sched.c 219.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <linux/slab.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

81
#define CREATE_TRACE_POINTS
82
#include <trace/events/sched.h>
83

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123 124
static inline int rt_policy(int policy)
{
125
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 127 128 129 130 131 132 133 134
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
135
/*
I
Ingo Molnar 已提交
136
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
137
 */
I
Ingo Molnar 已提交
138 139 140 141 142
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

143
struct rt_bandwidth {
I
Ingo Molnar 已提交
144
	/* nests inside the rq lock: */
145
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
146 147 148
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

182
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
183

184 185 186 187 188
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

189 190 191
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
192 193 194 195 196 197
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

198
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 200 201 202 203
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

204
	raw_spin_lock(&rt_b->rt_runtime_lock);
205
	for (;;) {
206 207 208
		unsigned long delta;
		ktime_t soft, hard;

209 210 211 212 213
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 215 216 217 218

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219
				HRTIMER_MODE_ABS_PINNED, 0);
220
	}
221
	raw_spin_unlock(&rt_b->rt_runtime_lock);
222 223 224 225 226 227 228 229 230
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

231 232 233 234 235 236
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
237
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
238

239 240
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
241 242
struct cfs_rq;

P
Peter Zijlstra 已提交
243 244
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
245
/* task group related information */
246
struct task_group {
247
	struct cgroup_subsys_state css;
248

249
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
250 251 252 253 254
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
255 256 257 258 259 260
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

261
	struct rt_bandwidth rt_bandwidth;
262
#endif
263

264
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
265
	struct list_head list;
P
Peter Zijlstra 已提交
266 267 268 269

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
270 271
};

272
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
273

274
/* task_group_lock serializes add/remove of task groups and also changes to
275 276
 * a task group's cpu shares.
 */
277
static DEFINE_SPINLOCK(task_group_lock);
278

279 280
#ifdef CONFIG_FAIR_GROUP_SCHED

281 282 283 284 285 286 287
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

288 289
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

290
/*
291 292 293 294
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
295 296 297
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
298
#define MIN_SHARES	2
299
#define MAX_SHARES	(1UL << 18)
300

301 302 303
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
304
/* Default task group.
I
Ingo Molnar 已提交
305
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
306
 */
307
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
308 309

/* return group to which a task belongs */
310
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
311
{
312
	struct task_group *tg;
313

D
Dhaval Giani 已提交
314
#ifdef CONFIG_CGROUP_SCHED
315 316
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
317
#else
I
Ingo Molnar 已提交
318
	tg = &init_task_group;
319
#endif
320
	return tg;
S
Srivatsa Vaddagiri 已提交
321 322 323
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
324
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
325
{
326
#ifdef CONFIG_FAIR_GROUP_SCHED
327 328
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
329
#endif
P
Peter Zijlstra 已提交
330

331
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
332 333
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
334
#endif
S
Srivatsa Vaddagiri 已提交
335 336 337 338
}

#else

P
Peter Zijlstra 已提交
339
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
340 341 342 343
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
344

D
Dhaval Giani 已提交
345
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
346

I
Ingo Molnar 已提交
347 348 349 350 351 352
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
353
	u64 min_vruntime;
I
Ingo Molnar 已提交
354 355 356

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
357 358 359 360 361 362

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
363 364
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
365
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
366

P
Peter Zijlstra 已提交
367
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
368

369
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
370 371
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
372 373
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
374 375 376 377 378 379
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
380 381
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
382 383 384

#ifdef CONFIG_SMP
	/*
385
	 * the part of load.weight contributed by tasks
386
	 */
387
	unsigned long task_weight;
388

389 390 391 392 393 394 395
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
396

397 398 399 400
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
401 402 403 404 405

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
406
#endif
I
Ingo Molnar 已提交
407 408
#endif
};
L
Linus Torvalds 已提交
409

I
Ingo Molnar 已提交
410 411 412
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
413
	unsigned long rt_nr_running;
414
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
415 416
	struct {
		int curr; /* highest queued rt task prio */
417
#ifdef CONFIG_SMP
418
		int next; /* next highest */
419
#endif
420
	} highest_prio;
P
Peter Zijlstra 已提交
421
#endif
P
Peter Zijlstra 已提交
422
#ifdef CONFIG_SMP
423
	unsigned long rt_nr_migratory;
424
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
425
	int overloaded;
426
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
427
#endif
P
Peter Zijlstra 已提交
428
	int rt_throttled;
P
Peter Zijlstra 已提交
429
	u64 rt_time;
P
Peter Zijlstra 已提交
430
	u64 rt_runtime;
I
Ingo Molnar 已提交
431
	/* Nests inside the rq lock: */
432
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
433

434
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
435 436
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
437 438 439 440
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
441 442
};

G
Gregory Haskins 已提交
443 444 445 446
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
447 448
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
449 450 451 452 453 454
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
455 456
	cpumask_var_t span;
	cpumask_var_t online;
457

I
Ingo Molnar 已提交
458
	/*
459 460 461
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
462
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
463
	atomic_t rto_count;
464 465 466
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
467 468
};

469 470 471 472
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
473 474 475 476
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
477 478 479 480 481 482 483
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
484
struct rq {
485
	/* runqueue lock: */
486
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
487 488 489 490 491 492

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
493 494
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
495 496 497
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
498 499
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
500 501 502 503
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
504 505
	struct rt_rq rt;

I
Ingo Molnar 已提交
506
#ifdef CONFIG_FAIR_GROUP_SCHED
507 508
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
509 510
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
511
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
512 513 514 515 516 517 518 519 520 521
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

522
	struct task_struct *curr, *idle;
523
	unsigned long next_balance;
L
Linus Torvalds 已提交
524
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
525

526
	u64 clock;
I
Ingo Molnar 已提交
527

L
Linus Torvalds 已提交
528 529 530
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
531
	struct root_domain *rd;
L
Linus Torvalds 已提交
532 533
	struct sched_domain *sd;

534
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
535
	/* For active balancing */
536
	int post_schedule;
L
Linus Torvalds 已提交
537 538
	int active_balance;
	int push_cpu;
539 540
	/* cpu of this runqueue: */
	int cpu;
541
	int online;
L
Linus Torvalds 已提交
542

543
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
544

545
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
546
	struct list_head migration_queue;
547 548 549

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
550 551
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
552 553
#endif

554 555 556 557
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
558
#ifdef CONFIG_SCHED_HRTICK
559 560 561 562
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
563 564 565
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
566 567 568
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
569 570
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
571 572

	/* sys_sched_yield() stats */
573
	unsigned int yld_count;
L
Linus Torvalds 已提交
574 575

	/* schedule() stats */
576 577 578
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
579 580

	/* try_to_wake_up() stats */
581 582
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
583 584

	/* BKL stats */
585
	unsigned int bkl_count;
L
Linus Torvalds 已提交
586 587 588
#endif
};

589
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
590

P
Peter Zijlstra 已提交
591 592
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
593
{
P
Peter Zijlstra 已提交
594
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
595 596
}

597 598 599 600 601 602 603 604 605
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

606
#define rcu_dereference_check_sched_domain(p) \
607 608 609 610
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
611 612
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
613
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
614 615 616 617
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
618
#define for_each_domain(cpu, __sd) \
619
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
620 621 622 623 624

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
625
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
626

I
Ingo Molnar 已提交
627
inline void update_rq_clock(struct rq *rq)
628 629 630 631
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
632 633 634 635 636 637 638 639 640
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
641 642
/**
 * runqueue_is_locked
643
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
644 645 646 647 648
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
649
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
650
{
651
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
652 653
}

I
Ingo Molnar 已提交
654 655 656
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
657 658 659 660

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
661
enum {
P
Peter Zijlstra 已提交
662
#include "sched_features.h"
I
Ingo Molnar 已提交
663 664
};

P
Peter Zijlstra 已提交
665 666 667 668 669
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
670
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
671 672 673 674 675 676 677 678 679
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

680
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
681 682 683 684 685 686
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
687
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
688 689 690 691
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
692 693 694
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
695
	}
L
Li Zefan 已提交
696
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
697

L
Li Zefan 已提交
698
	return 0;
P
Peter Zijlstra 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
718
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

738
	*ppos += cnt;
P
Peter Zijlstra 已提交
739 740 741 742

	return cnt;
}

L
Li Zefan 已提交
743 744 745 746 747
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

748
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
749 750 751 752 753
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
768

769 770 771 772 773 774
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
775 776
/*
 * ratelimit for updating the group shares.
777
 * default: 0.25ms
P
Peter Zijlstra 已提交
778
 */
779
unsigned int sysctl_sched_shares_ratelimit = 250000;
780
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
781

782 783 784 785 786 787 788
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

789 790 791 792 793 794 795 796
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
797
/*
P
Peter Zijlstra 已提交
798
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
799 800
 * default: 1s
 */
P
Peter Zijlstra 已提交
801
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
802

803 804
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
805 806 807 808 809
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
810

811 812 813 814 815 816 817
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
818
	if (sysctl_sched_rt_runtime < 0)
819 820 821 822
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
823

L
Linus Torvalds 已提交
824
#ifndef prepare_arch_switch
825 826 827 828 829 830
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

831 832 833 834 835
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

836
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
837
static inline int task_running(struct rq *rq, struct task_struct *p)
838
{
839
	return task_current(rq, p);
840 841
}

842
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
843 844 845
{
}

846
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
847
{
848 849 850 851
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
852 853 854 855 856 857 858
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

859
	raw_spin_unlock_irq(&rq->lock);
860 861 862
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
863
static inline int task_running(struct rq *rq, struct task_struct *p)
864 865 866 867
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
868
	return task_current(rq, p);
869 870 871
#endif
}

872
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
873 874 875 876 877 878 879 880 881 882
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
883
	raw_spin_unlock_irq(&rq->lock);
884
#else
885
	raw_spin_unlock(&rq->lock);
886 887 888
#endif
}

889
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
890 891 892 893 894 895 896 897 898 899 900 901
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
902
#endif
903 904
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
905

906 907 908 909 910 911 912 913 914 915 916 917 918
/*
 * Check whether the task is waking, we use this to synchronize against
 * ttwu() so that task_cpu() reports a stable number.
 *
 * We need to make an exception for PF_STARTING tasks because the fork
 * path might require task_rq_lock() to work, eg. it can call
 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
 */
static inline int task_is_waking(struct task_struct *p)
{
	return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
}

919 920 921 922
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
923
static inline struct rq *__task_rq_lock(struct task_struct *p)
924 925
	__acquires(rq->lock)
{
926 927
	struct rq *rq;

928
	for (;;) {
929 930 931
		while (task_is_waking(p))
			cpu_relax();
		rq = task_rq(p);
932
		raw_spin_lock(&rq->lock);
933
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
934
			return rq;
935
		raw_spin_unlock(&rq->lock);
936 937 938
	}
}

L
Linus Torvalds 已提交
939 940
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
941
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
942 943
 * explicitly disabling preemption.
 */
944
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
945 946
	__acquires(rq->lock)
{
947
	struct rq *rq;
L
Linus Torvalds 已提交
948

949
	for (;;) {
950 951
		while (task_is_waking(p))
			cpu_relax();
952 953
		local_irq_save(*flags);
		rq = task_rq(p);
954
		raw_spin_lock(&rq->lock);
955
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
956
			return rq;
957
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
958 959 960
	}
}

961 962 963 964 965
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
966
	raw_spin_unlock_wait(&rq->lock);
967 968
}

A
Alexey Dobriyan 已提交
969
static void __task_rq_unlock(struct rq *rq)
970 971
	__releases(rq->lock)
{
972
	raw_spin_unlock(&rq->lock);
973 974
}

975
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
976 977
	__releases(rq->lock)
{
978
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
979 980 981
}

/*
982
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
983
 */
A
Alexey Dobriyan 已提交
984
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
985 986
	__acquires(rq->lock)
{
987
	struct rq *rq;
L
Linus Torvalds 已提交
988 989 990

	local_irq_disable();
	rq = this_rq();
991
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
992 993 994 995

	return rq;
}

P
Peter Zijlstra 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1017
	if (!cpu_active(cpu_of(rq)))
1018
		return 0;
P
Peter Zijlstra 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1038
	raw_spin_lock(&rq->lock);
1039
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1040
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1041
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1042 1043 1044 1045

	return HRTIMER_NORESTART;
}

1046
#ifdef CONFIG_SMP
1047 1048 1049 1050
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1051
{
1052
	struct rq *rq = arg;
1053

1054
	raw_spin_lock(&rq->lock);
1055 1056
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1057
	raw_spin_unlock(&rq->lock);
1058 1059
}

1060 1061 1062 1063 1064 1065
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1066
{
1067 1068
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1069

1070
	hrtimer_set_expires(timer, time);
1071 1072 1073 1074

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1075
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1076 1077
		rq->hrtick_csd_pending = 1;
	}
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1092
		hrtick_clear(cpu_rq(cpu));
1093 1094 1095 1096 1097 1098
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1099
static __init void init_hrtick(void)
1100 1101 1102
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1103 1104 1105 1106 1107 1108 1109 1110
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1111
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1112
			HRTIMER_MODE_REL_PINNED, 0);
1113
}
1114

A
Andrew Morton 已提交
1115
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1116 1117
{
}
1118
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1119

1120
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1121
{
1122 1123
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1124

1125 1126 1127 1128
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1129

1130 1131
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1132
}
A
Andrew Morton 已提交
1133
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1134 1135 1136 1137 1138 1139 1140 1141
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1142 1143 1144
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1145
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1146

I
Ingo Molnar 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1160
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1161 1162 1163
{
	int cpu;

1164
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1165

1166
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1167 1168
		return;

1169
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1186
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1187 1188
		return;
	resched_task(cpu_curr(cpu));
1189
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1190
}
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1225
	set_tsk_need_resched(rq->idle);
1226 1227 1228 1229 1230 1231

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1232
#endif /* CONFIG_NO_HZ */
1233

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1255
#else /* !CONFIG_SMP */
1256
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1257
{
1258
	assert_raw_spin_locked(&task_rq(p)->lock);
1259
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1260
}
1261 1262 1263 1264

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1265
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1266

1267 1268 1269 1270 1271 1272 1273 1274
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1275 1276 1277
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1278
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1279

1280 1281 1282
/*
 * delta *= weight / lw
 */
1283
static unsigned long
1284 1285 1286 1287 1288
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1289 1290 1291 1292 1293 1294 1295
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1296 1297 1298 1299 1300

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1301
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1302
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1303 1304
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1305
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1306

1307
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1308 1309
}

1310
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1311 1312
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1313
	lw->inv_weight = 0;
1314 1315
}

1316
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1317 1318
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1319
	lw->inv_weight = 0;
1320 1321
}

1322 1323 1324 1325
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1326
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1327 1328 1329 1330
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1331 1332
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1342 1343 1344
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1345 1346
 */
static const int prio_to_weight[40] = {
1347 1348 1349 1350 1351 1352 1353 1354
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1355 1356
};

1357 1358 1359 1360 1361 1362 1363
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1364
static const u32 prio_to_wmult[40] = {
1365 1366 1367 1368 1369 1370 1371 1372
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1373
};
1374

1375 1376 1377 1378 1379 1380 1381 1382
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1383 1384
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1385 1386
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1387 1388
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1389 1390
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1391 1392
#endif

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1403
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1404
typedef int (*tg_visitor)(struct task_group *, void *);
1405 1406 1407 1408 1409

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1410
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1411 1412
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1413
	int ret;
1414 1415 1416 1417

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1418 1419 1420
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1421 1422 1423 1424 1425 1426 1427
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1428 1429 1430
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1431 1432 1433 1434 1435

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1436
out_unlock:
1437
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1438 1439

	return ret;
1440 1441
}

P
Peter Zijlstra 已提交
1442 1443 1444
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1445
}
P
Peter Zijlstra 已提交
1446 1447 1448
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1488 1489
static struct sched_group *group_of(int cpu)
{
1490
	struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1508 1509 1510 1511 1512
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1513
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1514

1515 1516
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1517 1518
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1519 1520 1521 1522 1523

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1524

1525
static __read_mostly unsigned long __percpu *update_shares_data;
1526

1527 1528 1529 1530 1531
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1532 1533 1534
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1535
				    unsigned long *usd_rq_weight)
1536
{
1537
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1538
	int boost = 0;
1539

1540
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1541 1542 1543 1544
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1545

1546
	/*
P
Peter Zijlstra 已提交
1547 1548 1549
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1550
	 */
1551
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1552
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1553

1554 1555 1556 1557
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1558

1559
		raw_spin_lock_irqsave(&rq->lock, flags);
1560
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1561
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1562
		__set_se_shares(tg->se[cpu], shares);
1563
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1564
	}
1565
}
1566 1567

/*
1568 1569 1570
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1571
 */
P
Peter Zijlstra 已提交
1572
static int tg_shares_up(struct task_group *tg, void *data)
1573
{
1574
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1575
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1576
	struct sched_domain *sd = data;
1577
	unsigned long flags;
1578
	int i;
1579

1580 1581 1582 1583
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1584
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1585

1586
	for_each_cpu(i, sched_domain_span(sd)) {
1587
		weight = tg->cfs_rq[i]->load.weight;
1588
		usd_rq_weight[i] = weight;
1589

1590
		rq_weight += weight;
1591 1592 1593 1594 1595 1596 1597 1598
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1599
		sum_weight += weight;
1600
		shares += tg->cfs_rq[i]->shares;
1601 1602
	}

1603 1604 1605
	if (!rq_weight)
		rq_weight = sum_weight;

1606 1607 1608 1609 1610
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1611

1612
	for_each_cpu(i, sched_domain_span(sd))
1613
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1614 1615

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1616 1617

	return 0;
1618 1619 1620
}

/*
1621 1622 1623
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1624
 */
P
Peter Zijlstra 已提交
1625
static int tg_load_down(struct task_group *tg, void *data)
1626
{
1627
	unsigned long load;
P
Peter Zijlstra 已提交
1628
	long cpu = (long)data;
1629

1630 1631 1632 1633 1634 1635 1636
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1637

1638
	tg->cfs_rq[cpu]->h_load = load;
1639

P
Peter Zijlstra 已提交
1640
	return 0;
1641 1642
}

1643
static void update_shares(struct sched_domain *sd)
1644
{
1645 1646 1647 1648 1649 1650 1651 1652
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1653 1654 1655

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1656
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1657
	}
1658 1659
}

P
Peter Zijlstra 已提交
1660
static void update_h_load(long cpu)
1661
{
1662 1663 1664
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1665
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1666 1667 1668 1669
}

#else

1670
static inline void update_shares(struct sched_domain *sd)
1671 1672 1673
{
}

1674 1675
#endif

1676 1677
#ifdef CONFIG_PREEMPT

1678 1679
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1680
/*
1681 1682 1683 1684 1685 1686
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1687
 */
1688 1689 1690 1691 1692
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1693
	raw_spin_unlock(&this_rq->lock);
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1708 1709 1710 1711 1712 1713
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1714
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1715
		if (busiest < this_rq) {
1716 1717 1718 1719
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1720 1721
			ret = 1;
		} else
1722 1723
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1724 1725 1726 1727
	}
	return ret;
}

1728 1729 1730 1731 1732 1733 1734 1735 1736
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1737
		raw_spin_unlock(&this_rq->lock);
1738 1739 1740 1741 1742 1743
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1744 1745 1746
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1747
	raw_spin_unlock(&busiest->lock);
1748 1749
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
	update_rq_clock(rq1);
	update_rq_clock(rq2);
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1795 1796
#endif

V
Vegard Nossum 已提交
1797
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1798 1799
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1800
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1801 1802 1803
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1804
#endif
1805

1806
static void calc_load_account_active(struct rq *this_rq);
1807
static void update_sysctl(void);
1808
static int get_update_sysctl_factor(void);
1809

P
Peter Zijlstra 已提交
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1823

1824
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1825 1826

#define sched_class_highest (&rt_sched_class)
1827 1828
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1829

1830 1831
#include "sched_stats.h"

1832
static void inc_nr_running(struct rq *rq)
1833 1834 1835 1836
{
	rq->nr_running++;
}

1837
static void dec_nr_running(struct rq *rq)
1838 1839 1840 1841
{
	rq->nr_running--;
}

1842 1843 1844
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1845 1846 1847 1848
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1849

I
Ingo Molnar 已提交
1850 1851 1852 1853 1854 1855 1856 1857
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1858

I
Ingo Molnar 已提交
1859 1860
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1861 1862
}

1863 1864 1865 1866 1867 1868
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1869 1870
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1871
{
P
Peter Zijlstra 已提交
1872 1873 1874
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1875
	sched_info_queued(p);
1876
	p->sched_class->enqueue_task(rq, p, wakeup, head);
I
Ingo Molnar 已提交
1877
	p->se.on_rq = 1;
1878 1879
}

1880
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1881
{
P
Peter Zijlstra 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1891 1892
	}

1893
	sched_info_dequeued(p);
1894
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1895
	p->se.on_rq = 0;
1896 1897
}

1898 1899 1900 1901 1902 1903 1904 1905
/*
 * activate_task - move a task to the runqueue.
 */
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1906
	enqueue_task(rq, p, wakeup, false);
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep);
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1929
/*
I
Ingo Molnar 已提交
1930
 * __normal_prio - return the priority that is based on the static prio
1931 1932 1933
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1934
	return p->static_prio;
1935 1936
}

1937 1938 1939 1940 1941 1942 1943
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1944
static inline int normal_prio(struct task_struct *p)
1945 1946 1947
{
	int prio;

1948
	if (task_has_rt_policy(p))
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1962
static int effective_prio(struct task_struct *p)
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1975 1976 1977 1978
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1979
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1980 1981 1982 1983
{
	return cpu_curr(task_cpu(p)) == p;
}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1996
#ifdef CONFIG_SMP
1997 1998 1999
/*
 * Is this task likely cache-hot:
 */
2000
static int
2001 2002 2003 2004
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2005 2006 2007
	if (p->sched_class != &fair_sched_class)
		return 0;

2008 2009 2010
	/*
	 * Buddy candidates are cache hot:
	 */
2011
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2012 2013
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2014 2015
		return 1;

2016 2017 2018 2019 2020
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2021 2022 2023 2024 2025
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2026
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2027
{
2028 2029 2030 2031 2032
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2033 2034
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2035 2036
#endif

2037
	trace_sched_migrate_task(p, new_cpu);
2038

2039 2040 2041 2042
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2043 2044

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2045 2046
}

2047
struct migration_req {
L
Linus Torvalds 已提交
2048 2049
	struct list_head list;

2050
	struct task_struct *task;
L
Linus Torvalds 已提交
2051 2052 2053
	int dest_cpu;

	struct completion done;
2054
};
L
Linus Torvalds 已提交
2055 2056 2057 2058 2059

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2060
static int
2061
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2062
{
2063
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2064 2065 2066

	/*
	 * If the task is not on a runqueue (and not running), then
2067
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2068
	 */
2069
	if (!p->se.on_rq && !task_running(rq, p))
L
Linus Torvalds 已提交
2070 2071 2072 2073 2074 2075
		return 0;

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2076

L
Linus Torvalds 已提交
2077 2078 2079
	return 1;
}

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2123 2124 2125
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2126 2127 2128 2129 2130 2131 2132
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2133 2134 2135 2136 2137 2138
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2139
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2140 2141
{
	unsigned long flags;
I
Ingo Molnar 已提交
2142
	int running, on_rq;
R
Roland McGrath 已提交
2143
	unsigned long ncsw;
2144
	struct rq *rq;
L
Linus Torvalds 已提交
2145

2146 2147 2148 2149 2150 2151 2152 2153
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2154

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2166 2167 2168
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2169
			cpu_relax();
R
Roland McGrath 已提交
2170
		}
2171

2172 2173 2174 2175 2176 2177
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2178
		trace_sched_wait_task(rq, p);
2179 2180
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2181
		ncsw = 0;
2182
		if (!match_state || p->state == match_state)
2183
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2184
		task_rq_unlock(rq, &flags);
2185

R
Roland McGrath 已提交
2186 2187 2188 2189 2190 2191
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2202

2203 2204 2205 2206 2207
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2208
		 * So if it was still runnable (but just not actively
2209 2210 2211 2212 2213 2214 2215
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2216

2217 2218 2219 2220 2221 2222 2223
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2224 2225

	return ncsw;
L
Linus Torvalds 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2241
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2251
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2252
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2253

T
Thomas Gleixner 已提交
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2275
#ifdef CONFIG_SMP
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		rcu_read_lock();
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		rcu_read_unlock();
		dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2313
/*
2314 2315 2316
 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
 * by:
2317
 *
2318 2319
 *  exec:           is unstable, retry loop
 *  fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2320
 */
2321 2322 2323
static inline
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
{
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2337
		     !cpu_online(cpu)))
2338
		cpu = select_fallback_rq(task_cpu(p), p);
2339 2340

	return cpu;
2341 2342 2343
}
#endif

L
Linus Torvalds 已提交
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2358 2359
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2360
{
2361
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2362
	unsigned long flags;
2363
	struct rq *rq;
L
Linus Torvalds 已提交
2364

2365
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2366
		wake_flags &= ~WF_SYNC;
P
Peter Zijlstra 已提交
2367

P
Peter Zijlstra 已提交
2368
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2369

2370
	smp_wmb();
2371
	rq = task_rq_lock(p, &flags);
2372
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2373
	if (!(p->state & state))
L
Linus Torvalds 已提交
2374 2375
		goto out;

I
Ingo Molnar 已提交
2376
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2377 2378 2379
		goto out_running;

	cpu = task_cpu(p);
2380
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2381 2382 2383 2384 2385

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2386 2387 2388
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2389 2390
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2391
	 */
2392 2393
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2394
	p->state = TASK_WAKING;
2395 2396 2397 2398

	if (p->sched_class->task_waking)
		p->sched_class->task_waking(rq, p);

P
Peter Zijlstra 已提交
2399
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2400

2401
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2402 2403 2404 2405 2406 2407
	if (cpu != orig_cpu) {
		/*
		 * Since we migrate the task without holding any rq->lock,
		 * we need to be careful with task_rq_lock(), since that
		 * might end up locking an invalid rq.
		 */
2408
		set_task_cpu(p, cpu);
2409
	}
P
Peter Zijlstra 已提交
2410

2411 2412
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
2413
	update_rq_clock(rq);
2414

2415 2416 2417 2418 2419 2420 2421
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2422
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2423

2424 2425 2426 2427 2428 2429 2430
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2431
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2432 2433 2434 2435 2436
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2437
#endif /* CONFIG_SCHEDSTATS */
2438

L
Linus Torvalds 已提交
2439 2440
out_activate:
#endif /* CONFIG_SMP */
2441
	schedstat_inc(p, se.nr_wakeups);
P
Peter Zijlstra 已提交
2442
	if (wake_flags & WF_SYNC)
2443 2444 2445 2446 2447 2448 2449
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2450
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2451 2452
	success = 1;

P
Peter Zijlstra 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2469
out_running:
2470
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2471
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2472

L
Linus Torvalds 已提交
2473
	p->state = TASK_RUNNING;
2474
#ifdef CONFIG_SMP
2475 2476
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2488
#endif
L
Linus Torvalds 已提交
2489 2490
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2491
	put_cpu();
L
Linus Torvalds 已提交
2492 2493 2494 2495

	return success;
}

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2507
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2508
{
2509
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2510 2511 2512
}
EXPORT_SYMBOL(wake_up_process);

2513
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2514 2515 2516 2517 2518 2519 2520
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2521 2522 2523 2524 2525 2526 2527
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2528
	p->se.prev_sum_exec_runtime	= 0;
2529
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2530 2531
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2532 2533
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2534 2535

#ifdef CONFIG_SCHEDSTATS
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2566
#endif
N
Nick Piggin 已提交
2567

P
Peter Zijlstra 已提交
2568
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2569
	p->se.on_rq = 0;
2570
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2571

2572 2573 2574
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2585 2586 2587 2588 2589 2590
	/*
	 * We mark the process as waking here. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_WAKING;
I
Ingo Molnar 已提交
2591

2592 2593 2594 2595
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2596
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2597
			p->policy = SCHED_NORMAL;
2598 2599
			p->normal_prio = p->static_prio;
		}
2600

2601 2602
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2603
			p->normal_prio = p->static_prio;
2604 2605 2606
			set_load_weight(p);
		}

2607 2608 2609 2610 2611 2612
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2613

2614 2615 2616 2617 2618
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2619 2620
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2621

P
Peter Zijlstra 已提交
2622 2623 2624
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2625 2626
	set_task_cpu(p, cpu);

2627
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2628
	if (likely(sched_info_on()))
2629
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2630
#endif
2631
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2632 2633
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2634
#ifdef CONFIG_PREEMPT
2635
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2636
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2637
#endif
2638 2639
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2640
	put_cpu();
L
Linus Torvalds 已提交
2641 2642 2643 2644 2645 2646 2647 2648 2649
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2650
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2651 2652
{
	unsigned long flags;
I
Ingo Molnar 已提交
2653
	struct rq *rq;
2654
	int cpu __maybe_unused = get_cpu();
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668

#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
	 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
	 * ->cpus_allowed is stable, we have preemption disabled, meaning
	 * cpu_online_mask is stable.
	 */
	cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
	set_task_cpu(p, cpu);
#endif
L
Linus Torvalds 已提交
2669

2670 2671 2672 2673 2674 2675 2676
	/*
	 * Since the task is not on the rq and we still have TASK_WAKING set
	 * nobody else will migrate this task.
	 */
	rq = cpu_rq(cpu);
	raw_spin_lock_irqsave(&rq->lock, flags);

2677 2678
	BUG_ON(p->state != TASK_WAKING);
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2679
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2680
	activate_task(rq, p, 0);
2681
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2682
	check_preempt_curr(rq, p, WF_FORK);
2683
#ifdef CONFIG_SMP
2684 2685
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2686
#endif
I
Ingo Molnar 已提交
2687
	task_rq_unlock(rq, &flags);
2688
	put_cpu();
L
Linus Torvalds 已提交
2689 2690
}

2691 2692 2693
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2694
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2695
 * @notifier: notifier struct to register
2696 2697 2698 2699 2700 2701 2702 2703 2704
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2705
 * @notifier: notifier struct to unregister
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2735
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2747
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2748

2749 2750 2751
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2752
 * @prev: the current task that is being switched out
2753 2754 2755 2756 2757 2758 2759 2760 2761
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2762 2763 2764
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2765
{
2766
	fire_sched_out_preempt_notifiers(prev, next);
2767 2768 2769 2770
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2771 2772
/**
 * finish_task_switch - clean up after a task-switch
2773
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2774 2775
 * @prev: the thread we just switched away from.
 *
2776 2777 2778 2779
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2780 2781
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2782
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2783 2784 2785
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2786
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2787 2788 2789
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2790
	long prev_state;
L
Linus Torvalds 已提交
2791 2792 2793 2794 2795

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2796
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2797 2798
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2799
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2800 2801 2802 2803 2804
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2805
	prev_state = prev->state;
2806
	finish_arch_switch(prev);
2807 2808 2809
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2810
	perf_event_task_sched_in(current);
2811 2812 2813
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2814
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2815

2816
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2817 2818
	if (mm)
		mmdrop(mm);
2819
	if (unlikely(prev_state == TASK_DEAD)) {
2820 2821 2822
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2823
		 */
2824
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2825
		put_task_struct(prev);
2826
	}
L
Linus Torvalds 已提交
2827 2828
}

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2844
		raw_spin_lock_irqsave(&rq->lock, flags);
2845 2846
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2847
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2848 2849 2850 2851 2852 2853

		rq->post_schedule = 0;
	}
}

#else
2854

2855 2856 2857 2858 2859 2860
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2861 2862
}

2863 2864
#endif

L
Linus Torvalds 已提交
2865 2866 2867 2868
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2869
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2870 2871
	__releases(rq->lock)
{
2872 2873
	struct rq *rq = this_rq();

2874
	finish_task_switch(rq, prev);
2875

2876 2877 2878 2879 2880
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2881

2882 2883 2884 2885
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2886
	if (current->set_child_tid)
2887
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2888 2889 2890 2891 2892 2893
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2894
static inline void
2895
context_switch(struct rq *rq, struct task_struct *prev,
2896
	       struct task_struct *next)
L
Linus Torvalds 已提交
2897
{
I
Ingo Molnar 已提交
2898
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2899

2900
	prepare_task_switch(rq, prev, next);
2901
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2902 2903
	mm = next->mm;
	oldmm = prev->active_mm;
2904 2905 2906 2907 2908
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2909
	arch_start_context_switch(prev);
2910

2911
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2912 2913 2914 2915 2916 2917
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2918
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2919 2920 2921
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2922 2923 2924 2925 2926 2927 2928
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2929
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2930
#endif
L
Linus Torvalds 已提交
2931 2932 2933 2934

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2935 2936 2937 2938 2939 2940 2941
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2959
}
L
Linus Torvalds 已提交
2960 2961

unsigned long nr_uninterruptible(void)
2962
{
L
Linus Torvalds 已提交
2963
	unsigned long i, sum = 0;
2964

2965
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2966
		sum += cpu_rq(i)->nr_uninterruptible;
2967 2968

	/*
L
Linus Torvalds 已提交
2969 2970
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2971
	 */
L
Linus Torvalds 已提交
2972 2973
	if (unlikely((long)sum < 0))
		sum = 0;
2974

L
Linus Torvalds 已提交
2975
	return sum;
2976 2977
}

L
Linus Torvalds 已提交
2978
unsigned long long nr_context_switches(void)
2979
{
2980 2981
	int i;
	unsigned long long sum = 0;
2982

2983
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2984
		sum += cpu_rq(i)->nr_switches;
2985

L
Linus Torvalds 已提交
2986 2987
	return sum;
}
2988

L
Linus Torvalds 已提交
2989 2990 2991
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2992

2993
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2994
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2995

L
Linus Torvalds 已提交
2996 2997
	return sum;
}
2998

2999 3000 3001 3002 3003
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}
3004

3005 3006 3007 3008 3009
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
3010

3011

3012 3013 3014 3015 3016
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
3017

3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3031 3032
}

3033 3034
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3035
{
3036 3037 3038 3039
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3040 3041

/*
3042 3043
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3044
 */
3045
void calc_global_load(void)
3046
{
3047 3048
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
3049

3050 3051
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
3052

3053 3054
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3055

3056 3057 3058
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3059

3060 3061
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3062

3063 3064 3065 3066 3067 3068
/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;
3069

3070 3071
	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;
3072

3073 3074 3075 3076
	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
3077
	}
3078 3079 3080
}

/*
I
Ingo Molnar 已提交
3081 3082
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3083
 */
I
Ingo Molnar 已提交
3084
static void update_cpu_load(struct rq *this_rq)
3085
{
3086
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3087
	int i, scale;
3088

I
Ingo Molnar 已提交
3089
	this_rq->nr_load_updates++;
3090

I
Ingo Molnar 已提交
3091 3092 3093
	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;
3094

I
Ingo Molnar 已提交
3095
		/* scale is effectively 1 << i now, and >> i divides by scale */
3096

I
Ingo Molnar 已提交
3097 3098
		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3099 3100 3101 3102 3103 3104 3105
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3106 3107
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3108

3109 3110 3111
	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
3112 3113 3114
	}
}

I
Ingo Molnar 已提交
3115
#ifdef CONFIG_SMP
3116

3117
/*
P
Peter Zijlstra 已提交
3118 3119
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3120
 */
P
Peter Zijlstra 已提交
3121
void sched_exec(void)
3122
{
P
Peter Zijlstra 已提交
3123
	struct task_struct *p = current;
3124
	struct migration_req req;
P
Peter Zijlstra 已提交
3125
	int dest_cpu, this_cpu;
L
Linus Torvalds 已提交
3126
	unsigned long flags;
3127
	struct rq *rq;
3128

P
Peter Zijlstra 已提交
3129 3130 3131 3132 3133 3134
again:
	this_cpu = get_cpu();
	dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == this_cpu) {
		put_cpu();
		return;
3135 3136
	}

L
Linus Torvalds 已提交
3137
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
3138 3139
	put_cpu();

3140
	/*
P
Peter Zijlstra 已提交
3141
	 * select_task_rq() can race against ->cpus_allowed
3142
	 */
3143
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
P
Peter Zijlstra 已提交
3144 3145 3146
	    || unlikely(!cpu_active(dest_cpu))) {
		task_rq_unlock(rq, &flags);
		goto again;
3147 3148
	}

L
Linus Torvalds 已提交
3149 3150 3151 3152
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
I
Ingo Molnar 已提交
3153

L
Linus Torvalds 已提交
3154 3155 3156 3157 3158
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
I
Ingo Molnar 已提交
3159

L
Linus Torvalds 已提交
3160 3161 3162 3163
		return;
	}
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3164

L
Linus Torvalds 已提交
3165 3166 3167 3168 3169 3170 3171
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3172
 * Return any ns on the sched_clock that have not yet been accounted in
3173
 * @p in case that task is currently running.
3174 3175
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3176
 */
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3191
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3192 3193
{
	unsigned long flags;
3194
	struct rq *rq;
3195
	u64 ns = 0;
3196

3197
	rq = task_rq_lock(p, &flags);
3198 3199
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3200

3201 3202
	return ns;
}
3203

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3221

3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3241
	task_rq_unlock(rq, &flags);
3242

L
Linus Torvalds 已提交
3243 3244 3245 3246 3247 3248 3249
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3250
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3251
 */
3252 3253
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3254 3255 3256 3257
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3258
	/* Add user time to process. */
L
Linus Torvalds 已提交
3259
	p->utime = cputime_add(p->utime, cputime);
3260
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3261
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3262 3263 3264 3265 3266 3267 3268

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3269 3270

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3271 3272
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3273 3274
}

3275 3276 3277 3278
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3279
 * @cputime_scaled: cputime scaled by cpu frequency
3280
 */
3281 3282
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3283 3284 3285 3286 3287 3288
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3289
	/* Add guest time to process. */
3290
	p->utime = cputime_add(p->utime, cputime);
3291
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3292
	account_group_user_time(p, cputime);
3293 3294
	p->gtime = cputime_add(p->gtime, cputime);

3295
	/* Add guest time to cpustat. */
3296 3297 3298 3299 3300 3301 3302
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3303 3304
}

L
Linus Torvalds 已提交
3305 3306 3307 3308 3309
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3310
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3311 3312
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3313
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3314 3315 3316 3317
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3318
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3319
		account_guest_time(p, cputime, cputime_scaled);
3320 3321
		return;
	}
3322

3323
	/* Add system time to process. */
L
Linus Torvalds 已提交
3324
	p->stime = cputime_add(p->stime, cputime);
3325
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3326
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3327 3328 3329 3330 3331 3332 3333 3334

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3335 3336
		cpustat->system = cputime64_add(cpustat->system, tmp);

3337 3338
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3339 3340 3341 3342
	/* Account for system time used */
	acct_update_integrals(p);
}

3343
/*
L
Linus Torvalds 已提交
3344 3345
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3346
 */
3347
void account_steal_time(cputime_t cputime)
3348
{
3349 3350 3351 3352
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3353 3354
}

L
Linus Torvalds 已提交
3355
/*
3356 3357
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3358
 */
3359
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3360 3361
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3362
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3363
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3364

3365 3366 3367 3368
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3369 3370
}

3371 3372 3373 3374 3375 3376 3377 3378 3379
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3380
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3381 3382 3383
	struct rq *rq = this_rq();

	if (user_tick)
3384
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3385
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3386
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3387 3388
				    one_jiffy_scaled);
	else
3389
		account_idle_time(cputime_one_jiffy);
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3409 3410
}

3411 3412
#endif

3413 3414 3415 3416
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3417
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3418
{
3419 3420
	*ut = p->utime;
	*st = p->stime;
3421 3422
}

3423
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3424
{
3425 3426 3427 3428 3429 3430
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3431 3432
}
#else
3433 3434

#ifndef nsecs_to_cputime
3435
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3436 3437
#endif

3438
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3439
{
3440
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3441 3442 3443 3444

	/*
	 * Use CFS's precise accounting:
	 */
3445
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3446 3447

	if (total) {
3448 3449 3450
		u64 temp;

		temp = (u64)(rtime * utime);
3451
		do_div(temp, total);
3452 3453 3454
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3455

3456 3457 3458
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3459
	p->prev_utime = max(p->prev_utime, utime);
3460
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3461

3462 3463
	*ut = p->prev_utime;
	*st = p->prev_stime;
3464 3465
}

3466 3467 3468 3469
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3470
{
3471 3472 3473
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3474

3475
	thread_group_cputime(p, &cputime);
3476

3477 3478
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3479

3480 3481
	if (total) {
		u64 temp;
3482

3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3495 3496 3497
}
#endif

3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3509
	struct task_struct *curr = rq->curr;
3510 3511

	sched_clock_tick();
I
Ingo Molnar 已提交
3512

3513
	raw_spin_lock(&rq->lock);
3514
	update_rq_clock(rq);
3515
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3516
	curr->sched_class->task_tick(rq, curr, 0);
3517
	raw_spin_unlock(&rq->lock);
3518

3519
	perf_event_task_tick(curr);
3520

3521
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3522 3523
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3524
#endif
L
Linus Torvalds 已提交
3525 3526
}

3527
notrace unsigned long get_parent_ip(unsigned long addr)
3528 3529 3530 3531 3532 3533 3534 3535
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3536

3537 3538 3539
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3540
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3541
{
3542
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3543 3544 3545
	/*
	 * Underflow?
	 */
3546 3547
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3548
#endif
L
Linus Torvalds 已提交
3549
	preempt_count() += val;
3550
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3551 3552 3553
	/*
	 * Spinlock count overflowing soon?
	 */
3554 3555
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3556 3557 3558
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3559 3560 3561
}
EXPORT_SYMBOL(add_preempt_count);

3562
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3563
{
3564
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3565 3566 3567
	/*
	 * Underflow?
	 */
3568
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3569
		return;
L
Linus Torvalds 已提交
3570 3571 3572
	/*
	 * Is the spinlock portion underflowing?
	 */
3573 3574 3575
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3576
#endif
3577

3578 3579
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3580 3581 3582 3583 3584 3585 3586
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3587
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3588
 */
I
Ingo Molnar 已提交
3589
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3590
{
3591 3592
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3593 3594
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3595

I
Ingo Molnar 已提交
3596
	debug_show_held_locks(prev);
3597
	print_modules();
I
Ingo Molnar 已提交
3598 3599
	if (irqs_disabled())
		print_irqtrace_events(prev);
3600 3601 3602 3603 3604

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3605
}
L
Linus Torvalds 已提交
3606

I
Ingo Molnar 已提交
3607 3608 3609 3610 3611
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3612
	/*
I
Ingo Molnar 已提交
3613
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3614 3615 3616
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3617
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3618 3619
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3620 3621
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3622
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3623 3624
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3625 3626
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3627 3628
	}
#endif
I
Ingo Molnar 已提交
3629 3630
}

P
Peter Zijlstra 已提交
3631
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3632
{
P
Peter Zijlstra 已提交
3633 3634
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;
M
Mike Galbraith 已提交
3635

P
Peter Zijlstra 已提交
3636 3637
		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
M
Mike Galbraith 已提交
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
P
Peter Zijlstra 已提交
3648
		update_avg(&prev->se.avg_overlap, runtime);
M
Mike Galbraith 已提交
3649
	}
P
Peter Zijlstra 已提交
3650
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3651 3652
}

I
Ingo Molnar 已提交
3653 3654 3655 3656
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3657
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3658
{
3659
	const struct sched_class *class;
I
Ingo Molnar 已提交
3660
	struct task_struct *p;
L
Linus Torvalds 已提交
3661 3662

	/*
I
Ingo Molnar 已提交
3663 3664
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3665
	 */
I
Ingo Molnar 已提交
3666
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3667
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3668 3669
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3670 3671
	}

I
Ingo Molnar 已提交
3672 3673
	class = sched_class_highest;
	for ( ; ; ) {
3674
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3675 3676 3677 3678 3679 3680 3681 3682 3683
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3684

I
Ingo Molnar 已提交
3685 3686 3687
/*
 * schedule() is the main scheduler function.
 */
3688
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3689 3690
{
	struct task_struct *prev, *next;
3691
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3692
	struct rq *rq;
3693
	int cpu;
I
Ingo Molnar 已提交
3694

3695 3696
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3697 3698
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3699
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
3700 3701 3702 3703 3704 3705 3706
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3707

3708
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3709
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3710

3711
	raw_spin_lock_irq(&rq->lock);
3712
	update_rq_clock(rq);
3713
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3714 3715

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3716
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
3717
			prev->state = TASK_RUNNING;
3718
		else
3719
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
3720
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3721 3722
	}

3723
	pre_schedule(rq, prev);
3724

I
Ingo Molnar 已提交
3725
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3726 3727
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3728
	put_prev_task(rq, prev);
3729
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3730 3731

	if (likely(prev != next)) {
3732
		sched_info_switch(prev, next);
3733
		perf_event_task_sched_out(prev, next);
3734

L
Linus Torvalds 已提交
3735 3736 3737 3738
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3739
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3740 3741 3742 3743 3744 3745
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3746
	} else
3747
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3748

3749
	post_schedule(rq);
L
Linus Torvalds 已提交
3750

3751 3752 3753
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3754
		goto need_resched_nonpreemptible;
3755
	}
P
Peter Zijlstra 已提交
3756

L
Linus Torvalds 已提交
3757
	preempt_enable_no_resched();
3758
	if (need_resched())
L
Linus Torvalds 已提交
3759 3760 3761 3762
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3763
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
3824 3825
#ifdef CONFIG_PREEMPT
/*
3826
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3827
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3828 3829 3830 3831 3832
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
3833

L
Linus Torvalds 已提交
3834 3835
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3836
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3837
	 */
N
Nick Piggin 已提交
3838
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3839 3840
		return;

3841 3842 3843 3844
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3845

3846 3847 3848 3849 3850
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3851
	} while (need_resched());
L
Linus Torvalds 已提交
3852 3853 3854 3855
}
EXPORT_SYMBOL(preempt_schedule);

/*
3856
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3857 3858 3859 3860 3861 3862 3863
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3864

3865
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3866 3867
	BUG_ON(ti->preempt_count || !irqs_disabled());

3868 3869 3870 3871 3872 3873
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3874

3875 3876 3877 3878 3879
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3880
	} while (need_resched());
L
Linus Torvalds 已提交
3881 3882 3883 3884
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3885
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3886
			  void *key)
L
Linus Torvalds 已提交
3887
{
P
Peter Zijlstra 已提交
3888
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3889 3890 3891 3892
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3893 3894
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3895 3896 3897
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3898
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3899 3900
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3901
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3902
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3903
{
3904
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3905

3906
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3907 3908
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3909
		if (curr->func(curr, mode, wake_flags, key) &&
3910
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3911 3912 3913 3914 3915 3916 3917 3918 3919
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3920
 * @key: is directly passed to the wakeup function
3921 3922 3923
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3924
 */
3925
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3926
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3939
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3940 3941 3942 3943
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

3944 3945 3946 3947 3948
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
3949
/**
3950
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3951 3952 3953
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3954
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3955 3956 3957 3958 3959 3960 3961
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3962 3963 3964
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3965
 */
3966 3967
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3968 3969
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3970
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3971 3972 3973 3974 3975

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3976
		wake_flags = 0;
L
Linus Torvalds 已提交
3977 3978

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3979
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3980 3981
	spin_unlock_irqrestore(&q->lock, flags);
}
3982 3983 3984 3985 3986 3987 3988 3989 3990
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3991 3992
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3993 3994 3995 3996 3997 3998 3999 4000
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4001 4002 4003
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4004
 */
4005
void complete(struct completion *x)
L
Linus Torvalds 已提交
4006 4007 4008 4009 4010
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4011
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4012 4013 4014 4015
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4016 4017 4018 4019 4020
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4021 4022 4023
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4024
 */
4025
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4026 4027 4028 4029 4030
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4031
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4032 4033 4034 4035
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4036 4037
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4038 4039 4040 4041 4042 4043 4044
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4045
			if (signal_pending_state(state, current)) {
4046 4047
				timeout = -ERESTARTSYS;
				break;
4048 4049
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4050 4051 4052
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4053
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4054
		__remove_wait_queue(&x->wait, &wait);
4055 4056
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4057 4058
	}
	x->done--;
4059
	return timeout ?: 1;
L
Linus Torvalds 已提交
4060 4061
}

4062 4063
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4064 4065 4066 4067
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4068
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4069
	spin_unlock_irq(&x->wait.lock);
4070 4071
	return timeout;
}
L
Linus Torvalds 已提交
4072

4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4083
void __sched wait_for_completion(struct completion *x)
4084 4085
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4086
}
4087
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4088

4089 4090 4091 4092 4093 4094 4095 4096 4097
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4098
unsigned long __sched
4099
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4100
{
4101
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4102
}
4103
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4104

4105 4106 4107 4108 4109 4110 4111
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4112
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4113
{
4114 4115 4116 4117
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4118
}
4119
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4120

4121 4122 4123 4124 4125 4126 4127 4128
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4129
unsigned long __sched
4130 4131
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4132
{
4133
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4134
}
4135
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4136

4137 4138 4139 4140 4141 4142 4143
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4144 4145 4146 4147 4148 4149 4150 4151 4152
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4167
	unsigned long flags;
4168 4169
	int ret = 1;

4170
	spin_lock_irqsave(&x->wait.lock, flags);
4171 4172 4173 4174
	if (!x->done)
		ret = 0;
	else
		x->done--;
4175
	spin_unlock_irqrestore(&x->wait.lock, flags);
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4190
	unsigned long flags;
4191 4192
	int ret = 1;

4193
	spin_lock_irqsave(&x->wait.lock, flags);
4194 4195
	if (!x->done)
		ret = 0;
4196
	spin_unlock_irqrestore(&x->wait.lock, flags);
4197 4198 4199 4200
	return ret;
}
EXPORT_SYMBOL(completion_done);

4201 4202
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4203
{
I
Ingo Molnar 已提交
4204 4205 4206 4207
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4208

4209
	__set_current_state(state);
L
Linus Torvalds 已提交
4210

4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4225 4226 4227
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4228
long __sched
I
Ingo Molnar 已提交
4229
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4230
{
4231
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4232 4233 4234
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4235
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4236
{
4237
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4238 4239 4240
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4241
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4242
{
4243
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4244 4245 4246
}
EXPORT_SYMBOL(sleep_on_timeout);

4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4259
void rt_mutex_setprio(struct task_struct *p, int prio)
4260 4261
{
	unsigned long flags;
4262
	int oldprio, on_rq, running;
4263
	struct rq *rq;
4264
	const struct sched_class *prev_class;
4265 4266 4267 4268

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4269
	update_rq_clock(rq);
4270

4271
	oldprio = p->prio;
4272
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4273
	on_rq = p->se.on_rq;
4274
	running = task_current(rq, p);
4275
	if (on_rq)
4276
		dequeue_task(rq, p, 0);
4277 4278
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4279 4280 4281 4282 4283 4284

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4285 4286
	p->prio = prio;

4287 4288
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4289
	if (on_rq) {
4290
		enqueue_task(rq, p, 0, oldprio < prio);
4291 4292

		check_class_changed(rq, p, prev_class, oldprio, running);
4293 4294 4295 4296 4297 4298
	}
	task_rq_unlock(rq, &flags);
}

#endif

4299
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4300
{
I
Ingo Molnar 已提交
4301
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4302
	unsigned long flags;
4303
	struct rq *rq;
L
Linus Torvalds 已提交
4304 4305 4306 4307 4308 4309 4310 4311

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4312
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4313 4314 4315 4316
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4317
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4318
	 */
4319
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4320 4321 4322
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4323
	on_rq = p->se.on_rq;
4324
	if (on_rq)
4325
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4326 4327

	p->static_prio = NICE_TO_PRIO(nice);
4328
	set_load_weight(p);
4329 4330 4331
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4332

I
Ingo Molnar 已提交
4333
	if (on_rq) {
4334
		enqueue_task(rq, p, 0, false);
L
Linus Torvalds 已提交
4335
		/*
4336 4337
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4338
		 */
4339
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4340 4341 4342 4343 4344 4345 4346
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4347 4348 4349 4350 4351
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4352
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4353
{
4354 4355
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4356

4357
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4358 4359 4360
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4361 4362 4363 4364 4365 4366 4367 4368 4369
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4370
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4371
{
4372
	long nice, retval;
L
Linus Torvalds 已提交
4373 4374 4375 4376 4377 4378

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4379 4380
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4381 4382 4383
	if (increment > 40)
		increment = 40;

4384
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4385 4386 4387 4388 4389
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4390 4391 4392
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4411
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4412 4413 4414 4415 4416 4417 4418 4419
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4420
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4421 4422 4423
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4424
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4439
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4440 4441 4442 4443 4444 4445 4446 4447
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4448
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4449
{
4450
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4451 4452 4453
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4454 4455
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4456
{
I
Ingo Molnar 已提交
4457
	BUG_ON(p->se.on_rq);
4458

L
Linus Torvalds 已提交
4459 4460
	p->policy = policy;
	p->rt_priority = prio;
4461 4462 4463
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4464 4465 4466 4467
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4468
	set_load_weight(p);
L
Linus Torvalds 已提交
4469 4470
}

4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4487 4488
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4489
{
4490
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4491
	unsigned long flags;
4492
	const struct sched_class *prev_class;
4493
	struct rq *rq;
4494
	int reset_on_fork;
L
Linus Torvalds 已提交
4495

4496 4497
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4498 4499
recheck:
	/* double check policy once rq lock held */
4500 4501
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4502
		policy = oldpolicy = p->policy;
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4513 4514
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4515 4516
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4517 4518
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4519
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4520
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4521
		return -EINVAL;
4522
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4523 4524
		return -EINVAL;

4525 4526 4527
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4528
	if (user && !capable(CAP_SYS_NICE)) {
4529
		if (rt_policy(policy)) {
4530 4531 4532 4533
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
4534
			rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4546 4547 4548 4549 4550 4551
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4552

4553
		/* can't change other user's priorities */
4554
		if (!check_same_owner(p))
4555
			return -EPERM;
4556 4557 4558 4559

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4560
	}
L
Linus Torvalds 已提交
4561

4562
	if (user) {
4563
#ifdef CONFIG_RT_GROUP_SCHED
4564 4565 4566 4567
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
4568 4569
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
4570
			return -EPERM;
4571 4572
#endif

4573 4574 4575 4576 4577
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4578 4579 4580 4581
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4582
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4583 4584 4585 4586
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4587
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4588 4589 4590
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4591
		__task_rq_unlock(rq);
4592
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4593 4594
		goto recheck;
	}
I
Ingo Molnar 已提交
4595
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4596
	on_rq = p->se.on_rq;
4597
	running = task_current(rq, p);
4598
	if (on_rq)
4599
		deactivate_task(rq, p, 0);
4600 4601
	if (running)
		p->sched_class->put_prev_task(rq, p);
4602

4603 4604
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4605
	oldprio = p->prio;
4606
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4607
	__setscheduler(rq, p, policy, param->sched_priority);
4608

4609 4610
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4611 4612
	if (on_rq) {
		activate_task(rq, p, 0);
4613 4614

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4615
	}
4616
	__task_rq_unlock(rq);
4617
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4618

4619 4620
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4621 4622
	return 0;
}
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4637 4638
EXPORT_SYMBOL_GPL(sched_setscheduler);

4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4656 4657
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4658 4659 4660
{
	struct sched_param lparam;
	struct task_struct *p;
4661
	int retval;
L
Linus Torvalds 已提交
4662 4663 4664 4665 4666

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4667 4668 4669

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4670
	p = find_process_by_pid(pid);
4671 4672 4673
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4674

L
Linus Torvalds 已提交
4675 4676 4677 4678 4679 4680 4681 4682 4683
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4684 4685
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4686
{
4687 4688 4689 4690
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4691 4692 4693 4694 4695 4696 4697 4698
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4699
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4700 4701 4702 4703 4704 4705 4706 4707
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4708
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4709
{
4710
	struct task_struct *p;
4711
	int retval;
L
Linus Torvalds 已提交
4712 4713

	if (pid < 0)
4714
		return -EINVAL;
L
Linus Torvalds 已提交
4715 4716

	retval = -ESRCH;
4717
	rcu_read_lock();
L
Linus Torvalds 已提交
4718 4719 4720 4721
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4722 4723
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4724
	}
4725
	rcu_read_unlock();
L
Linus Torvalds 已提交
4726 4727 4728 4729
	return retval;
}

/**
4730
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4731 4732 4733
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4734
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4735 4736
{
	struct sched_param lp;
4737
	struct task_struct *p;
4738
	int retval;
L
Linus Torvalds 已提交
4739 4740

	if (!param || pid < 0)
4741
		return -EINVAL;
L
Linus Torvalds 已提交
4742

4743
	rcu_read_lock();
L
Linus Torvalds 已提交
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4754
	rcu_read_unlock();
L
Linus Torvalds 已提交
4755 4756 4757 4758 4759 4760 4761 4762 4763

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4764
	rcu_read_unlock();
L
Linus Torvalds 已提交
4765 4766 4767
	return retval;
}

4768
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4769
{
4770
	cpumask_var_t cpus_allowed, new_mask;
4771 4772
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4773

4774
	get_online_cpus();
4775
	rcu_read_lock();
L
Linus Torvalds 已提交
4776 4777 4778

	p = find_process_by_pid(pid);
	if (!p) {
4779
		rcu_read_unlock();
4780
		put_online_cpus();
L
Linus Torvalds 已提交
4781 4782 4783
		return -ESRCH;
	}

4784
	/* Prevent p going away */
L
Linus Torvalds 已提交
4785
	get_task_struct(p);
4786
	rcu_read_unlock();
L
Linus Torvalds 已提交
4787

4788 4789 4790 4791 4792 4793 4794 4795
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4796
	retval = -EPERM;
4797
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4798 4799
		goto out_unlock;

4800 4801 4802 4803
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4804 4805
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4806
 again:
4807
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4808

P
Paul Menage 已提交
4809
	if (!retval) {
4810 4811
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4812 4813 4814 4815 4816
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4817
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4818 4819 4820
			goto again;
		}
	}
L
Linus Torvalds 已提交
4821
out_unlock:
4822 4823 4824 4825
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4826
	put_task_struct(p);
4827
	put_online_cpus();
L
Linus Torvalds 已提交
4828 4829 4830 4831
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4832
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4833
{
4834 4835 4836 4837 4838
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4839 4840 4841 4842 4843 4844 4845 4846 4847
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4848 4849
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4850
{
4851
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4852 4853
	int retval;

4854 4855
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4856

4857 4858 4859 4860 4861
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4862 4863
}

4864
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4865
{
4866
	struct task_struct *p;
4867 4868
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4869 4870
	int retval;

4871
	get_online_cpus();
4872
	rcu_read_lock();
L
Linus Torvalds 已提交
4873 4874 4875 4876 4877 4878

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4879 4880 4881 4882
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4883
	rq = task_rq_lock(p, &flags);
4884
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4885
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4886 4887

out_unlock:
4888
	rcu_read_unlock();
4889
	put_online_cpus();
L
Linus Torvalds 已提交
4890

4891
	return retval;
L
Linus Torvalds 已提交
4892 4893 4894 4895 4896 4897 4898 4899
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4900 4901
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4902 4903
{
	int ret;
4904
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4905

A
Anton Blanchard 已提交
4906
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4907 4908
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4909 4910
		return -EINVAL;

4911 4912
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4913

4914 4915
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4916
		size_t retlen = min_t(size_t, len, cpumask_size());
4917 4918

		if (copy_to_user(user_mask_ptr, mask, retlen))
4919 4920
			ret = -EFAULT;
		else
4921
			ret = retlen;
4922 4923
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4924

4925
	return ret;
L
Linus Torvalds 已提交
4926 4927 4928 4929 4930
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4931 4932
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4933
 */
4934
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4935
{
4936
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4937

4938
	schedstat_inc(rq, yld_count);
4939
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4940 4941 4942 4943 4944 4945

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4946
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4947
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4948 4949 4950 4951 4952 4953 4954
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4955 4956 4957 4958 4959
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4960
static void __cond_resched(void)
L
Linus Torvalds 已提交
4961
{
4962 4963 4964
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4965 4966
}

4967
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4968
{
P
Peter Zijlstra 已提交
4969
	if (should_resched()) {
L
Linus Torvalds 已提交
4970 4971 4972 4973 4974
		__cond_resched();
		return 1;
	}
	return 0;
}
4975
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4976 4977

/*
4978
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4979 4980
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4981
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4982 4983 4984
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4985
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4986
{
P
Peter Zijlstra 已提交
4987
	int resched = should_resched();
J
Jan Kara 已提交
4988 4989
	int ret = 0;

4990 4991
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4992
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4993
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4994
		if (resched)
N
Nick Piggin 已提交
4995 4996 4997
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4998
		ret = 1;
L
Linus Torvalds 已提交
4999 5000
		spin_lock(lock);
	}
J
Jan Kara 已提交
5001
	return ret;
L
Linus Torvalds 已提交
5002
}
5003
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5004

5005
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5006 5007 5008
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5009
	if (should_resched()) {
5010
		local_bh_enable();
L
Linus Torvalds 已提交
5011 5012 5013 5014 5015 5016
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5017
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5018 5019 5020 5021

/**
 * yield - yield the current processor to other threads.
 *
5022
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5033
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5034 5035 5036 5037
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5038
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5039

5040
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5041
	atomic_inc(&rq->nr_iowait);
5042
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5043
	schedule();
5044
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5045
	atomic_dec(&rq->nr_iowait);
5046
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5047 5048 5049 5050 5051
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5052
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5053 5054
	long ret;

5055
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5056
	atomic_inc(&rq->nr_iowait);
5057
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5058
	ret = schedule_timeout(timeout);
5059
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5060
	atomic_dec(&rq->nr_iowait);
5061
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5072
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5073 5074 5075 5076 5077 5078 5079 5080 5081
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5082
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5083
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5097
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5098 5099 5100 5101 5102 5103 5104 5105 5106
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5107
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5108
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5122
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5123
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5124
{
5125
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5126
	unsigned int time_slice;
5127 5128
	unsigned long flags;
	struct rq *rq;
5129
	int retval;
L
Linus Torvalds 已提交
5130 5131 5132
	struct timespec t;

	if (pid < 0)
5133
		return -EINVAL;
L
Linus Torvalds 已提交
5134 5135

	retval = -ESRCH;
5136
	rcu_read_lock();
L
Linus Torvalds 已提交
5137 5138 5139 5140 5141 5142 5143 5144
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5145 5146 5147
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5148

5149
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5150
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5151 5152
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5153

L
Linus Torvalds 已提交
5154
out_unlock:
5155
	rcu_read_unlock();
L
Linus Torvalds 已提交
5156 5157 5158
	return retval;
}

5159
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5160

5161
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5162 5163
{
	unsigned long free = 0;
5164
	unsigned state;
L
Linus Torvalds 已提交
5165 5166

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5167
	printk(KERN_INFO "%-13.13s %c", p->comm,
5168
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5169
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5170
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5171
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5172
	else
P
Peter Zijlstra 已提交
5173
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5174 5175
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5176
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5177
	else
P
Peter Zijlstra 已提交
5178
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5179 5180
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5181
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5182
#endif
P
Peter Zijlstra 已提交
5183
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5184 5185
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5186

5187
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5188 5189
}

I
Ingo Molnar 已提交
5190
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5191
{
5192
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5193

5194
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5195 5196
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5197
#else
P
Peter Zijlstra 已提交
5198 5199
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5200 5201 5202 5203 5204 5205 5206 5207
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5208
		if (!state_filter || (p->state & state_filter))
5209
			sched_show_task(p);
L
Linus Torvalds 已提交
5210 5211
	} while_each_thread(g, p);

5212 5213
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5214 5215 5216
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5217
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5218 5219 5220
	/*
	 * Only show locks if all tasks are dumped:
	 */
5221
	if (!state_filter)
I
Ingo Molnar 已提交
5222
		debug_show_all_locks();
L
Linus Torvalds 已提交
5223 5224
}

I
Ingo Molnar 已提交
5225 5226
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5227
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5228 5229
}

5230 5231 5232 5233 5234 5235 5236 5237
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5238
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5239
{
5240
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5241 5242
	unsigned long flags;

5243
	raw_spin_lock_irqsave(&rq->lock, flags);
5244

I
Ingo Molnar 已提交
5245
	__sched_fork(idle);
5246
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5247 5248
	idle->se.exec_start = sched_clock();

5249
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5250
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5251 5252

	rq->curr = rq->idle = idle;
5253 5254 5255
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5256
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5257 5258

	/* Set the preempt count _outside_ the spinlocks! */
5259 5260 5261
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5262
	task_thread_info(idle)->preempt_count = 0;
5263
#endif
I
Ingo Molnar 已提交
5264 5265 5266 5267
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5268
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5269 5270 5271 5272 5273 5274 5275
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5276
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5277
 */
5278
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5279

I
Ingo Molnar 已提交
5280 5281 5282 5283 5284 5285 5286 5287 5288
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5289
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5290
{
5291
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5306

5307 5308
	return factor;
}
I
Ingo Molnar 已提交
5309

5310 5311 5312
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5313

5314 5315 5316 5317 5318 5319 5320 5321
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5322

5323 5324 5325
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5326 5327
}

L
Linus Torvalds 已提交
5328 5329 5330 5331
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5332
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5351
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5352 5353
 * call is not atomic; no spinlocks may be held.
 */
5354
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5355
{
5356
	struct migration_req req;
L
Linus Torvalds 已提交
5357
	unsigned long flags;
5358
	struct rq *rq;
5359
	int ret = 0;
L
Linus Torvalds 已提交
5360 5361

	rq = task_rq_lock(p, &flags);
5362

5363
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5364 5365 5366 5367
		ret = -EINVAL;
		goto out;
	}

5368
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5369
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5370 5371 5372 5373
		ret = -EINVAL;
		goto out;
	}

5374
	if (p->sched_class->set_cpus_allowed)
5375
		p->sched_class->set_cpus_allowed(p, new_mask);
5376
	else {
5377 5378
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5379 5380
	}

L
Linus Torvalds 已提交
5381
	/* Can the task run on the task's current CPU? If so, we're done */
5382
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5383 5384
		goto out;

5385
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
5386
		/* Need help from migration thread: drop lock and wait. */
5387 5388 5389
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
5390
		task_rq_unlock(rq, &flags);
5391
		wake_up_process(mt);
5392
		put_task_struct(mt);
L
Linus Torvalds 已提交
5393 5394 5395 5396 5397 5398
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5399

L
Linus Torvalds 已提交
5400 5401
	return ret;
}
5402
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5403 5404

/*
I
Ingo Molnar 已提交
5405
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5406 5407 5408 5409 5410 5411
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5412 5413
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5414
 */
5415
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5416
{
5417
	struct rq *rq_dest, *rq_src;
5418
	int ret = 0;
L
Linus Torvalds 已提交
5419

5420
	if (unlikely(!cpu_active(dest_cpu)))
5421
		return ret;
L
Linus Torvalds 已提交
5422 5423 5424 5425 5426 5427 5428

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5429
		goto done;
L
Linus Torvalds 已提交
5430
	/* Affinity changed (again). */
5431
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5432
		goto fail;
L
Linus Torvalds 已提交
5433

5434 5435 5436 5437 5438
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5439
		deactivate_task(rq_src, p, 0);
5440
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5441
		activate_task(rq_dest, p, 0);
5442
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5443
	}
L
Linus Torvalds 已提交
5444
done:
5445
	ret = 1;
L
Linus Torvalds 已提交
5446
fail:
L
Linus Torvalds 已提交
5447
	double_rq_unlock(rq_src, rq_dest);
5448
	return ret;
L
Linus Torvalds 已提交
5449 5450
}

5451 5452 5453 5454 5455
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
5456 5457 5458 5459 5460
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5461
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5462
{
5463
	int badcpu;
L
Linus Torvalds 已提交
5464
	int cpu = (long)data;
5465
	struct rq *rq;
L
Linus Torvalds 已提交
5466 5467 5468 5469 5470 5471

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5472
		struct migration_req *req;
L
Linus Torvalds 已提交
5473 5474
		struct list_head *head;

5475
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5476 5477

		if (cpu_is_offline(cpu)) {
5478
			raw_spin_unlock_irq(&rq->lock);
5479
			break;
L
Linus Torvalds 已提交
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
5490
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5491 5492 5493 5494
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5495
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5496 5497
		list_del_init(head->next);

5498
		if (req->task != NULL) {
5499
			raw_spin_unlock(&rq->lock);
5500 5501 5502
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
5503
			raw_spin_unlock(&rq->lock);
5504 5505
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5506
			raw_spin_unlock(&rq->lock);
5507 5508
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
5509
		local_irq_enable();
L
Linus Torvalds 已提交
5510 5511 5512 5513 5514 5515 5516 5517 5518

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5530
/*
5531
 * Figure out where task on dead CPU should go, use force if necessary.
5532
 */
5533
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5534
{
5535
	int dest_cpu;
5536 5537

again:
5538
	dest_cpu = select_fallback_rq(dead_cpu, p);
5539 5540 5541 5542

	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
5543 5544 5545 5546 5547 5548 5549 5550 5551
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5552
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5553
{
5554
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5568
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5569

5570
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5571

5572 5573
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5574 5575
			continue;

5576 5577 5578
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5579

5580
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5581 5582
}

I
Ingo Molnar 已提交
5583 5584
/*
 * Schedules idle task to be the next runnable task on current CPU.
5585 5586
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5587 5588 5589
 */
void sched_idle_next(void)
{
5590
	int this_cpu = smp_processor_id();
5591
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5592 5593 5594 5595
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5596
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5597

5598 5599 5600
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5601
	 */
5602
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5603

I
Ingo Molnar 已提交
5604
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5605

5606 5607
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5608

5609
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5610 5611
}

5612 5613
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5627
/* called under rq->lock with disabled interrupts */
5628
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5629
{
5630
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5631 5632

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5633
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5634 5635

	/* Cannot have done final schedule yet: would have vanished. */
5636
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5637

5638
	get_task_struct(p);
L
Linus Torvalds 已提交
5639 5640 5641

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5642
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5643 5644
	 * fine.
	 */
5645
	raw_spin_unlock_irq(&rq->lock);
5646
	move_task_off_dead_cpu(dead_cpu, p);
5647
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5648

5649
	put_task_struct(p);
L
Linus Torvalds 已提交
5650 5651 5652 5653 5654
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5655
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5656
	struct task_struct *next;
5657

I
Ingo Molnar 已提交
5658 5659 5660
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5661
		update_rq_clock(rq);
5662
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5663 5664
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5665
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5666
		migrate_dead(dead_cpu, next);
5667

L
Linus Torvalds 已提交
5668 5669
	}
}
5670 5671 5672 5673 5674 5675 5676

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5677
	rq->calc_load_active = 0;
5678
}
L
Linus Torvalds 已提交
5679 5680
#endif /* CONFIG_HOTPLUG_CPU */

5681 5682 5683
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5684 5685
	{
		.procname	= "sched_domain",
5686
		.mode		= 0555,
5687
	},
5688
	{}
5689 5690 5691
};

static struct ctl_table sd_ctl_root[] = {
5692 5693
	{
		.procname	= "kernel",
5694
		.mode		= 0555,
5695 5696
		.child		= sd_ctl_dir,
	},
5697
	{}
5698 5699 5700 5701 5702
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5703
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5704 5705 5706 5707

	return entry;
}

5708 5709
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5710
	struct ctl_table *entry;
5711

5712 5713 5714
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5715
	 * will always be set. In the lowest directory the names are
5716 5717 5718
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5719 5720
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5721 5722 5723
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5724 5725 5726 5727 5728

	kfree(*tablep);
	*tablep = NULL;
}

5729
static void
5730
set_table_entry(struct ctl_table *entry,
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5744
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5745

5746 5747 5748
	if (table == NULL)
		return NULL;

5749
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5750
		sizeof(long), 0644, proc_doulongvec_minmax);
5751
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5752
		sizeof(long), 0644, proc_doulongvec_minmax);
5753
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5754
		sizeof(int), 0644, proc_dointvec_minmax);
5755
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5756
		sizeof(int), 0644, proc_dointvec_minmax);
5757
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5758
		sizeof(int), 0644, proc_dointvec_minmax);
5759
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5760
		sizeof(int), 0644, proc_dointvec_minmax);
5761
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5762
		sizeof(int), 0644, proc_dointvec_minmax);
5763
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5764
		sizeof(int), 0644, proc_dointvec_minmax);
5765
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5766
		sizeof(int), 0644, proc_dointvec_minmax);
5767
	set_table_entry(&table[9], "cache_nice_tries",
5768 5769
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5770
	set_table_entry(&table[10], "flags", &sd->flags,
5771
		sizeof(int), 0644, proc_dointvec_minmax);
5772 5773 5774
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5775 5776 5777 5778

	return table;
}

5779
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5780 5781 5782 5783 5784 5785 5786 5787 5788
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5789 5790
	if (table == NULL)
		return NULL;
5791 5792 5793 5794 5795

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5796
		entry->mode = 0555;
5797 5798 5799 5800 5801 5802 5803 5804
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5805
static void register_sched_domain_sysctl(void)
5806
{
5807
	int i, cpu_num = num_possible_cpus();
5808 5809 5810
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5811 5812 5813
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5814 5815 5816
	if (entry == NULL)
		return;

5817
	for_each_possible_cpu(i) {
5818 5819
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5820
		entry->mode = 0555;
5821
		entry->child = sd_alloc_ctl_cpu_table(i);
5822
		entry++;
5823
	}
5824 5825

	WARN_ON(sd_sysctl_header);
5826 5827
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5828

5829
/* may be called multiple times per register */
5830 5831
static void unregister_sched_domain_sysctl(void)
{
5832 5833
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5834
	sd_sysctl_header = NULL;
5835 5836
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5837
}
5838
#else
5839 5840 5841 5842
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5843 5844 5845 5846
{
}
#endif

5847 5848 5849 5850 5851
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5852
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5872
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5873 5874 5875 5876
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5877 5878 5879 5880
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5881 5882
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5883 5884
{
	struct task_struct *p;
5885
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5886
	unsigned long flags;
5887
	struct rq *rq;
L
Linus Torvalds 已提交
5888 5889

	switch (action) {
5890

L
Linus Torvalds 已提交
5891
	case CPU_UP_PREPARE:
5892
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5893
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5894 5895 5896 5897 5898
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5899
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5900
		task_rq_unlock(rq, &flags);
5901
		get_task_struct(p);
L
Linus Torvalds 已提交
5902
		cpu_rq(cpu)->migration_thread = p;
5903
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5904
		break;
5905

L
Linus Torvalds 已提交
5906
	case CPU_ONLINE:
5907
	case CPU_ONLINE_FROZEN:
5908
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5909
		wake_up_process(cpu_rq(cpu)->migration_thread);
5910 5911 5912

		/* Update our root-domain */
		rq = cpu_rq(cpu);
5913
		raw_spin_lock_irqsave(&rq->lock, flags);
5914
		if (rq->rd) {
5915
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5916 5917

			set_rq_online(rq);
5918
		}
5919
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5920
		break;
5921

L
Linus Torvalds 已提交
5922 5923
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5924
	case CPU_UP_CANCELED_FROZEN:
5925 5926
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5927
		/* Unbind it from offline cpu so it can run. Fall thru. */
5928
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
5929
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
5930
		kthread_stop(cpu_rq(cpu)->migration_thread);
5931
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
5932 5933
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5934

L
Linus Torvalds 已提交
5935
	case CPU_DEAD:
5936
	case CPU_DEAD_FROZEN:
5937
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5938 5939 5940
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
5941
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
5942 5943
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5944
		raw_spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5945
		update_rq_clock(rq);
5946
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5947 5948
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5949
		migrate_dead_tasks(cpu);
5950
		raw_spin_unlock_irq(&rq->lock);
5951
		cpuset_unlock();
L
Linus Torvalds 已提交
5952 5953
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5954
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
5955 5956 5957 5958 5959
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
5960
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5961
		while (!list_empty(&rq->migration_queue)) {
5962 5963
			struct migration_req *req;

L
Linus Torvalds 已提交
5964
			req = list_entry(rq->migration_queue.next,
5965
					 struct migration_req, list);
L
Linus Torvalds 已提交
5966
			list_del_init(&req->list);
5967
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5968
			complete(&req->done);
5969
			raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5970
		}
5971
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5972
		break;
G
Gregory Haskins 已提交
5973

5974 5975
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5976 5977
		/* Update our root-domain */
		rq = cpu_rq(cpu);
5978
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5979
		if (rq->rd) {
5980
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5981
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5982
		}
5983
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5984
		break;
L
Linus Torvalds 已提交
5985 5986 5987 5988 5989
#endif
	}
	return NOTIFY_OK;
}

5990 5991 5992
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5993
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5994
 */
5995
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5996 5997 5998 5999
	.notifier_call = migration_call,
	.priority = 10
};

6000
static int __init migration_init(void)
L
Linus Torvalds 已提交
6001 6002
{
	void *cpu = (void *)(long)smp_processor_id();
6003
	int err;
6004 6005

	/* Start one for the boot CPU: */
6006 6007
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6008 6009
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6010

6011
	return 0;
L
Linus Torvalds 已提交
6012
}
6013
early_initcall(migration_init);
L
Linus Torvalds 已提交
6014 6015 6016
#endif

#ifdef CONFIG_SMP
6017

6018
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6019

6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6030
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6031
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6032
{
I
Ingo Molnar 已提交
6033
	struct sched_group *group = sd->groups;
6034
	char str[256];
L
Linus Torvalds 已提交
6035

R
Rusty Russell 已提交
6036
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6037
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6038 6039 6040 6041

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6042
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6043
		if (sd->parent)
P
Peter Zijlstra 已提交
6044 6045
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6046
		return -1;
N
Nick Piggin 已提交
6047 6048
	}

P
Peter Zijlstra 已提交
6049
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6050

6051
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6052 6053
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6054
	}
6055
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6056 6057
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6058
	}
L
Linus Torvalds 已提交
6059

I
Ingo Molnar 已提交
6060
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6061
	do {
I
Ingo Molnar 已提交
6062
		if (!group) {
P
Peter Zijlstra 已提交
6063 6064
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6065 6066 6067
			break;
		}

6068
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6069 6070 6071
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6072 6073
			break;
		}
L
Linus Torvalds 已提交
6074

6075
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6076 6077
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6078 6079
			break;
		}
L
Linus Torvalds 已提交
6080

6081
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6082 6083
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6084 6085
			break;
		}
L
Linus Torvalds 已提交
6086

6087
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6088

R
Rusty Russell 已提交
6089
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6090

P
Peter Zijlstra 已提交
6091
		printk(KERN_CONT " %s", str);
6092
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6093 6094
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6095
		}
L
Linus Torvalds 已提交
6096

I
Ingo Molnar 已提交
6097 6098
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6099
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6100

6101
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6102
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6103

6104 6105
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6106 6107
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6108 6109
	return 0;
}
L
Linus Torvalds 已提交
6110

I
Ingo Molnar 已提交
6111 6112
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6113
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6114
	int level = 0;
L
Linus Torvalds 已提交
6115

6116 6117 6118
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6119 6120 6121 6122
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6123

I
Ingo Molnar 已提交
6124 6125
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6126
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6127 6128 6129 6130
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6131
	for (;;) {
6132
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6133
			break;
L
Linus Torvalds 已提交
6134 6135
		level++;
		sd = sd->parent;
6136
		if (!sd)
I
Ingo Molnar 已提交
6137 6138
			break;
	}
6139
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6140
}
6141
#else /* !CONFIG_SCHED_DEBUG */
6142
# define sched_domain_debug(sd, cpu) do { } while (0)
6143
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6144

6145
static int sd_degenerate(struct sched_domain *sd)
6146
{
6147
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6148 6149 6150 6151 6152 6153
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6154 6155 6156
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6157 6158 6159 6160 6161
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6162
	if (sd->flags & (SD_WAKE_AFFINE))
6163 6164 6165 6166 6167
		return 0;

	return 1;
}

6168 6169
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6170 6171 6172 6173 6174 6175
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6176
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6177 6178 6179 6180 6181 6182 6183
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6184 6185 6186
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6187 6188
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6189 6190 6191 6192 6193 6194 6195
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6196 6197
static void free_rootdomain(struct root_domain *rd)
{
6198 6199
	synchronize_sched();

6200 6201
	cpupri_cleanup(&rd->cpupri);

6202 6203 6204 6205 6206 6207
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6208 6209
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6210
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6211 6212
	unsigned long flags;

6213
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6214 6215

	if (rq->rd) {
I
Ingo Molnar 已提交
6216
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6217

6218
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6219
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6220

6221
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6222

I
Ingo Molnar 已提交
6223 6224 6225 6226 6227 6228 6229
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6230 6231 6232 6233 6234
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6235
	cpumask_set_cpu(rq->cpu, rd->span);
6236
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6237
		set_rq_online(rq);
G
Gregory Haskins 已提交
6238

6239
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6240 6241 6242

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6243 6244
}

L
Li Zefan 已提交
6245
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6246
{
6247 6248
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6249 6250
	memset(rd, 0, sizeof(*rd));

6251 6252
	if (bootmem)
		gfp = GFP_NOWAIT;
6253

6254
	if (!alloc_cpumask_var(&rd->span, gfp))
6255
		goto out;
6256
	if (!alloc_cpumask_var(&rd->online, gfp))
6257
		goto free_span;
6258
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6259
		goto free_online;
6260

P
Pekka Enberg 已提交
6261
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6262
		goto free_rto_mask;
6263
	return 0;
6264

6265 6266
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6267 6268 6269 6270
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6271
out:
6272
	return -ENOMEM;
G
Gregory Haskins 已提交
6273 6274 6275 6276
}

static void init_defrootdomain(void)
{
6277 6278
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6279 6280 6281
	atomic_set(&def_root_domain.refcount, 1);
}

6282
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6283 6284 6285 6286 6287 6288 6289
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6290 6291 6292 6293
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6294 6295 6296 6297

	return rd;
}

L
Linus Torvalds 已提交
6298
/*
I
Ingo Molnar 已提交
6299
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6300 6301
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6302 6303
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6304
{
6305
	struct rq *rq = cpu_rq(cpu);
6306 6307 6308
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6309
	for (tmp = sd; tmp; ) {
6310 6311 6312
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6313

6314
		if (sd_parent_degenerate(tmp, parent)) {
6315
			tmp->parent = parent->parent;
6316 6317
			if (parent->parent)
				parent->parent->child = tmp;
6318 6319
		} else
			tmp = tmp->parent;
6320 6321
	}

6322
	if (sd && sd_degenerate(sd)) {
6323
		sd = sd->parent;
6324 6325 6326
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6327 6328 6329

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6330
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6331
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6332 6333 6334
}

/* cpus with isolated domains */
6335
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6336 6337 6338 6339

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6340
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6341
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6342 6343 6344
	return 1;
}

I
Ingo Molnar 已提交
6345
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6346 6347

/*
6348 6349
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6350 6351
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6352 6353 6354 6355 6356
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6357
static void
6358 6359 6360
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6361
					struct sched_group **sg,
6362 6363
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6364 6365 6366 6367
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6368
	cpumask_clear(covered);
6369

6370
	for_each_cpu(i, span) {
6371
		struct sched_group *sg;
6372
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6373 6374
		int j;

6375
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6376 6377
			continue;

6378
		cpumask_clear(sched_group_cpus(sg));
6379
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6380

6381
		for_each_cpu(j, span) {
6382
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6383 6384
				continue;

6385
			cpumask_set_cpu(j, covered);
6386
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6397
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6398

6399
#ifdef CONFIG_NUMA
6400

6401 6402 6403 6404 6405
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6406
 * Find the next node to include in a given scheduling domain. Simply
6407 6408 6409 6410
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6411
static int find_next_best_node(int node, nodemask_t *used_nodes)
6412 6413 6414 6415 6416
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6417
	for (i = 0; i < nr_node_ids; i++) {
6418
		/* Start at @node */
6419
		n = (node + i) % nr_node_ids;
6420 6421 6422 6423 6424

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6425
		if (node_isset(n, *used_nodes))
6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6437
	node_set(best_node, *used_nodes);
6438 6439 6440 6441 6442 6443
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6444
 * @span: resulting cpumask
6445
 *
I
Ingo Molnar 已提交
6446
 * Given a node, construct a good cpumask for its sched_domain to span. It
6447 6448 6449
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6450
static void sched_domain_node_span(int node, struct cpumask *span)
6451
{
6452
	nodemask_t used_nodes;
6453
	int i;
6454

6455
	cpumask_clear(span);
6456
	nodes_clear(used_nodes);
6457

6458
	cpumask_or(span, span, cpumask_of_node(node));
6459
	node_set(node, used_nodes);
6460 6461

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6462
		int next_node = find_next_best_node(node, &used_nodes);
6463

6464
		cpumask_or(span, span, cpumask_of_node(next_node));
6465 6466
	}
}
6467
#endif /* CONFIG_NUMA */
6468

6469
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6470

6471 6472
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6473 6474 6475
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6520
/*
6521
 * SMT sched-domains:
6522
 */
L
Linus Torvalds 已提交
6523
#ifdef CONFIG_SCHED_SMT
6524
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6525
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6526

I
Ingo Molnar 已提交
6527
static int
6528 6529
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6530
{
6531
	if (sg)
6532
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6533 6534
	return cpu;
}
6535
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6536

6537 6538 6539
/*
 * multi-core sched-domains:
 */
6540
#ifdef CONFIG_SCHED_MC
6541 6542
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6543
#endif /* CONFIG_SCHED_MC */
6544 6545

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6546
static int
6547 6548
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6549
{
6550
	int group;
6551

6552
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6553
	group = cpumask_first(mask);
6554
	if (sg)
6555
		*sg = &per_cpu(sched_group_core, group).sg;
6556
	return group;
6557 6558
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6559
static int
6560 6561
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6562
{
6563
	if (sg)
6564
		*sg = &per_cpu(sched_group_core, cpu).sg;
6565 6566 6567 6568
	return cpu;
}
#endif

6569 6570
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6571

I
Ingo Molnar 已提交
6572
static int
6573 6574
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6575
{
6576
	int group;
6577
#ifdef CONFIG_SCHED_MC
6578
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6579
	group = cpumask_first(mask);
6580
#elif defined(CONFIG_SCHED_SMT)
6581
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6582
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6583
#else
6584
	group = cpu;
L
Linus Torvalds 已提交
6585
#endif
6586
	if (sg)
6587
		*sg = &per_cpu(sched_group_phys, group).sg;
6588
	return group;
L
Linus Torvalds 已提交
6589 6590 6591 6592
}

#ifdef CONFIG_NUMA
/*
6593 6594 6595
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6596
 */
6597
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6598
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6599

6600
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6601
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6602

6603 6604 6605
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6606
{
6607 6608
	int group;

6609
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6610
	group = cpumask_first(nodemask);
6611 6612

	if (sg)
6613
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6614
	return group;
L
Linus Torvalds 已提交
6615
}
6616

6617 6618 6619 6620 6621 6622 6623
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6624
	do {
6625
		for_each_cpu(j, sched_group_cpus(sg)) {
6626
			struct sched_domain *sd;
6627

6628
			sd = &per_cpu(phys_domains, j).sd;
6629
			if (j != group_first_cpu(sd->groups)) {
6630 6631 6632 6633 6634 6635
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6636

6637
			sg->cpu_power += sd->groups->cpu_power;
6638 6639 6640
		}
		sg = sg->next;
	} while (sg != group_head);
6641
}
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6663 6664
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6665 6666 6667 6668 6669 6670 6671 6672 6673
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6674
	sg->cpu_power = 0;
6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6693 6694
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6695 6696
			return -ENOMEM;
		}
6697
		sg->cpu_power = 0;
6698 6699 6700 6701 6702 6703 6704 6705 6706
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6707
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6708

6709
#ifdef CONFIG_NUMA
6710
/* Free memory allocated for various sched_group structures */
6711 6712
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6713
{
6714
	int cpu, i;
6715

6716
	for_each_cpu(cpu, cpu_map) {
6717 6718 6719 6720 6721 6722
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6723
		for (i = 0; i < nr_node_ids; i++) {
6724 6725
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6726
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6727
			if (cpumask_empty(nodemask))
6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6744
#else /* !CONFIG_NUMA */
6745 6746
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6747 6748
{
}
6749
#endif /* CONFIG_NUMA */
6750

6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6765 6766
	long power;
	int weight;
6767 6768 6769

	WARN_ON(!sd || !sd->groups);

6770
	if (cpu != group_first_cpu(sd->groups))
6771 6772 6773 6774
		return;

	child = sd->child;

6775
	sd->groups->cpu_power = 0;
6776

6777 6778 6779 6780 6781
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6782 6783 6784
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6785
		 */
P
Peter Zijlstra 已提交
6786 6787
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6788
			power /= weight;
P
Peter Zijlstra 已提交
6789 6790
			power >>= SCHED_LOAD_SHIFT;
		}
6791
		sd->groups->cpu_power += power;
6792 6793 6794 6795
		return;
	}

	/*
6796
	 * Add cpu_power of each child group to this groups cpu_power.
6797 6798 6799
	 */
	group = child->groups;
	do {
6800
		sd->groups->cpu_power += group->cpu_power;
6801 6802 6803 6804
		group = group->next;
	} while (group != child->groups);
}

6805 6806 6807 6808 6809
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6810 6811 6812 6813 6814 6815
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6816
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6817

6818 6819 6820 6821 6822
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6823
	sd->level = SD_LV_##type;				\
6824
	SD_INIT_NAME(sd, type);					\
6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6839 6840 6841 6842
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6843 6844 6845 6846 6847 6848
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6867
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6868 6869
	} else {
		/* turn on idle balance on this domain */
6870
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6871 6872 6873
	}
}

6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6894
#ifdef CONFIG_NUMA
6895 6896 6897 6898 6899 6900 6901
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6902
#endif
6903 6904 6905 6906
	case sa_none:
		break;
	}
}
6907

6908 6909 6910
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6911
#ifdef CONFIG_NUMA
6912 6913 6914 6915 6916 6917 6918 6919 6920 6921
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6922
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6923
		return sa_notcovered;
6924
	}
6925
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6926
#endif
6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6939
		printk(KERN_WARNING "Cannot alloc root domain\n");
6940
		return sa_tmpmask;
G
Gregory Haskins 已提交
6941
	}
6942 6943
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6944

6945 6946 6947 6948
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6949
#ifdef CONFIG_NUMA
6950
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6951

6952 6953 6954 6955 6956
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6957
		set_domain_attribute(sd, attr);
6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6972
#endif
6973 6974
	return sd;
}
L
Linus Torvalds 已提交
6975

6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6991

6992 6993 6994 6995 6996
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
6997
#ifdef CONFIG_SCHED_MC
6998 6999 7000 7001 7002 7003 7004
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7005
#endif
7006 7007
	return sd;
}
7008

7009 7010 7011 7012 7013
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
7014
#ifdef CONFIG_SCHED_SMT
7015 7016 7017 7018 7019 7020 7021
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
7022
#endif
7023 7024
	return sd;
}
L
Linus Torvalds 已提交
7025

7026 7027 7028 7029
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
7030
#ifdef CONFIG_SCHED_SMT
7031 7032 7033 7034 7035 7036 7037 7038
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7039
#endif
7040
#ifdef CONFIG_SCHED_MC
7041 7042 7043 7044 7045 7046 7047
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
7048
#endif
7049 7050 7051 7052 7053 7054 7055
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7056
#ifdef CONFIG_NUMA
7057 7058 7059 7060 7061
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
7062 7063
	default:
		break;
7064
	}
7065
}
7066

7067 7068 7069 7070 7071 7072 7073 7074 7075
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7076
	struct sched_domain *sd;
7077
	int i;
7078
#ifdef CONFIG_NUMA
7079
	d.sd_allnodes = 0;
7080
#endif
7081

7082 7083 7084 7085
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7086

L
Linus Torvalds 已提交
7087
	/*
7088
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7089
	 */
7090
	for_each_cpu(i, cpu_map) {
7091 7092
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7093

7094
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7095
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7096
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7097
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7098
	}
7099

7100
	for_each_cpu(i, cpu_map) {
7101
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7102
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7103
	}
7104

L
Linus Torvalds 已提交
7105
	/* Set up physical groups */
7106 7107
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7108

L
Linus Torvalds 已提交
7109 7110
#ifdef CONFIG_NUMA
	/* Set up node groups */
7111 7112
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7113

7114 7115
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7116
			goto error;
L
Linus Torvalds 已提交
7117 7118 7119
#endif

	/* Calculate CPU power for physical packages and nodes */
7120
#ifdef CONFIG_SCHED_SMT
7121
	for_each_cpu(i, cpu_map) {
7122
		sd = &per_cpu(cpu_domains, i).sd;
7123
		init_sched_groups_power(i, sd);
7124
	}
L
Linus Torvalds 已提交
7125
#endif
7126
#ifdef CONFIG_SCHED_MC
7127
	for_each_cpu(i, cpu_map) {
7128
		sd = &per_cpu(core_domains, i).sd;
7129
		init_sched_groups_power(i, sd);
7130 7131
	}
#endif
7132

7133
	for_each_cpu(i, cpu_map) {
7134
		sd = &per_cpu(phys_domains, i).sd;
7135
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7136 7137
	}

7138
#ifdef CONFIG_NUMA
7139
	for (i = 0; i < nr_node_ids; i++)
7140
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7141

7142
	if (d.sd_allnodes) {
7143
		struct sched_group *sg;
7144

7145
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7146
								d.tmpmask);
7147 7148
		init_numa_sched_groups_power(sg);
	}
7149 7150
#endif

L
Linus Torvalds 已提交
7151
	/* Attach the domains */
7152
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7153
#ifdef CONFIG_SCHED_SMT
7154
		sd = &per_cpu(cpu_domains, i).sd;
7155
#elif defined(CONFIG_SCHED_MC)
7156
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7157
#else
7158
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7159
#endif
7160
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7161
	}
7162

7163 7164 7165
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7166 7167

error:
7168 7169
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7170
}
P
Paul Jackson 已提交
7171

7172
static int build_sched_domains(const struct cpumask *cpu_map)
7173 7174 7175 7176
{
	return __build_sched_domains(cpu_map, NULL);
}

7177
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7178
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7179 7180
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7181 7182 7183

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7184 7185
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7186
 */
7187
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7188

7189 7190 7191 7192 7193 7194
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7195
{
7196
	return 0;
7197 7198
}

7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7224
/*
I
Ingo Molnar 已提交
7225
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7226 7227
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7228
 */
7229
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7230
{
7231 7232
	int err;

7233
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7234
	ndoms_cur = 1;
7235
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7236
	if (!doms_cur)
7237 7238
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7239
	dattr_cur = NULL;
7240
	err = build_sched_domains(doms_cur[0]);
7241
	register_sched_domain_sysctl();
7242 7243

	return err;
7244 7245
}

7246 7247
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7248
{
7249
	free_sched_groups(cpu_map, tmpmask);
7250
}
L
Linus Torvalds 已提交
7251

7252 7253 7254 7255
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7256
static void detach_destroy_domains(const struct cpumask *cpu_map)
7257
{
7258 7259
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7260 7261
	int i;

7262
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7263
		cpu_attach_domain(NULL, &def_root_domain, i);
7264
	synchronize_sched();
7265
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7266 7267
}

7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7284 7285
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7286
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7287 7288 7289
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7290
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7291 7292 7293
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7294 7295 7296
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7297 7298 7299 7300 7301 7302
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7303
 *
7304
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7305 7306
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7307
 *
P
Paul Jackson 已提交
7308 7309
 * Call with hotplug lock held
 */
7310
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7311
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7312
{
7313
	int i, j, n;
7314
	int new_topology;
P
Paul Jackson 已提交
7315

7316
	mutex_lock(&sched_domains_mutex);
7317

7318 7319 7320
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7321 7322 7323
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7324
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7325 7326 7327

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7328
		for (j = 0; j < n && !new_topology; j++) {
7329
			if (cpumask_equal(doms_cur[i], doms_new[j])
7330
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7331 7332 7333
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7334
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7335 7336 7337 7338
match1:
		;
	}

7339 7340
	if (doms_new == NULL) {
		ndoms_cur = 0;
7341
		doms_new = &fallback_doms;
7342
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7343
		WARN_ON_ONCE(dattr_new);
7344 7345
	}

P
Paul Jackson 已提交
7346 7347
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7348
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7349
			if (cpumask_equal(doms_new[i], doms_cur[j])
7350
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7351 7352 7353
				goto match2;
		}
		/* no match - add a new doms_new */
7354
		__build_sched_domains(doms_new[i],
7355
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7356 7357 7358 7359 7360
match2:
		;
	}

	/* Remember the new sched domains */
7361 7362
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7363
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7364
	doms_cur = doms_new;
7365
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7366
	ndoms_cur = ndoms_new;
7367 7368

	register_sched_domain_sysctl();
7369

7370
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7371 7372
}

7373
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7374
static void arch_reinit_sched_domains(void)
7375
{
7376
	get_online_cpus();
7377 7378 7379 7380

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7381
	rebuild_sched_domains();
7382
	put_online_cpus();
7383 7384 7385 7386
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7387
	unsigned int level = 0;
7388

7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7400 7401 7402
		return -EINVAL;

	if (smt)
7403
		sched_smt_power_savings = level;
7404
	else
7405
		sched_mc_power_savings = level;
7406

7407
	arch_reinit_sched_domains();
7408

7409
	return count;
7410 7411 7412
}

#ifdef CONFIG_SCHED_MC
7413
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7414
					   struct sysdev_class_attribute *attr,
7415
					   char *page)
7416 7417 7418
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7419
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7420
					    struct sysdev_class_attribute *attr,
7421
					    const char *buf, size_t count)
7422 7423 7424
{
	return sched_power_savings_store(buf, count, 0);
}
7425 7426 7427
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7428 7429 7430
#endif

#ifdef CONFIG_SCHED_SMT
7431
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7432
					    struct sysdev_class_attribute *attr,
7433
					    char *page)
7434 7435 7436
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7437
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7438
					     struct sysdev_class_attribute *attr,
7439
					     const char *buf, size_t count)
7440 7441 7442
{
	return sched_power_savings_store(buf, count, 1);
}
7443 7444
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7445 7446 7447
		   sched_smt_power_savings_store);
#endif

7448
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7464
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7465

7466
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7467
/*
7468 7469
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7470 7471 7472
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7473 7474 7475 7476
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
7477 7478 7479 7480
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
7481
		partition_sched_domains(1, NULL, NULL);
7482 7483 7484 7485 7486 7487 7488 7489 7490 7491
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7492
{
P
Peter Zijlstra 已提交
7493 7494
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7495 7496
	switch (action) {
	case CPU_DOWN_PREPARE:
7497
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7498
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7499 7500 7501
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7502
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7503
	case CPU_ONLINE:
7504
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7505
		enable_runtime(cpu_rq(cpu));
7506 7507
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7508 7509 7510 7511 7512 7513 7514
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7515 7516 7517
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7518
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7519

7520 7521 7522 7523 7524
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7525
	get_online_cpus();
7526
	mutex_lock(&sched_domains_mutex);
7527
	arch_init_sched_domains(cpu_active_mask);
7528 7529 7530
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7531
	mutex_unlock(&sched_domains_mutex);
7532
	put_online_cpus();
7533 7534

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7535 7536
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7537 7538 7539 7540 7541
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7542
	init_hrtick();
7543 7544

	/* Move init over to a non-isolated CPU */
7545
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7546
		BUG();
I
Ingo Molnar 已提交
7547
	sched_init_granularity();
7548
	free_cpumask_var(non_isolated_cpus);
7549

7550
	init_sched_rt_class();
L
Linus Torvalds 已提交
7551 7552 7553 7554
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7555
	sched_init_granularity();
L
Linus Torvalds 已提交
7556 7557 7558
}
#endif /* CONFIG_SMP */

7559 7560
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7561 7562 7563 7564 7565 7566 7567
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7568
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7569 7570
{
	cfs_rq->tasks_timeline = RB_ROOT;
7571
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7572 7573 7574
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7575
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7576 7577
}

P
Peter Zijlstra 已提交
7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7591
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7592
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7593
#ifdef CONFIG_SMP
7594
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7595 7596
#endif
#endif
P
Peter Zijlstra 已提交
7597 7598 7599
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7600
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7601 7602 7603 7604
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7605
	rt_rq->rt_runtime = 0;
7606
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7607

7608
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7609
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7610 7611
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7612 7613
}

P
Peter Zijlstra 已提交
7614
#ifdef CONFIG_FAIR_GROUP_SCHED
7615 7616 7617
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7618
{
7619
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7620 7621 7622 7623 7624 7625 7626
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7627 7628 7629 7630
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7631 7632 7633 7634 7635
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7636 7637
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7638
	se->load.inv_weight = 0;
7639
	se->parent = parent;
P
Peter Zijlstra 已提交
7640
}
7641
#endif
P
Peter Zijlstra 已提交
7642

7643
#ifdef CONFIG_RT_GROUP_SCHED
7644 7645 7646
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7647
{
7648 7649
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7650 7651 7652
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7653
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7654 7655 7656 7657
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7658 7659 7660
	if (!rt_se)
		return;

7661 7662 7663 7664 7665
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7666
	rt_se->my_q = rt_rq;
7667
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7668 7669 7670 7671
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7672 7673
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7674
	int i, j;
7675 7676 7677 7678 7679 7680 7681
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7682
#endif
7683
#ifdef CONFIG_CPUMASK_OFFSTACK
7684
	alloc_size += num_possible_cpus() * cpumask_size();
7685 7686
#endif
	if (alloc_size) {
7687
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7688 7689 7690 7691 7692 7693 7694

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7695

7696
#endif /* CONFIG_FAIR_GROUP_SCHED */
7697 7698 7699 7700 7701
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7702 7703
		ptr += nr_cpu_ids * sizeof(void **);

7704
#endif /* CONFIG_RT_GROUP_SCHED */
7705 7706 7707 7708 7709 7710
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7711
	}
I
Ingo Molnar 已提交
7712

G
Gregory Haskins 已提交
7713 7714 7715 7716
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7717 7718 7719 7720 7721 7722
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7723
#endif /* CONFIG_RT_GROUP_SCHED */
7724

D
Dhaval Giani 已提交
7725
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7726
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7727 7728
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7729
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7730

7731 7732 7733 7734
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7735
	for_each_possible_cpu(i) {
7736
		struct rq *rq;
L
Linus Torvalds 已提交
7737 7738

		rq = cpu_rq(i);
7739
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7740
		rq->nr_running = 0;
7741 7742
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7743
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7744
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7745
#ifdef CONFIG_FAIR_GROUP_SCHED
7746
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7747
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7763
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7764 7765 7766 7767
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7768
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7769
#endif
D
Dhaval Giani 已提交
7770 7771 7772
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7773
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7774
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7775
#ifdef CONFIG_CGROUP_SCHED
7776
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7777
#endif
I
Ingo Molnar 已提交
7778
#endif
L
Linus Torvalds 已提交
7779

I
Ingo Molnar 已提交
7780 7781
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7782
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7783
		rq->sd = NULL;
G
Gregory Haskins 已提交
7784
		rq->rd = NULL;
7785
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7786
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7787
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7788
		rq->push_cpu = 0;
7789
		rq->cpu = i;
7790
		rq->online = 0;
L
Linus Torvalds 已提交
7791
		rq->migration_thread = NULL;
7792 7793
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
7794
		INIT_LIST_HEAD(&rq->migration_queue);
7795
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7796
#endif
P
Peter Zijlstra 已提交
7797
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7798 7799 7800
		atomic_set(&rq->nr_iowait, 0);
	}

7801
	set_load_weight(&init_task);
7802

7803 7804 7805 7806
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7807
#ifdef CONFIG_SMP
7808
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7809 7810
#endif

7811
#ifdef CONFIG_RT_MUTEXES
7812
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7813 7814
#endif

L
Linus Torvalds 已提交
7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7828 7829 7830

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7831 7832 7833 7834
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7835

7836
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7837
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7838
#ifdef CONFIG_SMP
7839
#ifdef CONFIG_NO_HZ
7840
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7841
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7842
#endif
R
Rusty Russell 已提交
7843 7844 7845
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7846
#endif /* SMP */
7847

7848
	perf_event_init();
7849

7850
	scheduler_running = 1;
L
Linus Torvalds 已提交
7851 7852 7853
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7854 7855
static inline int preempt_count_equals(int preempt_offset)
{
7856
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7857 7858 7859 7860

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7861
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7862
{
7863
#ifdef in_atomic
L
Linus Torvalds 已提交
7864 7865
	static unsigned long prev_jiffy;	/* ratelimiting */

7866 7867
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7868 7869 7870 7871 7872
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7873 7874 7875 7876 7877 7878 7879
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7880 7881 7882 7883 7884

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7885 7886 7887 7888 7889 7890
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7891 7892 7893
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7894

7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7906 7907
void normalize_rt_tasks(void)
{
7908
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7909
	unsigned long flags;
7910
	struct rq *rq;
L
Linus Torvalds 已提交
7911

7912
	read_lock_irqsave(&tasklist_lock, flags);
7913
	do_each_thread(g, p) {
7914 7915 7916 7917 7918 7919
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7920 7921
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7922 7923 7924
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7925
#endif
I
Ingo Molnar 已提交
7926 7927 7928 7929 7930 7931 7932 7933

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7934
			continue;
I
Ingo Molnar 已提交
7935
		}
L
Linus Torvalds 已提交
7936

7937
		raw_spin_lock(&p->pi_lock);
7938
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7939

7940
		normalize_task(rq, p);
7941

7942
		__task_rq_unlock(rq);
7943
		raw_spin_unlock(&p->pi_lock);
7944 7945
	} while_each_thread(g, p);

7946
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7947 7948 7949
}

#endif /* CONFIG_MAGIC_SYSRQ */
7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7968
struct task_struct *curr_task(int cpu)
7969 7970 7971 7972 7973 7974 7975 7976 7977 7978
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7979 7980
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7981 7982 7983 7984 7985 7986 7987
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7988
void set_curr_task(int cpu, struct task_struct *p)
7989 7990 7991 7992 7993
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7994

7995 7996
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8011 8012
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8013 8014
{
	struct cfs_rq *cfs_rq;
8015
	struct sched_entity *se;
8016
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8017 8018
	int i;

8019
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8020 8021
	if (!tg->cfs_rq)
		goto err;
8022
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8023 8024
	if (!tg->se)
		goto err;
8025 8026

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8027 8028

	for_each_possible_cpu(i) {
8029
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8030

8031 8032
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8033 8034 8035
		if (!cfs_rq)
			goto err;

8036 8037
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8038
		if (!se)
8039
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8040

8041
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8042 8043 8044 8045
	}

	return 1;

8046 8047
 err_free_rq:
	kfree(cfs_rq);
8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8062
#else /* !CONFG_FAIR_GROUP_SCHED */
8063 8064 8065 8066
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8067 8068
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8080
#endif /* CONFIG_FAIR_GROUP_SCHED */
8081 8082

#ifdef CONFIG_RT_GROUP_SCHED
8083 8084 8085 8086
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8087 8088
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8100 8101
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8102 8103
{
	struct rt_rq *rt_rq;
8104
	struct sched_rt_entity *rt_se;
8105 8106 8107
	struct rq *rq;
	int i;

8108
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8109 8110
	if (!tg->rt_rq)
		goto err;
8111
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8112 8113 8114
	if (!tg->rt_se)
		goto err;

8115 8116
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8117 8118 8119 8120

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8121 8122
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8123 8124
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8125

8126 8127
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8128
		if (!rt_se)
8129
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8130

8131
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8132 8133
	}

8134 8135
	return 1;

8136 8137
 err_free_rq:
	kfree(rt_rq);
8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8152
#else /* !CONFIG_RT_GROUP_SCHED */
8153 8154 8155 8156
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8157 8158
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8170
#endif /* CONFIG_RT_GROUP_SCHED */
8171

D
Dhaval Giani 已提交
8172
#ifdef CONFIG_CGROUP_SCHED
8173 8174 8175 8176 8177 8178 8179 8180
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8181
struct task_group *sched_create_group(struct task_group *parent)
8182 8183 8184 8185 8186 8187 8188 8189 8190
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8191
	if (!alloc_fair_sched_group(tg, parent))
8192 8193
		goto err;

8194
	if (!alloc_rt_sched_group(tg, parent))
8195 8196
		goto err;

8197
	spin_lock_irqsave(&task_group_lock, flags);
8198
	for_each_possible_cpu(i) {
8199 8200
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8201
	}
P
Peter Zijlstra 已提交
8202
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8203 8204 8205 8206 8207

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8208
	list_add_rcu(&tg->siblings, &parent->children);
8209
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8210

8211
	return tg;
S
Srivatsa Vaddagiri 已提交
8212 8213

err:
P
Peter Zijlstra 已提交
8214
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8215 8216 8217
	return ERR_PTR(-ENOMEM);
}

8218
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8219
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8220 8221
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8222
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8223 8224
}

8225
/* Destroy runqueue etc associated with a task group */
8226
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8227
{
8228
	unsigned long flags;
8229
	int i;
S
Srivatsa Vaddagiri 已提交
8230

8231
	spin_lock_irqsave(&task_group_lock, flags);
8232
	for_each_possible_cpu(i) {
8233 8234
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8235
	}
P
Peter Zijlstra 已提交
8236
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8237
	list_del_rcu(&tg->siblings);
8238
	spin_unlock_irqrestore(&task_group_lock, flags);
8239 8240

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8241
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8242 8243
}

8244
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8245 8246 8247
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8248 8249
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8250 8251 8252 8253 8254 8255 8256 8257 8258
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8259
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8260 8261
	on_rq = tsk->se.on_rq;

8262
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8263
		dequeue_task(rq, tsk, 0);
8264 8265
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8266

P
Peter Zijlstra 已提交
8267
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8268

P
Peter Zijlstra 已提交
8269 8270
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8271
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8272 8273
#endif

8274 8275 8276
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8277
		enqueue_task(rq, tsk, 0, false);
S
Srivatsa Vaddagiri 已提交
8278 8279 8280

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8281
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8282

8283
#ifdef CONFIG_FAIR_GROUP_SCHED
8284
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8285 8286 8287 8288 8289
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8290
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8291 8292 8293
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8294
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8295

8296
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8297
		enqueue_entity(cfs_rq, se, 0);
8298
}
8299

8300 8301 8302 8303 8304 8305
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8306
	raw_spin_lock_irqsave(&rq->lock, flags);
8307
	__set_se_shares(se, shares);
8308
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8309 8310
}

8311 8312
static DEFINE_MUTEX(shares_mutex);

8313
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8314 8315
{
	int i;
8316
	unsigned long flags;
8317

8318 8319 8320 8321 8322 8323
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8324 8325
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8326 8327
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8328

8329
	mutex_lock(&shares_mutex);
8330
	if (tg->shares == shares)
8331
		goto done;
S
Srivatsa Vaddagiri 已提交
8332

8333
	spin_lock_irqsave(&task_group_lock, flags);
8334 8335
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8336
	list_del_rcu(&tg->siblings);
8337
	spin_unlock_irqrestore(&task_group_lock, flags);
8338 8339 8340 8341 8342 8343 8344 8345

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8346
	tg->shares = shares;
8347 8348 8349 8350 8351
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8352
		set_se_shares(tg->se[i], shares);
8353
	}
S
Srivatsa Vaddagiri 已提交
8354

8355 8356 8357 8358
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8359
	spin_lock_irqsave(&task_group_lock, flags);
8360 8361
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8362
	list_add_rcu(&tg->siblings, &tg->parent->children);
8363
	spin_unlock_irqrestore(&task_group_lock, flags);
8364
done:
8365
	mutex_unlock(&shares_mutex);
8366
	return 0;
S
Srivatsa Vaddagiri 已提交
8367 8368
}

8369 8370 8371 8372
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8373
#endif
8374

8375
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8376
/*
P
Peter Zijlstra 已提交
8377
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8378
 */
P
Peter Zijlstra 已提交
8379 8380 8381 8382 8383
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8384
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8385

P
Peter Zijlstra 已提交
8386
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8387 8388
}

P
Peter Zijlstra 已提交
8389 8390
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8391
{
P
Peter Zijlstra 已提交
8392
	struct task_struct *g, *p;
8393

P
Peter Zijlstra 已提交
8394 8395 8396 8397
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8398

P
Peter Zijlstra 已提交
8399 8400
	return 0;
}
8401

P
Peter Zijlstra 已提交
8402 8403 8404 8405 8406
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8407

P
Peter Zijlstra 已提交
8408 8409 8410 8411 8412 8413
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8414

P
Peter Zijlstra 已提交
8415 8416
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8417

P
Peter Zijlstra 已提交
8418 8419 8420
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8421 8422
	}

8423 8424 8425 8426 8427
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8428

8429 8430 8431
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8432 8433
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8434

P
Peter Zijlstra 已提交
8435
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8436

8437 8438 8439 8440 8441
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8442

8443 8444 8445
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8446 8447 8448
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8449

P
Peter Zijlstra 已提交
8450 8451 8452 8453
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8454

P
Peter Zijlstra 已提交
8455
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8456
	}
P
Peter Zijlstra 已提交
8457

P
Peter Zijlstra 已提交
8458 8459 8460 8461
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8462 8463
}

P
Peter Zijlstra 已提交
8464
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8465
{
P
Peter Zijlstra 已提交
8466 8467 8468 8469 8470 8471 8472
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8473 8474
}

8475 8476
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8477
{
P
Peter Zijlstra 已提交
8478
	int i, err = 0;
P
Peter Zijlstra 已提交
8479 8480

	mutex_lock(&rt_constraints_mutex);
8481
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8482 8483
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8484
		goto unlock;
P
Peter Zijlstra 已提交
8485

8486
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8487 8488
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8489 8490 8491 8492

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8493
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8494
		rt_rq->rt_runtime = rt_runtime;
8495
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8496
	}
8497
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8498
 unlock:
8499
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8500 8501 8502
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8503 8504
}

8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8517 8518 8519 8520
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8521
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8522 8523
		return -1;

8524
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8525 8526 8527
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8528 8529 8530 8531 8532 8533 8534 8535

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8536 8537 8538
	if (rt_period == 0)
		return -EINVAL;

8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8553
	u64 runtime, period;
8554 8555
	int ret = 0;

8556 8557 8558
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8559 8560 8561 8562 8563 8564 8565 8566
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8567

8568
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8569
	read_lock(&tasklist_lock);
8570
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8571
	read_unlock(&tasklist_lock);
8572 8573 8574 8575
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8576 8577 8578 8579 8580 8581 8582 8583 8584 8585

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8586
#else /* !CONFIG_RT_GROUP_SCHED */
8587 8588
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8589 8590 8591
	unsigned long flags;
	int i;

8592 8593 8594
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8595 8596 8597 8598 8599 8600 8601
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8602
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8603 8604 8605
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8606
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8607
		rt_rq->rt_runtime = global_rt_runtime();
8608
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8609
	}
8610
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8611

8612 8613
	return 0;
}
8614
#endif /* CONFIG_RT_GROUP_SCHED */
8615 8616

int sched_rt_handler(struct ctl_table *table, int write,
8617
		void __user *buffer, size_t *lenp,
8618 8619 8620 8621 8622 8623 8624 8625 8626 8627
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8628
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8645

8646
#ifdef CONFIG_CGROUP_SCHED
8647 8648

/* return corresponding task_group object of a cgroup */
8649
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8650
{
8651 8652
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8653 8654 8655
}

static struct cgroup_subsys_state *
8656
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8657
{
8658
	struct task_group *tg, *parent;
8659

8660
	if (!cgrp->parent) {
8661 8662 8663 8664
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8665 8666
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8667 8668 8669 8670 8671 8672
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8673 8674
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8675
{
8676
	struct task_group *tg = cgroup_tg(cgrp);
8677 8678 8679 8680

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8681
static int
8682
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8683
{
8684
#ifdef CONFIG_RT_GROUP_SCHED
8685
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8686 8687
		return -EINVAL;
#else
8688 8689 8690
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8691
#endif
8692 8693
	return 0;
}
8694

8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8714 8715 8716 8717
	return 0;
}

static void
8718
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8719 8720
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8721 8722
{
	sched_move_task(tsk);
8723 8724 8725 8726 8727 8728 8729 8730
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8731 8732
}

8733
#ifdef CONFIG_FAIR_GROUP_SCHED
8734
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8735
				u64 shareval)
8736
{
8737
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8738 8739
}

8740
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8741
{
8742
	struct task_group *tg = cgroup_tg(cgrp);
8743 8744 8745

	return (u64) tg->shares;
}
8746
#endif /* CONFIG_FAIR_GROUP_SCHED */
8747

8748
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8749
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8750
				s64 val)
P
Peter Zijlstra 已提交
8751
{
8752
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8753 8754
}

8755
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8756
{
8757
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8758
}
8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8770
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8771

8772
static struct cftype cpu_files[] = {
8773
#ifdef CONFIG_FAIR_GROUP_SCHED
8774 8775
	{
		.name = "shares",
8776 8777
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8778
	},
8779 8780
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8781
	{
P
Peter Zijlstra 已提交
8782
		.name = "rt_runtime_us",
8783 8784
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8785
	},
8786 8787
	{
		.name = "rt_period_us",
8788 8789
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8790
	},
8791
#endif
8792 8793 8794 8795
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8796
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8797 8798 8799
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8800 8801 8802 8803 8804 8805 8806
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8807 8808 8809
	.early_init	= 1,
};

8810
#endif	/* CONFIG_CGROUP_SCHED */
8811 8812 8813 8814 8815 8816 8817 8818 8819 8820

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8821
/* track cpu usage of a group of tasks and its child groups */
8822 8823 8824
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8825
	u64 __percpu *cpuusage;
8826
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8827
	struct cpuacct *parent;
8828 8829 8830 8831 8832
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8833
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8834
{
8835
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8848
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8849 8850
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8851
	int i;
8852 8853

	if (!ca)
8854
		goto out;
8855 8856

	ca->cpuusage = alloc_percpu(u64);
8857 8858 8859 8860 8861 8862
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8863

8864 8865 8866
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8867
	return &ca->css;
8868 8869 8870 8871 8872 8873 8874 8875 8876

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8877 8878 8879
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8880
static void
8881
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8882
{
8883
	struct cpuacct *ca = cgroup_ca(cgrp);
8884
	int i;
8885

8886 8887
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8888 8889 8890 8891
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8892 8893
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8894
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8895 8896 8897 8898 8899 8900
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8901
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8902
	data = *cpuusage;
8903
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8904 8905 8906 8907 8908 8909 8910 8911 8912
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8913
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8914 8915 8916 8917 8918

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8919
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8920
	*cpuusage = val;
8921
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8922 8923 8924 8925 8926
#else
	*cpuusage = val;
#endif
}

8927
/* return total cpu usage (in nanoseconds) of a group */
8928
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8929
{
8930
	struct cpuacct *ca = cgroup_ca(cgrp);
8931 8932 8933
	u64 totalcpuusage = 0;
	int i;

8934 8935
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8936 8937 8938 8939

	return totalcpuusage;
}

8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8952 8953
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8954 8955 8956 8957 8958

out:
	return err;
}

8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8993 8994 8995
static struct cftype files[] = {
	{
		.name = "usage",
8996 8997
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8998
	},
8999 9000 9001 9002
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9003 9004 9005 9006
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9007 9008
};

9009
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9010
{
9011
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9012 9013 9014 9015 9016 9017 9018 9019 9020 9021
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9022
	int cpu;
9023

L
Li Zefan 已提交
9024
	if (unlikely(!cpuacct_subsys.active))
9025 9026
		return;

9027
	cpu = task_cpu(tsk);
9028 9029 9030

	rcu_read_lock();

9031 9032
	ca = task_ca(tsk);

9033
	for (; ca; ca = ca->parent) {
9034
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9035 9036
		*cpuusage += cputime;
	}
9037 9038

	rcu_read_unlock();
9039 9040
}

9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9058 9059 9060 9061 9062 9063 9064
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9065
	int batch = CPUACCT_BATCH;
9066 9067 9068 9069 9070 9071 9072 9073

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9074
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9075 9076 9077 9078 9079
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9080 9081 9082 9083 9084 9085 9086 9087
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
9173
		raw_spin_lock_irqsave(&rq->lock, flags);
9174
		list_add(&req->list, &rq->migration_queue);
9175
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9176 9177 9178 9179 9180 9181 9182
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
9183
		raw_spin_lock_irqsave(&rq->lock, flags);
9184 9185 9186
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
9187
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9188 9189
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9190
	synchronize_sched_expedited_count++;
9191 9192 9193 9194 9195 9196 9197 9198
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */