sched.c 220.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
99
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
100
 */
101
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
102

I
Ingo Molnar 已提交
103 104 105
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
106 107 108
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
109
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
110 111 112
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
113

114 115 116 117 118
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

140 141
static inline int rt_policy(int policy)
{
142
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
143 144 145 146 147 148 149 150 151
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
152
/*
I
Ingo Molnar 已提交
153
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
154
 */
I
Ingo Molnar 已提交
155 156 157 158 159
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

160
struct rt_bandwidth {
I
Ingo Molnar 已提交
161 162 163 164 165
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
199 200
	spin_lock_init(&rt_b->rt_runtime_lock);

201 202 203 204 205 206
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

207 208
static inline int rt_bandwidth_enabled(void);

209 210 211 212
static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

213
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

240 241 242 243 244 245
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

246
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
247

248 249
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
250 251
struct cfs_rq;

P
Peter Zijlstra 已提交
252 253
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
254
/* task group related information */
255
struct task_group {
256
#ifdef CONFIG_CGROUP_SCHED
257 258
	struct cgroup_subsys_state css;
#endif
259 260

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
261 262 263 264 265
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
266 267 268 269 270 271
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

272
	struct rt_bandwidth rt_bandwidth;
273
#endif
274

275
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
276
	struct list_head list;
P
Peter Zijlstra 已提交
277 278 279 280

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
281 282
};

D
Dhaval Giani 已提交
283
#ifdef CONFIG_USER_SCHED
284 285 286 287 288 289 290 291

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

292
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
293 294 295 296
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
297
#endif /* CONFIG_FAIR_GROUP_SCHED */
298 299 300 301

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
302 303
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_FAIR_GROUP_SCHED */
304
#define root_task_group init_task_group
305
#endif /* CONFIG_FAIR_GROUP_SCHED */
P
Peter Zijlstra 已提交
306

307
/* task_group_lock serializes add/remove of task groups and also changes to
308 309
 * a task group's cpu shares.
 */
310
static DEFINE_SPINLOCK(task_group_lock);
311

312 313 314
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
315
#else /* !CONFIG_USER_SCHED */
316
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
317
#endif /* CONFIG_USER_SCHED */
318

319
/*
320 321 322 323
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
324 325 326
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
327
#define MIN_SHARES	2
328
#define MAX_SHARES	(1UL << 18)
329

330 331 332
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
333
/* Default task group.
I
Ingo Molnar 已提交
334
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
335
 */
336
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
337 338

/* return group to which a task belongs */
339
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
340
{
341
	struct task_group *tg;
342

343
#ifdef CONFIG_USER_SCHED
344
	tg = p->user->tg;
345
#elif defined(CONFIG_CGROUP_SCHED)
346 347
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
348
#else
I
Ingo Molnar 已提交
349
	tg = &init_task_group;
350
#endif
351
	return tg;
S
Srivatsa Vaddagiri 已提交
352 353 354
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
355
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
356
{
357
#ifdef CONFIG_FAIR_GROUP_SCHED
358 359
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
360
#endif
P
Peter Zijlstra 已提交
361

362
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
363 364
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
365
#endif
S
Srivatsa Vaddagiri 已提交
366 367 368 369
}

#else

P
Peter Zijlstra 已提交
370
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
371 372 373 374
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
375

376
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
377

I
Ingo Molnar 已提交
378 379 380 381 382 383
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
384
	u64 min_vruntime;
385
	u64 pair_start;
I
Ingo Molnar 已提交
386 387 388

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
389 390 391 392 393 394

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
395 396
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
397
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
398 399 400

	unsigned long nr_spread_over;

401
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
402 403
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
404 405
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
406 407 408 409 410 411
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
412 413
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
414 415 416

#ifdef CONFIG_SMP
	/*
417
	 * the part of load.weight contributed by tasks
418
	 */
419
	unsigned long task_weight;
420

421 422 423 424 425 426 427
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
428

429 430 431 432
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
433 434 435 436 437

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
438
#endif
I
Ingo Molnar 已提交
439 440
#endif
};
L
Linus Torvalds 已提交
441

I
Ingo Molnar 已提交
442 443 444
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
445
	unsigned long rt_nr_running;
446
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
447 448
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
449
#ifdef CONFIG_SMP
450
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
451
	int overloaded;
P
Peter Zijlstra 已提交
452
#endif
P
Peter Zijlstra 已提交
453
	int rt_throttled;
P
Peter Zijlstra 已提交
454
	u64 rt_time;
P
Peter Zijlstra 已提交
455
	u64 rt_runtime;
I
Ingo Molnar 已提交
456
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
457
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
458

459
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
460 461
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
462 463 464 465 466
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
467 468
};

G
Gregory Haskins 已提交
469 470 471 472
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
473 474
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
475 476 477 478 479 480 481 482
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
483

I
Ingo Molnar 已提交
484
	/*
485 486 487 488
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
489
	atomic_t rto_count;
490 491 492
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
493 494
};

495 496 497 498
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
499 500 501 502
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
503 504 505 506 507 508 509
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
510
struct rq {
511 512
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
513 514 515 516 517 518

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
519 520
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
521
	unsigned char idle_at_tick;
522
#ifdef CONFIG_NO_HZ
523
	unsigned long last_tick_seen;
524 525
	unsigned char in_nohz_recently;
#endif
526 527
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
528 529 530 531
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
532 533
	struct rt_rq rt;

I
Ingo Molnar 已提交
534
#ifdef CONFIG_FAIR_GROUP_SCHED
535 536
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
537 538
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
539
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
540 541 542 543 544 545 546 547 548 549
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

550
	struct task_struct *curr, *idle;
551
	unsigned long next_balance;
L
Linus Torvalds 已提交
552
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
553

554
	u64 clock;
I
Ingo Molnar 已提交
555

L
Linus Torvalds 已提交
556 557 558
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
559
	struct root_domain *rd;
L
Linus Torvalds 已提交
560 561 562 563 564
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
565 566
	/* cpu of this runqueue: */
	int cpu;
567
	int online;
L
Linus Torvalds 已提交
568

569
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
570

571
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
572 573 574
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
575
#ifdef CONFIG_SCHED_HRTICK
576 577 578 579
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
580 581 582
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
583 584 585 586 587
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
588 589 590 591
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
592 593

	/* schedule() stats */
594 595 596
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
597 598

	/* try_to_wake_up() stats */
599 600
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
601 602

	/* BKL stats */
603
	unsigned int bkl_count;
L
Linus Torvalds 已提交
604 605 606
#endif
};

607
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
608

I
Ingo Molnar 已提交
609 610 611 612 613
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

614 615 616 617 618 619 620 621 622
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
623 624
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
625
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
626 627 628 629
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
630 631
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
632 633 634 635 636 637

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

638 639 640 641 642
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
643 644 645 646 647 648 649 650 651
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
670 671 672
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
673 674 675 676

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
677
enum {
P
Peter Zijlstra 已提交
678
#include "sched_features.h"
I
Ingo Molnar 已提交
679 680
};

P
Peter Zijlstra 已提交
681 682 683 684 685
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
686
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
687 688 689 690 691 692 693 694 695
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

696
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
697 698 699 700 701 702
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

703
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
731
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
761
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
804

805 806 807 808 809 810
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
811 812
/*
 * ratelimit for updating the group shares.
813
 * default: 0.25ms
P
Peter Zijlstra 已提交
814
 */
815
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
816

P
Peter Zijlstra 已提交
817
/*
P
Peter Zijlstra 已提交
818
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
819 820
 * default: 1s
 */
P
Peter Zijlstra 已提交
821
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
822

823 824
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
825 826 827 828 829
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
830

831 832 833 834 835 836 837
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
838
	if (sysctl_sched_rt_runtime < 0)
839 840 841 842
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
843

844 845 846 847 848
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
}

L
Linus Torvalds 已提交
849
#ifndef prepare_arch_switch
850 851 852 853 854 855
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

856 857 858 859 860
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

861
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
862
static inline int task_running(struct rq *rq, struct task_struct *p)
863
{
864
	return task_current(rq, p);
865 866
}

867
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
868 869 870
{
}

871
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
872
{
873 874 875 876
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
877 878 879 880 881 882 883
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

884 885 886 887
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
888
static inline int task_running(struct rq *rq, struct task_struct *p)
889 890 891 892
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
893
	return task_current(rq, p);
894 895 896
#endif
}

897
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

914
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
915 916 917 918 919 920 921 922 923 924 925 926
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
927
#endif
928 929
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
930

931 932 933 934
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
935
static inline struct rq *__task_rq_lock(struct task_struct *p)
936 937
	__acquires(rq->lock)
{
938 939 940 941 942
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
943 944 945 946
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
947 948
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
949
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
950 951
 * explicitly disabling preemption.
 */
952
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
953 954
	__acquires(rq->lock)
{
955
	struct rq *rq;
L
Linus Torvalds 已提交
956

957 958 959 960 961 962
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
963 964 965 966
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
967
static void __task_rq_unlock(struct rq *rq)
968 969 970 971 972
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

973
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
974 975 976 977 978 979
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
980
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
981
 */
A
Alexey Dobriyan 已提交
982
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
983 984
	__acquires(rq->lock)
{
985
	struct rq *rq;
L
Linus Torvalds 已提交
986 987 988 989 990 991 992 993

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1015
	if (!cpu_active(cpu_of(rq)))
1016
		return 0;
P
Peter Zijlstra 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1037
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1038 1039 1040 1041 1042 1043
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1044
#ifdef CONFIG_SMP
1045 1046 1047 1048
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1049
{
1050
	struct rq *rq = arg;
1051

1052 1053 1054 1055
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1056 1057
}

1058 1059 1060 1061 1062 1063
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1064
{
1065 1066
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1067

1068 1069 1070 1071 1072 1073 1074 1075
	timer->expires = time;

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1090
		hrtick_clear(cpu_rq(cpu));
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1111

1112
static void init_hrtick(void)
P
Peter Zijlstra 已提交
1113 1114
{
}
1115
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1116

1117
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1118
{
1119 1120
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1121

1122 1123 1124 1125
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1126

1127 1128 1129
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
P
Peter Zijlstra 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1140 1141 1142
static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1143 1144
#endif

I
Ingo Molnar 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1158
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1159 1160 1161 1162 1163
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1164
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1165 1166
		return;

1167
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1230
#endif /* CONFIG_NO_HZ */
1231

1232
#else /* !CONFIG_SMP */
1233
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1234 1235
{
	assert_spin_locked(&task_rq(p)->lock);
1236
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1237
}
1238
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1239

1240 1241 1242 1243 1244 1245 1246 1247
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1248 1249 1250
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1251
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1252

1253 1254 1255
/*
 * delta *= weight / lw
 */
1256
static unsigned long
1257 1258 1259 1260 1261
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1262 1263 1264 1265 1266 1267 1268
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1269 1270 1271 1272 1273

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1274
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1275
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1276 1277
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1278
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1279

1280
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1281 1282
}

1283
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1284 1285
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1286
	lw->inv_weight = 0;
1287 1288
}

1289
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1290 1291
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1292
	lw->inv_weight = 0;
1293 1294
}

1295 1296 1297 1298
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1299
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1300 1301 1302 1303
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1315 1316 1317
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1318 1319
 */
static const int prio_to_weight[40] = {
1320 1321 1322 1323 1324 1325 1326 1327
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1328 1329
};

1330 1331 1332 1333 1334 1335 1336
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1337
static const u32 prio_to_wmult[40] = {
1338 1339 1340 1341 1342 1343 1344 1345
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1346
};
1347

I
Ingo Molnar 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1373

1374 1375 1376 1377 1378 1379
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1390 1391 1392 1393
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1394

1395 1396 1397 1398 1399 1400 1401 1402 1403
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}
1404 1405

#ifdef CONFIG_FAIR_GROUP_SCHED
1406

1407
typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1408 1409 1410 1411 1412

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
1413 1414
static void
walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1415 1416 1417 1418 1419 1420
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
1421
	(*down)(parent, cpu, sd);
1422 1423 1424 1425 1426 1427 1428
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
1429
	(*up)(parent, cpu, sd);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1444
__update_group_shares_cpu(struct task_group *tg, int cpu,
1445
			  unsigned long sd_shares, unsigned long sd_rq_weight)
1446
{
1447 1448 1449 1450
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1451
	if (!tg->se[cpu])
1452 1453
		return;

1454
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1466 1467 1468
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1469 1470 1471 1472 1473 1474
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1475
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1476 1477 1478 1479

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
1480
	tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1481
	tg->cfs_rq[cpu]->rq_weight = rq_weight;
1482 1483 1484 1485 1486 1487

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

1488
	__set_se_shares(tg->se[cpu], shares);
1489
}
1490 1491

/*
1492 1493 1494
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1495 1496
 */
static void
1497
tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1498
{
1499 1500 1501
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
	int i;
1502

1503 1504 1505
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1506 1507
	}

1508 1509 1510 1511 1512
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1513

P
Peter Zijlstra 已提交
1514 1515 1516
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1517 1518 1519 1520 1521
	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1522
		__update_group_shares_cpu(tg, i, shares, rq_weight);
1523 1524 1525 1526 1527
		spin_unlock_irqrestore(&rq->lock, flags);
	}
}

/*
1528 1529 1530
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1531
 */
1532
static void
1533
tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1534
{
1535
	unsigned long load;
1536

1537 1538 1539 1540 1541 1542 1543
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1544

1545
	tg->cfs_rq[cpu]->h_load = load;
1546 1547
}

1548 1549
static void
tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1550 1551 1552
{
}

1553
static void update_shares(struct sched_domain *sd)
1554
{
P
Peter Zijlstra 已提交
1555 1556 1557 1558 1559 1560 1561
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
		walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
	}
1562 1563
}

1564 1565 1566 1567 1568 1569 1570
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

1571
static void update_h_load(int cpu)
1572
{
1573
	walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1574 1575 1576 1577
}

#else

1578
static inline void update_shares(struct sched_domain *sd)
1579 1580 1581
{
}

1582 1583 1584 1585
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1586 1587 1588 1589
#endif

#endif

V
Vegard Nossum 已提交
1590
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1591 1592
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1593
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1594 1595 1596
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1597
#endif
1598

I
Ingo Molnar 已提交
1599 1600
#include "sched_stats.h"
#include "sched_idletask.c"
1601 1602
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1603 1604 1605 1606 1607
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1608 1609
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1610

1611
static void inc_nr_running(struct rq *rq)
1612 1613 1614 1615
{
	rq->nr_running++;
}

1616
static void dec_nr_running(struct rq *rq)
1617 1618 1619 1620
{
	rq->nr_running--;
}

1621 1622 1623
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1624 1625 1626 1627
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1628

I
Ingo Molnar 已提交
1629 1630 1631 1632 1633 1634 1635 1636
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1637

I
Ingo Molnar 已提交
1638 1639
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1640 1641
}

1642 1643 1644 1645 1646 1647
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1648
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1649
{
I
Ingo Molnar 已提交
1650
	sched_info_queued(p);
1651
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1652
	p->se.on_rq = 1;
1653 1654
}

1655
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1656
{
1657 1658 1659 1660 1661 1662
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1663
	sched_info_dequeued(p);
1664
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1665
	p->se.on_rq = 0;
1666 1667
}

1668
/*
I
Ingo Molnar 已提交
1669
 * __normal_prio - return the priority that is based on the static prio
1670 1671 1672
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1673
	return p->static_prio;
1674 1675
}

1676 1677 1678 1679 1680 1681 1682
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1683
static inline int normal_prio(struct task_struct *p)
1684 1685 1686
{
	int prio;

1687
	if (task_has_rt_policy(p))
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1701
static int effective_prio(struct task_struct *p)
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1714
/*
I
Ingo Molnar 已提交
1715
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1716
 */
I
Ingo Molnar 已提交
1717
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1718
{
1719
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1720
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1721

1722
	enqueue_task(rq, p, wakeup);
1723
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1724 1725 1726 1727 1728
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1729
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1730
{
1731
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1732 1733
		rq->nr_uninterruptible++;

1734
	dequeue_task(rq, p, sleep);
1735
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1736 1737 1738 1739 1740 1741
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1742
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1743 1744 1745 1746
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1747 1748
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1749
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1750
#ifdef CONFIG_SMP
1751 1752 1753 1754 1755 1756
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1757 1758
	task_thread_info(p)->cpu = cpu;
#endif
1759 1760
}

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1773
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1774

1775 1776 1777 1778 1779 1780
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1781 1782 1783
/*
 * Is this task likely cache-hot:
 */
1784
static int
1785 1786 1787 1788
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1789 1790 1791
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1792
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1793 1794
		return 1;

1795 1796 1797
	if (p->sched_class != &fair_sched_class)
		return 0;

1798 1799 1800 1801 1802
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1803 1804 1805 1806 1807 1808
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1809
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1810
{
I
Ingo Molnar 已提交
1811 1812
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1813 1814
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1815
	u64 clock_offset;
I
Ingo Molnar 已提交
1816 1817

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1818 1819 1820 1821

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1822 1823 1824 1825
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1826 1827 1828 1829 1830
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1831
#endif
1832 1833
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1834 1835

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1836 1837
}

1838
struct migration_req {
L
Linus Torvalds 已提交
1839 1840
	struct list_head list;

1841
	struct task_struct *task;
L
Linus Torvalds 已提交
1842 1843 1844
	int dest_cpu;

	struct completion done;
1845
};
L
Linus Torvalds 已提交
1846 1847 1848 1849 1850

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1851
static int
1852
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1853
{
1854
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1855 1856 1857 1858 1859

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1860
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1861 1862 1863 1864 1865 1866 1867 1868
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1869

L
Linus Torvalds 已提交
1870 1871 1872 1873 1874 1875
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1876 1877 1878 1879 1880 1881 1882
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1883 1884 1885 1886 1887 1888
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1889
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1890 1891
{
	unsigned long flags;
I
Ingo Molnar 已提交
1892
	int running, on_rq;
R
Roland McGrath 已提交
1893
	unsigned long ncsw;
1894
	struct rq *rq;
L
Linus Torvalds 已提交
1895

1896 1897 1898 1899 1900 1901 1902 1903
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1904

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1916 1917 1918
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1919
			cpu_relax();
R
Roland McGrath 已提交
1920
		}
1921

1922 1923 1924 1925 1926 1927 1928 1929
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1930 1931 1932 1933 1934 1935
		ncsw = 0;
		if (!match_state || p->state == match_state) {
			ncsw = p->nivcsw + p->nvcsw;
			if (unlikely(!ncsw))
				ncsw = 1;
		}
1936
		task_rq_unlock(rq, &flags);
1937

R
Roland McGrath 已提交
1938 1939 1940 1941 1942 1943
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1954

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1968

1969 1970 1971 1972 1973 1974 1975
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1976 1977

	return ncsw;
L
Linus Torvalds 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1993
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2005 2006
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2007 2008 2009 2010
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2011
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2012
{
2013
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2014
	unsigned long total = weighted_cpuload(cpu);
2015

2016
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2017
		return total;
2018

I
Ingo Molnar 已提交
2019
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2020 2021 2022
}

/*
2023 2024
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2025
 */
A
Alexey Dobriyan 已提交
2026
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2027
{
2028
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2029
	unsigned long total = weighted_cpuload(cpu);
2030

2031
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2032
		return total;
2033

I
Ingo Molnar 已提交
2034
	return max(rq->cpu_load[type-1], total);
2035 2036
}

N
Nick Piggin 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2054 2055
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2056
			continue;
2057

N
Nick Piggin 已提交
2058 2059 2060 2061 2062
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2063
		for_each_cpu_mask_nr(i, group->cpumask) {
N
Nick Piggin 已提交
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2074 2075
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2076 2077 2078 2079 2080 2081 2082 2083

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2084
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2085 2086 2087 2088 2089 2090 2091

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2092
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2093
 */
I
Ingo Molnar 已提交
2094
static int
2095 2096
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2097 2098 2099 2100 2101
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2102
	/* Traverse only the allowed CPUs */
2103
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2104

2105
	for_each_cpu_mask_nr(i, *tmp) {
2106
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2132

2133
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2134 2135 2136
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2137 2138
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2139 2140
		if (tmp->flags & flag)
			sd = tmp;
2141
	}
N
Nick Piggin 已提交
2142

2143 2144 2145
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2146
	while (sd) {
2147
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2148
		struct sched_group *group;
2149 2150 2151 2152 2153 2154
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2155 2156 2157

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2158 2159 2160 2161
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2162

2163
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2164 2165 2166 2167 2168
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2169

2170
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2202
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2203
{
2204
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2205 2206
	unsigned long flags;
	long old_state;
2207
	struct rq *rq;
L
Linus Torvalds 已提交
2208

2209 2210 2211
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2228
	smp_wmb();
L
Linus Torvalds 已提交
2229 2230 2231 2232 2233
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2234
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2235 2236 2237
		goto out_running;

	cpu = task_cpu(p);
2238
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2239 2240 2241 2242 2243 2244
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2245 2246 2247
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2248 2249 2250 2251 2252 2253
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2254
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2255 2256 2257 2258 2259 2260
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2274
#endif /* CONFIG_SCHEDSTATS */
2275

L
Linus Torvalds 已提交
2276 2277
out_activate:
#endif /* CONFIG_SMP */
2278 2279 2280 2281 2282 2283 2284 2285 2286
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2287
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2288
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2289 2290 2291
	success = 1;

out_running:
M
Mathieu Desnoyers 已提交
2292 2293 2294
	trace_mark(kernel_sched_wakeup,
		"pid %d state %ld ## rq %p task %p rq->curr %p",
		p->pid, p->state, rq, p, rq->curr);
I
Ingo Molnar 已提交
2295 2296
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2297
	p->state = TASK_RUNNING;
2298 2299 2300 2301
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2302
out:
2303 2304
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2305 2306 2307 2308 2309
	task_rq_unlock(rq, &flags);

	return success;
}

2310
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2311
{
2312
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2313 2314 2315
}
EXPORT_SYMBOL(wake_up_process);

2316
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2317 2318 2319 2320 2321 2322 2323
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2324 2325 2326 2327 2328 2329 2330
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2331
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2332 2333
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2334 2335 2336

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2337 2338 2339 2340 2341 2342
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2343
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2344
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2345
#endif
N
Nick Piggin 已提交
2346

P
Peter Zijlstra 已提交
2347
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2348
	p->se.on_rq = 0;
2349
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2350

2351 2352 2353 2354
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2355 2356 2357 2358 2359 2360 2361
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2376
	set_task_cpu(p, cpu);
2377 2378 2379 2380 2381

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2382 2383
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2384

2385
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2386
	if (likely(sched_info_on()))
2387
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2388
#endif
2389
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2390 2391
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2392
#ifdef CONFIG_PREEMPT
2393
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2394
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2395
#endif
N
Nick Piggin 已提交
2396
	put_cpu();
L
Linus Torvalds 已提交
2397 2398 2399 2400 2401 2402 2403 2404 2405
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2406
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2407 2408
{
	unsigned long flags;
I
Ingo Molnar 已提交
2409
	struct rq *rq;
L
Linus Torvalds 已提交
2410 2411

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2412
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2413
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2414 2415 2416

	p->prio = effective_prio(p);

2417
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2418
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2419 2420
	} else {
		/*
I
Ingo Molnar 已提交
2421 2422
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2423
		 */
2424
		p->sched_class->task_new(rq, p);
2425
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2426
	}
M
Mathieu Desnoyers 已提交
2427 2428 2429
	trace_mark(kernel_sched_wakeup_new,
		"pid %d state %ld ## rq %p task %p rq->curr %p",
		p->pid, p->state, rq, p, rq->curr);
I
Ingo Molnar 已提交
2430
	check_preempt_curr(rq, p);
2431 2432 2433 2434
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2435
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2436 2437
}

2438 2439 2440
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2441 2442
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2443 2444 2445 2446 2447 2448 2449 2450 2451
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2452
 * @notifier: notifier struct to unregister
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2482
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2494
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2495

2496 2497 2498
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2499
 * @prev: the current task that is being switched out
2500 2501 2502 2503 2504 2505 2506 2507 2508
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2509 2510 2511
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2512
{
2513
	fire_sched_out_preempt_notifiers(prev, next);
2514 2515 2516 2517
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2518 2519
/**
 * finish_task_switch - clean up after a task-switch
2520
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2521 2522
 * @prev: the thread we just switched away from.
 *
2523 2524 2525 2526
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2527 2528
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2529
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2530 2531 2532
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2533
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2534 2535 2536
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2537
	long prev_state;
L
Linus Torvalds 已提交
2538 2539 2540 2541 2542

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2543
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2544 2545
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2546
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2547 2548 2549 2550 2551
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2552
	prev_state = prev->state;
2553 2554
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2555 2556 2557 2558
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2559

2560
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2561 2562
	if (mm)
		mmdrop(mm);
2563
	if (unlikely(prev_state == TASK_DEAD)) {
2564 2565 2566
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2567
		 */
2568
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2569
		put_task_struct(prev);
2570
	}
L
Linus Torvalds 已提交
2571 2572 2573 2574 2575 2576
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2577
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2578 2579
	__releases(rq->lock)
{
2580 2581
	struct rq *rq = this_rq();

2582 2583 2584 2585 2586
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2587
	if (current->set_child_tid)
2588
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2589 2590 2591 2592 2593 2594
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2595
static inline void
2596
context_switch(struct rq *rq, struct task_struct *prev,
2597
	       struct task_struct *next)
L
Linus Torvalds 已提交
2598
{
I
Ingo Molnar 已提交
2599
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2600

2601
	prepare_task_switch(rq, prev, next);
M
Mathieu Desnoyers 已提交
2602 2603 2604 2605 2606
	trace_mark(kernel_sched_schedule,
		"prev_pid %d next_pid %d prev_state %ld "
		"## rq %p prev %p next %p",
		prev->pid, next->pid, prev->state,
		rq, prev, next);
I
Ingo Molnar 已提交
2607 2608
	mm = next->mm;
	oldmm = prev->active_mm;
2609 2610 2611 2612 2613 2614 2615
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2616
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2617 2618 2619 2620 2621 2622
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2623
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2624 2625 2626
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2627 2628 2629 2630 2631 2632 2633
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2634
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2635
#endif
L
Linus Torvalds 已提交
2636 2637 2638 2639

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2640 2641 2642 2643 2644 2645 2646
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2670
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2685 2686
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2687

2688
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2689 2690 2691 2692 2693 2694 2695 2696 2697
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2698
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2699 2700 2701 2702 2703
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2719
/*
I
Ingo Molnar 已提交
2720 2721
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2722
 */
I
Ingo Molnar 已提交
2723
static void update_cpu_load(struct rq *this_rq)
2724
{
2725
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2738 2739 2740 2741 2742 2743 2744
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2745 2746
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2747 2748
}

I
Ingo Molnar 已提交
2749 2750
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2751 2752 2753 2754 2755 2756
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2757
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2758 2759 2760
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2761
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2762 2763 2764 2765
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2766
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2767
			spin_lock(&rq1->lock);
2768
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2769 2770
		} else {
			spin_lock(&rq2->lock);
2771
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2772 2773
		}
	}
2774 2775
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2776 2777 2778 2779 2780 2781 2782 2783
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2784
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2798
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2799 2800 2801 2802
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2803 2804
	int ret = 0;

2805 2806 2807 2808 2809
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2810
	if (unlikely(!spin_trylock(&busiest->lock))) {
2811
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2812 2813
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
2814
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
S
Steven Rostedt 已提交
2815
			ret = 1;
L
Linus Torvalds 已提交
2816
		} else
2817
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2818
	}
S
Steven Rostedt 已提交
2819
	return ret;
L
Linus Torvalds 已提交
2820 2821
}

2822 2823 2824 2825 2826 2827 2828
static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

L
Linus Torvalds 已提交
2829 2830 2831
/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2832
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2833 2834
 * the cpu_allowed mask is restored.
 */
2835
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2836
{
2837
	struct migration_req req;
L
Linus Torvalds 已提交
2838
	unsigned long flags;
2839
	struct rq *rq;
L
Linus Torvalds 已提交
2840 2841 2842

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2843
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2844 2845 2846 2847 2848 2849
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2850

L
Linus Torvalds 已提交
2851 2852 2853 2854 2855
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2856

L
Linus Torvalds 已提交
2857 2858 2859 2860 2861 2862 2863
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2864 2865
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2866 2867 2868 2869
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2870
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2871
	put_cpu();
N
Nick Piggin 已提交
2872 2873
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2874 2875 2876 2877 2878 2879
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2880 2881
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2882
{
2883
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2884
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2885
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2886 2887 2888 2889
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2890
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2891 2892 2893 2894 2895
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2896
static
2897
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2898
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2899
		     int *all_pinned)
L
Linus Torvalds 已提交
2900 2901 2902 2903 2904 2905 2906
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2907 2908
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2909
		return 0;
2910
	}
2911 2912
	*all_pinned = 0;

2913 2914
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2915
		return 0;
2916
	}
L
Linus Torvalds 已提交
2917

2918 2919 2920 2921 2922 2923
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2924 2925
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2926
#ifdef CONFIG_SCHEDSTATS
2927
		if (task_hot(p, rq->clock, sd)) {
2928
			schedstat_inc(sd, lb_hot_gained[idle]);
2929 2930
			schedstat_inc(p, se.nr_forced_migrations);
		}
2931 2932 2933 2934
#endif
		return 1;
	}

2935 2936
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2937
		return 0;
2938
	}
L
Linus Torvalds 已提交
2939 2940 2941
	return 1;
}

2942 2943 2944 2945 2946
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2947
{
2948
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2949 2950
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2951

2952
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2953 2954
		goto out;

2955 2956
	pinned = 1;

L
Linus Torvalds 已提交
2957
	/*
I
Ingo Molnar 已提交
2958
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2959
	 */
I
Ingo Molnar 已提交
2960 2961
	p = iterator->start(iterator->arg);
next:
2962
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2963
		goto out;
2964 2965

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2966 2967 2968
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2969 2970
	}

I
Ingo Molnar 已提交
2971
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2972
	pulled++;
I
Ingo Molnar 已提交
2973
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2974

2975
	/*
2976
	 * We only want to steal up to the prescribed amount of weighted load.
2977
	 */
2978
	if (rem_load_move > 0) {
2979 2980
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2981 2982
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2983 2984 2985
	}
out:
	/*
2986
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2987 2988 2989 2990
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2991 2992 2993

	if (all_pinned)
		*all_pinned = pinned;
2994 2995

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2996 2997
}

I
Ingo Molnar 已提交
2998
/*
P
Peter Williams 已提交
2999 3000 3001
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3002 3003 3004 3005
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3006
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3007 3008 3009
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3010
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3011
	unsigned long total_load_moved = 0;
3012
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3013 3014

	do {
P
Peter Williams 已提交
3015 3016
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3017
				max_load_move - total_load_moved,
3018
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3019
		class = class->next;
3020 3021 3022 3023

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3024
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3025

P
Peter Williams 已提交
3026 3027 3028
	return total_load_moved > 0;
}

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3065
	const struct sched_class *class;
P
Peter Williams 已提交
3066 3067

	for (class = sched_class_highest; class; class = class->next)
3068
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3069 3070 3071
			return 1;

	return 0;
I
Ingo Molnar 已提交
3072 3073
}

L
Linus Torvalds 已提交
3074 3075
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3076 3077
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3078 3079 3080
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3081
		   unsigned long *imbalance, enum cpu_idle_type idle,
3082
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3083 3084 3085
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3086
	unsigned long max_pull;
3087 3088
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3089
	int load_idx, group_imb = 0;
3090 3091 3092 3093 3094 3095
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3096 3097

	max_load = this_load = total_load = total_pwr = 0;
3098 3099
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3100

I
Ingo Molnar 已提交
3101
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3102
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3103
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3104 3105 3106
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3107 3108

	do {
3109
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3110 3111
		int local_group;
		int i;
3112
		int __group_imb = 0;
3113
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3114
		unsigned long sum_nr_running, sum_weighted_load;
3115 3116
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3117 3118 3119

		local_group = cpu_isset(this_cpu, group->cpumask);

3120 3121 3122
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3123
		/* Tally up the load of all CPUs in the group */
3124
		sum_weighted_load = sum_nr_running = avg_load = 0;
3125 3126
		sum_avg_load_per_task = avg_load_per_task = 0;

3127 3128
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3129

3130
		for_each_cpu_mask_nr(i, group->cpumask) {
3131 3132 3133 3134 3135 3136
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3137

3138
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3139 3140
				*sd_idle = 0;

L
Linus Torvalds 已提交
3141
			/* Bias balancing toward cpus of our domain */
3142 3143 3144 3145 3146 3147
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3148
				load = target_load(i, load_idx);
3149
			} else {
N
Nick Piggin 已提交
3150
				load = source_load(i, load_idx);
3151 3152 3153 3154 3155
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3156 3157

			avg_load += load;
3158
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3159
			sum_weighted_load += weighted_cpuload(i);
3160 3161

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3162 3163
		}

3164 3165 3166
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3167 3168
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3169
		 */
3170 3171
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3172 3173 3174 3175
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3176
		total_load += avg_load;
3177
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3178 3179

		/* Adjust by relative CPU power of the group */
3180 3181
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3182

3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3197 3198
			__group_imb = 1;

3199
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3200

L
Linus Torvalds 已提交
3201 3202 3203
		if (local_group) {
			this_load = avg_load;
			this = group;
3204 3205 3206
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3207
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3208 3209
			max_load = avg_load;
			busiest = group;
3210 3211
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3212
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3213
		}
3214 3215 3216 3217 3218 3219

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3220 3221 3222
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3223 3224 3225 3226 3227 3228 3229 3230 3231

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3232
		/*
3233 3234
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3235 3236
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3237
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3238
			goto group_next;
3239

I
Ingo Molnar 已提交
3240
		/*
3241
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3242 3243 3244 3245 3246
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3247 3248
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3249 3250
			group_min = group;
			min_nr_running = sum_nr_running;
3251 3252
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3253
		}
3254

I
Ingo Molnar 已提交
3255
		/*
3256
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3268
		}
3269 3270
group_next:
#endif
L
Linus Torvalds 已提交
3271 3272 3273
		group = group->next;
	} while (group != sd->groups);

3274
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3275 3276 3277 3278 3279 3280 3281 3282
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3283
	busiest_load_per_task /= busiest_nr_running;
3284 3285 3286
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3287 3288 3289 3290 3291 3292 3293 3294
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3295
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3296 3297
	 * appear as very large values with unsigned longs.
	 */
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3310 3311

	/* Don't want to pull so many tasks that a group would go idle */
3312
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3313

L
Linus Torvalds 已提交
3314
	/* How much load to actually move to equalise the imbalance */
3315 3316
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3317 3318
			/ SCHED_LOAD_SCALE;

3319 3320 3321 3322 3323 3324
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3325
	if (*imbalance < busiest_load_per_task) {
3326
		unsigned long tmp, pwr_now, pwr_move;
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3337
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3338

3339
		if (max_load - this_load + 2*busiest_load_per_task >=
I
Ingo Molnar 已提交
3340
					busiest_load_per_task * imbn) {
3341
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3342 3343 3344 3345 3346 3347 3348 3349 3350
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3351 3352 3353 3354
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3355 3356 3357
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3358 3359
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3360
		if (max_load > tmp)
3361
			pwr_move += busiest->__cpu_power *
3362
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3363 3364

		/* Amount of load we'd add */
3365
		if (max_load * busiest->__cpu_power <
3366
				busiest_load_per_task * SCHED_LOAD_SCALE)
3367 3368
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3369
		else
3370 3371 3372 3373
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3374 3375 3376
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3377 3378
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3379 3380 3381 3382 3383
	}

	return busiest;

out_balanced:
3384
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3385
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3386
		goto ret;
L
Linus Torvalds 已提交
3387

3388 3389 3390 3391 3392
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3393
ret:
L
Linus Torvalds 已提交
3394 3395 3396 3397 3398 3399 3400
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3401
static struct rq *
I
Ingo Molnar 已提交
3402
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3403
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3404
{
3405
	struct rq *busiest = NULL, *rq;
3406
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3407 3408
	int i;

3409
	for_each_cpu_mask_nr(i, group->cpumask) {
I
Ingo Molnar 已提交
3410
		unsigned long wl;
3411 3412 3413 3414

		if (!cpu_isset(i, *cpus))
			continue;

3415
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3416
		wl = weighted_cpuload(i);
3417

I
Ingo Molnar 已提交
3418
		if (rq->nr_running == 1 && wl > imbalance)
3419
			continue;
L
Linus Torvalds 已提交
3420

I
Ingo Molnar 已提交
3421 3422
		if (wl > max_load) {
			max_load = wl;
3423
			busiest = rq;
L
Linus Torvalds 已提交
3424 3425 3426 3427 3428 3429
		}
	}

	return busiest;
}

3430 3431 3432 3433 3434 3435
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3436 3437 3438 3439
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3440
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3441
			struct sched_domain *sd, enum cpu_idle_type idle,
3442
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3443
{
P
Peter Williams 已提交
3444
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3445 3446
	struct sched_group *group;
	unsigned long imbalance;
3447
	struct rq *busiest;
3448
	unsigned long flags;
N
Nick Piggin 已提交
3449

3450 3451
	cpus_setall(*cpus);

3452 3453 3454
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3455
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3456
	 * portraying it as CPU_NOT_IDLE.
3457
	 */
I
Ingo Molnar 已提交
3458
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3459
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3460
		sd_idle = 1;
L
Linus Torvalds 已提交
3461

3462
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3463

3464
redo:
3465
	update_shares(sd);
3466
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3467
				   cpus, balance);
3468

3469
	if (*balance == 0)
3470 3471
		goto out_balanced;

L
Linus Torvalds 已提交
3472 3473 3474 3475 3476
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3477
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3478 3479 3480 3481 3482
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3483
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3484 3485 3486

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3487
	ld_moved = 0;
L
Linus Torvalds 已提交
3488 3489 3490 3491
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3492
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3493 3494
		 * correctly treated as an imbalance.
		 */
3495
		local_irq_save(flags);
N
Nick Piggin 已提交
3496
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3497
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3498
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3499
		double_rq_unlock(this_rq, busiest);
3500
		local_irq_restore(flags);
3501

3502 3503 3504
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3505
		if (ld_moved && this_cpu != smp_processor_id())
3506 3507
			resched_cpu(this_cpu);

3508
		/* All tasks on this runqueue were pinned by CPU affinity */
3509
		if (unlikely(all_pinned)) {
3510 3511
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3512
				goto redo;
3513
			goto out_balanced;
3514
		}
L
Linus Torvalds 已提交
3515
	}
3516

P
Peter Williams 已提交
3517
	if (!ld_moved) {
L
Linus Torvalds 已提交
3518 3519 3520 3521 3522
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3523
			spin_lock_irqsave(&busiest->lock, flags);
3524 3525 3526 3527 3528

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3529
				spin_unlock_irqrestore(&busiest->lock, flags);
3530 3531 3532 3533
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3534 3535 3536
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3537
				active_balance = 1;
L
Linus Torvalds 已提交
3538
			}
3539
			spin_unlock_irqrestore(&busiest->lock, flags);
3540
			if (active_balance)
L
Linus Torvalds 已提交
3541 3542 3543 3544 3545 3546
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3547
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3548
		}
3549
	} else
L
Linus Torvalds 已提交
3550 3551
		sd->nr_balance_failed = 0;

3552
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3553 3554
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3555 3556 3557 3558 3559 3560 3561 3562 3563
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3564 3565
	}

P
Peter Williams 已提交
3566
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3567
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3568 3569 3570
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3571 3572 3573 3574

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3575
	sd->nr_balance_failed = 0;
3576 3577

out_one_pinned:
L
Linus Torvalds 已提交
3578
	/* tune up the balancing interval */
3579 3580
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3581 3582
		sd->balance_interval *= 2;

3583
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3584
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3585 3586 3587 3588
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3589 3590
	if (ld_moved)
		update_shares(sd);
3591
	return ld_moved;
L
Linus Torvalds 已提交
3592 3593 3594 3595 3596 3597
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3598
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3599 3600
 * this_rq is locked.
 */
3601
static int
3602 3603
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3604 3605
{
	struct sched_group *group;
3606
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3607
	unsigned long imbalance;
P
Peter Williams 已提交
3608
	int ld_moved = 0;
N
Nick Piggin 已提交
3609
	int sd_idle = 0;
3610
	int all_pinned = 0;
3611 3612

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3613

3614 3615 3616 3617
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3618
	 * portraying it as CPU_NOT_IDLE.
3619 3620 3621
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3622
		sd_idle = 1;
L
Linus Torvalds 已提交
3623

3624
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3625
redo:
3626
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3627
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3628
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3629
	if (!group) {
I
Ingo Molnar 已提交
3630
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3631
		goto out_balanced;
L
Linus Torvalds 已提交
3632 3633
	}

3634
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3635
	if (!busiest) {
I
Ingo Molnar 已提交
3636
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3637
		goto out_balanced;
L
Linus Torvalds 已提交
3638 3639
	}

N
Nick Piggin 已提交
3640 3641
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3642
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3643

P
Peter Williams 已提交
3644
	ld_moved = 0;
3645 3646 3647
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3648 3649
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3650
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3651 3652
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3653
		double_unlock_balance(this_rq, busiest);
3654

3655
		if (unlikely(all_pinned)) {
3656 3657
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3658 3659
				goto redo;
		}
3660 3661
	}

P
Peter Williams 已提交
3662
	if (!ld_moved) {
I
Ingo Molnar 已提交
3663
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3664 3665
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3666 3667
			return -1;
	} else
3668
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3669

3670
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3671
	return ld_moved;
3672 3673

out_balanced:
I
Ingo Molnar 已提交
3674
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3675
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3676
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3677
		return -1;
3678
	sd->nr_balance_failed = 0;
3679

3680
	return 0;
L
Linus Torvalds 已提交
3681 3682 3683 3684 3685 3686
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3687
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3688 3689
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3690 3691
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3692
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3693 3694

	for_each_domain(this_cpu, sd) {
3695 3696 3697 3698 3699 3700
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3701
			/* If we've pulled tasks over stop searching: */
3702 3703
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3704 3705 3706 3707 3708 3709

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3710
	}
I
Ingo Molnar 已提交
3711
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3712 3713 3714 3715 3716
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3717
	}
L
Linus Torvalds 已提交
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3728
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3729
{
3730
	int target_cpu = busiest_rq->push_cpu;
3731 3732
	struct sched_domain *sd;
	struct rq *target_rq;
3733

3734
	/* Is there any task to move? */
3735 3736 3737 3738
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3739 3740

	/*
3741
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3742
	 * we need to fix it. Originally reported by
3743
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3744
	 */
3745
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3746

3747 3748
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3749 3750
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3751 3752

	/* Search for an sd spanning us and the target CPU. */
3753
	for_each_domain(target_cpu, sd) {
3754
		if ((sd->flags & SD_LOAD_BALANCE) &&
3755
		    cpu_isset(busiest_cpu, sd->span))
3756
				break;
3757
	}
3758

3759
	if (likely(sd)) {
3760
		schedstat_inc(sd, alb_count);
3761

P
Peter Williams 已提交
3762 3763
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3764 3765 3766 3767
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3768
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3769 3770
}

3771 3772 3773
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3774
	cpumask_t cpu_mask;
3775 3776 3777 3778 3779
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3780
/*
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3791
 *
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3811
		if (!cpu_active(cpu) &&
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3848 3849 3850 3851 3852
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3853
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3854
{
3855 3856
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3857 3858
	unsigned long interval;
	struct sched_domain *sd;
3859
	/* Earliest time when we have to do rebalance again */
3860
	unsigned long next_balance = jiffies + 60*HZ;
3861
	int update_next_balance = 0;
3862
	int need_serialize;
3863
	cpumask_t tmp;
L
Linus Torvalds 已提交
3864

3865
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3866 3867 3868 3869
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3870
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3871 3872 3873 3874 3875 3876
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3877 3878 3879
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3880
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3881

3882
		if (need_serialize) {
3883 3884 3885 3886
			if (!spin_trylock(&balancing))
				goto out;
		}

3887
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3888
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3889 3890
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3891 3892 3893
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3894
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3895
			}
3896
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3897
		}
3898
		if (need_serialize)
3899 3900
			spin_unlock(&balancing);
out:
3901
		if (time_after(next_balance, sd->last_balance + interval)) {
3902
			next_balance = sd->last_balance + interval;
3903 3904
			update_next_balance = 1;
		}
3905 3906 3907 3908 3909 3910 3911 3912

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3913
	}
3914 3915 3916 3917 3918 3919 3920 3921

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3922 3923 3924 3925 3926 3927 3928 3929 3930
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3931 3932 3933 3934
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3935

I
Ingo Molnar 已提交
3936
	rebalance_domains(this_cpu, idle);
3937 3938 3939 3940 3941 3942 3943

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3944 3945
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3946 3947 3948 3949
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3950
		cpu_clear(this_cpu, cpus);
3951
		for_each_cpu_mask_nr(balance_cpu, cpus) {
3952 3953 3954 3955 3956 3957 3958 3959
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3960
			rebalance_domains(balance_cpu, CPU_IDLE);
3961 3962

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3963 3964
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3977
static inline void trigger_load_balance(struct rq *rq, int cpu)
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4004
			if (ilb < nr_cpu_ids)
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4029
}
I
Ingo Molnar 已提交
4030 4031 4032

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4033 4034 4035
/*
 * on UP we do not need to balance between CPUs:
 */
4036
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4037 4038
{
}
I
Ingo Molnar 已提交
4039

L
Linus Torvalds 已提交
4040 4041 4042 4043 4044 4045 4046
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4047 4048
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4049
 */
4050
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4051 4052
{
	unsigned long flags;
4053 4054
	u64 ns, delta_exec;
	struct rq *rq;
4055

4056 4057
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4058
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4059 4060
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4061 4062 4063 4064
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4065

L
Linus Torvalds 已提交
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4087 4088
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4089 4090
}

4091 4092 4093 4094 4095
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4096
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4130
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4131 4132
	cputime64_t tmp;

4133 4134 4135 4136
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4137

L
Linus Torvalds 已提交
4138 4139 4140 4141 4142 4143 4144 4145
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4146
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4147
		cpustat->system = cputime64_add(cpustat->system, tmp);
4148
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4149 4150 4151 4152 4153 4154 4155
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4167 4168 4169 4170 4171 4172 4173 4174 4175
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4176
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4177 4178 4179 4180 4181 4182 4183

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4184
	} else
L
Linus Torvalds 已提交
4185 4186 4187
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4199
	struct task_struct *curr = rq->curr;
4200 4201

	sched_clock_tick();
I
Ingo Molnar 已提交
4202 4203

	spin_lock(&rq->lock);
4204
	update_rq_clock(rq);
4205
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4206
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4207
	spin_unlock(&rq->lock);
4208

4209
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4210 4211
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4212
#endif
L
Linus Torvalds 已提交
4213 4214
}

4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4227

4228
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4229
{
4230
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4231 4232 4233
	/*
	 * Underflow?
	 */
4234 4235
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4236
#endif
L
Linus Torvalds 已提交
4237
	preempt_count() += val;
4238
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4239 4240 4241
	/*
	 * Spinlock count overflowing soon?
	 */
4242 4243
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4244 4245 4246
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4247 4248 4249
}
EXPORT_SYMBOL(add_preempt_count);

4250
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4251
{
4252
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4253 4254 4255
	/*
	 * Underflow?
	 */
4256 4257
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4258 4259 4260
	/*
	 * Is the spinlock portion underflowing?
	 */
4261 4262 4263
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4264
#endif
4265

4266 4267
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4268 4269 4270 4271 4272 4273 4274
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4275
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4276
 */
I
Ingo Molnar 已提交
4277
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4278
{
4279 4280 4281 4282 4283
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4284
	debug_show_held_locks(prev);
4285
	print_modules();
I
Ingo Molnar 已提交
4286 4287
	if (irqs_disabled())
		print_irqtrace_events(prev);
4288 4289 4290 4291 4292

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4293
}
L
Linus Torvalds 已提交
4294

I
Ingo Molnar 已提交
4295 4296 4297 4298 4299
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4300
	/*
I
Ingo Molnar 已提交
4301
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4302 4303 4304
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4305
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4306 4307
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4308 4309
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4310
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4311 4312
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4313 4314
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4315 4316
	}
#endif
I
Ingo Molnar 已提交
4317 4318 4319 4320 4321 4322
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4323
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4324
{
4325
	const struct sched_class *class;
I
Ingo Molnar 已提交
4326
	struct task_struct *p;
L
Linus Torvalds 已提交
4327 4328

	/*
I
Ingo Molnar 已提交
4329 4330
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4331
	 */
I
Ingo Molnar 已提交
4332
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4333
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4334 4335
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4336 4337
	}

I
Ingo Molnar 已提交
4338 4339
	class = sched_class_highest;
	for ( ; ; ) {
4340
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4341 4342 4343 4344 4345 4346 4347 4348 4349
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4350

I
Ingo Molnar 已提交
4351 4352 4353 4354 4355 4356
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4357
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4358
	struct rq *rq;
4359
	int cpu;
I
Ingo Molnar 已提交
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4373

4374
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4375
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4376

4377 4378 4379 4380
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4381
	update_rq_clock(rq);
4382 4383
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4384 4385

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4386
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4387
			prev->state = TASK_RUNNING;
4388
		else
4389
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4390
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4391 4392
	}

4393 4394 4395 4396
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4397

I
Ingo Molnar 已提交
4398
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4399 4400
		idle_balance(cpu, rq);

4401
	prev->sched_class->put_prev_task(rq, prev);
4402
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4403 4404

	if (likely(prev != next)) {
4405 4406
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4407 4408 4409 4410
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4411
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4412 4413 4414 4415 4416 4417
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4418 4419 4420
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4421
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4422
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4423

L
Linus Torvalds 已提交
4424 4425 4426 4427 4428 4429 4430 4431
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4432
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4433
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4434 4435 4436 4437 4438
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4439

L
Linus Torvalds 已提交
4440 4441
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4442
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4443
	 */
N
Nick Piggin 已提交
4444
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4445 4446
		return;

4447 4448 4449 4450
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4451

4452 4453 4454 4455 4456 4457
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4458 4459 4460 4461
}
EXPORT_SYMBOL(preempt_schedule);

/*
4462
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4463 4464 4465 4466 4467 4468 4469
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4470

4471
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4472 4473
	BUG_ON(ti->preempt_count || !irqs_disabled());

4474 4475 4476 4477 4478 4479
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4480

4481 4482 4483 4484 4485 4486
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4487 4488 4489 4490
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4491 4492
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4493
{
4494
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4495 4496 4497 4498
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4499 4500
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4501 4502 4503
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4504
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4505 4506 4507 4508 4509
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4510
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4511

4512
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4513 4514
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4515
		if (curr->func(curr, mode, sync, key) &&
4516
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4517 4518 4519 4520 4521 4522 4523 4524 4525
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4526
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4527
 */
4528
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4529
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4542
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4543 4544 4545 4546 4547
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4548
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4560
void
I
Ingo Molnar 已提交
4561
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4578
void complete(struct completion *x)
L
Linus Torvalds 已提交
4579 4580 4581 4582 4583
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4584
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4585 4586 4587 4588
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4589
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4590 4591 4592 4593 4594
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4595
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4596 4597 4598 4599
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4600 4601
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4602 4603 4604 4605 4606 4607 4608
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4609 4610 4611 4612
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4613 4614
				timeout = -ERESTARTSYS;
				break;
4615 4616
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4617 4618 4619
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4620
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4621
		__remove_wait_queue(&x->wait, &wait);
4622 4623
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4624 4625
	}
	x->done--;
4626
	return timeout ?: 1;
L
Linus Torvalds 已提交
4627 4628
}

4629 4630
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4631 4632 4633 4634
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4635
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4636
	spin_unlock_irq(&x->wait.lock);
4637 4638
	return timeout;
}
L
Linus Torvalds 已提交
4639

4640
void __sched wait_for_completion(struct completion *x)
4641 4642
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4643
}
4644
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4645

4646
unsigned long __sched
4647
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4648
{
4649
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4650
}
4651
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4652

4653
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4654
{
4655 4656 4657 4658
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4659
}
4660
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4661

4662
unsigned long __sched
4663 4664
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4665
{
4666
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4667
}
4668
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4669

M
Matthew Wilcox 已提交
4670 4671 4672 4673 4674 4675 4676 4677 4678
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4725 4726
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4727
{
I
Ingo Molnar 已提交
4728 4729 4730 4731
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4732

4733
	__set_current_state(state);
L
Linus Torvalds 已提交
4734

4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4749 4750 4751
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4752
long __sched
I
Ingo Molnar 已提交
4753
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4754
{
4755
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4756 4757 4758
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4759
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4760
{
4761
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4762 4763 4764
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4765
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4766
{
4767
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4768 4769 4770
}
EXPORT_SYMBOL(sleep_on_timeout);

4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4783
void rt_mutex_setprio(struct task_struct *p, int prio)
4784 4785
{
	unsigned long flags;
4786
	int oldprio, on_rq, running;
4787
	struct rq *rq;
4788
	const struct sched_class *prev_class = p->sched_class;
4789 4790 4791 4792

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4793
	update_rq_clock(rq);
4794

4795
	oldprio = p->prio;
I
Ingo Molnar 已提交
4796
	on_rq = p->se.on_rq;
4797
	running = task_current(rq, p);
4798
	if (on_rq)
4799
		dequeue_task(rq, p, 0);
4800 4801
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4802 4803 4804 4805 4806 4807

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4808 4809
	p->prio = prio;

4810 4811
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4812
	if (on_rq) {
4813
		enqueue_task(rq, p, 0);
4814 4815

		check_class_changed(rq, p, prev_class, oldprio, running);
4816 4817 4818 4819 4820 4821
	}
	task_rq_unlock(rq, &flags);
}

#endif

4822
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4823
{
I
Ingo Molnar 已提交
4824
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4825
	unsigned long flags;
4826
	struct rq *rq;
L
Linus Torvalds 已提交
4827 4828 4829 4830 4831 4832 4833 4834

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4835
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4836 4837 4838 4839
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4840
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4841
	 */
4842
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4843 4844 4845
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4846
	on_rq = p->se.on_rq;
4847
	if (on_rq)
4848
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4849 4850

	p->static_prio = NICE_TO_PRIO(nice);
4851
	set_load_weight(p);
4852 4853 4854
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4855

I
Ingo Molnar 已提交
4856
	if (on_rq) {
4857
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4858
		/*
4859 4860
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4861
		 */
4862
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4863 4864 4865 4866 4867 4868 4869
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4870 4871 4872 4873 4874
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4875
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4876
{
4877 4878
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4879

M
Matt Mackall 已提交
4880 4881 4882 4883
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4895
	long nice, retval;
L
Linus Torvalds 已提交
4896 4897 4898 4899 4900 4901

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4902 4903
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4904 4905 4906 4907 4908 4909 4910 4911 4912
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4913 4914 4915
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4934
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4935 4936 4937 4938 4939 4940 4941 4942
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4943
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4944 4945 4946
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4947
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4962
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4963 4964 4965 4966 4967 4968 4969 4970
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4971
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4972
{
4973
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4974 4975 4976
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4977 4978
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4979
{
I
Ingo Molnar 已提交
4980
	BUG_ON(p->se.on_rq);
4981

L
Linus Torvalds 已提交
4982
	p->policy = policy;
I
Ingo Molnar 已提交
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4995
	p->rt_priority = prio;
4996 4997 4998
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4999
	set_load_weight(p);
L
Linus Torvalds 已提交
5000 5001
}

5002 5003
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5004
{
5005
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5006
	unsigned long flags;
5007
	const struct sched_class *prev_class = p->sched_class;
5008
	struct rq *rq;
L
Linus Torvalds 已提交
5009

5010 5011
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5012 5013 5014 5015 5016
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5017 5018
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5019
		return -EINVAL;
L
Linus Torvalds 已提交
5020 5021
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5022 5023
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5024 5025
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5026
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5027
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5028
		return -EINVAL;
5029
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5030 5031
		return -EINVAL;

5032 5033 5034
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5035
	if (user && !capable(CAP_SYS_NICE)) {
5036
		if (rt_policy(policy)) {
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5053 5054 5055 5056 5057 5058
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5059

5060 5061 5062 5063 5064
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5065

5066
	if (user) {
5067
#ifdef CONFIG_RT_GROUP_SCHED
5068 5069 5070 5071 5072 5073
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
			return -EPERM;
5074 5075
#endif

5076 5077 5078 5079 5080
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5081 5082 5083 5084 5085
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5086 5087 5088 5089
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5090
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5091 5092 5093
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5094 5095
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5096 5097
		goto recheck;
	}
I
Ingo Molnar 已提交
5098
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5099
	on_rq = p->se.on_rq;
5100
	running = task_current(rq, p);
5101
	if (on_rq)
5102
		deactivate_task(rq, p, 0);
5103 5104
	if (running)
		p->sched_class->put_prev_task(rq, p);
5105

L
Linus Torvalds 已提交
5106
	oldprio = p->prio;
I
Ingo Molnar 已提交
5107
	__setscheduler(rq, p, policy, param->sched_priority);
5108

5109 5110
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5111 5112
	if (on_rq) {
		activate_task(rq, p, 0);
5113 5114

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5115
	}
5116 5117 5118
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5119 5120
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5121 5122
	return 0;
}
5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5137 5138
EXPORT_SYMBOL_GPL(sched_setscheduler);

5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5156 5157
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5158 5159 5160
{
	struct sched_param lparam;
	struct task_struct *p;
5161
	int retval;
L
Linus Torvalds 已提交
5162 5163 5164 5165 5166

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5167 5168 5169

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5170
	p = find_process_by_pid(pid);
5171 5172 5173
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5174

L
Linus Torvalds 已提交
5175 5176 5177 5178 5179 5180 5181 5182 5183
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5184 5185
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5186
{
5187 5188 5189 5190
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5210
	struct task_struct *p;
5211
	int retval;
L
Linus Torvalds 已提交
5212 5213

	if (pid < 0)
5214
		return -EINVAL;
L
Linus Torvalds 已提交
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5236
	struct task_struct *p;
5237
	int retval;
L
Linus Torvalds 已提交
5238 5239

	if (!param || pid < 0)
5240
		return -EINVAL;
L
Linus Torvalds 已提交
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5267
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5268 5269
{
	cpumask_t cpus_allowed;
5270
	cpumask_t new_mask = *in_mask;
5271 5272
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5273

5274
	get_online_cpus();
L
Linus Torvalds 已提交
5275 5276 5277 5278 5279
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5280
		put_online_cpus();
L
Linus Torvalds 已提交
5281 5282 5283 5284 5285
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5286
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5297 5298 5299 5300
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5301
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5302
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5303
 again:
5304
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5305

P
Paul Menage 已提交
5306
	if (!retval) {
5307
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5318 5319
out_unlock:
	put_task_struct(p);
5320
	put_online_cpus();
L
Linus Torvalds 已提交
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5351
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5352 5353 5354 5355
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5356
	struct task_struct *p;
L
Linus Torvalds 已提交
5357 5358
	int retval;

5359
	get_online_cpus();
L
Linus Torvalds 已提交
5360 5361 5362 5363 5364 5365 5366
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5367 5368 5369 5370
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5371
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5372 5373 5374

out_unlock:
	read_unlock(&tasklist_lock);
5375
	put_online_cpus();
L
Linus Torvalds 已提交
5376

5377
	return retval;
L
Linus Torvalds 已提交
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5408 5409
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5410 5411 5412
 */
asmlinkage long sys_sched_yield(void)
{
5413
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5414

5415
	schedstat_inc(rq, yld_count);
5416
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5417 5418 5419 5420 5421 5422

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5423
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5424 5425 5426 5427 5428 5429 5430 5431
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5432
static void __cond_resched(void)
L
Linus Torvalds 已提交
5433
{
5434 5435 5436
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5437 5438 5439 5440 5441
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5442 5443 5444 5445 5446 5447 5448
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5449
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5450
{
5451 5452
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5453 5454 5455 5456 5457
		__cond_resched();
		return 1;
	}
	return 0;
}
5458
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5459 5460 5461 5462 5463

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5464
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5465 5466 5467
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5468
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5469
{
N
Nick Piggin 已提交
5470
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5471 5472
	int ret = 0;

N
Nick Piggin 已提交
5473
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5474
		spin_unlock(lock);
N
Nick Piggin 已提交
5475 5476 5477 5478
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5479
		ret = 1;
L
Linus Torvalds 已提交
5480 5481
		spin_lock(lock);
	}
J
Jan Kara 已提交
5482
	return ret;
L
Linus Torvalds 已提交
5483 5484 5485 5486 5487 5488 5489
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5490
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5491
		local_bh_enable();
L
Linus Torvalds 已提交
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5503
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5514
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5515 5516 5517 5518 5519 5520 5521
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5522
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5523

5524
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5525 5526 5527
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5528
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5529 5530 5531 5532 5533
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5534
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5535 5536
	long ret;

5537
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5538 5539 5540
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5541
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5562
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5563
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5587
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5588
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5605
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5606
	unsigned int time_slice;
5607
	int retval;
L
Linus Torvalds 已提交
5608 5609 5610
	struct timespec t;

	if (pid < 0)
5611
		return -EINVAL;
L
Linus Torvalds 已提交
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5623 5624 5625 5626 5627 5628
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5629
		time_slice = DEF_TIMESLICE;
5630
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5631 5632 5633 5634 5635
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5636 5637
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5638 5639
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5640
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5641
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5642 5643
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5644

L
Linus Torvalds 已提交
5645 5646 5647 5648 5649
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5650
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5651

5652
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5653 5654
{
	unsigned long free = 0;
5655
	unsigned state;
L
Linus Torvalds 已提交
5656 5657

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5658
	printk(KERN_INFO "%-13.13s %c", p->comm,
5659
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5660
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5661
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5662
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5663
	else
I
Ingo Molnar 已提交
5664
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5665 5666
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5667
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5668
	else
I
Ingo Molnar 已提交
5669
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5670 5671 5672
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5673
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5674 5675
		while (!*n)
			n++;
5676
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5677 5678
	}
#endif
5679
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5680
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5681

5682
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5683 5684
}

I
Ingo Molnar 已提交
5685
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5686
{
5687
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5688

5689 5690 5691
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5692
#else
5693 5694
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5695 5696 5697 5698 5699 5700 5701 5702
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5703
		if (!state_filter || (p->state & state_filter))
5704
			sched_show_task(p);
L
Linus Torvalds 已提交
5705 5706
	} while_each_thread(g, p);

5707 5708
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5709 5710 5711
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5712
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5713 5714 5715 5716 5717
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5718 5719
}

I
Ingo Molnar 已提交
5720 5721
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5722
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5723 5724
}

5725 5726 5727 5728 5729 5730 5731 5732
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5733
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5734
{
5735
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5736 5737
	unsigned long flags;

I
Ingo Molnar 已提交
5738 5739 5740
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5741
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5742
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5743
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5744 5745 5746

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5747 5748 5749
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5750 5751 5752
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5753 5754 5755
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5756
	task_thread_info(idle)->preempt_count = 0;
5757
#endif
I
Ingo Molnar 已提交
5758 5759 5760 5761
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
5796 5797

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
5798 5799
}

L
Linus Torvalds 已提交
5800 5801 5802 5803
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5804
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5823
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5824 5825
 * call is not atomic; no spinlocks may be held.
 */
5826
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5827
{
5828
	struct migration_req req;
L
Linus Torvalds 已提交
5829
	unsigned long flags;
5830
	struct rq *rq;
5831
	int ret = 0;
L
Linus Torvalds 已提交
5832 5833

	rq = task_rq_lock(p, &flags);
5834
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5835 5836 5837 5838
		ret = -EINVAL;
		goto out;
	}

5839 5840 5841 5842 5843 5844
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5845
	if (p->sched_class->set_cpus_allowed)
5846
		p->sched_class->set_cpus_allowed(p, new_mask);
5847
	else {
5848 5849
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5850 5851
	}

L
Linus Torvalds 已提交
5852
	/* Can the task run on the task's current CPU? If so, we're done */
5853
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5854 5855
		goto out;

5856
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5857 5858 5859 5860 5861 5862 5863 5864 5865
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5866

L
Linus Torvalds 已提交
5867 5868
	return ret;
}
5869
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5870 5871

/*
I
Ingo Molnar 已提交
5872
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5873 5874 5875 5876 5877 5878
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5879 5880
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5881
 */
5882
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5883
{
5884
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5885
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5886

5887
	if (unlikely(!cpu_active(dest_cpu)))
5888
		return ret;
L
Linus Torvalds 已提交
5889 5890 5891 5892 5893 5894 5895

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5896
		goto done;
L
Linus Torvalds 已提交
5897 5898
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
5899
		goto fail;
L
Linus Torvalds 已提交
5900

I
Ingo Molnar 已提交
5901
	on_rq = p->se.on_rq;
5902
	if (on_rq)
5903
		deactivate_task(rq_src, p, 0);
5904

L
Linus Torvalds 已提交
5905
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5906 5907 5908
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5909
	}
L
Linus Torvalds 已提交
5910
done:
5911
	ret = 1;
L
Linus Torvalds 已提交
5912
fail:
L
Linus Torvalds 已提交
5913
	double_rq_unlock(rq_src, rq_dest);
5914
	return ret;
L
Linus Torvalds 已提交
5915 5916 5917 5918 5919 5920 5921
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5922
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5923 5924
{
	int cpu = (long)data;
5925
	struct rq *rq;
L
Linus Torvalds 已提交
5926 5927 5928 5929 5930 5931

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5932
		struct migration_req *req;
L
Linus Torvalds 已提交
5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5955
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5956 5957
		list_del_init(head->next);

N
Nick Piggin 已提交
5958 5959 5960
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5990
/*
5991
 * Figure out where task on dead CPU should go, use force if necessary.
5992 5993
 * NOTE: interrupts should be disabled by the caller
 */
5994
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5995
{
5996
	unsigned long flags;
L
Linus Torvalds 已提交
5997
	cpumask_t mask;
5998 5999
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6000

6001 6002 6003 6004 6005 6006 6007
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6008
		if (dest_cpu >= nr_cpu_ids)
6009 6010 6011
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6012
		if (dest_cpu >= nr_cpu_ids) {
6013 6014 6015
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6016 6017 6018 6019
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6020
			 * cpuset_cpus_allowed() will not block. It must be
6021 6022
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6023
			rq = task_rq_lock(p, &flags);
6024
			p->cpus_allowed = cpus_allowed;
6025 6026
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6027

6028 6029 6030 6031 6032
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6033
			if (p->mm && printk_ratelimit()) {
6034 6035
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6036 6037
					task_pid_nr(p), p->comm, dead_cpu);
			}
6038
		}
6039
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6040 6041 6042 6043 6044 6045 6046 6047 6048
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6049
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6050
{
6051
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6065
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6066

6067
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6068

6069 6070
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6071 6072
			continue;

6073 6074 6075
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6076

6077
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6078 6079
}

I
Ingo Molnar 已提交
6080 6081
/*
 * Schedules idle task to be the next runnable task on current CPU.
6082 6083
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6084 6085 6086
 */
void sched_idle_next(void)
{
6087
	int this_cpu = smp_processor_id();
6088
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6089 6090 6091 6092
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6093
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6094

6095 6096 6097
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6098 6099 6100
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6101
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6102

6103 6104
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6105 6106 6107 6108

	spin_unlock_irqrestore(&rq->lock, flags);
}

6109 6110
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6124
/* called under rq->lock with disabled interrupts */
6125
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6126
{
6127
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6128 6129

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6130
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6131 6132

	/* Cannot have done final schedule yet: would have vanished. */
6133
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6134

6135
	get_task_struct(p);
L
Linus Torvalds 已提交
6136 6137 6138

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6139
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6140 6141
	 * fine.
	 */
6142
	spin_unlock_irq(&rq->lock);
6143
	move_task_off_dead_cpu(dead_cpu, p);
6144
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6145

6146
	put_task_struct(p);
L
Linus Torvalds 已提交
6147 6148 6149 6150 6151
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6152
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6153
	struct task_struct *next;
6154

I
Ingo Molnar 已提交
6155 6156 6157
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6158
		update_rq_clock(rq);
6159
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6160 6161
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6162
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6163
		migrate_dead(dead_cpu, next);
6164

L
Linus Torvalds 已提交
6165 6166 6167 6168
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6169 6170 6171
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6172 6173
	{
		.procname	= "sched_domain",
6174
		.mode		= 0555,
6175
	},
I
Ingo Molnar 已提交
6176
	{0, },
6177 6178 6179
};

static struct ctl_table sd_ctl_root[] = {
6180
	{
6181
		.ctl_name	= CTL_KERN,
6182
		.procname	= "kernel",
6183
		.mode		= 0555,
6184 6185
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6186
	{0, },
6187 6188 6189 6190 6191
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6192
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6193 6194 6195 6196

	return entry;
}

6197 6198
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6199
	struct ctl_table *entry;
6200

6201 6202 6203
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6204
	 * will always be set. In the lowest directory the names are
6205 6206 6207
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6208 6209
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6210 6211 6212
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6213 6214 6215 6216 6217

	kfree(*tablep);
	*tablep = NULL;
}

6218
static void
6219
set_table_entry(struct ctl_table *entry,
6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6233
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6234

6235 6236 6237
	if (table == NULL)
		return NULL;

6238
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6239
		sizeof(long), 0644, proc_doulongvec_minmax);
6240
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6241
		sizeof(long), 0644, proc_doulongvec_minmax);
6242
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6243
		sizeof(int), 0644, proc_dointvec_minmax);
6244
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6245
		sizeof(int), 0644, proc_dointvec_minmax);
6246
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6247
		sizeof(int), 0644, proc_dointvec_minmax);
6248
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6249
		sizeof(int), 0644, proc_dointvec_minmax);
6250
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6251
		sizeof(int), 0644, proc_dointvec_minmax);
6252
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6253
		sizeof(int), 0644, proc_dointvec_minmax);
6254
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6255
		sizeof(int), 0644, proc_dointvec_minmax);
6256
	set_table_entry(&table[9], "cache_nice_tries",
6257 6258
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6259
	set_table_entry(&table[10], "flags", &sd->flags,
6260
		sizeof(int), 0644, proc_dointvec_minmax);
6261
	/* &table[11] is terminator */
6262 6263 6264 6265

	return table;
}

6266
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6267 6268 6269 6270 6271 6272 6273 6274 6275
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6276 6277
	if (table == NULL)
		return NULL;
6278 6279 6280 6281 6282

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6283
		entry->mode = 0555;
6284 6285 6286 6287 6288 6289 6290 6291
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6292
static void register_sched_domain_sysctl(void)
6293 6294 6295 6296 6297
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6298 6299 6300
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6301 6302 6303
	if (entry == NULL)
		return;

6304
	for_each_online_cpu(i) {
6305 6306
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6307
		entry->mode = 0555;
6308
		entry->child = sd_alloc_ctl_cpu_table(i);
6309
		entry++;
6310
	}
6311 6312

	WARN_ON(sd_sysctl_header);
6313 6314
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6315

6316
/* may be called multiple times per register */
6317 6318
static void unregister_sched_domain_sysctl(void)
{
6319 6320
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6321
	sd_sysctl_header = NULL;
6322 6323
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6324
}
6325
#else
6326 6327 6328 6329
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6330 6331 6332 6333
{
}
#endif

6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6364 6365 6366 6367
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6368 6369
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6370 6371
{
	struct task_struct *p;
6372
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6373
	unsigned long flags;
6374
	struct rq *rq;
L
Linus Torvalds 已提交
6375 6376

	switch (action) {
6377

L
Linus Torvalds 已提交
6378
	case CPU_UP_PREPARE:
6379
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6380
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6381 6382 6383 6384 6385
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6386
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6387 6388 6389
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6390

L
Linus Torvalds 已提交
6391
	case CPU_ONLINE:
6392
	case CPU_ONLINE_FROZEN:
6393
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6394
		wake_up_process(cpu_rq(cpu)->migration_thread);
6395 6396 6397 6398 6399 6400

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6401 6402

			set_rq_online(rq);
6403 6404
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6405
		break;
6406

L
Linus Torvalds 已提交
6407 6408
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6409
	case CPU_UP_CANCELED_FROZEN:
6410 6411
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6412
		/* Unbind it from offline cpu so it can run. Fall thru. */
6413 6414
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6415 6416 6417
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6418

L
Linus Torvalds 已提交
6419
	case CPU_DEAD:
6420
	case CPU_DEAD_FROZEN:
6421
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6422 6423 6424 6425 6426
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6427
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6428
		update_rq_clock(rq);
6429
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6430
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6431 6432
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6433
		migrate_dead_tasks(cpu);
6434
		spin_unlock_irq(&rq->lock);
6435
		cpuset_unlock();
L
Linus Torvalds 已提交
6436 6437 6438
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6439 6440 6441 6442 6443
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6444 6445
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6446 6447
			struct migration_req *req;

L
Linus Torvalds 已提交
6448
			req = list_entry(rq->migration_queue.next,
6449
					 struct migration_req, list);
L
Linus Torvalds 已提交
6450 6451 6452 6453 6454
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6455

6456 6457
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6458 6459 6460 6461 6462
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6463
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6464 6465 6466
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6467 6468 6469 6470 6471 6472 6473 6474
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6475
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6476 6477 6478 6479
	.notifier_call = migration_call,
	.priority = 10
};

6480
static int __init migration_init(void)
L
Linus Torvalds 已提交
6481 6482
{
	void *cpu = (void *)(long)smp_processor_id();
6483
	int err;
6484 6485

	/* Start one for the boot CPU: */
6486 6487
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6488 6489
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6490 6491

	return err;
L
Linus Torvalds 已提交
6492
}
6493
early_initcall(migration_init);
L
Linus Torvalds 已提交
6494 6495 6496
#endif

#ifdef CONFIG_SMP
6497

6498
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6499

6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6522 6523
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6524
{
I
Ingo Molnar 已提交
6525
	struct sched_group *group = sd->groups;
6526
	char str[256];
L
Linus Torvalds 已提交
6527

6528
	cpulist_scnprintf(str, sizeof(str), sd->span);
6529
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6530 6531 6532 6533 6534 6535 6536 6537 6538

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6539 6540
	}

6541 6542
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6543 6544 6545 6546 6547 6548 6549 6550 6551

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6552

I
Ingo Molnar 已提交
6553
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6554
	do {
I
Ingo Molnar 已提交
6555 6556 6557
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6558 6559 6560
			break;
		}

I
Ingo Molnar 已提交
6561 6562 6563 6564 6565 6566
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6567

I
Ingo Molnar 已提交
6568 6569 6570 6571 6572
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6573

6574
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6575 6576 6577 6578
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6579

6580
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6581

6582
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6583
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6584

I
Ingo Molnar 已提交
6585 6586 6587
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6588

6589
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6590
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6591

6592
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6593 6594 6595 6596
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6597

I
Ingo Molnar 已提交
6598 6599
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6600
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6601
	int level = 0;
L
Linus Torvalds 已提交
6602

I
Ingo Molnar 已提交
6603 6604 6605 6606
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6607

I
Ingo Molnar 已提交
6608 6609
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6610 6611 6612 6613 6614 6615
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6616
	for (;;) {
6617
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6618
			break;
L
Linus Torvalds 已提交
6619 6620
		level++;
		sd = sd->parent;
6621
		if (!sd)
I
Ingo Molnar 已提交
6622 6623
			break;
	}
6624
	kfree(groupmask);
L
Linus Torvalds 已提交
6625
}
6626
#else /* !CONFIG_SCHED_DEBUG */
6627
# define sched_domain_debug(sd, cpu) do { } while (0)
6628
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6629

6630
static int sd_degenerate(struct sched_domain *sd)
6631 6632 6633 6634 6635 6636 6637 6638
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6639 6640 6641
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6655 6656
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6675 6676 6677
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6678 6679 6680 6681 6682 6683 6684
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6685 6686 6687 6688 6689 6690 6691 6692 6693
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6694 6695
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6696

6697 6698
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6699 6700 6701 6702 6703 6704 6705
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6706
	cpu_set(rq->cpu, rd->span);
6707
	if (cpu_isset(rq->cpu, cpu_online_map))
6708
		set_rq_online(rq);
G
Gregory Haskins 已提交
6709 6710 6711 6712

	spin_unlock_irqrestore(&rq->lock, flags);
}

6713
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6714 6715 6716
{
	memset(rd, 0, sizeof(*rd));

6717 6718
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6719 6720

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6721 6722 6723 6724
}

static void init_defrootdomain(void)
{
6725
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6726 6727 6728
	atomic_set(&def_root_domain.refcount, 1);
}

6729
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6730 6731 6732 6733 6734 6735 6736
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6737
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6738 6739 6740 6741

	return rd;
}

L
Linus Torvalds 已提交
6742
/*
I
Ingo Molnar 已提交
6743
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6744 6745
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6746 6747
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6748
{
6749
	struct rq *rq = cpu_rq(cpu);
6750 6751 6752 6753 6754 6755 6756
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6757
		if (sd_parent_degenerate(tmp, parent)) {
6758
			tmp->parent = parent->parent;
6759 6760 6761
			if (parent->parent)
				parent->parent->child = tmp;
		}
6762 6763
	}

6764
	if (sd && sd_degenerate(sd)) {
6765
		sd = sd->parent;
6766 6767 6768
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6769 6770 6771

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6772
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6773
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6774 6775 6776
}

/* cpus with isolated domains */
6777
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6778 6779 6780 6781

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6782 6783
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6784 6785 6786 6787 6788 6789 6790 6791 6792

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6793
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6794 6795

/*
6796 6797 6798 6799
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6800 6801 6802 6803 6804
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6805
static void
6806
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6807
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6808 6809 6810
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6811 6812 6813 6814
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6815 6816
	cpus_clear(*covered);

6817
	for_each_cpu_mask_nr(i, *span) {
6818
		struct sched_group *sg;
6819
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6820 6821
		int j;

6822
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6823 6824
			continue;

6825
		cpus_clear(sg->cpumask);
6826
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6827

6828
		for_each_cpu_mask_nr(j, *span) {
6829
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6830 6831
				continue;

6832
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6844
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6845

6846
#ifdef CONFIG_NUMA
6847

6848 6849 6850 6851 6852
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6853
 * Find the next node to include in a given scheduling domain. Simply
6854 6855 6856 6857
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6858
static int find_next_best_node(int node, nodemask_t *used_nodes)
6859 6860 6861 6862 6863
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6864
	for (i = 0; i < nr_node_ids; i++) {
6865
		/* Start at @node */
6866
		n = (node + i) % nr_node_ids;
6867 6868 6869 6870 6871

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6872
		if (node_isset(n, *used_nodes))
6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6884
	node_set(best_node, *used_nodes);
6885 6886 6887 6888 6889 6890
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6891
 * @span: resulting cpumask
6892
 *
I
Ingo Molnar 已提交
6893
 * Given a node, construct a good cpumask for its sched_domain to span. It
6894 6895 6896
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6897
static void sched_domain_node_span(int node, cpumask_t *span)
6898
{
6899 6900
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6901
	int i;
6902

6903
	cpus_clear(*span);
6904
	nodes_clear(used_nodes);
6905

6906
	cpus_or(*span, *span, *nodemask);
6907
	node_set(node, used_nodes);
6908 6909

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6910
		int next_node = find_next_best_node(node, &used_nodes);
6911

6912
		node_to_cpumask_ptr_next(nodemask, next_node);
6913
		cpus_or(*span, *span, *nodemask);
6914 6915
	}
}
6916
#endif /* CONFIG_NUMA */
6917

6918
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6919

6920
/*
6921
 * SMT sched-domains:
6922
 */
L
Linus Torvalds 已提交
6923 6924
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6925
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6926

I
Ingo Molnar 已提交
6927
static int
6928 6929
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6930
{
6931 6932
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6933 6934
	return cpu;
}
6935
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6936

6937 6938 6939
/*
 * multi-core sched-domains:
 */
6940 6941
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6942
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6943
#endif /* CONFIG_SCHED_MC */
6944 6945

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6946
static int
6947 6948
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6949
{
6950
	int group;
6951 6952 6953 6954

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6955 6956 6957
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6958 6959
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6960
static int
6961 6962
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6963
{
6964 6965
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6966 6967 6968 6969
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6970
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6971
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6972

I
Ingo Molnar 已提交
6973
static int
6974 6975
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6976
{
6977
	int group;
6978
#ifdef CONFIG_SCHED_MC
6979 6980 6981
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6982
#elif defined(CONFIG_SCHED_SMT)
6983 6984 6985
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6986
#else
6987
	group = cpu;
L
Linus Torvalds 已提交
6988
#endif
6989 6990 6991
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6992 6993 6994 6995
}

#ifdef CONFIG_NUMA
/*
6996 6997 6998
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6999
 */
7000
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7001
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7002

7003
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7004
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7005

7006
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7007
				 struct sched_group **sg, cpumask_t *nodemask)
7008
{
7009 7010
	int group;

7011 7012 7013
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7014 7015 7016 7017

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7018
}
7019

7020 7021 7022 7023 7024 7025 7026
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7027
	do {
7028
		for_each_cpu_mask_nr(j, sg->cpumask) {
7029
			struct sched_domain *sd;
7030

7031 7032 7033 7034 7035 7036 7037 7038
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7039

7040 7041 7042 7043
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7044
}
7045
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7046

7047
#ifdef CONFIG_NUMA
7048
/* Free memory allocated for various sched_group structures */
7049
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7050
{
7051
	int cpu, i;
7052

7053
	for_each_cpu_mask_nr(cpu, *cpu_map) {
7054 7055 7056 7057 7058 7059
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7060
		for (i = 0; i < nr_node_ids; i++) {
7061 7062
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7063 7064 7065
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7082
#else /* !CONFIG_NUMA */
7083
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7084 7085
{
}
7086
#endif /* CONFIG_NUMA */
7087

7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7114 7115
	sd->groups->__cpu_power = 0;

7116 7117 7118 7119 7120 7121 7122 7123 7124 7125
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7126
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7127 7128 7129 7130 7131 7132 7133 7134
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7135
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7136 7137 7138 7139
		group = group->next;
	} while (group != child->groups);
}

7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7151
	sd->level = SD_LV_##type;				\
7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7200 7201 7202 7203
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7204 7205 7206 7207 7208 7209
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7235
/*
7236 7237
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7238
 */
7239 7240
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7241 7242
{
	int i;
G
Gregory Haskins 已提交
7243
	struct root_domain *rd;
7244 7245
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7246 7247
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7248
	int sd_allnodes = 0;
7249 7250 7251 7252

	/*
	 * Allocate the per-node list of sched groups
	 */
7253
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7254
				    GFP_KERNEL);
7255 7256
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7257
		return -ENOMEM;
7258 7259
	}
#endif
L
Linus Torvalds 已提交
7260

7261
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7262 7263
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7264 7265 7266
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7267 7268 7269
		return -ENOMEM;
	}

7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7289
	/*
7290
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7291
	 */
7292
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7293
		struct sched_domain *sd = NULL, *p;
7294
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7295

7296 7297
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7298 7299

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7300
		if (cpus_weight(*cpu_map) >
7301
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7302
			sd = &per_cpu(allnodes_domains, i);
7303
			SD_INIT(sd, ALLNODES);
7304
			set_domain_attribute(sd, attr);
7305
			sd->span = *cpu_map;
7306
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7307
			p = sd;
7308
			sd_allnodes = 1;
7309 7310 7311
		} else
			p = NULL;

L
Linus Torvalds 已提交
7312
		sd = &per_cpu(node_domains, i);
7313
		SD_INIT(sd, NODE);
7314
		set_domain_attribute(sd, attr);
7315
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7316
		sd->parent = p;
7317 7318
		if (p)
			p->child = sd;
7319
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7320 7321 7322 7323
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7324
		SD_INIT(sd, CPU);
7325
		set_domain_attribute(sd, attr);
7326
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7327
		sd->parent = p;
7328 7329
		if (p)
			p->child = sd;
7330
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7331

7332 7333 7334
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7335
		SD_INIT(sd, MC);
7336
		set_domain_attribute(sd, attr);
7337 7338 7339
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7340
		p->child = sd;
7341
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7342 7343
#endif

L
Linus Torvalds 已提交
7344 7345 7346
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7347
		SD_INIT(sd, SIBLING);
7348
		set_domain_attribute(sd, attr);
7349
		sd->span = per_cpu(cpu_sibling_map, i);
7350
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7351
		sd->parent = p;
7352
		p->child = sd;
7353
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7354 7355 7356 7357 7358
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7359
	for_each_cpu_mask_nr(i, *cpu_map) {
7360 7361 7362 7363 7364 7365
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7366 7367
			continue;

I
Ingo Molnar 已提交
7368
		init_sched_build_groups(this_sibling_map, cpu_map,
7369 7370
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7371 7372 7373
	}
#endif

7374 7375
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7376
	for_each_cpu_mask_nr(i, *cpu_map) {
7377 7378 7379 7380 7381 7382
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7383
			continue;
7384

I
Ingo Molnar 已提交
7385
		init_sched_build_groups(this_core_map, cpu_map,
7386 7387
					&cpu_to_core_group,
					send_covered, tmpmask);
7388 7389 7390
	}
#endif

L
Linus Torvalds 已提交
7391
	/* Set up physical groups */
7392
	for (i = 0; i < nr_node_ids; i++) {
7393 7394
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7395

7396 7397 7398
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7399 7400
			continue;

7401 7402 7403
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7404 7405 7406 7407
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7408 7409 7410 7411 7412 7413 7414
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7415

7416
	for (i = 0; i < nr_node_ids; i++) {
7417 7418
		/* Set up node groups */
		struct sched_group *sg, *prev;
7419 7420 7421
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7422 7423
		int j;

7424 7425 7426 7427 7428
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7429
			sched_group_nodes[i] = NULL;
7430
			continue;
7431
		}
7432

7433
		sched_domain_node_span(i, domainspan);
7434
		cpus_and(*domainspan, *domainspan, *cpu_map);
7435

7436
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7437 7438 7439 7440 7441
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7442
		sched_group_nodes[i] = sg;
7443
		for_each_cpu_mask_nr(j, *nodemask) {
7444
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7445

7446 7447 7448
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7449
		sg->__cpu_power = 0;
7450
		sg->cpumask = *nodemask;
7451
		sg->next = sg;
7452
		cpus_or(*covered, *covered, *nodemask);
7453 7454
		prev = sg;

7455
		for (j = 0; j < nr_node_ids; j++) {
7456
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7457
			int n = (i + j) % nr_node_ids;
7458
			node_to_cpumask_ptr(pnodemask, n);
7459

7460 7461 7462 7463
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7464 7465
				break;

7466 7467
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7468 7469
				continue;

7470 7471
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7472 7473 7474
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7475
				goto error;
7476
			}
7477
			sg->__cpu_power = 0;
7478
			sg->cpumask = *tmpmask;
7479
			sg->next = prev->next;
7480
			cpus_or(*covered, *covered, *tmpmask);
7481 7482 7483 7484
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7485 7486 7487
#endif

	/* Calculate CPU power for physical packages and nodes */
7488
#ifdef CONFIG_SCHED_SMT
7489
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7490 7491
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7492
		init_sched_groups_power(i, sd);
7493
	}
L
Linus Torvalds 已提交
7494
#endif
7495
#ifdef CONFIG_SCHED_MC
7496
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7497 7498
		struct sched_domain *sd = &per_cpu(core_domains, i);

7499
		init_sched_groups_power(i, sd);
7500 7501
	}
#endif
7502

7503
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7504 7505
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7506
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7507 7508
	}

7509
#ifdef CONFIG_NUMA
7510
	for (i = 0; i < nr_node_ids; i++)
7511
		init_numa_sched_groups_power(sched_group_nodes[i]);
7512

7513 7514
	if (sd_allnodes) {
		struct sched_group *sg;
7515

7516 7517
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7518 7519
		init_numa_sched_groups_power(sg);
	}
7520 7521
#endif

L
Linus Torvalds 已提交
7522
	/* Attach the domains */
7523
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7524 7525 7526
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7527 7528
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7529 7530 7531
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7532
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7533
	}
7534

7535
	SCHED_CPUMASK_FREE((void *)allmasks);
7536 7537
	return 0;

7538
#ifdef CONFIG_NUMA
7539
error:
7540 7541
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7542
	return -ENOMEM;
7543
#endif
L
Linus Torvalds 已提交
7544
}
P
Paul Jackson 已提交
7545

7546 7547 7548 7549 7550
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7551 7552
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7553 7554
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7555 7556 7557 7558 7559 7560 7561 7562

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7563 7564 7565 7566
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7567
/*
I
Ingo Molnar 已提交
7568
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7569 7570
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7571
 */
7572
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7573
{
7574 7575
	int err;

7576
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7577 7578 7579 7580 7581
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7582
	dattr_cur = NULL;
7583
	err = build_sched_domains(doms_cur);
7584
	register_sched_domain_sysctl();
7585 7586

	return err;
7587 7588
}

7589 7590
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7591
{
7592
	free_sched_groups(cpu_map, tmpmask);
7593
}
L
Linus Torvalds 已提交
7594

7595 7596 7597 7598
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7599
static void detach_destroy_domains(const cpumask_t *cpu_map)
7600
{
7601
	cpumask_t tmpmask;
7602 7603
	int i;

7604 7605
	unregister_sched_domain_sysctl();

7606
	for_each_cpu_mask_nr(i, *cpu_map)
G
Gregory Haskins 已提交
7607
		cpu_attach_domain(NULL, &def_root_domain, i);
7608
	synchronize_sched();
7609
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7610 7611
}

7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7628 7629
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7630
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7631 7632 7633 7634
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7635 7636 7637
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7638 7639 7640
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7641 7642
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7643 7644
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
7645
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7646 7647 7648
 *
 * Call with hotplug lock held
 */
7649 7650
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7651 7652 7653
{
	int i, j;

7654
	mutex_lock(&sched_domains_mutex);
7655

7656 7657 7658
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7659 7660
	if (doms_new == NULL)
		ndoms_new = 0;
P
Paul Jackson 已提交
7661 7662 7663 7664

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7665 7666
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7667 7668 7669 7670 7671 7672 7673 7674
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7675 7676 7677 7678 7679 7680 7681 7682
	if (doms_new == NULL) {
		ndoms_cur = 0;
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
		dattr_new = NULL;
	}

P
Paul Jackson 已提交
7683 7684 7685
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7686 7687
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7688 7689 7690
				goto match2;
		}
		/* no match - add a new doms_new */
7691 7692
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7693 7694 7695 7696 7697 7698 7699
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7700
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7701
	doms_cur = doms_new;
7702
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7703
	ndoms_cur = ndoms_new;
7704 7705

	register_sched_domain_sysctl();
7706

7707
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7708 7709
}

7710
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7711
int arch_reinit_sched_domains(void)
7712
{
7713
	get_online_cpus();
7714
	rebuild_sched_domains();
7715
	put_online_cpus();
7716
	return 0;
7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7737 7738
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7739 7740 7741
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7742
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7743
					    const char *buf, size_t count)
7744 7745 7746
{
	return sched_power_savings_store(buf, count, 0);
}
7747 7748 7749
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7750 7751 7752
#endif

#ifdef CONFIG_SCHED_SMT
7753 7754
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7755 7756 7757
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7758
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7759
					     const char *buf, size_t count)
7760 7761 7762
{
	return sched_power_savings_store(buf, count, 1);
}
7763 7764
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7784
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7785

7786
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7787
/*
7788 7789
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7790 7791 7792
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		partition_sched_domains(0, NULL, NULL);
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7810
{
P
Peter Zijlstra 已提交
7811 7812
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7813 7814
	switch (action) {
	case CPU_DOWN_PREPARE:
7815
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7816
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7817 7818 7819
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7820
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7821
	case CPU_ONLINE:
7822
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7823
		enable_runtime(cpu_rq(cpu));
7824 7825
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7826 7827 7828 7829 7830 7831 7832
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7833 7834
	cpumask_t non_isolated_cpus;

7835 7836 7837 7838 7839
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7840
	get_online_cpus();
7841
	mutex_lock(&sched_domains_mutex);
7842
	arch_init_sched_domains(&cpu_online_map);
7843
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7844 7845
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7846
	mutex_unlock(&sched_domains_mutex);
7847
	put_online_cpus();
7848 7849

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7850 7851
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7852 7853 7854 7855 7856
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7857
	init_hrtick();
7858 7859

	/* Move init over to a non-isolated CPU */
7860
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7861
		BUG();
I
Ingo Molnar 已提交
7862
	sched_init_granularity();
L
Linus Torvalds 已提交
7863 7864 7865 7866
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7867
	sched_init_granularity();
L
Linus Torvalds 已提交
7868 7869 7870 7871 7872 7873 7874 7875 7876 7877
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7878
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7879 7880
{
	cfs_rq->tasks_timeline = RB_ROOT;
7881
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7882 7883 7884
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7885
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7886 7887
}

P
Peter Zijlstra 已提交
7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7901
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7902 7903
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7904 7905 7906 7907 7908 7909 7910
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7911 7912
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7913

7914
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7915
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7916 7917
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7918 7919
}

P
Peter Zijlstra 已提交
7920
#ifdef CONFIG_FAIR_GROUP_SCHED
7921 7922 7923
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7924
{
7925
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7926 7927 7928 7929 7930 7931 7932
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7933 7934 7935 7936
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7937 7938 7939 7940 7941
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7942 7943
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7944
	se->load.inv_weight = 0;
7945
	se->parent = parent;
P
Peter Zijlstra 已提交
7946
}
7947
#endif
P
Peter Zijlstra 已提交
7948

7949
#ifdef CONFIG_RT_GROUP_SCHED
7950 7951 7952
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7953
{
7954 7955
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7956 7957 7958 7959
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7960
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7961 7962 7963 7964
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7965 7966 7967
	if (!rt_se)
		return;

7968 7969 7970 7971 7972
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7973
	rt_se->my_q = rt_rq;
7974
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7975 7976 7977 7978
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7979 7980
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7981
	int i, j;
7982 7983 7984 7985 7986 7987 7988
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7989 7990 7991
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7992 7993 7994 7995 7996 7997
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
7998
		ptr = (unsigned long)alloc_bootmem(alloc_size);
7999 8000 8001 8002 8003 8004 8005

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8006 8007 8008 8009 8010 8011 8012

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8013 8014
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8015 8016 8017 8018 8019
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8020 8021 8022 8023 8024 8025 8026 8027
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8028 8029
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8030
	}
I
Ingo Molnar 已提交
8031

G
Gregory Haskins 已提交
8032 8033 8034 8035
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8036 8037 8038 8039 8040 8041
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8042 8043 8044
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8045 8046
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8047

8048
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8049
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8050 8051 8052 8053 8054 8055
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8056 8057
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8058

8059
	for_each_possible_cpu(i) {
8060
		struct rq *rq;
L
Linus Torvalds 已提交
8061 8062 8063

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8064
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8065
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8066
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8067
#ifdef CONFIG_FAIR_GROUP_SCHED
8068
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8069
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8090
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8091
#elif defined CONFIG_USER_SCHED
8092 8093
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8105
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8106
				&per_cpu(init_cfs_rq, i),
8107 8108
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8109

8110
#endif
D
Dhaval Giani 已提交
8111 8112 8113
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8114
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8115
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8116
#ifdef CONFIG_CGROUP_SCHED
8117
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8118
#elif defined CONFIG_USER_SCHED
8119
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8120
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8121
				&per_cpu(init_rt_rq, i),
8122 8123
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8124
#endif
I
Ingo Molnar 已提交
8125
#endif
L
Linus Torvalds 已提交
8126

I
Ingo Molnar 已提交
8127 8128
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8129
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8130
		rq->sd = NULL;
G
Gregory Haskins 已提交
8131
		rq->rd = NULL;
L
Linus Torvalds 已提交
8132
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8133
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8134
		rq->push_cpu = 0;
8135
		rq->cpu = i;
8136
		rq->online = 0;
L
Linus Torvalds 已提交
8137 8138
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8139
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8140
#endif
P
Peter Zijlstra 已提交
8141
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8142 8143 8144
		atomic_set(&rq->nr_iowait, 0);
	}

8145
	set_load_weight(&init_task);
8146

8147 8148 8149 8150
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8151
#ifdef CONFIG_SMP
8152
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8153 8154
#endif

8155 8156 8157 8158
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8172 8173 8174 8175
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8176 8177

	scheduler_running = 1;
L
Linus Torvalds 已提交
8178 8179 8180 8181 8182
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8183
#ifdef in_atomic
L
Linus Torvalds 已提交
8184 8185 8186 8187 8188 8189 8190
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8191
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8192 8193 8194
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8195
		debug_show_held_locks(current);
8196 8197
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8198 8199 8200 8201 8202 8203 8204 8205
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8206 8207 8208
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8209

8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8221 8222
void normalize_rt_tasks(void)
{
8223
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8224
	unsigned long flags;
8225
	struct rq *rq;
L
Linus Torvalds 已提交
8226

8227
	read_lock_irqsave(&tasklist_lock, flags);
8228
	do_each_thread(g, p) {
8229 8230 8231 8232 8233 8234
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8235 8236
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8237 8238 8239
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8240
#endif
I
Ingo Molnar 已提交
8241 8242 8243 8244 8245 8246 8247 8248

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8249
			continue;
I
Ingo Molnar 已提交
8250
		}
L
Linus Torvalds 已提交
8251

8252
		spin_lock(&p->pi_lock);
8253
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8254

8255
		normalize_task(rq, p);
8256

8257
		__task_rq_unlock(rq);
8258
		spin_unlock(&p->pi_lock);
8259 8260
	} while_each_thread(g, p);

8261
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8262 8263 8264
}

#endif /* CONFIG_MAGIC_SYSRQ */
8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8283
struct task_struct *curr_task(int cpu)
8284 8285 8286 8287 8288 8289 8290 8291 8292 8293
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8294 8295
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8296 8297 8298 8299 8300 8301 8302
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8303
void set_curr_task(int cpu, struct task_struct *p)
8304 8305 8306 8307 8308
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8309

8310 8311
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8326 8327
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8328 8329
{
	struct cfs_rq *cfs_rq;
8330
	struct sched_entity *se, *parent_se;
8331
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8332 8333
	int i;

8334
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8335 8336
	if (!tg->cfs_rq)
		goto err;
8337
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8338 8339
	if (!tg->se)
		goto err;
8340 8341

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8342 8343

	for_each_possible_cpu(i) {
8344
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8345

P
Peter Zijlstra 已提交
8346 8347
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8348 8349 8350
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8351 8352
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8353 8354 8355
		if (!se)
			goto err;

8356 8357
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8376
#else /* !CONFG_FAIR_GROUP_SCHED */
8377 8378 8379 8380
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8381 8382
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8394
#endif /* CONFIG_FAIR_GROUP_SCHED */
8395 8396

#ifdef CONFIG_RT_GROUP_SCHED
8397 8398 8399 8400
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8401 8402
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8414 8415
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8416 8417
{
	struct rt_rq *rt_rq;
8418
	struct sched_rt_entity *rt_se, *parent_se;
8419 8420 8421
	struct rq *rq;
	int i;

8422
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8423 8424
	if (!tg->rt_rq)
		goto err;
8425
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8426 8427 8428
	if (!tg->rt_se)
		goto err;

8429 8430
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8431 8432 8433 8434

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8435 8436 8437 8438
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8439

P
Peter Zijlstra 已提交
8440 8441 8442 8443
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8444

8445 8446
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8447 8448
	}

8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8465
#else /* !CONFIG_RT_GROUP_SCHED */
8466 8467 8468 8469
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8470 8471
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8483
#endif /* CONFIG_RT_GROUP_SCHED */
8484

8485
#ifdef CONFIG_GROUP_SCHED
8486 8487 8488 8489 8490 8491 8492 8493
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8494
struct task_group *sched_create_group(struct task_group *parent)
8495 8496 8497 8498 8499 8500 8501 8502 8503
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8504
	if (!alloc_fair_sched_group(tg, parent))
8505 8506
		goto err;

8507
	if (!alloc_rt_sched_group(tg, parent))
8508 8509
		goto err;

8510
	spin_lock_irqsave(&task_group_lock, flags);
8511
	for_each_possible_cpu(i) {
8512 8513
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8514
	}
P
Peter Zijlstra 已提交
8515
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8516 8517 8518 8519 8520

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8521
	list_add_rcu(&tg->siblings, &parent->children);
8522
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8523

8524
	return tg;
S
Srivatsa Vaddagiri 已提交
8525 8526

err:
P
Peter Zijlstra 已提交
8527
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8528 8529 8530
	return ERR_PTR(-ENOMEM);
}

8531
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8532
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8533 8534
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8535
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8536 8537
}

8538
/* Destroy runqueue etc associated with a task group */
8539
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8540
{
8541
	unsigned long flags;
8542
	int i;
S
Srivatsa Vaddagiri 已提交
8543

8544
	spin_lock_irqsave(&task_group_lock, flags);
8545
	for_each_possible_cpu(i) {
8546 8547
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8548
	}
P
Peter Zijlstra 已提交
8549
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8550
	list_del_rcu(&tg->siblings);
8551
	spin_unlock_irqrestore(&task_group_lock, flags);
8552 8553

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8554
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8555 8556
}

8557
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8558 8559 8560
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8561 8562
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8563 8564 8565 8566 8567 8568 8569 8570 8571
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8572
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8573 8574
	on_rq = tsk->se.on_rq;

8575
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8576
		dequeue_task(rq, tsk, 0);
8577 8578
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8579

P
Peter Zijlstra 已提交
8580
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8581

P
Peter Zijlstra 已提交
8582 8583 8584 8585 8586
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8587 8588 8589
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8590
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8591 8592 8593

	task_rq_unlock(rq, &flags);
}
8594
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8595

8596
#ifdef CONFIG_FAIR_GROUP_SCHED
8597
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8598 8599 8600 8601 8602
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8603
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8604 8605 8606
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8607
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8608

8609
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8610
		enqueue_entity(cfs_rq, se, 0);
8611
}
8612

8613 8614 8615 8616 8617 8618 8619 8620 8621
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8622 8623
}

8624 8625
static DEFINE_MUTEX(shares_mutex);

8626
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8627 8628
{
	int i;
8629
	unsigned long flags;
8630

8631 8632 8633 8634 8635 8636
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8637 8638
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8639 8640
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8641

8642
	mutex_lock(&shares_mutex);
8643
	if (tg->shares == shares)
8644
		goto done;
S
Srivatsa Vaddagiri 已提交
8645

8646
	spin_lock_irqsave(&task_group_lock, flags);
8647 8648
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8649
	list_del_rcu(&tg->siblings);
8650
	spin_unlock_irqrestore(&task_group_lock, flags);
8651 8652 8653 8654 8655 8656 8657 8658

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8659
	tg->shares = shares;
8660 8661 8662 8663 8664
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8665
		set_se_shares(tg->se[i], shares);
8666
	}
S
Srivatsa Vaddagiri 已提交
8667

8668 8669 8670 8671
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8672
	spin_lock_irqsave(&task_group_lock, flags);
8673 8674
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8675
	list_add_rcu(&tg->siblings, &tg->parent->children);
8676
	spin_unlock_irqrestore(&task_group_lock, flags);
8677
done:
8678
	mutex_unlock(&shares_mutex);
8679
	return 0;
S
Srivatsa Vaddagiri 已提交
8680 8681
}

8682 8683 8684 8685
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8686
#endif
8687

8688
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8689
/*
P
Peter Zijlstra 已提交
8690
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8691
 */
P
Peter Zijlstra 已提交
8692 8693 8694 8695 8696 8697 8698
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8699
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8700 8701
}

8702 8703 8704
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
8705
	struct task_group *tgi, *parent = tg->parent;
8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

8729
	return total + to_ratio(period, runtime) <=
8730 8731 8732 8733
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8734
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8735 8736 8737
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8738
	unsigned long global_ratio =
8739
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8740 8741

	rcu_read_lock();
P
Peter Zijlstra 已提交
8742 8743 8744
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8745

8746 8747
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8748 8749
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8750

P
Peter Zijlstra 已提交
8751
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8752
}
8753
#endif
P
Peter Zijlstra 已提交
8754

8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8766 8767
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8768
{
P
Peter Zijlstra 已提交
8769
	int i, err = 0;
P
Peter Zijlstra 已提交
8770 8771

	mutex_lock(&rt_constraints_mutex);
8772
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8773
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8774 8775 8776
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8777 8778 8779 8780
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8781 8782

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8783 8784
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8785 8786 8787 8788 8789 8790 8791 8792 8793

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8794
 unlock:
8795
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8796 8797 8798
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8799 8800
}

8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8813 8814 8815 8816
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8817
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8818 8819
		return -1;

8820
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8821 8822 8823
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8824 8825 8826 8827 8828 8829 8830 8831

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8832 8833 8834
	if (rt_period == 0)
		return -EINVAL;

8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8849 8850
	struct task_group *tg = &root_task_group;
	u64 rt_runtime, rt_period;
8851 8852
	int ret = 0;

8853 8854 8855
	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8856
	mutex_lock(&rt_constraints_mutex);
8857
	if (!__rt_schedulable(tg, rt_period, rt_runtime))
8858 8859 8860 8861 8862
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8863
#else /* !CONFIG_RT_GROUP_SCHED */
8864 8865
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8879 8880
	return 0;
}
8881
#endif /* CONFIG_RT_GROUP_SCHED */
8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8912

8913
#ifdef CONFIG_CGROUP_SCHED
8914 8915

/* return corresponding task_group object of a cgroup */
8916
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8917
{
8918 8919
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8920 8921 8922
}

static struct cgroup_subsys_state *
8923
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8924
{
8925
	struct task_group *tg, *parent;
8926

8927
	if (!cgrp->parent) {
8928
		/* This is early initialization for the top cgroup */
8929
		init_task_group.css.cgroup = cgrp;
8930 8931 8932
		return &init_task_group.css;
	}

8933 8934
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8935 8936 8937 8938
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8939
	tg->css.cgroup = cgrp;
8940 8941 8942 8943

	return &tg->css;
}

I
Ingo Molnar 已提交
8944 8945
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8946
{
8947
	struct task_group *tg = cgroup_tg(cgrp);
8948 8949 8950 8951

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8952 8953 8954
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8955
{
8956 8957
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8958
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8959 8960
		return -EINVAL;
#else
8961 8962 8963
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8964
#endif
8965 8966 8967 8968 8969

	return 0;
}

static void
8970
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8971 8972 8973 8974 8975
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8976
#ifdef CONFIG_FAIR_GROUP_SCHED
8977
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8978
				u64 shareval)
8979
{
8980
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8981 8982
}

8983
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8984
{
8985
	struct task_group *tg = cgroup_tg(cgrp);
8986 8987 8988

	return (u64) tg->shares;
}
8989
#endif /* CONFIG_FAIR_GROUP_SCHED */
8990

8991
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8992
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8993
				s64 val)
P
Peter Zijlstra 已提交
8994
{
8995
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8996 8997
}

8998
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8999
{
9000
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9001
}
9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9013
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9014

9015
static struct cftype cpu_files[] = {
9016
#ifdef CONFIG_FAIR_GROUP_SCHED
9017 9018
	{
		.name = "shares",
9019 9020
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9021
	},
9022 9023
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9024
	{
P
Peter Zijlstra 已提交
9025
		.name = "rt_runtime_us",
9026 9027
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9028
	},
9029 9030
	{
		.name = "rt_period_us",
9031 9032
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9033
	},
9034
#endif
9035 9036 9037 9038
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9039
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9040 9041 9042
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9043 9044 9045 9046 9047 9048 9049
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9050 9051 9052
	.early_init	= 1,
};

9053
#endif	/* CONFIG_CGROUP_SCHED */
9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9074
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9075
{
9076
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9089
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9106
static void
9107
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9108
{
9109
	struct cpuacct *ca = cgroup_ca(cgrp);
9110 9111 9112 9113 9114 9115

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9116
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9117
{
9118
	struct cpuacct *ca = cgroup_ca(cgrp);
9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9160 9161 9162
static struct cftype files[] = {
	{
		.name = "usage",
9163 9164
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9165 9166 9167
	},
};

9168
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9169
{
9170
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */