
L
Linus Torvalds 已提交
4751 4752 4753
	struct timespec t;

	if (pid < 0)
4754
		return -EINVAL;
L
Linus Torvalds 已提交
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

D
Dmitry Adamushko 已提交
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
	if (p->policy == SCHED_FIFO)
		time_slice = 0;
	else if (p->policy == SCHED_RR)
		time_slice = DEF_TIMESLICE;
	else {
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
		time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4779
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4780
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4781 4782
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4783

L
Linus Torvalds 已提交
4784 4785 4786 4787 4788
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4789
static const char stat_nam[] = "RSDTtZX";
4790 4791

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4792 4793
{
	unsigned long free = 0;
4794
	unsigned state;
L
Linus Torvalds 已提交
4795 4796

	state = p->state ? __ffs(p->state) + 1 : 0;
4797 4798
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4799
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4800
	if (state == TASK_RUNNING)
4801
		printk(" running  ");
L
Linus Torvalds 已提交
4802
	else
4803
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4804 4805
#else
	if (state == TASK_RUNNING)
4806
		printk("  running task    ");
L
Linus Torvalds 已提交
4807 4808 4809 4810 4811
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4812
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4813 4814
		while (!*n)
			n++;
4815
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4816 4817
	}
#endif
4818
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4819 4820 4821 4822 4823

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4824
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4825
{
4826
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4827

4828 4829 4830
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4831
#else
4832 4833
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4834 4835 4836 4837 4838 4839 4840 4841
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4842
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4843
			show_task(p);
L
Linus Torvalds 已提交
4844 4845
	} while_each_thread(g, p);

4846 4847
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4848 4849 4850
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4851
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4852 4853 4854 4855 4856
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4857 4858
}

I
Ingo Molnar 已提交
4859 4860
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4861
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4862 4863
}

4864 4865 4866 4867 4868 4869 4870 4871
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4872
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4873
{
4874
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4875 4876
	unsigned long flags;

I
Ingo Molnar 已提交
4877 4878 4879
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4880
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4881
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4882
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4883 4884 4885

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4886 4887 4888
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4889 4890 4891 4892
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4893
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4894
#else
A
Al Viro 已提交
4895
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4896
#endif
I
Ingo Molnar 已提交
4897 4898 4899 4900
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4916
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4938
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4939
{
4940
	struct migration_req req;
L
Linus Torvalds 已提交
4941
	unsigned long flags;
4942
	struct rq *rq;
4943
	int ret = 0;
L
Linus Torvalds 已提交
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4966

L
Linus Torvalds 已提交
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4979 4980
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4981
 */
4982
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4983
{
4984
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4985
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4986 4987

	if (unlikely(cpu_is_offline(dest_cpu)))
4988
		return ret;
L
Linus Torvalds 已提交
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5001
	on_rq = p->se.on_rq;
5002
	if (on_rq)
5003
		deactivate_task(rq_src, p, 0);
5004

L
Linus Torvalds 已提交
5005
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5006 5007 5008
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5009
	}
5010
	ret = 1;
L
Linus Torvalds 已提交
5011 5012
out:
	double_rq_unlock(rq_src, rq_dest);
5013
	return ret;
L
Linus Torvalds 已提交
5014 5015 5016 5017 5018 5019 5020
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5021
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5022 5023
{
	int cpu = (long)data;
5024
	struct rq *rq;
L
Linus Torvalds 已提交
5025 5026 5027 5028 5029 5030

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5031
		struct migration_req *req;
L
Linus Torvalds 已提交
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5054
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5055 5056
		list_del_init(head->next);

N
Nick Piggin 已提交
5057 5058 5059
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5089 5090 5091 5092
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5093
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5094
{
5095
	unsigned long flags;
L
Linus Torvalds 已提交
5096
	cpumask_t mask;
5097 5098
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5099

5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
			rq = task_rq_lock(p, &flags);
			cpus_setall(p->cpus_allowed);
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5116

5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
			if (p->mm && printk_ratelimit())
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
				       p->pid, p->comm, dead_cpu);
		}
5127
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5128 5129 5130 5131 5132 5133 5134 5135 5136
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5137
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5138
{
5139
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5153
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5154

5155
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5156

5157 5158
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5159 5160
			continue;

5161 5162 5163
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5164

5165
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5166 5167
}

A
Alexey Dobriyan 已提交
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
/*
 * activate_idle_task - move idle task to the _front_ of runqueue.
 */
static void activate_idle_task(struct task_struct *p, struct rq *rq)
{
	update_rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;

	enqueue_task(rq, p, 0);
	inc_nr_running(p, rq);
}

I
Ingo Molnar 已提交
5182 5183
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5184
 * It does so by boosting its priority to highest possible and adding it to
5185
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5186 5187 5188
 */
void sched_idle_next(void)
{
5189
	int this_cpu = smp_processor_id();
5190
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5191 5192 5193 5194
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5195
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5196

5197 5198 5199
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5200 5201 5202
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5203
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5204 5205

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5206
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5207 5208 5209 5210

	spin_unlock_irqrestore(&rq->lock, flags);
}

5211 5212
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5226
/* called under rq->lock with disabled interrupts */
5227
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5228
{
5229
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5230 5231

	/* Must be exiting, otherwise would be on tasklist. */
5232
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5233 5234

	/* Cannot have done final schedule yet: would have vanished. */
5235
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5236

5237
	get_task_struct(p);
L
Linus Torvalds 已提交
5238 5239 5240 5241 5242 5243

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
	 */
5244
	spin_unlock_irq(&rq->lock);
5245
	move_task_off_dead_cpu(dead_cpu, p);
5246
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5247

5248
	put_task_struct(p);
L
Linus Torvalds 已提交
5249 5250 5251 5252 5253
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5254
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5255
	struct task_struct *next;
5256

I
Ingo Molnar 已提交
5257 5258 5259
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5260
		update_rq_clock(rq);
5261
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5262 5263 5264
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5265

L
Linus Torvalds 已提交
5266 5267 5268 5269
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5270 5271 5272
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5273 5274
	{
		.procname	= "sched_domain",
5275
		.mode		= 0555,
5276
	},
5277 5278 5279 5280
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5281
	{
5282
		.ctl_name	= CTL_KERN,
5283
		.procname	= "kernel",
5284
		.mode		= 0555,
5285 5286
		.child		= sd_ctl_dir,
	},
5287 5288 5289 5290 5291 5292
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5293
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5294 5295 5296 5297

	return entry;
}

5298 5299
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5300
	struct ctl_table *entry;
5301

5302 5303 5304 5305 5306 5307 5308
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
	 * will always be set.  In the lowest directory the names are
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5309 5310
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5311 5312 5313
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5314 5315 5316 5317 5318

	kfree(*tablep);
	*tablep = NULL;
}

5319
static void
5320
set_table_entry(struct ctl_table *entry,
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5334
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5335

5336 5337 5338
	if (table == NULL)
		return NULL;

5339
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5340
		sizeof(long), 0644, proc_doulongvec_minmax);
5341
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5342
		sizeof(long), 0644, proc_doulongvec_minmax);
5343
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5344
		sizeof(int), 0644, proc_dointvec_minmax);
5345
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5346
		sizeof(int), 0644, proc_dointvec_minmax);
5347
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5348
		sizeof(int), 0644, proc_dointvec_minmax);
5349
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5350
		sizeof(int), 0644, proc_dointvec_minmax);
5351
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5352
		sizeof(int), 0644, proc_dointvec_minmax);
5353
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5354
		sizeof(int), 0644, proc_dointvec_minmax);
5355
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5356
		sizeof(int), 0644, proc_dointvec_minmax);
5357
	set_table_entry(&table[9], "cache_nice_tries",
5358 5359
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5360
	set_table_entry(&table[10], "flags", &sd->flags,
5361
		sizeof(int), 0644, proc_dointvec_minmax);
5362
	/* &table[11] is terminator */
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5377 5378
	if (table == NULL)
		return NULL;
5379 5380 5381 5382 5383

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5384
		entry->mode = 0555;
5385 5386 5387 5388 5389 5390 5391 5392
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5393
static void register_sched_domain_sysctl(void)
5394 5395 5396 5397 5398
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5399 5400 5401
	if (entry == NULL)
		return;

5402 5403
	sd_ctl_dir[0].child = entry;

5404
	for_each_online_cpu(i) {
5405 5406
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5407
		entry->mode = 0555;
5408
		entry->child = sd_alloc_ctl_cpu_table(i);
5409
		entry++;
5410 5411 5412
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5413 5414 5415 5416 5417 5418 5419

static void unregister_sched_domain_sysctl(void)
{
	unregister_sysctl_table(sd_sysctl_header);
	sd_sysctl_header = NULL;
	sd_free_ctl_entry(&sd_ctl_dir[0].child);
}
5420
#else
5421 5422 5423 5424
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5425 5426 5427 5428
{
}
#endif

L
Linus Torvalds 已提交
5429 5430 5431 5432
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5433 5434
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5435 5436
{
	struct task_struct *p;
5437
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5438
	unsigned long flags;
5439
	struct rq *rq;
L
Linus Torvalds 已提交
5440 5441

	switch (action) {
5442 5443 5444 5445
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5446
	case CPU_UP_PREPARE:
5447
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5448
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5449 5450 5451 5452 5453
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5454
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5455 5456 5457
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5458

L
Linus Torvalds 已提交
5459
	case CPU_ONLINE:
5460
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5461 5462 5463
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5464

L
Linus Torvalds 已提交
5465 5466
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5467
	case CPU_UP_CANCELED_FROZEN:
5468 5469
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5470
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5471 5472
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5473 5474 5475
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5476

L
Linus Torvalds 已提交
5477
	case CPU_DEAD:
5478
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5479 5480 5481 5482 5483
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5484
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5485
		update_rq_clock(rq);
5486
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5487
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5488 5489
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5490
		migrate_dead_tasks(cpu);
5491
		spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5492 5493 5494 5495
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5496
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5497 5498 5499
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5500 5501
			struct migration_req *req;

L
Linus Torvalds 已提交
5502
			req = list_entry(rq->migration_queue.next,
5503
					 struct migration_req, list);
L
Linus Torvalds 已提交
5504 5505 5506 5507 5508 5509
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5510 5511 5512
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5513 5514 5515 5516 5517 5518 5519
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5520
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5521 5522 5523 5524 5525 5526 5527
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5528
	int err;
5529 5530

	/* Start one for the boot CPU: */
5531 5532
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5533 5534
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5535

L
Linus Torvalds 已提交
5536 5537 5538 5539 5540
	return 0;
}
#endif

#ifdef CONFIG_SMP
5541 5542 5543 5544 5545

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5546
#ifdef CONFIG_SCHED_DEBUG
L
Linus Torvalds 已提交
5547 5548 5549 5550
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5551 5552 5553 5554 5555
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5575 5576
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5577 5578 5579 5580 5581 5582
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5583 5584
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5585
		if (!cpu_isset(cpu, group->cpumask))
5586 5587
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5600
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5601
				printk("\n");
5602 5603
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
5604
				break;
L
Linus Torvalds 已提交
5605 5606 5607 5608 5609
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
5610
				break;
L
Linus Torvalds 已提交
5611 5612 5613 5614 5615
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
5616
				break;
L
Linus Torvalds 已提交
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5629 5630
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5631 5632 5633

		level++;
		sd = sd->parent;
5634 5635
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5636

5637 5638 5639
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5640 5641 5642 5643

	} while (sd);
}
#else
5644
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5645 5646
#endif

5647
static int sd_degenerate(struct sched_domain *sd)
5648 5649 5650 5651 5652 5653 5654 5655
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5656 5657 5658
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5672 5673
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5692 5693 5694
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5695 5696 5697 5698 5699 5700 5701
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5702 5703 5704 5705
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5706
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5707
{
5708
	struct rq *rq = cpu_rq(cpu);
5709 5710 5711 5712 5713 5714 5715
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5716
		if (sd_parent_degenerate(tmp, parent)) {
5717
			tmp->parent = parent->parent;
5718 5719 5720
			if (parent->parent)
				parent->parent->child = tmp;
		}
5721 5722
	}

5723
	if (sd && sd_degenerate(sd)) {
5724
		sd = sd->parent;
5725 5726 5727
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5728 5729 5730

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5731
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5732 5733 5734
}

/* cpus with isolated domains */
5735
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5750
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5751 5752

/*
5753 5754 5755 5756
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5757 5758 5759 5760 5761
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5762
static void
5763 5764 5765
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5766 5767 5768 5769 5770 5771
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5772 5773
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5774 5775 5776 5777 5778 5779
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5780
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5781 5782

		for_each_cpu_mask(j, span) {
5783
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5798
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5799

5800
#ifdef CONFIG_NUMA
5801

5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5854 5855
	cpumask_t span, nodemask;
	int i;
5856 5857 5858 5859 5860 5861 5862 5863 5864 5865

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5866

5867 5868 5869 5870 5871 5872 5873 5874
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5875
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5876

5877
/*
5878
 * SMT sched-domains:
5879
 */
L
Linus Torvalds 已提交
5880 5881
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5882
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5883

5884 5885
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5886
{
5887 5888
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5889 5890 5891 5892
	return cpu;
}
#endif

5893 5894 5895
/*
 * multi-core sched-domains:
 */
5896 5897
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5898
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5899 5900 5901
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5902 5903
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5904
{
5905
	int group;
5906
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5907
	cpus_and(mask, mask, *cpu_map);
5908 5909 5910 5911
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5912 5913
}
#elif defined(CONFIG_SCHED_MC)
5914 5915
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5916
{
5917 5918
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5919 5920 5921 5922
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5923
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5924
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5925

5926 5927
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5928
{
5929
	int group;
5930
#ifdef CONFIG_SCHED_MC
5931
	cpumask_t mask = cpu_coregroup_map(cpu);
5932
	cpus_and(mask, mask, *cpu_map);
5933
	group = first_cpu(mask);
5934
#elif defined(CONFIG_SCHED_SMT)
5935
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5936
	cpus_and(mask, mask, *cpu_map);
5937
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5938
#else
5939
	group = cpu;
L
Linus Torvalds 已提交
5940
#endif
5941 5942 5943
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5944 5945 5946 5947
}

#ifdef CONFIG_NUMA
/*
5948 5949 5950
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5951
 */
5952
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5953
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5954

5955
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5956
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5957

5958 5959
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5960
{
5961 5962 5963 5964 5965 5966 5967 5968 5969
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5970
}
5971

5972 5973 5974 5975 5976 5977 5978
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
5979 5980 5981
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
5982

5983 5984 5985 5986 5987 5988 5989 5990
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
5991

5992 5993 5994 5995
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
5996
}
L
Linus Torvalds 已提交
5997 5998
#endif

5999
#ifdef CONFIG_NUMA
6000 6001 6002
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6003
	int cpu, i;
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6034 6035 6036 6037 6038
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6039

6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6066 6067
	sd->groups->__cpu_power = 0;

6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6078
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6079 6080 6081 6082 6083 6084 6085 6086
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6087
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6088 6089 6090 6091
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6092
/*
6093 6094
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6095
 */
6096
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6097 6098
{
	int i;
6099 6100
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6101
	int sd_allnodes = 0;
6102 6103 6104 6105

	/*
	 * Allocate the per-node list of sched groups
	 */
6106
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6107
					   GFP_KERNEL);
6108 6109
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6110
		return -ENOMEM;
6111 6112 6113
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6114 6115

	/*
6116
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6117
	 */
6118
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6119 6120 6121
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6122
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6123 6124

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6125 6126
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6127 6128 6129
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6130
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6131
			p = sd;
6132
			sd_allnodes = 1;
6133 6134 6135
		} else
			p = NULL;

L
Linus Torvalds 已提交
6136 6137
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6138 6139
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6140 6141
		if (p)
			p->child = sd;
6142
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6143 6144 6145 6146 6147 6148 6149
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6150 6151
		if (p)
			p->child = sd;
6152
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6153

6154 6155 6156 6157 6158 6159 6160
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6161
		p->child = sd;
6162
		cpu_to_core_group(i, cpu_map, &sd->groups);
6163 6164
#endif

L
Linus Torvalds 已提交
6165 6166 6167 6168
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6169
		sd->span = per_cpu(cpu_sibling_map, i);
6170
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6171
		sd->parent = p;
6172
		p->child = sd;
6173
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6174 6175 6176 6177 6178
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6179
	for_each_cpu_mask(i, *cpu_map) {
6180
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6181
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6182 6183 6184
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6185 6186
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6187 6188 6189
	}
#endif

6190 6191 6192 6193 6194 6195 6196
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6197 6198
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6199 6200 6201
	}
#endif

L
Linus Torvalds 已提交
6202 6203 6204 6205
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6206
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6207 6208 6209
		if (cpus_empty(nodemask))
			continue;

6210
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6211 6212 6213 6214
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6215
	if (sd_allnodes)
I
Ingo Molnar 已提交
6216 6217
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6218 6219 6220 6221 6222 6223 6224 6225 6226 6227

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6228 6229
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6230
			continue;
6231
		}
6232 6233 6234 6235

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6236
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6237 6238 6239 6240 6241
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6242 6243 6244
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6245

6246 6247 6248
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6249
		sg->__cpu_power = 0;
6250
		sg->cpumask = nodemask;
6251
		sg->next = sg;
6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6270 6271
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6272 6273 6274
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6275
				goto error;
6276
			}
6277
			sg->__cpu_power = 0;
6278
			sg->cpumask = tmp;
6279
			sg->next = prev->next;
6280 6281 6282 6283 6284
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6285 6286 6287
#endif

	/* Calculate CPU power for physical packages and nodes */
6288
#ifdef CONFIG_SCHED_SMT
6289
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6290 6291
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6292
		init_sched_groups_power(i, sd);
6293
	}
L
Linus Torvalds 已提交
6294
#endif
6295
#ifdef CONFIG_SCHED_MC
6296
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6297 6298
		struct sched_domain *sd = &per_cpu(core_domains, i);

6299
		init_sched_groups_power(i, sd);
6300 6301
	}
#endif
6302

6303
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6304 6305
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6306
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6307 6308
	}

6309
#ifdef CONFIG_NUMA
6310 6311
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6312

6313 6314
	if (sd_allnodes) {
		struct sched_group *sg;
6315

6316
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6317 6318
		init_numa_sched_groups_power(sg);
	}
6319 6320
#endif

L
Linus Torvalds 已提交
6321
	/* Attach the domains */
6322
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6323 6324 6325
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6326 6327
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6328 6329 6330 6331 6332
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6333 6334 6335

	return 0;

6336
#ifdef CONFIG_NUMA
6337 6338 6339
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6340
#endif
L
Linus Torvalds 已提交
6341
}
6342 6343 6344
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6345
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6346 6347
{
	cpumask_t cpu_default_map;
6348
	int err;
L
Linus Torvalds 已提交
6349

6350 6351 6352 6353 6354 6355 6356
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6357 6358
	err = build_sched_domains(&cpu_default_map);

6359 6360
	register_sched_domain_sysctl();

6361
	return err;
6362 6363 6364
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6365
{
6366
	free_sched_groups(cpu_map);
6367
}
L
Linus Torvalds 已提交
6368

6369 6370 6371 6372
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6373
static void detach_destroy_domains(const cpumask_t *cpu_map)
6374 6375 6376
{
	int i;

6377 6378
	unregister_sched_domain_sysctl();

6379 6380 6381 6382 6383 6384
	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

6385
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6386
static int arch_reinit_sched_domains(void)
6387 6388 6389
{
	int err;

6390
	mutex_lock(&sched_hotcpu_mutex);
6391 6392
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6393
	mutex_unlock(&sched_hotcpu_mutex);
6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6420 6421
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6422 6423 6424
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6425 6426
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6427 6428 6429 6430 6431 6432 6433
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6434 6435
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6436 6437 6438
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6459 6460
#endif

L
Linus Torvalds 已提交
6461 6462 6463
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6464
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6465 6466 6467 6468 6469 6470 6471
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6472
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6473
	case CPU_DOWN_PREPARE:
6474
	case CPU_DOWN_PREPARE_FROZEN:
6475
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6476 6477 6478
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6479
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6480
	case CPU_DOWN_FAILED:
6481
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6482
	case CPU_ONLINE:
6483
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6484
	case CPU_DEAD:
6485
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6486 6487 6488 6489 6490 6491 6492 6493 6494
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6495
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6496 6497 6498 6499 6500 6501

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6502 6503
	cpumask_t non_isolated_cpus;

6504
	mutex_lock(&sched_hotcpu_mutex);
6505
	arch_init_sched_domains(&cpu_online_map);
6506
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6507 6508
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6509
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6510 6511
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6512 6513 6514 6515

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6527

L
Linus Torvalds 已提交
6528 6529 6530 6531 6532
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6533
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6534 6535 6536 6537 6538
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6539
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6540 6541
}

L
Linus Torvalds 已提交
6542 6543
void __init sched_init(void)
{
6544
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6545 6546
	int i, j;

6547
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6548
		struct rt_prio_array *array;
6549
		struct rq *rq;
L
Linus Torvalds 已提交
6550 6551 6552

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6553
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6554
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6555 6556 6557 6558
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6559 6560 6561 6562 6563 6564 6565
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6566
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6567
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6568 6569
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6570 6571 6572
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6573
			se->load.weight = init_task_group_load;
6574
			se->load.inv_weight =
6575
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6576 6577
			se->parent = NULL;
		}
6578
		init_task_group.shares = init_task_group_load;
6579
		spin_lock_init(&init_task_group.lock);
I
Ingo Molnar 已提交
6580
#endif
L
Linus Torvalds 已提交
6581

I
Ingo Molnar 已提交
6582 6583
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6584
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6585
		rq->sd = NULL;
L
Linus Torvalds 已提交
6586
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6587
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6588
		rq->push_cpu = 0;
6589
		rq->cpu = i;
L
Linus Torvalds 已提交
6590 6591 6592 6593 6594
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6595 6596 6597 6598
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6599
		}
6600
		highest_cpu = i;
I
Ingo Molnar 已提交
6601 6602
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6603 6604
	}

6605
	set_load_weight(&init_task);
6606

6607 6608 6609 6610
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6611
#ifdef CONFIG_SMP
6612
	nr_cpu_ids = highest_cpu + 1;
6613 6614 6615
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6616 6617 6618 6619
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6633 6634 6635 6636
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6637 6638 6639 6640 6641
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6642
#ifdef in_atomic
L
Linus Torvalds 已提交
6643 6644 6645 6646 6647 6648 6649
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6650
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6651 6652 6653
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6654
		debug_show_held_locks(current);
6655 6656
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6657 6658 6659 6660 6661 6662 6663 6664
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6679 6680
void normalize_rt_tasks(void)
{
6681
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6682
	unsigned long flags;
6683
	struct rq *rq;
L
Linus Torvalds 已提交
6684 6685

	read_lock_irq(&tasklist_lock);
6686
	do_each_thread(g, p) {
6687 6688 6689 6690 6691 6692
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6693 6694
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6695 6696 6697
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6698
#endif
I
Ingo Molnar 已提交
6699 6700 6701 6702 6703 6704 6705 6706 6707
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6708
			continue;
I
Ingo Molnar 已提交
6709
		}
L
Linus Torvalds 已提交
6710

6711 6712
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6713

6714
		normalize_task(rq, p);
6715

6716 6717
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6718 6719
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6720 6721 6722 6723
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6742
struct task_struct *curr_task(int cpu)
6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6762
void set_curr_task(int cpu, struct task_struct *p)
6763 6764 6765 6766 6767
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6768 6769 6770 6771

#ifdef CONFIG_FAIR_GROUP_SCHED

/* allocate runqueue etc for a new task group */
6772
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
6773
{
6774
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6775 6776
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
6777
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
6778 6779 6780 6781 6782 6783
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6784
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6785 6786
	if (!tg->cfs_rq)
		goto err;
6787
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6788 6789 6790 6791
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
6792
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

6819 6820 6821 6822 6823
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
S
Srivatsa Vaddagiri 已提交
6824

6825
	tg->shares = NICE_0_LOAD;
6826
	spin_lock_init(&tg->lock);
S
Srivatsa Vaddagiri 已提交
6827

6828
	return tg;
S
Srivatsa Vaddagiri 已提交
6829 6830 6831

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6832
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
6833
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
6834
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
6835 6836
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
6837 6838 6839
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
6840 6841 6842 6843

	return ERR_PTR(-ENOMEM);
}

6844 6845
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6846
{
6847
	struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6848
	struct task_group *tg = cfs_rq->tg;
S
Srivatsa Vaddagiri 已提交
6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

6866
/* Destroy runqueue etc associated with a task group */
6867
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6868
{
6869 6870
	struct cfs_rq *cfs_rq;
	int i;
S
Srivatsa Vaddagiri 已提交
6871

6872 6873 6874 6875 6876 6877 6878 6879 6880
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	cfs_rq = tg->cfs_rq[0];

	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&cfs_rq->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
6881 6882
}

6883
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
6884 6885 6886
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
6887 6888
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	if (tsk->sched_class != &fair_sched_class)
		goto done;

	update_rq_clock(rq);

	running = task_running(rq, tsk);
	on_rq = tsk->se.on_rq;

6904
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
6905
		dequeue_task(rq, tsk, 0);
6906 6907 6908
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
6909 6910 6911

	set_task_cfs_rq(tsk);

6912 6913 6914
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
6915
		enqueue_task(rq, tsk, 0);
6916
	}
S
Srivatsa Vaddagiri 已提交
6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

6943
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
6944 6945 6946
{
	int i;

6947
	spin_lock(&tg->lock);
6948
	if (tg->shares == shares)
6949
		goto done;
S
Srivatsa Vaddagiri 已提交
6950

6951
	tg->shares = shares;
S
Srivatsa Vaddagiri 已提交
6952
	for_each_possible_cpu(i)
6953
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
6954

6955 6956
done:
	spin_unlock(&tg->lock);
6957
	return 0;
S
Srivatsa Vaddagiri 已提交
6958 6959
}

6960 6961 6962 6963 6964
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
6965
#endif	/* CONFIG_FAIR_GROUP_SCHED */