sched.c 219.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
99
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
100
 */
101
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
102

I
Ingo Molnar 已提交
103 104 105
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
106 107 108
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
109
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
110 111 112
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
113

114 115 116 117 118
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

140 141
static inline int rt_policy(int policy)
{
142
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
143 144 145 146 147 148 149 150 151
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
152
/*
I
Ingo Molnar 已提交
153
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
154
 */
I
Ingo Molnar 已提交
155 156 157 158 159
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

160
struct rt_bandwidth {
I
Ingo Molnar 已提交
161 162 163 164 165
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
199 200
	spin_lock_init(&rt_b->rt_runtime_lock);

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

238 239 240 241 242 243
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

244
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
245

246 247
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
248 249
struct cfs_rq;

P
Peter Zijlstra 已提交
250 251
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
252
/* task group related information */
253
struct task_group {
254
#ifdef CONFIG_CGROUP_SCHED
255 256
	struct cgroup_subsys_state css;
#endif
257 258

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
259 260 261 262 263
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
264 265 266 267 268 269
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

270
	struct rt_bandwidth rt_bandwidth;
271
#endif
272

273
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
274
	struct list_head list;
P
Peter Zijlstra 已提交
275 276 277 278

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
279 280
};

D
Dhaval Giani 已提交
281
#ifdef CONFIG_USER_SCHED
282 283 284 285 286 287 288 289

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

290
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
291 292 293 294
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295
#endif /* CONFIG_FAIR_GROUP_SCHED */
296 297 298 299

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 301
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_FAIR_GROUP_SCHED */
302
#define root_task_group init_task_group
303
#endif /* CONFIG_FAIR_GROUP_SCHED */
P
Peter Zijlstra 已提交
304

305
/* task_group_lock serializes add/remove of task groups and also changes to
306 307
 * a task group's cpu shares.
 */
308
static DEFINE_SPINLOCK(task_group_lock);
309

310 311 312
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
313
#else /* !CONFIG_USER_SCHED */
314
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
315
#endif /* CONFIG_USER_SCHED */
316

317
/*
318 319 320 321
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
322 323 324
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
325
#define MIN_SHARES	2
326
#define MAX_SHARES	(1UL << 18)
327

328 329 330
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
331
/* Default task group.
I
Ingo Molnar 已提交
332
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
333
 */
334
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
335 336

/* return group to which a task belongs */
337
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
338
{
339
	struct task_group *tg;
340

341
#ifdef CONFIG_USER_SCHED
342
	tg = p->user->tg;
343
#elif defined(CONFIG_CGROUP_SCHED)
344 345
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
346
#else
I
Ingo Molnar 已提交
347
	tg = &init_task_group;
348
#endif
349
	return tg;
S
Srivatsa Vaddagiri 已提交
350 351 352
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
353
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
354
{
355
#ifdef CONFIG_FAIR_GROUP_SCHED
356 357
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
358
#endif
P
Peter Zijlstra 已提交
359

360
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
361 362
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
363
#endif
S
Srivatsa Vaddagiri 已提交
364 365 366 367
}

#else

P
Peter Zijlstra 已提交
368
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
369 370 371 372
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
373

374
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
375

I
Ingo Molnar 已提交
376 377 378 379 380 381
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
382
	u64 min_vruntime;
383
	u64 pair_start;
I
Ingo Molnar 已提交
384 385 386

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
387 388 389 390 391 392

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
393 394
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
395
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
396 397 398

	unsigned long nr_spread_over;

399
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
400 401
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
402 403
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
404 405 406 407 408 409
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
410 411
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
412 413 414

#ifdef CONFIG_SMP
	/*
415
	 * the part of load.weight contributed by tasks
416
	 */
417
	unsigned long task_weight;
418

419 420 421 422 423 424 425
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
426

427 428 429 430
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
431 432 433 434 435

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
436
#endif
I
Ingo Molnar 已提交
437 438
#endif
};
L
Linus Torvalds 已提交
439

I
Ingo Molnar 已提交
440 441 442
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
443
	unsigned long rt_nr_running;
444
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
445 446
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
447
#ifdef CONFIG_SMP
448
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
449
	int overloaded;
P
Peter Zijlstra 已提交
450
#endif
P
Peter Zijlstra 已提交
451
	int rt_throttled;
P
Peter Zijlstra 已提交
452
	u64 rt_time;
P
Peter Zijlstra 已提交
453
	u64 rt_runtime;
I
Ingo Molnar 已提交
454
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
455
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
456

457
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
458 459
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
460 461 462 463 464
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
465 466
};

G
Gregory Haskins 已提交
467 468 469 470
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
471 472
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
473 474 475 476 477 478 479 480
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
481

I
Ingo Molnar 已提交
482
	/*
483 484 485 486
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
487
	atomic_t rto_count;
488 489 490
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
491 492
};

493 494 495 496
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
497 498 499 500
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
501 502 503 504 505 506 507
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
508
struct rq {
509 510
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
511 512 513 514 515 516

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
517 518
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
519
	unsigned char idle_at_tick;
520
#ifdef CONFIG_NO_HZ
521
	unsigned long last_tick_seen;
522 523
	unsigned char in_nohz_recently;
#endif
524 525
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
526 527 528 529
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
530 531
	struct rt_rq rt;

I
Ingo Molnar 已提交
532
#ifdef CONFIG_FAIR_GROUP_SCHED
533 534
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
535 536
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
537
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
538 539 540 541 542 543 544 545 546 547
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

548
	struct task_struct *curr, *idle;
549
	unsigned long next_balance;
L
Linus Torvalds 已提交
550
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
551

552
	u64 clock;
I
Ingo Molnar 已提交
553

L
Linus Torvalds 已提交
554 555 556
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
557
	struct root_domain *rd;
L
Linus Torvalds 已提交
558 559 560 561 562
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
563 564
	/* cpu of this runqueue: */
	int cpu;
565
	int online;
L
Linus Torvalds 已提交
566

567
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
568

569
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
570 571 572
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
573
#ifdef CONFIG_SCHED_HRTICK
574 575 576 577
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
578 579 580
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
581 582 583 584 585
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
586 587 588 589
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
590 591

	/* schedule() stats */
592 593 594
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
595 596

	/* try_to_wake_up() stats */
597 598
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
599 600

	/* BKL stats */
601
	unsigned int bkl_count;
L
Linus Torvalds 已提交
602
#endif
603
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
604 605
};

606
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
607

I
Ingo Molnar 已提交
608 609 610 611 612
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

613 614 615 616 617 618 619 620 621
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
622 623
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
624
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
625 626 627 628
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
629 630
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
631 632 633 634 635 636

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

637 638 639 640 641
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
642 643 644 645 646 647 648 649 650
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
669 670 671
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
672 673 674 675

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
676
enum {
P
Peter Zijlstra 已提交
677
#include "sched_features.h"
I
Ingo Molnar 已提交
678 679
};

P
Peter Zijlstra 已提交
680 681 682 683 684
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
685
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
686 687 688 689 690 691 692 693 694
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

695
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
696 697 698 699 700 701
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

702
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
730
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
760
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
803

804 805 806 807 808 809
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
810 811 812 813 814 815
/*
 * ratelimit for updating the group shares.
 * default: 0.5ms
 */
const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;

P
Peter Zijlstra 已提交
816
/*
P
Peter Zijlstra 已提交
817
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
818 819
 * default: 1s
 */
P
Peter Zijlstra 已提交
820
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
821

822 823
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
824 825 826 827 828
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
829

830 831 832 833 834 835 836 837 838 839 840 841
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
842

L
Linus Torvalds 已提交
843
#ifndef prepare_arch_switch
844 845 846 847 848 849
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

850 851 852 853 854
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

855
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
856
static inline int task_running(struct rq *rq, struct task_struct *p)
857
{
858
	return task_current(rq, p);
859 860
}

861
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
862 863 864
{
}

865
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
866
{
867 868 869 870
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
871 872 873 874 875 876 877
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

878 879 880 881
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
882
static inline int task_running(struct rq *rq, struct task_struct *p)
883 884 885 886
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
887
	return task_current(rq, p);
888 889 890
#endif
}

891
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

908
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
909 910 911 912 913 914 915 916 917 918 919 920
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
921
#endif
922 923
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
924

925 926 927 928
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
929
static inline struct rq *__task_rq_lock(struct task_struct *p)
930 931
	__acquires(rq->lock)
{
932 933 934 935 936
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
937 938 939 940
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
941 942
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
943
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
944 945
 * explicitly disabling preemption.
 */
946
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
947 948
	__acquires(rq->lock)
{
949
	struct rq *rq;
L
Linus Torvalds 已提交
950

951 952 953 954 955 956
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
957 958 959 960
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
961
static void __task_rq_unlock(struct rq *rq)
962 963 964 965 966
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

967
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
968 969 970 971 972 973
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
974
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
975
 */
A
Alexey Dobriyan 已提交
976
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
977 978
	__acquires(rq->lock)
{
979
	struct rq *rq;
L
Linus Torvalds 已提交
980 981 982 983 984 985 986 987

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1009
	if (!cpu_active(cpu_of(rq)))
1010
		return 0;
P
Peter Zijlstra 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1031
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1032 1033 1034 1035 1036 1037
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1038
#ifdef CONFIG_SMP
1039 1040 1041 1042
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1043
{
1044
	struct rq *rq = arg;
1045

1046 1047 1048 1049
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1050 1051
}

1052 1053 1054 1055 1056 1057
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1058
{
1059 1060
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1061

1062 1063 1064 1065 1066 1067 1068 1069
	timer->expires = time;

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1084
		hrtick_clear(cpu_rq(cpu));
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1105

1106
static void init_hrtick(void)
P
Peter Zijlstra 已提交
1107 1108
{
}
1109
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1110

1111
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1112
{
1113 1114
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1115

1116 1117 1118 1119
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1120

1121 1122 1123
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
P
Peter Zijlstra 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1134 1135 1136
static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1137 1138
#endif

I
Ingo Molnar 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1152
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1153 1154 1155 1156 1157
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1158
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1159 1160
		return;

1161
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1224
#endif /* CONFIG_NO_HZ */
1225

1226
#else /* !CONFIG_SMP */
1227
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1228 1229
{
	assert_spin_locked(&task_rq(p)->lock);
1230
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1231
}
1232
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1233

1234 1235 1236 1237 1238 1239 1240 1241
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1242 1243 1244
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1245
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1246

1247 1248 1249
/*
 * delta *= weight / lw
 */
1250
static unsigned long
1251 1252 1253 1254 1255
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1256 1257 1258 1259 1260 1261 1262
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1263 1264 1265 1266 1267

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1268
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1269
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1270 1271
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1272
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1273

1274
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1275 1276
}

1277
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1278 1279
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1280
	lw->inv_weight = 0;
1281 1282
}

1283
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1284 1285
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1286
	lw->inv_weight = 0;
1287 1288
}

1289 1290 1291 1292
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1293
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1294 1295 1296 1297
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1309 1310 1311
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1312 1313
 */
static const int prio_to_weight[40] = {
1314 1315 1316 1317 1318 1319 1320 1321
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1322 1323
};

1324 1325 1326 1327 1328 1329 1330
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1331
static const u32 prio_to_wmult[40] = {
1332 1333 1334 1335 1336 1337 1338 1339
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1340
};
1341

I
Ingo Molnar 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1367

1368 1369 1370 1371 1372 1373
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1384 1385 1386 1387
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}
1398 1399

#ifdef CONFIG_FAIR_GROUP_SCHED
1400

1401
typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1402 1403 1404 1405 1406

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
1407 1408
static void
walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1409 1410 1411 1412 1413 1414
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
1415
	(*down)(parent, cpu, sd);
1416 1417 1418 1419 1420 1421 1422
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
1423
	(*up)(parent, cpu, sd);
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1438
__update_group_shares_cpu(struct task_group *tg, int cpu,
1439
			  unsigned long sd_shares, unsigned long sd_rq_weight)
1440
{
1441 1442 1443 1444
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1445
	if (!tg->se[cpu])
1446 1447
		return;

1448
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1460 1461 1462
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1463 1464 1465 1466 1467 1468
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1469
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1470 1471 1472 1473

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
1474
	tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1475
	tg->cfs_rq[cpu]->rq_weight = rq_weight;
1476 1477 1478 1479 1480 1481

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

1482
	__set_se_shares(tg->se[cpu], shares);
1483
}
1484 1485

/*
1486 1487 1488
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1489 1490
 */
static void
1491
tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1492
{
1493 1494 1495
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
	int i;
1496

1497 1498 1499
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1500 1501
	}

1502 1503 1504 1505 1506
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1507

P
Peter Zijlstra 已提交
1508 1509 1510
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1511 1512 1513 1514 1515
	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1516
		__update_group_shares_cpu(tg, i, shares, rq_weight);
1517 1518 1519 1520 1521
		spin_unlock_irqrestore(&rq->lock, flags);
	}
}

/*
1522 1523 1524
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1525
 */
1526
static void
1527
tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1528
{
1529
	unsigned long load;
1530

1531 1532 1533 1534 1535 1536 1537
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1538

1539
	tg->cfs_rq[cpu]->h_load = load;
1540 1541
}

1542 1543
static void
tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1544 1545 1546
{
}

1547
static void update_shares(struct sched_domain *sd)
1548
{
P
Peter Zijlstra 已提交
1549 1550 1551 1552 1553 1554 1555
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
		walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
	}
1556 1557
}

1558 1559 1560 1561 1562 1563 1564
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

1565
static void update_h_load(int cpu)
1566
{
1567
	walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1568 1569 1570 1571
}

#else

1572
static inline void update_shares(struct sched_domain *sd)
1573 1574 1575
{
}

1576 1577 1578 1579
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1580 1581 1582 1583
#endif

#endif

V
Vegard Nossum 已提交
1584
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1585 1586
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1587
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1588 1589 1590
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1591
#endif
1592

I
Ingo Molnar 已提交
1593 1594
#include "sched_stats.h"
#include "sched_idletask.c"
1595 1596
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1597 1598 1599 1600 1601
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1602 1603
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1604

1605
static void inc_nr_running(struct rq *rq)
1606 1607 1608 1609
{
	rq->nr_running++;
}

1610
static void dec_nr_running(struct rq *rq)
1611 1612 1613 1614
{
	rq->nr_running--;
}

1615 1616 1617
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1618 1619 1620 1621
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1622

I
Ingo Molnar 已提交
1623 1624 1625 1626 1627 1628 1629 1630
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1631

I
Ingo Molnar 已提交
1632 1633
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1634 1635
}

1636 1637 1638 1639 1640 1641
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1642
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1643
{
I
Ingo Molnar 已提交
1644
	sched_info_queued(p);
1645
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1646
	p->se.on_rq = 1;
1647 1648
}

1649
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1650
{
1651 1652 1653 1654 1655 1656
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1657
	sched_info_dequeued(p);
1658
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1659
	p->se.on_rq = 0;
1660 1661
}

1662
/*
I
Ingo Molnar 已提交
1663
 * __normal_prio - return the priority that is based on the static prio
1664 1665 1666
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1667
	return p->static_prio;
1668 1669
}

1670 1671 1672 1673 1674 1675 1676
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1677
static inline int normal_prio(struct task_struct *p)
1678 1679 1680
{
	int prio;

1681
	if (task_has_rt_policy(p))
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1695
static int effective_prio(struct task_struct *p)
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1708
/*
I
Ingo Molnar 已提交
1709
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1710
 */
I
Ingo Molnar 已提交
1711
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1712
{
1713
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1714
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1715

1716
	enqueue_task(rq, p, wakeup);
1717
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1718 1719 1720 1721 1722
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1723
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1724
{
1725
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1726 1727
		rq->nr_uninterruptible++;

1728
	dequeue_task(rq, p, sleep);
1729
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1730 1731 1732 1733 1734 1735
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1736
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1737 1738 1739 1740
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1741 1742
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1743
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1744
#ifdef CONFIG_SMP
1745 1746 1747 1748 1749 1750
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1751 1752
	task_thread_info(p)->cpu = cpu;
#endif
1753 1754
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1767
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1768

1769 1770 1771 1772 1773 1774
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1775 1776 1777
/*
 * Is this task likely cache-hot:
 */
1778
static int
1779 1780 1781 1782
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1783 1784 1785
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1786
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1787 1788
		return 1;

1789 1790 1791
	if (p->sched_class != &fair_sched_class)
		return 0;

1792 1793 1794 1795 1796
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1797 1798 1799 1800 1801 1802
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1803
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1804
{
I
Ingo Molnar 已提交
1805 1806
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1807 1808
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1809
	u64 clock_offset;
I
Ingo Molnar 已提交
1810 1811

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1812 1813 1814 1815

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1816 1817 1818 1819
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1820 1821 1822 1823 1824
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1825
#endif
1826 1827
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1828 1829

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1830 1831
}

1832
struct migration_req {
L
Linus Torvalds 已提交
1833 1834
	struct list_head list;

1835
	struct task_struct *task;
L
Linus Torvalds 已提交
1836 1837 1838
	int dest_cpu;

	struct completion done;
1839
};
L
Linus Torvalds 已提交
1840 1841 1842 1843 1844

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1845
static int
1846
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1847
{
1848
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1849 1850 1851 1852 1853

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1854
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1855 1856 1857 1858 1859 1860 1861 1862
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1863

L
Linus Torvalds 已提交
1864 1865 1866 1867 1868 1869
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1870 1871 1872 1873 1874 1875 1876
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1877 1878 1879 1880 1881 1882
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1883
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1884 1885
{
	unsigned long flags;
I
Ingo Molnar 已提交
1886
	int running, on_rq;
R
Roland McGrath 已提交
1887
	unsigned long ncsw;
1888
	struct rq *rq;
L
Linus Torvalds 已提交
1889

1890 1891 1892 1893 1894 1895 1896 1897
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1898

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1910 1911 1912
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1913
			cpu_relax();
R
Roland McGrath 已提交
1914
		}
1915

1916 1917 1918 1919 1920 1921 1922 1923
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1924 1925 1926 1927 1928 1929
		ncsw = 0;
		if (!match_state || p->state == match_state) {
			ncsw = p->nivcsw + p->nvcsw;
			if (unlikely(!ncsw))
				ncsw = 1;
		}
1930
		task_rq_unlock(rq, &flags);
1931

R
Roland McGrath 已提交
1932 1933 1934 1935 1936 1937
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1948

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1962

1963 1964 1965 1966 1967 1968 1969
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1970 1971

	return ncsw;
L
Linus Torvalds 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1987
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1999 2000
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2001 2002 2003 2004
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2005
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2006
{
2007
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2008
	unsigned long total = weighted_cpuload(cpu);
2009

2010
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2011
		return total;
2012

I
Ingo Molnar 已提交
2013
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2014 2015 2016
}

/*
2017 2018
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2019
 */
A
Alexey Dobriyan 已提交
2020
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2021
{
2022
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2023
	unsigned long total = weighted_cpuload(cpu);
2024

2025
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2026
		return total;
2027

I
Ingo Molnar 已提交
2028
	return max(rq->cpu_load[type-1], total);
2029 2030
}

N
Nick Piggin 已提交
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2048 2049
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2050
			continue;
2051

N
Nick Piggin 已提交
2052 2053 2054 2055 2056
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2057
		for_each_cpu_mask_nr(i, group->cpumask) {
N
Nick Piggin 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2068 2069
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2070 2071 2072 2073 2074 2075 2076 2077

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2078
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2079 2080 2081 2082 2083 2084 2085

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2086
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2087
 */
I
Ingo Molnar 已提交
2088
static int
2089 2090
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2091 2092 2093 2094 2095
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2096
	/* Traverse only the allowed CPUs */
2097
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2098

2099
	for_each_cpu_mask_nr(i, *tmp) {
2100
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2126

2127
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2128 2129 2130
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2131 2132
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2133 2134
		if (tmp->flags & flag)
			sd = tmp;
2135
	}
N
Nick Piggin 已提交
2136

2137 2138 2139
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2140
	while (sd) {
2141
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2142
		struct sched_group *group;
2143 2144 2145 2146 2147 2148
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2149 2150 2151

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2152 2153 2154 2155
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2156

2157
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2158 2159 2160 2161 2162
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2163

2164
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2196
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2197
{
2198
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2199 2200
	unsigned long flags;
	long old_state;
2201
	struct rq *rq;
L
Linus Torvalds 已提交
2202

2203 2204 2205
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2222
	smp_wmb();
L
Linus Torvalds 已提交
2223 2224 2225 2226 2227
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2228
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2229 2230 2231
		goto out_running;

	cpu = task_cpu(p);
2232
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2233 2234 2235 2236 2237 2238
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2239 2240 2241
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2242 2243 2244 2245 2246 2247
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2248
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2249 2250 2251 2252 2253 2254
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2268
#endif /* CONFIG_SCHEDSTATS */
2269

L
Linus Torvalds 已提交
2270 2271
out_activate:
#endif /* CONFIG_SMP */
2272 2273 2274 2275 2276 2277 2278 2279 2280
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2281
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2282
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2283 2284 2285
	success = 1;

out_running:
M
Mathieu Desnoyers 已提交
2286 2287 2288
	trace_mark(kernel_sched_wakeup,
		"pid %d state %ld ## rq %p task %p rq->curr %p",
		p->pid, p->state, rq, p, rq->curr);
I
Ingo Molnar 已提交
2289 2290
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2291
	p->state = TASK_RUNNING;
2292 2293 2294 2295
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2296
out:
2297 2298
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2299 2300 2301 2302 2303
	task_rq_unlock(rq, &flags);

	return success;
}

2304
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2305
{
2306
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2307 2308 2309
}
EXPORT_SYMBOL(wake_up_process);

2310
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2311 2312 2313 2314 2315 2316 2317
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2318 2319 2320 2321 2322 2323 2324
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2325
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2326 2327
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2328 2329 2330

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2331 2332 2333 2334 2335 2336
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2337
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2338
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2339
#endif
N
Nick Piggin 已提交
2340

P
Peter Zijlstra 已提交
2341
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2342
	p->se.on_rq = 0;
2343
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2344

2345 2346 2347 2348
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2349 2350 2351 2352 2353 2354 2355
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2370
	set_task_cpu(p, cpu);
2371 2372 2373 2374 2375

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2376 2377
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2378

2379
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2380
	if (likely(sched_info_on()))
2381
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2382
#endif
2383
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2384 2385
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2386
#ifdef CONFIG_PREEMPT
2387
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2388
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2389
#endif
N
Nick Piggin 已提交
2390
	put_cpu();
L
Linus Torvalds 已提交
2391 2392 2393 2394 2395 2396 2397 2398 2399
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2400
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2401 2402
{
	unsigned long flags;
I
Ingo Molnar 已提交
2403
	struct rq *rq;
L
Linus Torvalds 已提交
2404 2405

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2406
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2407
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2408 2409 2410

	p->prio = effective_prio(p);

2411
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2412
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2413 2414
	} else {
		/*
I
Ingo Molnar 已提交
2415 2416
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2417
		 */
2418
		p->sched_class->task_new(rq, p);
2419
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2420
	}
M
Mathieu Desnoyers 已提交
2421 2422 2423
	trace_mark(kernel_sched_wakeup_new,
		"pid %d state %ld ## rq %p task %p rq->curr %p",
		p->pid, p->state, rq, p, rq->curr);
I
Ingo Molnar 已提交
2424
	check_preempt_curr(rq, p);
2425 2426 2427 2428
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2429
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2430 2431
}

2432 2433 2434
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2435 2436
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2437 2438 2439 2440 2441 2442 2443 2444 2445
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2446
 * @notifier: notifier struct to unregister
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2476
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2488
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2489

2490 2491 2492
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2493
 * @prev: the current task that is being switched out
2494 2495 2496 2497 2498 2499 2500 2501 2502
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2503 2504 2505
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2506
{
2507
	fire_sched_out_preempt_notifiers(prev, next);
2508 2509 2510 2511
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2512 2513
/**
 * finish_task_switch - clean up after a task-switch
2514
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2515 2516
 * @prev: the thread we just switched away from.
 *
2517 2518 2519 2520
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2521 2522
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2523
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2524 2525 2526
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2527
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2528 2529 2530
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2531
	long prev_state;
L
Linus Torvalds 已提交
2532 2533 2534 2535 2536

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2537
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2538 2539
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2540
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2541 2542 2543 2544 2545
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2546
	prev_state = prev->state;
2547 2548
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2549 2550 2551 2552
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2553

2554
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2555 2556
	if (mm)
		mmdrop(mm);
2557
	if (unlikely(prev_state == TASK_DEAD)) {
2558 2559 2560
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2561
		 */
2562
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2563
		put_task_struct(prev);
2564
	}
L
Linus Torvalds 已提交
2565 2566 2567 2568 2569 2570
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2571
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2572 2573
	__releases(rq->lock)
{
2574 2575
	struct rq *rq = this_rq();

2576 2577 2578 2579 2580
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2581
	if (current->set_child_tid)
2582
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2583 2584 2585 2586 2587 2588
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2589
static inline void
2590
context_switch(struct rq *rq, struct task_struct *prev,
2591
	       struct task_struct *next)
L
Linus Torvalds 已提交
2592
{
I
Ingo Molnar 已提交
2593
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2594

2595
	prepare_task_switch(rq, prev, next);
M
Mathieu Desnoyers 已提交
2596 2597 2598 2599 2600
	trace_mark(kernel_sched_schedule,
		"prev_pid %d next_pid %d prev_state %ld "
		"## rq %p prev %p next %p",
		prev->pid, next->pid, prev->state,
		rq, prev, next);
I
Ingo Molnar 已提交
2601 2602
	mm = next->mm;
	oldmm = prev->active_mm;
2603 2604 2605 2606 2607 2608 2609
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2610
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2611 2612 2613 2614 2615 2616
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2617
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2618 2619 2620
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2621 2622 2623 2624 2625 2626 2627
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2628
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2629
#endif
L
Linus Torvalds 已提交
2630 2631 2632 2633

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2634 2635 2636 2637 2638 2639 2640
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2664
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2679 2680
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2681

2682
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2683 2684 2685 2686 2687 2688 2689 2690 2691
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2692
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2693 2694 2695 2696 2697
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2713
/*
I
Ingo Molnar 已提交
2714 2715
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2716
 */
I
Ingo Molnar 已提交
2717
static void update_cpu_load(struct rq *this_rq)
2718
{
2719
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2732 2733 2734 2735 2736 2737 2738
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2739 2740
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2741 2742
}

I
Ingo Molnar 已提交
2743 2744
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2745 2746 2747 2748 2749 2750
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2751
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2752 2753 2754
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2755
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2756 2757 2758 2759
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2760
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2761 2762 2763 2764 2765 2766 2767
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2768 2769
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2770 2771 2772 2773 2774 2775 2776 2777
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2778
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2792
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2793 2794 2795 2796
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2797 2798
	int ret = 0;

2799 2800 2801 2802 2803
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2804
	if (unlikely(!spin_trylock(&busiest->lock))) {
2805
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2806 2807 2808
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2809
			ret = 1;
L
Linus Torvalds 已提交
2810 2811 2812
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2813
	return ret;
L
Linus Torvalds 已提交
2814 2815 2816 2817 2818
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2819
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2820 2821
 * the cpu_allowed mask is restored.
 */
2822
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2823
{
2824
	struct migration_req req;
L
Linus Torvalds 已提交
2825
	unsigned long flags;
2826
	struct rq *rq;
L
Linus Torvalds 已提交
2827 2828 2829

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2830
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2831 2832 2833 2834 2835 2836
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2837

L
Linus Torvalds 已提交
2838 2839 2840 2841 2842
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2843

L
Linus Torvalds 已提交
2844 2845 2846 2847 2848 2849 2850
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2851 2852
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2853 2854 2855 2856
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2857
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2858
	put_cpu();
N
Nick Piggin 已提交
2859 2860
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2861 2862 2863 2864 2865 2866
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2867 2868
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2869
{
2870
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2871
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2872
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2873 2874 2875 2876
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2877
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2878 2879 2880 2881 2882
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2883
static
2884
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2885
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2886
		     int *all_pinned)
L
Linus Torvalds 已提交
2887 2888 2889 2890 2891 2892 2893
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2894 2895
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2896
		return 0;
2897
	}
2898 2899
	*all_pinned = 0;

2900 2901
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2902
		return 0;
2903
	}
L
Linus Torvalds 已提交
2904

2905 2906 2907 2908 2909 2910
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2911 2912
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2913
#ifdef CONFIG_SCHEDSTATS
2914
		if (task_hot(p, rq->clock, sd)) {
2915
			schedstat_inc(sd, lb_hot_gained[idle]);
2916 2917
			schedstat_inc(p, se.nr_forced_migrations);
		}
2918 2919 2920 2921
#endif
		return 1;
	}

2922 2923
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2924
		return 0;
2925
	}
L
Linus Torvalds 已提交
2926 2927 2928
	return 1;
}

2929 2930 2931 2932 2933
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2934
{
2935
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2936 2937
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2938

2939
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2940 2941
		goto out;

2942 2943
	pinned = 1;

L
Linus Torvalds 已提交
2944
	/*
I
Ingo Molnar 已提交
2945
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2946
	 */
I
Ingo Molnar 已提交
2947 2948
	p = iterator->start(iterator->arg);
next:
2949
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2950
		goto out;
2951 2952

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2953 2954 2955
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2956 2957
	}

I
Ingo Molnar 已提交
2958
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2959
	pulled++;
I
Ingo Molnar 已提交
2960
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2961

2962
	/*
2963
	 * We only want to steal up to the prescribed amount of weighted load.
2964
	 */
2965
	if (rem_load_move > 0) {
2966 2967
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2968 2969
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2970 2971 2972
	}
out:
	/*
2973
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2974 2975 2976 2977
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2978 2979 2980

	if (all_pinned)
		*all_pinned = pinned;
2981 2982

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2983 2984
}

I
Ingo Molnar 已提交
2985
/*
P
Peter Williams 已提交
2986 2987 2988
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2989 2990 2991 2992
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2993
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2994 2995 2996
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2997
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2998
	unsigned long total_load_moved = 0;
2999
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3000 3001

	do {
P
Peter Williams 已提交
3002 3003
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3004
				max_load_move - total_load_moved,
3005
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3006
		class = class->next;
3007 3008 3009 3010

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3011
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3012

P
Peter Williams 已提交
3013 3014 3015
	return total_load_moved > 0;
}

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3052
	const struct sched_class *class;
P
Peter Williams 已提交
3053 3054

	for (class = sched_class_highest; class; class = class->next)
3055
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3056 3057 3058
			return 1;

	return 0;
I
Ingo Molnar 已提交
3059 3060
}

L
Linus Torvalds 已提交
3061 3062
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3063 3064
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3065 3066 3067
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3068
		   unsigned long *imbalance, enum cpu_idle_type idle,
3069
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3070 3071 3072
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3073
	unsigned long max_pull;
3074 3075
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3076
	int load_idx, group_imb = 0;
3077 3078 3079 3080 3081 3082
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3083 3084

	max_load = this_load = total_load = total_pwr = 0;
3085 3086
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3087

I
Ingo Molnar 已提交
3088
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3089
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3090
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3091 3092 3093
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3094 3095

	do {
3096
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3097 3098
		int local_group;
		int i;
3099
		int __group_imb = 0;
3100
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3101
		unsigned long sum_nr_running, sum_weighted_load;
3102 3103
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3104 3105 3106

		local_group = cpu_isset(this_cpu, group->cpumask);

3107 3108 3109
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3110
		/* Tally up the load of all CPUs in the group */
3111
		sum_weighted_load = sum_nr_running = avg_load = 0;
3112 3113
		sum_avg_load_per_task = avg_load_per_task = 0;

3114 3115
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3116

3117
		for_each_cpu_mask_nr(i, group->cpumask) {
3118 3119 3120 3121 3122 3123
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3124

3125
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3126 3127
				*sd_idle = 0;

L
Linus Torvalds 已提交
3128
			/* Bias balancing toward cpus of our domain */
3129 3130 3131 3132 3133 3134
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3135
				load = target_load(i, load_idx);
3136
			} else {
N
Nick Piggin 已提交
3137
				load = source_load(i, load_idx);
3138 3139 3140 3141 3142
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3143 3144

			avg_load += load;
3145
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3146
			sum_weighted_load += weighted_cpuload(i);
3147 3148

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3149 3150
		}

3151 3152 3153
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3154 3155
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3156
		 */
3157 3158
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3159 3160 3161 3162
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3163
		total_load += avg_load;
3164
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3165 3166

		/* Adjust by relative CPU power of the group */
3167 3168
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3169

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3184 3185
			__group_imb = 1;

3186
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3187

L
Linus Torvalds 已提交
3188 3189 3190
		if (local_group) {
			this_load = avg_load;
			this = group;
3191 3192 3193
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3194
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3195 3196
			max_load = avg_load;
			busiest = group;
3197 3198
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3199
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3200
		}
3201 3202 3203 3204 3205 3206

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3207 3208 3209
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3210 3211 3212 3213 3214 3215 3216 3217 3218

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3219
		/*
3220 3221
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3222 3223
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3224
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3225
			goto group_next;
3226

I
Ingo Molnar 已提交
3227
		/*
3228
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3229 3230 3231 3232 3233
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3234 3235
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3236 3237
			group_min = group;
			min_nr_running = sum_nr_running;
3238 3239
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3240
		}
3241

I
Ingo Molnar 已提交
3242
		/*
3243
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3255
		}
3256 3257
group_next:
#endif
L
Linus Torvalds 已提交
3258 3259 3260
		group = group->next;
	} while (group != sd->groups);

3261
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3262 3263 3264 3265 3266 3267 3268 3269
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3270
	busiest_load_per_task /= busiest_nr_running;
3271 3272 3273
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3274 3275 3276 3277 3278 3279 3280 3281
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3282
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3283 3284
	 * appear as very large values with unsigned longs.
	 */
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3297 3298

	/* Don't want to pull so many tasks that a group would go idle */
3299
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3300

L
Linus Torvalds 已提交
3301
	/* How much load to actually move to equalise the imbalance */
3302 3303
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3304 3305
			/ SCHED_LOAD_SCALE;

3306 3307 3308 3309 3310 3311
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3312
	if (*imbalance < busiest_load_per_task) {
3313
		unsigned long tmp, pwr_now, pwr_move;
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3324
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3325

3326
		if (max_load - this_load + 2*busiest_load_per_task >=
I
Ingo Molnar 已提交
3327
					busiest_load_per_task * imbn) {
3328
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3329 3330 3331 3332 3333 3334 3335 3336 3337
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3338 3339 3340 3341
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3342 3343 3344
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3345 3346
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3347
		if (max_load > tmp)
3348
			pwr_move += busiest->__cpu_power *
3349
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3350 3351

		/* Amount of load we'd add */
3352
		if (max_load * busiest->__cpu_power <
3353
				busiest_load_per_task * SCHED_LOAD_SCALE)
3354 3355
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3356
		else
3357 3358 3359 3360
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3361 3362 3363
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3364 3365
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3366 3367 3368 3369 3370
	}

	return busiest;

out_balanced:
3371
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3372
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3373
		goto ret;
L
Linus Torvalds 已提交
3374

3375 3376 3377 3378 3379
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3380
ret:
L
Linus Torvalds 已提交
3381 3382 3383 3384 3385 3386 3387
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3388
static struct rq *
I
Ingo Molnar 已提交
3389
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3390
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3391
{
3392
	struct rq *busiest = NULL, *rq;
3393
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3394 3395
	int i;

3396
	for_each_cpu_mask_nr(i, group->cpumask) {
I
Ingo Molnar 已提交
3397
		unsigned long wl;
3398 3399 3400 3401

		if (!cpu_isset(i, *cpus))
			continue;

3402
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3403
		wl = weighted_cpuload(i);
3404

I
Ingo Molnar 已提交
3405
		if (rq->nr_running == 1 && wl > imbalance)
3406
			continue;
L
Linus Torvalds 已提交
3407

I
Ingo Molnar 已提交
3408 3409
		if (wl > max_load) {
			max_load = wl;
3410
			busiest = rq;
L
Linus Torvalds 已提交
3411 3412 3413 3414 3415 3416
		}
	}

	return busiest;
}

3417 3418 3419 3420 3421 3422
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3423 3424 3425 3426
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3427
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3428
			struct sched_domain *sd, enum cpu_idle_type idle,
3429
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3430
{
P
Peter Williams 已提交
3431
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3432 3433
	struct sched_group *group;
	unsigned long imbalance;
3434
	struct rq *busiest;
3435
	unsigned long flags;
N
Nick Piggin 已提交
3436

3437 3438
	cpus_setall(*cpus);

3439 3440 3441
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3442
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3443
	 * portraying it as CPU_NOT_IDLE.
3444
	 */
I
Ingo Molnar 已提交
3445
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3446
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3447
		sd_idle = 1;
L
Linus Torvalds 已提交
3448

3449
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3450

3451
redo:
3452
	update_shares(sd);
3453
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3454
				   cpus, balance);
3455

3456
	if (*balance == 0)
3457 3458
		goto out_balanced;

L
Linus Torvalds 已提交
3459 3460 3461 3462 3463
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3464
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3465 3466 3467 3468 3469
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3470
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3471 3472 3473

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3474
	ld_moved = 0;
L
Linus Torvalds 已提交
3475 3476 3477 3478
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3479
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3480 3481
		 * correctly treated as an imbalance.
		 */
3482
		local_irq_save(flags);
N
Nick Piggin 已提交
3483
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3484
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3485
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3486
		double_rq_unlock(this_rq, busiest);
3487
		local_irq_restore(flags);
3488

3489 3490 3491
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3492
		if (ld_moved && this_cpu != smp_processor_id())
3493 3494
			resched_cpu(this_cpu);

3495
		/* All tasks on this runqueue were pinned by CPU affinity */
3496
		if (unlikely(all_pinned)) {
3497 3498
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3499
				goto redo;
3500
			goto out_balanced;
3501
		}
L
Linus Torvalds 已提交
3502
	}
3503

P
Peter Williams 已提交
3504
	if (!ld_moved) {
L
Linus Torvalds 已提交
3505 3506 3507 3508 3509
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3510
			spin_lock_irqsave(&busiest->lock, flags);
3511 3512 3513 3514 3515

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3516
				spin_unlock_irqrestore(&busiest->lock, flags);
3517 3518 3519 3520
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3521 3522 3523
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3524
				active_balance = 1;
L
Linus Torvalds 已提交
3525
			}
3526
			spin_unlock_irqrestore(&busiest->lock, flags);
3527
			if (active_balance)
L
Linus Torvalds 已提交
3528 3529 3530 3531 3532 3533
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3534
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3535
		}
3536
	} else
L
Linus Torvalds 已提交
3537 3538
		sd->nr_balance_failed = 0;

3539
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3540 3541
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3542 3543 3544 3545 3546 3547 3548 3549 3550
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3551 3552
	}

P
Peter Williams 已提交
3553
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3554
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3555 3556 3557
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3558 3559 3560 3561

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3562
	sd->nr_balance_failed = 0;
3563 3564

out_one_pinned:
L
Linus Torvalds 已提交
3565
	/* tune up the balancing interval */
3566 3567
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3568 3569
		sd->balance_interval *= 2;

3570
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3571
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3572 3573 3574 3575
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3576 3577
	if (ld_moved)
		update_shares(sd);
3578
	return ld_moved;
L
Linus Torvalds 已提交
3579 3580 3581 3582 3583 3584
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3585
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3586 3587
 * this_rq is locked.
 */
3588
static int
3589 3590
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3591 3592
{
	struct sched_group *group;
3593
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3594
	unsigned long imbalance;
P
Peter Williams 已提交
3595
	int ld_moved = 0;
N
Nick Piggin 已提交
3596
	int sd_idle = 0;
3597
	int all_pinned = 0;
3598 3599

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3600

3601 3602 3603 3604
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3605
	 * portraying it as CPU_NOT_IDLE.
3606 3607 3608
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3609
		sd_idle = 1;
L
Linus Torvalds 已提交
3610

3611
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3612
redo:
3613
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3614
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3615
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3616
	if (!group) {
I
Ingo Molnar 已提交
3617
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3618
		goto out_balanced;
L
Linus Torvalds 已提交
3619 3620
	}

3621
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3622
	if (!busiest) {
I
Ingo Molnar 已提交
3623
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3624
		goto out_balanced;
L
Linus Torvalds 已提交
3625 3626
	}

N
Nick Piggin 已提交
3627 3628
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3629
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3630

P
Peter Williams 已提交
3631
	ld_moved = 0;
3632 3633 3634
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3635 3636
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3637
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3638 3639
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3640
		spin_unlock(&busiest->lock);
3641

3642
		if (unlikely(all_pinned)) {
3643 3644
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3645 3646
				goto redo;
		}
3647 3648
	}

P
Peter Williams 已提交
3649
	if (!ld_moved) {
I
Ingo Molnar 已提交
3650
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3651 3652
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3653 3654
			return -1;
	} else
3655
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3656

3657
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3658
	return ld_moved;
3659 3660

out_balanced:
I
Ingo Molnar 已提交
3661
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3662
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3663
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3664
		return -1;
3665
	sd->nr_balance_failed = 0;
3666

3667
	return 0;
L
Linus Torvalds 已提交
3668 3669 3670 3671 3672 3673
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3674
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3675 3676
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3677 3678
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3679
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3680 3681

	for_each_domain(this_cpu, sd) {
3682 3683 3684 3685 3686 3687
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3688
			/* If we've pulled tasks over stop searching: */
3689 3690
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3691 3692 3693 3694 3695 3696

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3697
	}
I
Ingo Molnar 已提交
3698
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3699 3700 3701 3702 3703
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3704
	}
L
Linus Torvalds 已提交
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3715
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3716
{
3717
	int target_cpu = busiest_rq->push_cpu;
3718 3719
	struct sched_domain *sd;
	struct rq *target_rq;
3720

3721
	/* Is there any task to move? */
3722 3723 3724 3725
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3726 3727

	/*
3728
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3729
	 * we need to fix it. Originally reported by
3730
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3731
	 */
3732
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3733

3734 3735
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3736 3737
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3738 3739

	/* Search for an sd spanning us and the target CPU. */
3740
	for_each_domain(target_cpu, sd) {
3741
		if ((sd->flags & SD_LOAD_BALANCE) &&
3742
		    cpu_isset(busiest_cpu, sd->span))
3743
				break;
3744
	}
3745

3746
	if (likely(sd)) {
3747
		schedstat_inc(sd, alb_count);
3748

P
Peter Williams 已提交
3749 3750
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3751 3752 3753 3754
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3755
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3756 3757
}

3758 3759 3760
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3761
	cpumask_t cpu_mask;
3762 3763 3764 3765 3766
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3767
/*
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3778
 *
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3798
		if (!cpu_active(cpu) &&
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3835 3836 3837 3838 3839
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3840
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3841
{
3842 3843
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3844 3845
	unsigned long interval;
	struct sched_domain *sd;
3846
	/* Earliest time when we have to do rebalance again */
3847
	unsigned long next_balance = jiffies + 60*HZ;
3848
	int update_next_balance = 0;
3849
	int need_serialize;
3850
	cpumask_t tmp;
L
Linus Torvalds 已提交
3851

3852
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3853 3854 3855 3856
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3857
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3858 3859 3860 3861 3862 3863
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3864 3865 3866
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3867
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3868

3869
		if (need_serialize) {
3870 3871 3872 3873
			if (!spin_trylock(&balancing))
				goto out;
		}

3874
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3875
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3876 3877
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3878 3879 3880
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3881
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3882
			}
3883
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3884
		}
3885
		if (need_serialize)
3886 3887
			spin_unlock(&balancing);
out:
3888
		if (time_after(next_balance, sd->last_balance + interval)) {
3889
			next_balance = sd->last_balance + interval;
3890 3891
			update_next_balance = 1;
		}
3892 3893 3894 3895 3896 3897 3898 3899

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3900
	}
3901 3902 3903 3904 3905 3906 3907 3908

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3909 3910 3911 3912 3913 3914 3915 3916 3917
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3918 3919 3920 3921
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3922

I
Ingo Molnar 已提交
3923
	rebalance_domains(this_cpu, idle);
3924 3925 3926 3927 3928 3929 3930

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3931 3932
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3933 3934 3935 3936
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3937
		cpu_clear(this_cpu, cpus);
3938
		for_each_cpu_mask_nr(balance_cpu, cpus) {
3939 3940 3941 3942 3943 3944 3945 3946
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3947
			rebalance_domains(balance_cpu, CPU_IDLE);
3948 3949

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3950 3951
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3964
static inline void trigger_load_balance(struct rq *rq, int cpu)
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3991
			if (ilb < nr_cpu_ids)
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4016
}
I
Ingo Molnar 已提交
4017 4018 4019

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4020 4021 4022
/*
 * on UP we do not need to balance between CPUs:
 */
4023
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4024 4025
{
}
I
Ingo Molnar 已提交
4026

L
Linus Torvalds 已提交
4027 4028 4029 4030 4031 4032 4033
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4034 4035
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4036
 */
4037
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4038 4039
{
	unsigned long flags;
4040 4041
	u64 ns, delta_exec;
	struct rq *rq;
4042

4043 4044
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4045
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4046 4047
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4048 4049 4050 4051
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4052

L
Linus Torvalds 已提交
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4074 4075
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4076 4077
}

4078 4079 4080 4081 4082
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4083
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4117
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4118 4119
	cputime64_t tmp;

4120 4121 4122 4123
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4124

L
Linus Torvalds 已提交
4125 4126 4127 4128 4129 4130 4131 4132
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4133
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4134
		cpustat->system = cputime64_add(cpustat->system, tmp);
4135
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4136 4137 4138 4139 4140 4141 4142
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4154 4155 4156 4157 4158 4159 4160 4161 4162
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4163
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4164 4165 4166 4167 4168 4169 4170

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4171
	} else
L
Linus Torvalds 已提交
4172 4173 4174
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4186
	struct task_struct *curr = rq->curr;
4187 4188

	sched_clock_tick();
I
Ingo Molnar 已提交
4189 4190

	spin_lock(&rq->lock);
4191
	update_rq_clock(rq);
4192
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4193
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4194
	spin_unlock(&rq->lock);
4195

4196
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4197 4198
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4199
#endif
L
Linus Torvalds 已提交
4200 4201
}

4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4214

4215
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4216
{
4217
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4218 4219 4220
	/*
	 * Underflow?
	 */
4221 4222
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4223
#endif
L
Linus Torvalds 已提交
4224
	preempt_count() += val;
4225
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4226 4227 4228
	/*
	 * Spinlock count overflowing soon?
	 */
4229 4230
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4231 4232 4233
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4234 4235 4236
}
EXPORT_SYMBOL(add_preempt_count);

4237
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4238
{
4239
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4240 4241 4242
	/*
	 * Underflow?
	 */
4243 4244
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4245 4246 4247
	/*
	 * Is the spinlock portion underflowing?
	 */
4248 4249 4250
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4251
#endif
4252

4253 4254
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4255 4256 4257 4258 4259 4260 4261
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4262
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4263
 */
I
Ingo Molnar 已提交
4264
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4265
{
4266 4267 4268 4269 4270
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4271
	debug_show_held_locks(prev);
4272
	print_modules();
I
Ingo Molnar 已提交
4273 4274
	if (irqs_disabled())
		print_irqtrace_events(prev);
4275 4276 4277 4278 4279

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4280
}
L
Linus Torvalds 已提交
4281

I
Ingo Molnar 已提交
4282 4283 4284 4285 4286
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4287
	/*
I
Ingo Molnar 已提交
4288
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4289 4290 4291
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4292
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4293 4294
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4295 4296
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4297
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4298 4299
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4300 4301
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4302 4303
	}
#endif
I
Ingo Molnar 已提交
4304 4305 4306 4307 4308 4309
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4310
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4311
{
4312
	const struct sched_class *class;
I
Ingo Molnar 已提交
4313
	struct task_struct *p;
L
Linus Torvalds 已提交
4314 4315

	/*
I
Ingo Molnar 已提交
4316 4317
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4318
	 */
I
Ingo Molnar 已提交
4319
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4320
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4321 4322
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4323 4324
	}

I
Ingo Molnar 已提交
4325 4326
	class = sched_class_highest;
	for ( ; ; ) {
4327
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4328 4329 4330 4331 4332 4333 4334 4335 4336
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4337

I
Ingo Molnar 已提交
4338 4339 4340 4341 4342 4343
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4344
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4345
	struct rq *rq;
4346
	int cpu;
I
Ingo Molnar 已提交
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4360

4361
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4362
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4363

4364 4365 4366 4367
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4368
	update_rq_clock(rq);
4369 4370
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4371 4372

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4373
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4374
			prev->state = TASK_RUNNING;
4375
		else
4376
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4377
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4378 4379
	}

4380 4381 4382 4383
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4384

I
Ingo Molnar 已提交
4385
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4386 4387
		idle_balance(cpu, rq);

4388
	prev->sched_class->put_prev_task(rq, prev);
4389
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4390 4391

	if (likely(prev != next)) {
4392 4393
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4394 4395 4396 4397
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4398
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4399 4400 4401 4402 4403 4404
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4405 4406 4407
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4408
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4409
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4410

L
Linus Torvalds 已提交
4411 4412 4413 4414 4415 4416 4417 4418
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4419
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4420
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4421 4422 4423 4424 4425
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4426

L
Linus Torvalds 已提交
4427 4428
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4429
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4430
	 */
N
Nick Piggin 已提交
4431
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4432 4433
		return;

4434 4435 4436 4437
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4438

4439 4440 4441 4442 4443 4444
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4445 4446 4447 4448
}
EXPORT_SYMBOL(preempt_schedule);

/*
4449
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4450 4451 4452 4453 4454 4455 4456
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4457

4458
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4459 4460
	BUG_ON(ti->preempt_count || !irqs_disabled());

4461 4462 4463 4464 4465 4466
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4467

4468 4469 4470 4471 4472 4473
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4474 4475 4476 4477
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4478 4479
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4480
{
4481
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4482 4483 4484 4485
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4486 4487
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4488 4489 4490
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4491
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4492 4493 4494 4495 4496
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4497
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4498

4499
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4500 4501
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4502
		if (curr->func(curr, mode, sync, key) &&
4503
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4504 4505 4506 4507 4508 4509 4510 4511 4512
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4513
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4514
 */
4515
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4516
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4529
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4530 4531 4532 4533 4534
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4535
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4547
void
I
Ingo Molnar 已提交
4548
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4565
void complete(struct completion *x)
L
Linus Torvalds 已提交
4566 4567 4568 4569 4570
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4571
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4572 4573 4574 4575
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4576
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4577 4578 4579 4580 4581
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4582
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4583 4584 4585 4586
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4587 4588
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4589 4590 4591 4592 4593 4594 4595
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4596 4597 4598 4599
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4600 4601
				timeout = -ERESTARTSYS;
				break;
4602 4603
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4604 4605 4606
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4607
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4608
		__remove_wait_queue(&x->wait, &wait);
4609 4610
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4611 4612
	}
	x->done--;
4613
	return timeout ?: 1;
L
Linus Torvalds 已提交
4614 4615
}

4616 4617
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4618 4619 4620 4621
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4622
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4623
	spin_unlock_irq(&x->wait.lock);
4624 4625
	return timeout;
}
L
Linus Torvalds 已提交
4626

4627
void __sched wait_for_completion(struct completion *x)
4628 4629
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4630
}
4631
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4632

4633
unsigned long __sched
4634
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4635
{
4636
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4637
}
4638
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4639

4640
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4641
{
4642 4643 4644 4645
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4646
}
4647
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4648

4649
unsigned long __sched
4650 4651
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4652
{
4653
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4654
}
4655
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4656

M
Matthew Wilcox 已提交
4657 4658 4659 4660 4661 4662 4663 4664 4665
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4666 4667
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4668
{
I
Ingo Molnar 已提交
4669 4670 4671 4672
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4673

4674
	__set_current_state(state);
L
Linus Torvalds 已提交
4675

4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4690 4691 4692
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4693
long __sched
I
Ingo Molnar 已提交
4694
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4695
{
4696
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4697 4698 4699
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4700
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4701
{
4702
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4703 4704 4705
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4706
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4707
{
4708
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4709 4710 4711
}
EXPORT_SYMBOL(sleep_on_timeout);

4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4724
void rt_mutex_setprio(struct task_struct *p, int prio)
4725 4726
{
	unsigned long flags;
4727
	int oldprio, on_rq, running;
4728
	struct rq *rq;
4729
	const struct sched_class *prev_class = p->sched_class;
4730 4731 4732 4733

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4734
	update_rq_clock(rq);
4735

4736
	oldprio = p->prio;
I
Ingo Molnar 已提交
4737
	on_rq = p->se.on_rq;
4738
	running = task_current(rq, p);
4739
	if (on_rq)
4740
		dequeue_task(rq, p, 0);
4741 4742
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4743 4744 4745 4746 4747 4748

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4749 4750
	p->prio = prio;

4751 4752
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4753
	if (on_rq) {
4754
		enqueue_task(rq, p, 0);
4755 4756

		check_class_changed(rq, p, prev_class, oldprio, running);
4757 4758 4759 4760 4761 4762
	}
	task_rq_unlock(rq, &flags);
}

#endif

4763
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4764
{
I
Ingo Molnar 已提交
4765
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4766
	unsigned long flags;
4767
	struct rq *rq;
L
Linus Torvalds 已提交
4768 4769 4770 4771 4772 4773 4774 4775

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4776
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4777 4778 4779 4780
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4781
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4782
	 */
4783
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4784 4785 4786
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4787
	on_rq = p->se.on_rq;
4788
	if (on_rq)
4789
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4790 4791

	p->static_prio = NICE_TO_PRIO(nice);
4792
	set_load_weight(p);
4793 4794 4795
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4796

I
Ingo Molnar 已提交
4797
	if (on_rq) {
4798
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4799
		/*
4800 4801
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4802
		 */
4803
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4804 4805 4806 4807 4808 4809 4810
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4811 4812 4813 4814 4815
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4816
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4817
{
4818 4819
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4820

M
Matt Mackall 已提交
4821 4822 4823 4824
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4836
	long nice, retval;
L
Linus Torvalds 已提交
4837 4838 4839 4840 4841 4842

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4843 4844
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4845 4846 4847 4848 4849 4850 4851 4852 4853
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4854 4855 4856
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4875
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4876 4877 4878 4879 4880 4881 4882 4883
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4884
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4885 4886 4887
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4888
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4903
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4904 4905 4906 4907 4908 4909 4910 4911
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4912
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4913
{
4914
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4915 4916 4917
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4918 4919
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4920
{
I
Ingo Molnar 已提交
4921
	BUG_ON(p->se.on_rq);
4922

L
Linus Torvalds 已提交
4923
	p->policy = policy;
I
Ingo Molnar 已提交
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4936
	p->rt_priority = prio;
4937 4938 4939
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4940
	set_load_weight(p);
L
Linus Torvalds 已提交
4941 4942
}

4943 4944
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4945
{
4946
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4947
	unsigned long flags;
4948
	const struct sched_class *prev_class = p->sched_class;
4949
	struct rq *rq;
L
Linus Torvalds 已提交
4950

4951 4952
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4953 4954 4955 4956 4957
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4958 4959
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4960
		return -EINVAL;
L
Linus Torvalds 已提交
4961 4962
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4963 4964
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4965 4966
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4967
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4968
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4969
		return -EINVAL;
4970
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4971 4972
		return -EINVAL;

4973 4974 4975
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4976
	if (user && !capable(CAP_SYS_NICE)) {
4977
		if (rt_policy(policy)) {
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4994 4995 4996 4997 4998 4999
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5000

5001 5002 5003 5004 5005
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5006

5007 5008 5009 5010 5011
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
5012 5013
	if (user
	    && rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5014 5015 5016
		return -EPERM;
#endif

L
Linus Torvalds 已提交
5017 5018 5019
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
5020 5021 5022 5023 5024
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5025 5026 5027 5028
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5029
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5030 5031 5032
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5033 5034
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5035 5036
		goto recheck;
	}
I
Ingo Molnar 已提交
5037
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5038
	on_rq = p->se.on_rq;
5039
	running = task_current(rq, p);
5040
	if (on_rq)
5041
		deactivate_task(rq, p, 0);
5042 5043
	if (running)
		p->sched_class->put_prev_task(rq, p);
5044

L
Linus Torvalds 已提交
5045
	oldprio = p->prio;
I
Ingo Molnar 已提交
5046
	__setscheduler(rq, p, policy, param->sched_priority);
5047

5048 5049
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5050 5051
	if (on_rq) {
		activate_task(rq, p, 0);
5052 5053

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5054
	}
5055 5056 5057
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5058 5059
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5060 5061
	return 0;
}
5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5076 5077
EXPORT_SYMBOL_GPL(sched_setscheduler);

5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5095 5096
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5097 5098 5099
{
	struct sched_param lparam;
	struct task_struct *p;
5100
	int retval;
L
Linus Torvalds 已提交
5101 5102 5103 5104 5105

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5106 5107 5108

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5109
	p = find_process_by_pid(pid);
5110 5111 5112
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5113

L
Linus Torvalds 已提交
5114 5115 5116 5117 5118 5119 5120 5121 5122
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5123 5124
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5125
{
5126 5127 5128 5129
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5149
	struct task_struct *p;
5150
	int retval;
L
Linus Torvalds 已提交
5151 5152

	if (pid < 0)
5153
		return -EINVAL;
L
Linus Torvalds 已提交
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5175
	struct task_struct *p;
5176
	int retval;
L
Linus Torvalds 已提交
5177 5178

	if (!param || pid < 0)
5179
		return -EINVAL;
L
Linus Torvalds 已提交
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5206
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5207 5208
{
	cpumask_t cpus_allowed;
5209
	cpumask_t new_mask = *in_mask;
5210 5211
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5212

5213
	get_online_cpus();
L
Linus Torvalds 已提交
5214 5215 5216 5217 5218
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5219
		put_online_cpus();
L
Linus Torvalds 已提交
5220 5221 5222 5223 5224
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5225
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5236 5237 5238 5239
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5240
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5241
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5242
 again:
5243
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5244

P
Paul Menage 已提交
5245
	if (!retval) {
5246
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5257 5258
out_unlock:
	put_task_struct(p);
5259
	put_online_cpus();
L
Linus Torvalds 已提交
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5290
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5291 5292 5293 5294
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5295
	struct task_struct *p;
L
Linus Torvalds 已提交
5296 5297
	int retval;

5298
	get_online_cpus();
L
Linus Torvalds 已提交
5299 5300 5301 5302 5303 5304 5305
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5306 5307 5308 5309
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5310
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5311 5312 5313

out_unlock:
	read_unlock(&tasklist_lock);
5314
	put_online_cpus();
L
Linus Torvalds 已提交
5315

5316
	return retval;
L
Linus Torvalds 已提交
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5347 5348
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5349 5350 5351
 */
asmlinkage long sys_sched_yield(void)
{
5352
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5353

5354
	schedstat_inc(rq, yld_count);
5355
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5356 5357 5358 5359 5360 5361

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5362
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5363 5364 5365 5366 5367 5368 5369 5370
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5371
static void __cond_resched(void)
L
Linus Torvalds 已提交
5372
{
5373 5374 5375
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5376 5377 5378 5379 5380
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5381 5382 5383 5384 5385 5386 5387
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5388
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5389
{
5390 5391
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5392 5393 5394 5395 5396
		__cond_resched();
		return 1;
	}
	return 0;
}
5397
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5398 5399 5400 5401 5402

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5403
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5404 5405 5406
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5407
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5408
{
N
Nick Piggin 已提交
5409
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5410 5411
	int ret = 0;

N
Nick Piggin 已提交
5412
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5413
		spin_unlock(lock);
N
Nick Piggin 已提交
5414 5415 5416 5417
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5418
		ret = 1;
L
Linus Torvalds 已提交
5419 5420
		spin_lock(lock);
	}
J
Jan Kara 已提交
5421
	return ret;
L
Linus Torvalds 已提交
5422 5423 5424 5425 5426 5427 5428
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5429
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5430
		local_bh_enable();
L
Linus Torvalds 已提交
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5442
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5453
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5454 5455 5456 5457 5458 5459 5460
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5461
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5462

5463
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5464 5465 5466
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5467
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5468 5469 5470 5471 5472
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5473
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5474 5475
	long ret;

5476
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5477 5478 5479
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5480
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5501
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5502
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5526
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5527
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5544
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5545
	unsigned int time_slice;
5546
	int retval;
L
Linus Torvalds 已提交
5547 5548 5549
	struct timespec t;

	if (pid < 0)
5550
		return -EINVAL;
L
Linus Torvalds 已提交
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5562 5563 5564 5565 5566 5567
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5568
		time_slice = DEF_TIMESLICE;
5569
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5570 5571 5572 5573 5574
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5575 5576
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5577 5578
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5579
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5580
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5581 5582
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5583

L
Linus Torvalds 已提交
5584 5585 5586 5587 5588
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5589
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5590

5591
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5592 5593
{
	unsigned long free = 0;
5594
	unsigned state;
L
Linus Torvalds 已提交
5595 5596

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5597
	printk(KERN_INFO "%-13.13s %c", p->comm,
5598
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5599
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5600
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5601
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5602
	else
I
Ingo Molnar 已提交
5603
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5604 5605
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5606
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5607
	else
I
Ingo Molnar 已提交
5608
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5609 5610 5611
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5612
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5613 5614
		while (!*n)
			n++;
5615
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5616 5617
	}
#endif
5618
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5619
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5620

5621
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5622 5623
}

I
Ingo Molnar 已提交
5624
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5625
{
5626
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5627

5628 5629 5630
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5631
#else
5632 5633
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5634 5635 5636 5637 5638 5639 5640 5641
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5642
		if (!state_filter || (p->state & state_filter))
5643
			sched_show_task(p);
L
Linus Torvalds 已提交
5644 5645
	} while_each_thread(g, p);

5646 5647
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5648 5649 5650
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5651
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5652 5653 5654 5655 5656
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5657 5658
}

I
Ingo Molnar 已提交
5659 5660
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5661
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5662 5663
}

5664 5665 5666 5667 5668 5669 5670 5671
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5672
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5673
{
5674
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5675 5676
	unsigned long flags;

I
Ingo Molnar 已提交
5677 5678 5679
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5680
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5681
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5682
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5683 5684 5685

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5686 5687 5688
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5689 5690 5691
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5692 5693 5694
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5695
	task_thread_info(idle)->preempt_count = 0;
5696
#endif
I
Ingo Molnar 已提交
5697 5698 5699 5700
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5737 5738 5739 5740
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5741
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5760
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5761 5762
 * call is not atomic; no spinlocks may be held.
 */
5763
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5764
{
5765
	struct migration_req req;
L
Linus Torvalds 已提交
5766
	unsigned long flags;
5767
	struct rq *rq;
5768
	int ret = 0;
L
Linus Torvalds 已提交
5769 5770

	rq = task_rq_lock(p, &flags);
5771
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5772 5773 5774 5775
		ret = -EINVAL;
		goto out;
	}

5776 5777 5778 5779 5780 5781
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5782
	if (p->sched_class->set_cpus_allowed)
5783
		p->sched_class->set_cpus_allowed(p, new_mask);
5784
	else {
5785 5786
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5787 5788
	}

L
Linus Torvalds 已提交
5789
	/* Can the task run on the task's current CPU? If so, we're done */
5790
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5791 5792
		goto out;

5793
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5794 5795 5796 5797 5798 5799 5800 5801 5802
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5803

L
Linus Torvalds 已提交
5804 5805
	return ret;
}
5806
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5807 5808

/*
I
Ingo Molnar 已提交
5809
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5810 5811 5812 5813 5814 5815
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5816 5817
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5818
 */
5819
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5820
{
5821
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5822
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5823

5824
	if (unlikely(!cpu_active(dest_cpu)))
5825
		return ret;
L
Linus Torvalds 已提交
5826 5827 5828 5829 5830 5831 5832

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5833
		goto done;
L
Linus Torvalds 已提交
5834 5835
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
5836
		goto fail;
L
Linus Torvalds 已提交
5837

I
Ingo Molnar 已提交
5838
	on_rq = p->se.on_rq;
5839
	if (on_rq)
5840
		deactivate_task(rq_src, p, 0);
5841

L
Linus Torvalds 已提交
5842
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5843 5844 5845
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5846
	}
L
Linus Torvalds 已提交
5847
done:
5848
	ret = 1;
L
Linus Torvalds 已提交
5849
fail:
L
Linus Torvalds 已提交
5850
	double_rq_unlock(rq_src, rq_dest);
5851
	return ret;
L
Linus Torvalds 已提交
5852 5853 5854 5855 5856 5857 5858
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5859
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5860 5861
{
	int cpu = (long)data;
5862
	struct rq *rq;
L
Linus Torvalds 已提交
5863 5864 5865 5866 5867 5868

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5869
		struct migration_req *req;
L
Linus Torvalds 已提交
5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5892
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5893 5894
		list_del_init(head->next);

N
Nick Piggin 已提交
5895 5896 5897
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5927
/*
5928
 * Figure out where task on dead CPU should go, use force if necessary.
5929 5930
 * NOTE: interrupts should be disabled by the caller
 */
5931
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5932
{
5933
	unsigned long flags;
L
Linus Torvalds 已提交
5934
	cpumask_t mask;
5935 5936
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5937

5938 5939 5940 5941 5942 5943 5944
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
5945
		if (dest_cpu >= nr_cpu_ids)
5946 5947 5948
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
5949
		if (dest_cpu >= nr_cpu_ids) {
5950 5951 5952
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
5953 5954 5955 5956
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5957
			 * cpuset_cpus_allowed() will not block. It must be
5958 5959
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5960
			rq = task_rq_lock(p, &flags);
5961
			p->cpus_allowed = cpus_allowed;
5962 5963
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5964

5965 5966 5967 5968 5969
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5970
			if (p->mm && printk_ratelimit()) {
5971 5972
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5973 5974
					task_pid_nr(p), p->comm, dead_cpu);
			}
5975
		}
5976
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5977 5978 5979 5980 5981 5982 5983 5984 5985
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5986
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5987
{
5988
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6002
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6003

6004
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6005

6006 6007
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6008 6009
			continue;

6010 6011 6012
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6013

6014
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6015 6016
}

I
Ingo Molnar 已提交
6017 6018
/*
 * Schedules idle task to be the next runnable task on current CPU.
6019 6020
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6021 6022 6023
 */
void sched_idle_next(void)
{
6024
	int this_cpu = smp_processor_id();
6025
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6026 6027 6028 6029
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6030
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6031

6032 6033 6034
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6035 6036 6037
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6038
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6039

6040 6041
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6042 6043 6044 6045

	spin_unlock_irqrestore(&rq->lock, flags);
}

6046 6047
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6061
/* called under rq->lock with disabled interrupts */
6062
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6063
{
6064
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6065 6066

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6067
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6068 6069

	/* Cannot have done final schedule yet: would have vanished. */
6070
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6071

6072
	get_task_struct(p);
L
Linus Torvalds 已提交
6073 6074 6075

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6076
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6077 6078
	 * fine.
	 */
6079
	spin_unlock_irq(&rq->lock);
6080
	move_task_off_dead_cpu(dead_cpu, p);
6081
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6082

6083
	put_task_struct(p);
L
Linus Torvalds 已提交
6084 6085 6086 6087 6088
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6089
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6090
	struct task_struct *next;
6091

I
Ingo Molnar 已提交
6092 6093 6094
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6095
		update_rq_clock(rq);
6096
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6097 6098
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6099
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6100
		migrate_dead(dead_cpu, next);
6101

L
Linus Torvalds 已提交
6102 6103 6104 6105
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6106 6107 6108
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6109 6110
	{
		.procname	= "sched_domain",
6111
		.mode		= 0555,
6112
	},
I
Ingo Molnar 已提交
6113
	{0, },
6114 6115 6116
};

static struct ctl_table sd_ctl_root[] = {
6117
	{
6118
		.ctl_name	= CTL_KERN,
6119
		.procname	= "kernel",
6120
		.mode		= 0555,
6121 6122
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6123
	{0, },
6124 6125 6126 6127 6128
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6129
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6130 6131 6132 6133

	return entry;
}

6134 6135
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6136
	struct ctl_table *entry;
6137

6138 6139 6140
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6141
	 * will always be set. In the lowest directory the names are
6142 6143 6144
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6145 6146
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6147 6148 6149
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6150 6151 6152 6153 6154

	kfree(*tablep);
	*tablep = NULL;
}

6155
static void
6156
set_table_entry(struct ctl_table *entry,
6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6170
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6171

6172 6173 6174
	if (table == NULL)
		return NULL;

6175
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6176
		sizeof(long), 0644, proc_doulongvec_minmax);
6177
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6178
		sizeof(long), 0644, proc_doulongvec_minmax);
6179
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6180
		sizeof(int), 0644, proc_dointvec_minmax);
6181
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6182
		sizeof(int), 0644, proc_dointvec_minmax);
6183
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6184
		sizeof(int), 0644, proc_dointvec_minmax);
6185
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6186
		sizeof(int), 0644, proc_dointvec_minmax);
6187
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6188
		sizeof(int), 0644, proc_dointvec_minmax);
6189
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6190
		sizeof(int), 0644, proc_dointvec_minmax);
6191
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6192
		sizeof(int), 0644, proc_dointvec_minmax);
6193
	set_table_entry(&table[9], "cache_nice_tries",
6194 6195
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6196
	set_table_entry(&table[10], "flags", &sd->flags,
6197
		sizeof(int), 0644, proc_dointvec_minmax);
6198
	/* &table[11] is terminator */
6199 6200 6201 6202

	return table;
}

6203
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6204 6205 6206 6207 6208 6209 6210 6211 6212
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6213 6214
	if (table == NULL)
		return NULL;
6215 6216 6217 6218 6219

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6220
		entry->mode = 0555;
6221 6222 6223 6224 6225 6226 6227 6228
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6229
static void register_sched_domain_sysctl(void)
6230 6231 6232 6233 6234
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6235 6236 6237
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6238 6239 6240
	if (entry == NULL)
		return;

6241
	for_each_online_cpu(i) {
6242 6243
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6244
		entry->mode = 0555;
6245
		entry->child = sd_alloc_ctl_cpu_table(i);
6246
		entry++;
6247
	}
6248 6249

	WARN_ON(sd_sysctl_header);
6250 6251
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6252

6253
/* may be called multiple times per register */
6254 6255
static void unregister_sched_domain_sysctl(void)
{
6256 6257
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6258
	sd_sysctl_header = NULL;
6259 6260
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6261
}
6262
#else
6263 6264 6265 6266
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6267 6268 6269 6270
{
}
#endif

6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6301 6302 6303 6304
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6305 6306
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6307 6308
{
	struct task_struct *p;
6309
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6310
	unsigned long flags;
6311
	struct rq *rq;
L
Linus Torvalds 已提交
6312 6313

	switch (action) {
6314

L
Linus Torvalds 已提交
6315
	case CPU_UP_PREPARE:
6316
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6317
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6318 6319 6320 6321 6322
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6323
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6324 6325 6326
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6327

L
Linus Torvalds 已提交
6328
	case CPU_ONLINE:
6329
	case CPU_ONLINE_FROZEN:
6330
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6331
		wake_up_process(cpu_rq(cpu)->migration_thread);
6332 6333 6334 6335 6336 6337

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6338 6339

			set_rq_online(rq);
6340 6341
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6342
		break;
6343

L
Linus Torvalds 已提交
6344 6345
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6346
	case CPU_UP_CANCELED_FROZEN:
6347 6348
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6349
		/* Unbind it from offline cpu so it can run. Fall thru. */
6350 6351
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6352 6353 6354
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6355

L
Linus Torvalds 已提交
6356
	case CPU_DEAD:
6357
	case CPU_DEAD_FROZEN:
6358
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6359 6360 6361 6362 6363
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6364
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6365
		update_rq_clock(rq);
6366
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6367
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6368 6369
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6370
		migrate_dead_tasks(cpu);
6371
		spin_unlock_irq(&rq->lock);
6372
		cpuset_unlock();
L
Linus Torvalds 已提交
6373 6374 6375
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6376 6377 6378 6379 6380
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6381 6382
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6383 6384
			struct migration_req *req;

L
Linus Torvalds 已提交
6385
			req = list_entry(rq->migration_queue.next,
6386
					 struct migration_req, list);
L
Linus Torvalds 已提交
6387 6388 6389 6390 6391
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6392

6393 6394
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6395 6396 6397 6398 6399
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6400
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6401 6402 6403
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6404 6405 6406 6407 6408 6409 6410 6411
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6412
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6413 6414 6415 6416
	.notifier_call = migration_call,
	.priority = 10
};

6417
static int __init migration_init(void)
L
Linus Torvalds 已提交
6418 6419
{
	void *cpu = (void *)(long)smp_processor_id();
6420
	int err;
6421 6422

	/* Start one for the boot CPU: */
6423 6424
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6425 6426
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6427 6428

	return err;
L
Linus Torvalds 已提交
6429
}
6430
early_initcall(migration_init);
L
Linus Torvalds 已提交
6431 6432 6433
#endif

#ifdef CONFIG_SMP
6434

6435
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6436

6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6459 6460
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6461
{
I
Ingo Molnar 已提交
6462
	struct sched_group *group = sd->groups;
6463
	char str[256];
L
Linus Torvalds 已提交
6464

6465
	cpulist_scnprintf(str, sizeof(str), sd->span);
6466
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6467 6468 6469 6470 6471 6472 6473 6474 6475

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6476 6477
	}

6478 6479
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6480 6481 6482 6483 6484 6485 6486 6487 6488

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6489

I
Ingo Molnar 已提交
6490
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6491
	do {
I
Ingo Molnar 已提交
6492 6493 6494
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6495 6496 6497
			break;
		}

I
Ingo Molnar 已提交
6498 6499 6500 6501 6502 6503
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6504

I
Ingo Molnar 已提交
6505 6506 6507 6508 6509
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6510

6511
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6512 6513 6514 6515
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6516

6517
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6518

6519
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6520
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6521

I
Ingo Molnar 已提交
6522 6523 6524
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6525

6526
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6527
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6528

6529
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6530 6531 6532 6533
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6534

I
Ingo Molnar 已提交
6535 6536
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6537
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6538
	int level = 0;
L
Linus Torvalds 已提交
6539

I
Ingo Molnar 已提交
6540 6541 6542 6543
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6544

I
Ingo Molnar 已提交
6545 6546
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6547 6548 6549 6550 6551 6552
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6553
	for (;;) {
6554
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6555
			break;
L
Linus Torvalds 已提交
6556 6557
		level++;
		sd = sd->parent;
6558
		if (!sd)
I
Ingo Molnar 已提交
6559 6560
			break;
	}
6561
	kfree(groupmask);
L
Linus Torvalds 已提交
6562
}
6563
#else /* !CONFIG_SCHED_DEBUG */
6564
# define sched_domain_debug(sd, cpu) do { } while (0)
6565
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6566

6567
static int sd_degenerate(struct sched_domain *sd)
6568 6569 6570 6571 6572 6573 6574 6575
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6576 6577 6578
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6592 6593
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6612 6613 6614
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6615 6616 6617 6618 6619 6620 6621
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6622 6623 6624 6625 6626 6627 6628 6629 6630
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6631 6632
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6633

6634 6635
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6636 6637 6638 6639 6640 6641 6642
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6643
	cpu_set(rq->cpu, rd->span);
6644
	if (cpu_isset(rq->cpu, cpu_online_map))
6645
		set_rq_online(rq);
G
Gregory Haskins 已提交
6646 6647 6648 6649

	spin_unlock_irqrestore(&rq->lock, flags);
}

6650
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6651 6652 6653
{
	memset(rd, 0, sizeof(*rd));

6654 6655
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6656 6657

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6658 6659 6660 6661
}

static void init_defrootdomain(void)
{
6662
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6663 6664 6665
	atomic_set(&def_root_domain.refcount, 1);
}

6666
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6667 6668 6669 6670 6671 6672 6673
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6674
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6675 6676 6677 6678

	return rd;
}

L
Linus Torvalds 已提交
6679
/*
I
Ingo Molnar 已提交
6680
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6681 6682
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6683 6684
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6685
{
6686
	struct rq *rq = cpu_rq(cpu);
6687 6688 6689 6690 6691 6692 6693
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6694
		if (sd_parent_degenerate(tmp, parent)) {
6695
			tmp->parent = parent->parent;
6696 6697 6698
			if (parent->parent)
				parent->parent->child = tmp;
		}
6699 6700
	}

6701
	if (sd && sd_degenerate(sd)) {
6702
		sd = sd->parent;
6703 6704 6705
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6706 6707 6708

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6709
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6710
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6711 6712 6713
}

/* cpus with isolated domains */
6714
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6715 6716 6717 6718

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6719 6720
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6721 6722 6723 6724 6725 6726 6727 6728 6729

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6730
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6731 6732

/*
6733 6734 6735 6736
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6737 6738 6739 6740 6741
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6742
static void
6743
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6744
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6745 6746 6747
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6748 6749 6750 6751
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6752 6753
	cpus_clear(*covered);

6754
	for_each_cpu_mask_nr(i, *span) {
6755
		struct sched_group *sg;
6756
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6757 6758
		int j;

6759
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6760 6761
			continue;

6762
		cpus_clear(sg->cpumask);
6763
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6764

6765
		for_each_cpu_mask_nr(j, *span) {
6766
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6767 6768
				continue;

6769
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6781
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6782

6783
#ifdef CONFIG_NUMA
6784

6785 6786 6787 6788 6789
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6790
 * Find the next node to include in a given scheduling domain. Simply
6791 6792 6793 6794
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6795
static int find_next_best_node(int node, nodemask_t *used_nodes)
6796 6797 6798 6799 6800
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6801
	for (i = 0; i < nr_node_ids; i++) {
6802
		/* Start at @node */
6803
		n = (node + i) % nr_node_ids;
6804 6805 6806 6807 6808

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6809
		if (node_isset(n, *used_nodes))
6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6821
	node_set(best_node, *used_nodes);
6822 6823 6824 6825 6826 6827
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6828
 * @span: resulting cpumask
6829
 *
I
Ingo Molnar 已提交
6830
 * Given a node, construct a good cpumask for its sched_domain to span. It
6831 6832 6833
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6834
static void sched_domain_node_span(int node, cpumask_t *span)
6835
{
6836 6837
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6838
	int i;
6839

6840
	cpus_clear(*span);
6841
	nodes_clear(used_nodes);
6842

6843
	cpus_or(*span, *span, *nodemask);
6844
	node_set(node, used_nodes);
6845 6846

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6847
		int next_node = find_next_best_node(node, &used_nodes);
6848

6849
		node_to_cpumask_ptr_next(nodemask, next_node);
6850
		cpus_or(*span, *span, *nodemask);
6851 6852
	}
}
6853
#endif /* CONFIG_NUMA */
6854

6855
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6856

6857
/*
6858
 * SMT sched-domains:
6859
 */
L
Linus Torvalds 已提交
6860 6861
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6862
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6863

I
Ingo Molnar 已提交
6864
static int
6865 6866
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6867
{
6868 6869
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6870 6871
	return cpu;
}
6872
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6873

6874 6875 6876
/*
 * multi-core sched-domains:
 */
6877 6878
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6879
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6880
#endif /* CONFIG_SCHED_MC */
6881 6882

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6883
static int
6884 6885
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6886
{
6887
	int group;
6888 6889 6890 6891

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6892 6893 6894
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6895 6896
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6897
static int
6898 6899
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6900
{
6901 6902
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6903 6904 6905 6906
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6907
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6908
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6909

I
Ingo Molnar 已提交
6910
static int
6911 6912
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6913
{
6914
	int group;
6915
#ifdef CONFIG_SCHED_MC
6916 6917 6918
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6919
#elif defined(CONFIG_SCHED_SMT)
6920 6921 6922
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6923
#else
6924
	group = cpu;
L
Linus Torvalds 已提交
6925
#endif
6926 6927 6928
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6929 6930 6931 6932
}

#ifdef CONFIG_NUMA
/*
6933 6934 6935
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6936
 */
6937
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6938
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6939

6940
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6941
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6942

6943
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6944
				 struct sched_group **sg, cpumask_t *nodemask)
6945
{
6946 6947
	int group;

6948 6949 6950
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
6951 6952 6953 6954

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6955
}
6956

6957 6958 6959 6960 6961 6962 6963
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6964
	do {
6965
		for_each_cpu_mask_nr(j, sg->cpumask) {
6966
			struct sched_domain *sd;
6967

6968 6969 6970 6971 6972 6973 6974 6975
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6976

6977 6978 6979 6980
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6981
}
6982
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6983

6984
#ifdef CONFIG_NUMA
6985
/* Free memory allocated for various sched_group structures */
6986
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6987
{
6988
	int cpu, i;
6989

6990
	for_each_cpu_mask_nr(cpu, *cpu_map) {
6991 6992 6993 6994 6995 6996
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6997
		for (i = 0; i < nr_node_ids; i++) {
6998 6999
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7000 7001 7002
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7019
#else /* !CONFIG_NUMA */
7020
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7021 7022
{
}
7023
#endif /* CONFIG_NUMA */
7024

7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7051 7052
	sd->groups->__cpu_power = 0;

7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7063
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7064 7065 7066 7067 7068 7069 7070 7071
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7072
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7073 7074 7075 7076
		group = group->next;
	} while (group != child->groups);
}

7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7088
	sd->level = SD_LV_##type;				\
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7137 7138 7139 7140
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7141 7142 7143 7144 7145 7146
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7172
/*
7173 7174
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7175
 */
7176 7177
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7178 7179
{
	int i;
G
Gregory Haskins 已提交
7180
	struct root_domain *rd;
7181 7182
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7183 7184
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7185
	int sd_allnodes = 0;
7186 7187 7188 7189

	/*
	 * Allocate the per-node list of sched groups
	 */
7190
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7191
				    GFP_KERNEL);
7192 7193
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7194
		return -ENOMEM;
7195 7196
	}
#endif
L
Linus Torvalds 已提交
7197

7198
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7199 7200
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7201 7202 7203
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7204 7205 7206
		return -ENOMEM;
	}

7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7226
	/*
7227
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7228
	 */
7229
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7230
		struct sched_domain *sd = NULL, *p;
7231
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7232

7233 7234
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7235 7236

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7237
		if (cpus_weight(*cpu_map) >
7238
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7239
			sd = &per_cpu(allnodes_domains, i);
7240
			SD_INIT(sd, ALLNODES);
7241
			set_domain_attribute(sd, attr);
7242
			sd->span = *cpu_map;
7243
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7244
			p = sd;
7245
			sd_allnodes = 1;
7246 7247 7248
		} else
			p = NULL;

L
Linus Torvalds 已提交
7249
		sd = &per_cpu(node_domains, i);
7250
		SD_INIT(sd, NODE);
7251
		set_domain_attribute(sd, attr);
7252
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7253
		sd->parent = p;
7254 7255
		if (p)
			p->child = sd;
7256
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7257 7258 7259 7260
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7261
		SD_INIT(sd, CPU);
7262
		set_domain_attribute(sd, attr);
7263
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7264
		sd->parent = p;
7265 7266
		if (p)
			p->child = sd;
7267
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7268

7269 7270 7271
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7272
		SD_INIT(sd, MC);
7273
		set_domain_attribute(sd, attr);
7274 7275 7276
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7277
		p->child = sd;
7278
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7279 7280
#endif

L
Linus Torvalds 已提交
7281 7282 7283
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7284
		SD_INIT(sd, SIBLING);
7285
		set_domain_attribute(sd, attr);
7286
		sd->span = per_cpu(cpu_sibling_map, i);
7287
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7288
		sd->parent = p;
7289
		p->child = sd;
7290
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7291 7292 7293 7294 7295
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7296
	for_each_cpu_mask_nr(i, *cpu_map) {
7297 7298 7299 7300 7301 7302
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7303 7304
			continue;

I
Ingo Molnar 已提交
7305
		init_sched_build_groups(this_sibling_map, cpu_map,
7306 7307
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7308 7309 7310
	}
#endif

7311 7312
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7313
	for_each_cpu_mask_nr(i, *cpu_map) {
7314 7315 7316 7317 7318 7319
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7320
			continue;
7321

I
Ingo Molnar 已提交
7322
		init_sched_build_groups(this_core_map, cpu_map,
7323 7324
					&cpu_to_core_group,
					send_covered, tmpmask);
7325 7326 7327
	}
#endif

L
Linus Torvalds 已提交
7328
	/* Set up physical groups */
7329
	for (i = 0; i < nr_node_ids; i++) {
7330 7331
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7332

7333 7334 7335
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7336 7337
			continue;

7338 7339 7340
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7341 7342 7343 7344
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7345 7346 7347 7348 7349 7350 7351
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7352

7353
	for (i = 0; i < nr_node_ids; i++) {
7354 7355
		/* Set up node groups */
		struct sched_group *sg, *prev;
7356 7357 7358
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7359 7360
		int j;

7361 7362 7363 7364 7365
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7366
			sched_group_nodes[i] = NULL;
7367
			continue;
7368
		}
7369

7370
		sched_domain_node_span(i, domainspan);
7371
		cpus_and(*domainspan, *domainspan, *cpu_map);
7372

7373
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7374 7375 7376 7377 7378
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7379
		sched_group_nodes[i] = sg;
7380
		for_each_cpu_mask_nr(j, *nodemask) {
7381
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7382

7383 7384 7385
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7386
		sg->__cpu_power = 0;
7387
		sg->cpumask = *nodemask;
7388
		sg->next = sg;
7389
		cpus_or(*covered, *covered, *nodemask);
7390 7391
		prev = sg;

7392
		for (j = 0; j < nr_node_ids; j++) {
7393
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7394
			int n = (i + j) % nr_node_ids;
7395
			node_to_cpumask_ptr(pnodemask, n);
7396

7397 7398 7399 7400
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7401 7402
				break;

7403 7404
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7405 7406
				continue;

7407 7408
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7409 7410 7411
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7412
				goto error;
7413
			}
7414
			sg->__cpu_power = 0;
7415
			sg->cpumask = *tmpmask;
7416
			sg->next = prev->next;
7417
			cpus_or(*covered, *covered, *tmpmask);
7418 7419 7420 7421
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7422 7423 7424
#endif

	/* Calculate CPU power for physical packages and nodes */
7425
#ifdef CONFIG_SCHED_SMT
7426
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7427 7428
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7429
		init_sched_groups_power(i, sd);
7430
	}
L
Linus Torvalds 已提交
7431
#endif
7432
#ifdef CONFIG_SCHED_MC
7433
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7434 7435
		struct sched_domain *sd = &per_cpu(core_domains, i);

7436
		init_sched_groups_power(i, sd);
7437 7438
	}
#endif
7439

7440
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7441 7442
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7443
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7444 7445
	}

7446
#ifdef CONFIG_NUMA
7447
	for (i = 0; i < nr_node_ids; i++)
7448
		init_numa_sched_groups_power(sched_group_nodes[i]);
7449

7450 7451
	if (sd_allnodes) {
		struct sched_group *sg;
7452

7453 7454
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7455 7456
		init_numa_sched_groups_power(sg);
	}
7457 7458
#endif

L
Linus Torvalds 已提交
7459
	/* Attach the domains */
7460
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7461 7462 7463
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7464 7465
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7466 7467 7468
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7469
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7470
	}
7471

7472
	SCHED_CPUMASK_FREE((void *)allmasks);
7473 7474
	return 0;

7475
#ifdef CONFIG_NUMA
7476
error:
7477 7478
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7479
	return -ENOMEM;
7480
#endif
L
Linus Torvalds 已提交
7481
}
P
Paul Jackson 已提交
7482

7483 7484 7485 7486 7487
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7488 7489
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7490 7491
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7492 7493 7494 7495 7496 7497 7498 7499

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7500 7501 7502 7503
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7504
/*
I
Ingo Molnar 已提交
7505
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7506 7507
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7508
 */
7509
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7510
{
7511 7512
	int err;

7513
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7514 7515 7516 7517 7518
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7519
	dattr_cur = NULL;
7520
	err = build_sched_domains(doms_cur);
7521
	register_sched_domain_sysctl();
7522 7523

	return err;
7524 7525
}

7526 7527
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7528
{
7529
	free_sched_groups(cpu_map, tmpmask);
7530
}
L
Linus Torvalds 已提交
7531

7532 7533 7534 7535
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7536
static void detach_destroy_domains(const cpumask_t *cpu_map)
7537
{
7538
	cpumask_t tmpmask;
7539 7540
	int i;

7541 7542
	unregister_sched_domain_sysctl();

7543
	for_each_cpu_mask_nr(i, *cpu_map)
G
Gregory Haskins 已提交
7544
		cpu_attach_domain(NULL, &def_root_domain, i);
7545
	synchronize_sched();
7546
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7547 7548
}

7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7565 7566
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7567
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7568 7569 7570 7571
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7572 7573 7574
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7575 7576 7577
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7578 7579
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7580 7581
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
7582
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7583 7584 7585
 *
 * Call with hotplug lock held
 */
7586 7587
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7588 7589 7590
{
	int i, j;

7591
	mutex_lock(&sched_domains_mutex);
7592

7593 7594 7595
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7596 7597
	if (doms_new == NULL)
		ndoms_new = 0;
P
Paul Jackson 已提交
7598 7599 7600 7601

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7602 7603
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7604 7605 7606 7607 7608 7609 7610 7611
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7612 7613 7614 7615 7616 7617 7618 7619
	if (doms_new == NULL) {
		ndoms_cur = 0;
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
		dattr_new = NULL;
	}

P
Paul Jackson 已提交
7620 7621 7622
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7623 7624
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7625 7626 7627
				goto match2;
		}
		/* no match - add a new doms_new */
7628 7629
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7630 7631 7632 7633 7634 7635 7636
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7637
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7638
	doms_cur = doms_new;
7639
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7640
	ndoms_cur = ndoms_new;
7641 7642

	register_sched_domain_sysctl();
7643

7644
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7645 7646
}

7647
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7648
int arch_reinit_sched_domains(void)
7649
{
7650
	get_online_cpus();
7651
	rebuild_sched_domains();
7652
	put_online_cpus();
7653
	return 0;
7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7674 7675
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7676 7677 7678
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7679
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7680
					    const char *buf, size_t count)
7681 7682 7683
{
	return sched_power_savings_store(buf, count, 0);
}
7684 7685 7686
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7687 7688 7689
#endif

#ifdef CONFIG_SCHED_SMT
7690 7691
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7692 7693 7694
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7695
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7696
					     const char *buf, size_t count)
7697 7698 7699
{
	return sched_power_savings_store(buf, count, 1);
}
7700 7701
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7721
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7722

7723
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7724
/*
7725 7726
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7727 7728 7729
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		partition_sched_domains(0, NULL, NULL);
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7747
{
P
Peter Zijlstra 已提交
7748 7749
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7750 7751
	switch (action) {
	case CPU_DOWN_PREPARE:
7752
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7753
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7754 7755 7756
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7757
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7758
	case CPU_ONLINE:
7759
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7760
		enable_runtime(cpu_rq(cpu));
7761 7762
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7763 7764 7765 7766 7767 7768 7769
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7770 7771
	cpumask_t non_isolated_cpus;

7772 7773 7774 7775 7776
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7777
	get_online_cpus();
7778
	mutex_lock(&sched_domains_mutex);
7779
	arch_init_sched_domains(&cpu_online_map);
7780
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7781 7782
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7783
	mutex_unlock(&sched_domains_mutex);
7784
	put_online_cpus();
7785 7786

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7787 7788
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7789 7790 7791 7792 7793
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7794
	init_hrtick();
7795 7796

	/* Move init over to a non-isolated CPU */
7797
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7798
		BUG();
I
Ingo Molnar 已提交
7799
	sched_init_granularity();
L
Linus Torvalds 已提交
7800 7801 7802 7803
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7804
	sched_init_granularity();
L
Linus Torvalds 已提交
7805 7806 7807 7808 7809 7810 7811 7812 7813 7814
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7815
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7816 7817
{
	cfs_rq->tasks_timeline = RB_ROOT;
7818
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7819 7820 7821
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7822
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7823 7824
}

P
Peter Zijlstra 已提交
7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7838
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7839 7840
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7841 7842 7843 7844 7845 7846 7847
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7848 7849
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7850

7851
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7852
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7853 7854
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7855 7856
}

P
Peter Zijlstra 已提交
7857
#ifdef CONFIG_FAIR_GROUP_SCHED
7858 7859 7860
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7861
{
7862
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7863 7864 7865 7866 7867 7868 7869
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7870 7871 7872 7873
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7874 7875 7876 7877 7878
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7879 7880
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7881
	se->load.inv_weight = 0;
7882
	se->parent = parent;
P
Peter Zijlstra 已提交
7883
}
7884
#endif
P
Peter Zijlstra 已提交
7885

7886
#ifdef CONFIG_RT_GROUP_SCHED
7887 7888 7889
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7890
{
7891 7892
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7893 7894 7895 7896
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7897
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7898 7899 7900 7901
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7902 7903 7904
	if (!rt_se)
		return;

7905 7906 7907 7908 7909
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7910
	rt_se->my_q = rt_rq;
7911
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7912 7913 7914 7915
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7916 7917
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7918
	int i, j;
7919 7920 7921 7922 7923 7924 7925
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7926 7927 7928
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7929 7930 7931 7932 7933 7934
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
7935
		ptr = (unsigned long)alloc_bootmem(alloc_size);
7936 7937 7938 7939 7940 7941 7942

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7943 7944 7945 7946 7947 7948 7949

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7950 7951
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
7952 7953 7954 7955 7956
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7957 7958 7959 7960 7961 7962 7963 7964
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7965 7966
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7967
	}
I
Ingo Molnar 已提交
7968

G
Gregory Haskins 已提交
7969 7970 7971 7972
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7973 7974 7975 7976 7977 7978
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7979 7980 7981
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
7982 7983
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7984

7985
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7986
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7987 7988 7989 7990 7991 7992
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
7993 7994
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
7995

7996
	for_each_possible_cpu(i) {
7997
		struct rq *rq;
L
Linus Torvalds 已提交
7998 7999 8000

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
8001
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
8002
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8003
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8004
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8005
#ifdef CONFIG_FAIR_GROUP_SCHED
8006
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8007
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8028
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8029
#elif defined CONFIG_USER_SCHED
8030 8031
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8043
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8044
				&per_cpu(init_cfs_rq, i),
8045 8046
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8047

8048
#endif
D
Dhaval Giani 已提交
8049 8050 8051
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8052
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8053
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8054
#ifdef CONFIG_CGROUP_SCHED
8055
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8056
#elif defined CONFIG_USER_SCHED
8057
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8058
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8059
				&per_cpu(init_rt_rq, i),
8060 8061
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8062
#endif
I
Ingo Molnar 已提交
8063
#endif
L
Linus Torvalds 已提交
8064

I
Ingo Molnar 已提交
8065 8066
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8067
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8068
		rq->sd = NULL;
G
Gregory Haskins 已提交
8069
		rq->rd = NULL;
L
Linus Torvalds 已提交
8070
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8071
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8072
		rq->push_cpu = 0;
8073
		rq->cpu = i;
8074
		rq->online = 0;
L
Linus Torvalds 已提交
8075 8076
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8077
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8078
#endif
P
Peter Zijlstra 已提交
8079
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8080 8081 8082
		atomic_set(&rq->nr_iowait, 0);
	}

8083
	set_load_weight(&init_task);
8084

8085 8086 8087 8088
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8089
#ifdef CONFIG_SMP
8090
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8091 8092
#endif

8093 8094 8095 8096
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8110 8111 8112 8113
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8114 8115

	scheduler_running = 1;
L
Linus Torvalds 已提交
8116 8117 8118 8119 8120
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8121
#ifdef in_atomic
L
Linus Torvalds 已提交
8122 8123 8124 8125 8126 8127 8128
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8129
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8130 8131 8132
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8133
		debug_show_held_locks(current);
8134 8135
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8136 8137 8138 8139 8140 8141 8142 8143
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8144 8145 8146
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8147

8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8159 8160
void normalize_rt_tasks(void)
{
8161
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8162
	unsigned long flags;
8163
	struct rq *rq;
L
Linus Torvalds 已提交
8164

8165
	read_lock_irqsave(&tasklist_lock, flags);
8166
	do_each_thread(g, p) {
8167 8168 8169 8170 8171 8172
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8173 8174
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8175 8176 8177
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8178
#endif
I
Ingo Molnar 已提交
8179 8180 8181 8182 8183 8184 8185 8186

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8187
			continue;
I
Ingo Molnar 已提交
8188
		}
L
Linus Torvalds 已提交
8189

8190
		spin_lock(&p->pi_lock);
8191
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8192

8193
		normalize_task(rq, p);
8194

8195
		__task_rq_unlock(rq);
8196
		spin_unlock(&p->pi_lock);
8197 8198
	} while_each_thread(g, p);

8199
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8200 8201 8202
}

#endif /* CONFIG_MAGIC_SYSRQ */
8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8221
struct task_struct *curr_task(int cpu)
8222 8223 8224 8225 8226 8227 8228 8229 8230 8231
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8232 8233
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8234 8235 8236 8237 8238 8239 8240
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8241
void set_curr_task(int cpu, struct task_struct *p)
8242 8243 8244 8245 8246
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8247

8248 8249
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8264 8265
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8266 8267
{
	struct cfs_rq *cfs_rq;
8268
	struct sched_entity *se, *parent_se;
8269
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8270 8271
	int i;

8272
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8273 8274
	if (!tg->cfs_rq)
		goto err;
8275
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8276 8277
	if (!tg->se)
		goto err;
8278 8279

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8280 8281

	for_each_possible_cpu(i) {
8282
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8283

P
Peter Zijlstra 已提交
8284 8285
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8286 8287 8288
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8289 8290
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8291 8292 8293
		if (!se)
			goto err;

8294 8295
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8314
#else /* !CONFG_FAIR_GROUP_SCHED */
8315 8316 8317 8318
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8319 8320
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8332
#endif /* CONFIG_FAIR_GROUP_SCHED */
8333 8334

#ifdef CONFIG_RT_GROUP_SCHED
8335 8336 8337 8338
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8339 8340
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8352 8353
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8354 8355
{
	struct rt_rq *rt_rq;
8356
	struct sched_rt_entity *rt_se, *parent_se;
8357 8358 8359
	struct rq *rq;
	int i;

8360
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8361 8362
	if (!tg->rt_rq)
		goto err;
8363
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8364 8365 8366
	if (!tg->rt_se)
		goto err;

8367 8368
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8369 8370 8371 8372

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8373 8374 8375 8376
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8377

P
Peter Zijlstra 已提交
8378 8379 8380 8381
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8382

8383 8384
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8385 8386
	}

8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8403
#else /* !CONFIG_RT_GROUP_SCHED */
8404 8405 8406 8407
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8408 8409
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8421
#endif /* CONFIG_RT_GROUP_SCHED */
8422

8423
#ifdef CONFIG_GROUP_SCHED
8424 8425 8426 8427 8428 8429 8430 8431
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8432
struct task_group *sched_create_group(struct task_group *parent)
8433 8434 8435 8436 8437 8438 8439 8440 8441
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8442
	if (!alloc_fair_sched_group(tg, parent))
8443 8444
		goto err;

8445
	if (!alloc_rt_sched_group(tg, parent))
8446 8447
		goto err;

8448
	spin_lock_irqsave(&task_group_lock, flags);
8449
	for_each_possible_cpu(i) {
8450 8451
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8452
	}
P
Peter Zijlstra 已提交
8453
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8454 8455 8456 8457 8458 8459

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8460
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8461

8462
	return tg;
S
Srivatsa Vaddagiri 已提交
8463 8464

err:
P
Peter Zijlstra 已提交
8465
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8466 8467 8468
	return ERR_PTR(-ENOMEM);
}

8469
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8470
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8471 8472
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8473
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8474 8475
}

8476
/* Destroy runqueue etc associated with a task group */
8477
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8478
{
8479
	unsigned long flags;
8480
	int i;
S
Srivatsa Vaddagiri 已提交
8481

8482
	spin_lock_irqsave(&task_group_lock, flags);
8483
	for_each_possible_cpu(i) {
8484 8485
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8486
	}
P
Peter Zijlstra 已提交
8487
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8488
	list_del_rcu(&tg->siblings);
8489
	spin_unlock_irqrestore(&task_group_lock, flags);
8490 8491

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8492
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8493 8494
}

8495
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8496 8497 8498
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8499 8500
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8501 8502 8503 8504 8505 8506 8507 8508 8509
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8510
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8511 8512
	on_rq = tsk->se.on_rq;

8513
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8514
		dequeue_task(rq, tsk, 0);
8515 8516
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8517

P
Peter Zijlstra 已提交
8518
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8519

P
Peter Zijlstra 已提交
8520 8521 8522 8523 8524
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8525 8526 8527
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8528
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8529 8530 8531

	task_rq_unlock(rq, &flags);
}
8532
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8533

8534
#ifdef CONFIG_FAIR_GROUP_SCHED
8535
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8536 8537 8538 8539 8540
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8541
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8542 8543 8544
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8545
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8546

8547
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8548
		enqueue_entity(cfs_rq, se, 0);
8549
}
8550

8551 8552 8553 8554 8555 8556 8557 8558 8559
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8560 8561
}

8562 8563
static DEFINE_MUTEX(shares_mutex);

8564
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8565 8566
{
	int i;
8567
	unsigned long flags;
8568

8569 8570 8571 8572 8573 8574
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8575 8576
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8577 8578
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8579

8580
	mutex_lock(&shares_mutex);
8581
	if (tg->shares == shares)
8582
		goto done;
S
Srivatsa Vaddagiri 已提交
8583

8584
	spin_lock_irqsave(&task_group_lock, flags);
8585 8586
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8587
	list_del_rcu(&tg->siblings);
8588
	spin_unlock_irqrestore(&task_group_lock, flags);
8589 8590 8591 8592 8593 8594 8595 8596

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8597
	tg->shares = shares;
8598 8599 8600 8601 8602
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8603
		set_se_shares(tg->se[i], shares);
8604
	}
S
Srivatsa Vaddagiri 已提交
8605

8606 8607 8608 8609
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8610
	spin_lock_irqsave(&task_group_lock, flags);
8611 8612
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8613
	list_add_rcu(&tg->siblings, &tg->parent->children);
8614
	spin_unlock_irqrestore(&task_group_lock, flags);
8615
done:
8616
	mutex_unlock(&shares_mutex);
8617
	return 0;
S
Srivatsa Vaddagiri 已提交
8618 8619
}

8620 8621 8622 8623
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8624
#endif
8625

8626
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8627
/*
P
Peter Zijlstra 已提交
8628
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8629
 */
P
Peter Zijlstra 已提交
8630 8631 8632 8633 8634 8635 8636
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8637
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8638 8639
}

8640 8641 8642
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
8643
	struct task_group *tgi, *parent = tg->parent;
8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

8667
	return total + to_ratio(period, runtime) <=
8668 8669 8670 8671
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8672
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8673 8674 8675
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8676
	unsigned long global_ratio =
8677
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8678 8679

	rcu_read_lock();
P
Peter Zijlstra 已提交
8680 8681 8682
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8683

8684 8685
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8686 8687
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8688

P
Peter Zijlstra 已提交
8689
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8690
}
8691
#endif
P
Peter Zijlstra 已提交
8692

8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8704 8705
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8706
{
P
Peter Zijlstra 已提交
8707
	int i, err = 0;
P
Peter Zijlstra 已提交
8708 8709

	mutex_lock(&rt_constraints_mutex);
8710
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8711
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8712 8713 8714
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8715 8716 8717 8718
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8719 8720

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8721 8722
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8723 8724 8725 8726 8727 8728 8729 8730 8731

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8732
 unlock:
8733
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8734 8735 8736
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8737 8738
}

8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8751 8752 8753 8754
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8755
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8756 8757
		return -1;

8758
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8759 8760 8761
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8762 8763 8764 8765 8766 8767 8768 8769

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8770 8771 8772
	if (rt_period == 0)
		return -EINVAL;

8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8787 8788
	struct task_group *tg = &root_task_group;
	u64 rt_runtime, rt_period;
8789 8790
	int ret = 0;

8791 8792 8793
	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8794
	mutex_lock(&rt_constraints_mutex);
8795
	if (!__rt_schedulable(tg, rt_period, rt_runtime))
8796 8797 8798 8799 8800
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8801
#else /* !CONFIG_RT_GROUP_SCHED */
8802 8803
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8817 8818
	return 0;
}
8819
#endif /* CONFIG_RT_GROUP_SCHED */
8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8850

8851
#ifdef CONFIG_CGROUP_SCHED
8852 8853

/* return corresponding task_group object of a cgroup */
8854
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8855
{
8856 8857
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8858 8859 8860
}

static struct cgroup_subsys_state *
8861
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8862
{
8863
	struct task_group *tg, *parent;
8864

8865
	if (!cgrp->parent) {
8866
		/* This is early initialization for the top cgroup */
8867
		init_task_group.css.cgroup = cgrp;
8868 8869 8870
		return &init_task_group.css;
	}

8871 8872
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8873 8874 8875 8876
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8877
	tg->css.cgroup = cgrp;
8878 8879 8880 8881

	return &tg->css;
}

I
Ingo Molnar 已提交
8882 8883
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8884
{
8885
	struct task_group *tg = cgroup_tg(cgrp);
8886 8887 8888 8889

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8890 8891 8892
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8893
{
8894 8895
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8896
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8897 8898
		return -EINVAL;
#else
8899 8900 8901
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8902
#endif
8903 8904 8905 8906 8907

	return 0;
}

static void
8908
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8909 8910 8911 8912 8913
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8914
#ifdef CONFIG_FAIR_GROUP_SCHED
8915
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8916
				u64 shareval)
8917
{
8918
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8919 8920
}

8921
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8922
{
8923
	struct task_group *tg = cgroup_tg(cgrp);
8924 8925 8926

	return (u64) tg->shares;
}
8927
#endif /* CONFIG_FAIR_GROUP_SCHED */
8928

8929
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8930
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8931
				s64 val)
P
Peter Zijlstra 已提交
8932
{
8933
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8934 8935
}

8936
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8937
{
8938
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8939
}
8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8951
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8952

8953
static struct cftype cpu_files[] = {
8954
#ifdef CONFIG_FAIR_GROUP_SCHED
8955 8956
	{
		.name = "shares",
8957 8958
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8959
	},
8960 8961
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8962
	{
P
Peter Zijlstra 已提交
8963
		.name = "rt_runtime_us",
8964 8965
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8966
	},
8967 8968
	{
		.name = "rt_period_us",
8969 8970
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8971
	},
8972
#endif
8973 8974 8975 8976
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8977
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8978 8979 8980
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8981 8982 8983 8984 8985 8986 8987
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8988 8989 8990
	.early_init	= 1,
};

8991
#endif	/* CONFIG_CGROUP_SCHED */
8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9012
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9013
{
9014
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9027
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9044
static void
9045
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9046
{
9047
	struct cpuacct *ca = cgroup_ca(cgrp);
9048 9049 9050 9051 9052 9053

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9054
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9055
{
9056
	struct cpuacct *ca = cgroup_ca(cgrp);
9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9098 9099 9100
static struct cftype files[] = {
	{
		.name = "usage",
9101 9102
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9103 9104 9105
	},
};

9106
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9107
{
9108
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */