sched.c 269.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143
	/* nests inside the rq lock: */
144
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
145 146 147
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

181
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
182

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

203
	raw_spin_lock(&rt_b->rt_runtime_lock);
204
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219
	}
220
	raw_spin_unlock(&rt_b->rt_runtime_lock);
221 222 223 224 225 226 227 228 229
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

236
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
#ifdef CONFIG_CGROUP_SCHED
247 248
	struct cgroup_subsys_state css;
#endif
249

250 251 252 253
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

254
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
255 256 257 258 259
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
275 276
};

D
Dhaval Giani 已提交
277
#ifdef CONFIG_USER_SCHED
278

279 280 281 282 283 284
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

285 286
/*
 * Root task group.
287 288
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
289 290 291
 */
struct task_group root_task_group;

292
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
293 294 295
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
296
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297
#endif /* CONFIG_FAIR_GROUP_SCHED */
298 299 300

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
302
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
303
#else /* !CONFIG_USER_SCHED */
304
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
305
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
306

307
/* task_group_lock serializes add/remove of task groups and also changes to
308 309
 * a task group's cpu shares.
 */
310
static DEFINE_SPINLOCK(task_group_lock);
311

312 313
#ifdef CONFIG_FAIR_GROUP_SCHED

314 315 316 317 318 319 320
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

321 322
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
323
#else /* !CONFIG_USER_SCHED */
324
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
325
#endif /* CONFIG_USER_SCHED */
326

327
/*
328 329 330 331
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
332 333 334
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
335
#define MIN_SHARES	2
336
#define MAX_SHARES	(1UL << 18)
337

338 339 340
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
341
/* Default task group.
I
Ingo Molnar 已提交
342
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
343
 */
344
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
345 346

/* return group to which a task belongs */
347
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
348
{
349
	struct task_group *tg;
350

351
#ifdef CONFIG_USER_SCHED
352 353 354
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
355
#elif defined(CONFIG_CGROUP_SCHED)
356 357
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
358
#else
I
Ingo Molnar 已提交
359
	tg = &init_task_group;
360
#endif
361
	return tg;
S
Srivatsa Vaddagiri 已提交
362 363 364
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
365
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
366
{
367
#ifdef CONFIG_FAIR_GROUP_SCHED
368 369
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
370
#endif
P
Peter Zijlstra 已提交
371

372
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
373 374
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
375
#endif
S
Srivatsa Vaddagiri 已提交
376 377 378 379
}

#else

P
Peter Zijlstra 已提交
380
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 382 383 384
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
385

386
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
387

I
Ingo Molnar 已提交
388 389 390 391 392 393
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
394
	u64 min_vruntime;
I
Ingo Molnar 已提交
395 396 397

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
398 399 400 401 402 403

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
404 405
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
406
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
407

P
Peter Zijlstra 已提交
408
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
409

410
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
411 412
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
413 414
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
415 416 417 418 419 420
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
421 422
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
423 424 425

#ifdef CONFIG_SMP
	/*
426
	 * the part of load.weight contributed by tasks
427
	 */
428
	unsigned long task_weight;
429

430 431 432 433 434 435 436
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
437

438 439 440 441
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
442 443 444 445 446

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
447
#endif
I
Ingo Molnar 已提交
448 449
#endif
};
L
Linus Torvalds 已提交
450

I
Ingo Molnar 已提交
451 452 453
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
454
	unsigned long rt_nr_running;
455
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 457
	struct {
		int curr; /* highest queued rt task prio */
458
#ifdef CONFIG_SMP
459
		int next; /* next highest */
460
#endif
461
	} highest_prio;
P
Peter Zijlstra 已提交
462
#endif
P
Peter Zijlstra 已提交
463
#ifdef CONFIG_SMP
464
	unsigned long rt_nr_migratory;
465
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
466
	int overloaded;
467
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
468
#endif
P
Peter Zijlstra 已提交
469
	int rt_throttled;
P
Peter Zijlstra 已提交
470
	u64 rt_time;
P
Peter Zijlstra 已提交
471
	u64 rt_runtime;
I
Ingo Molnar 已提交
472
	/* Nests inside the rq lock: */
473
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
474

475
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
476 477
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
478 479 480 481 482
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
483 484
};

G
Gregory Haskins 已提交
485 486 487 488
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
489 490
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
491 492 493 494 495 496
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
497 498
	cpumask_var_t span;
	cpumask_var_t online;
499

I
Ingo Molnar 已提交
500
	/*
501 502 503
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
504
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
505
	atomic_t rto_count;
506 507 508
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
509 510
};

511 512 513 514
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
515 516 517 518
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
519 520 521 522 523 524 525
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
526
struct rq {
527
	/* runqueue lock: */
528
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
529 530 531 532 533 534

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
535 536
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 538 539
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
540 541
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
542 543 544 545
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
546 547
	struct rt_rq rt;

I
Ingo Molnar 已提交
548
#ifdef CONFIG_FAIR_GROUP_SCHED
549 550
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
551 552
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
553
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
554 555 556 557 558 559 560 561 562 563
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

564
	struct task_struct *curr, *idle;
565
	unsigned long next_balance;
L
Linus Torvalds 已提交
566
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
567

568
	u64 clock;
I
Ingo Molnar 已提交
569

L
Linus Torvalds 已提交
570 571 572
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
573
	struct root_domain *rd;
L
Linus Torvalds 已提交
574 575
	struct sched_domain *sd;

576
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
577
	/* For active balancing */
578
	int post_schedule;
L
Linus Torvalds 已提交
579 580
	int active_balance;
	int push_cpu;
581 582
	/* cpu of this runqueue: */
	int cpu;
583
	int online;
L
Linus Torvalds 已提交
584

585
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
586

587
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
588
	struct list_head migration_queue;
589 590 591

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
592 593
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
594 595
#endif

596 597 598 599
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
600
#ifdef CONFIG_SCHED_HRTICK
601 602 603 604
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
605 606 607
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
608 609 610
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
611 612
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
613 614

	/* sys_sched_yield() stats */
615
	unsigned int yld_count;
L
Linus Torvalds 已提交
616 617

	/* schedule() stats */
618 619 620
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
621 622

	/* try_to_wake_up() stats */
623 624
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
625 626

	/* BKL stats */
627
	unsigned int bkl_count;
L
Linus Torvalds 已提交
628 629 630
#endif
};

631
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
632

P
Peter Zijlstra 已提交
633 634
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
635
{
P
Peter Zijlstra 已提交
636
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
637 638
}

639 640 641 642 643 644 645 646 647
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
648 649
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
651 652 653 654
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
655 656
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
657 658 659 660 661

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
662
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
663

I
Ingo Molnar 已提交
664
inline void update_rq_clock(struct rq *rq)
665 666 667 668
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
669 670 671 672 673 674 675 676 677
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
678 679
/**
 * runqueue_is_locked
680
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
681 682 683 684 685
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
686
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
687
{
688
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
689 690
}

I
Ingo Molnar 已提交
691 692 693
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
694 695 696 697

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
698
enum {
P
Peter Zijlstra 已提交
699
#include "sched_features.h"
I
Ingo Molnar 已提交
700 701
};

P
Peter Zijlstra 已提交
702 703 704 705 706
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
707
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
708 709 710 711 712 713 714 715 716
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

717
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
718 719 720 721 722 723
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
724
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
725 726 727 728
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
729 730 731
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
732
	}
L
Li Zefan 已提交
733
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
734

L
Li Zefan 已提交
735
	return 0;
P
Peter Zijlstra 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
755
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

775
	*ppos += cnt;
P
Peter Zijlstra 已提交
776 777 778 779

	return cnt;
}

L
Li Zefan 已提交
780 781 782 783 784
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

785
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
786 787 788 789 790
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
805

806 807 808 809 810 811
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
812 813
/*
 * ratelimit for updating the group shares.
814
 * default: 0.25ms
P
Peter Zijlstra 已提交
815
 */
816
unsigned int sysctl_sched_shares_ratelimit = 250000;
817
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
818

819 820 821 822 823 824 825
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

826 827 828 829 830 831 832 833
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
834
/*
P
Peter Zijlstra 已提交
835
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
836 837
 * default: 1s
 */
P
Peter Zijlstra 已提交
838
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
839

840 841
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
842 843 844 845 846
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
847

848 849 850 851 852 853 854
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
855
	if (sysctl_sched_rt_runtime < 0)
856 857 858 859
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
860

L
Linus Torvalds 已提交
861
#ifndef prepare_arch_switch
862 863 864 865 866 867
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

868 869 870 871 872
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

873
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
874
static inline int task_running(struct rq *rq, struct task_struct *p)
875
{
876
	return task_current(rq, p);
877 878
}

879
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 881 882
{
}

883
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884
{
885 886 887 888
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
889 890 891 892 893 894 895
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

896
	raw_spin_unlock_irq(&rq->lock);
897 898 899
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
900
static inline int task_running(struct rq *rq, struct task_struct *p)
901 902 903 904
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
905
	return task_current(rq, p);
906 907 908
#endif
}

909
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 911 912 913 914 915 916 917 918 919
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920
	raw_spin_unlock_irq(&rq->lock);
921
#else
922
	raw_spin_unlock(&rq->lock);
923 924 925
#endif
}

926
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 928 929 930 931 932 933 934 935 936 937 938
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
939
#endif
940 941
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
942

943 944 945 946
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
947
static inline struct rq *__task_rq_lock(struct task_struct *p)
948 949
	__acquires(rq->lock)
{
950 951
	for (;;) {
		struct rq *rq = task_rq(p);
952
		raw_spin_lock(&rq->lock);
953 954
		if (likely(rq == task_rq(p)))
			return rq;
955
		raw_spin_unlock(&rq->lock);
956 957 958
	}
}

L
Linus Torvalds 已提交
959 960
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
961
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
962 963
 * explicitly disabling preemption.
 */
964
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
965 966
	__acquires(rq->lock)
{
967
	struct rq *rq;
L
Linus Torvalds 已提交
968

969 970 971
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
972
		raw_spin_lock(&rq->lock);
973 974
		if (likely(rq == task_rq(p)))
			return rq;
975
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
976 977 978
	}
}

979 980 981 982 983
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984
	raw_spin_unlock_wait(&rq->lock);
985 986
}

A
Alexey Dobriyan 已提交
987
static void __task_rq_unlock(struct rq *rq)
988 989
	__releases(rq->lock)
{
990
	raw_spin_unlock(&rq->lock);
991 992
}

993
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
994 995
	__releases(rq->lock)
{
996
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
997 998 999
}

/*
1000
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1001
 */
A
Alexey Dobriyan 已提交
1002
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1003 1004
	__acquires(rq->lock)
{
1005
	struct rq *rq;
L
Linus Torvalds 已提交
1006 1007 1008

	local_irq_disable();
	rq = this_rq();
1009
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
1010 1011 1012 1013

	return rq;
}

P
Peter Zijlstra 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1035
	if (!cpu_active(cpu_of(rq)))
1036
		return 0;
P
Peter Zijlstra 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1056
	raw_spin_lock(&rq->lock);
1057
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1058
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1060 1061 1062 1063

	return HRTIMER_NORESTART;
}

1064
#ifdef CONFIG_SMP
1065 1066 1067 1068
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1069
{
1070
	struct rq *rq = arg;
1071

1072
	raw_spin_lock(&rq->lock);
1073 1074
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1075
	raw_spin_unlock(&rq->lock);
1076 1077
}

1078 1079 1080 1081 1082 1083
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1084
{
1085 1086
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1087

1088
	hrtimer_set_expires(timer, time);
1089 1090 1091 1092

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1093
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1094 1095
		rq->hrtick_csd_pending = 1;
	}
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1110
		hrtick_clear(cpu_rq(cpu));
1111 1112 1113 1114 1115 1116
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1117
static __init void init_hrtick(void)
1118 1119 1120
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1121 1122 1123 1124 1125 1126 1127 1128
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1129
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1130
			HRTIMER_MODE_REL_PINNED, 0);
1131
}
1132

A
Andrew Morton 已提交
1133
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1134 1135
{
}
1136
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1137

1138
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1139
{
1140 1141
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1142

1143 1144 1145 1146
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1147

1148 1149
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1150
}
A
Andrew Morton 已提交
1151
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1152 1153 1154 1155 1156 1157 1158 1159
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1160 1161 1162
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1163
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1164

I
Ingo Molnar 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1178
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1179 1180 1181
{
	int cpu;

1182
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1183

1184
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1185 1186
		return;

1187
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1204
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1205 1206
		return;
	resched_task(cpu_curr(cpu));
1207
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1208
}
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1243
	set_tsk_need_resched(rq->idle);
1244 1245 1246 1247 1248 1249

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1250
#endif /* CONFIG_NO_HZ */
1251

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1273
#else /* !CONFIG_SMP */
1274
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1275
{
1276
	assert_raw_spin_locked(&task_rq(p)->lock);
1277
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1278
}
1279 1280 1281 1282

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1283
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1284

1285 1286 1287 1288 1289 1290 1291 1292
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1293 1294 1295
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1296
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1297

1298 1299 1300
/*
 * delta *= weight / lw
 */
1301
static unsigned long
1302 1303 1304 1305 1306
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1307 1308 1309 1310 1311 1312 1313
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1314 1315 1316 1317 1318

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1319
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1320
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1321 1322
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1323
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1324

1325
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1326 1327
}

1328
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1329 1330
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1331
	lw->inv_weight = 0;
1332 1333
}

1334
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1335 1336
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1337
	lw->inv_weight = 0;
1338 1339
}

1340 1341 1342 1343
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1344
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1345 1346 1347 1348
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1349 1350
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1360 1361 1362
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1363 1364
 */
static const int prio_to_weight[40] = {
1365 1366 1367 1368 1369 1370 1371 1372
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1373 1374
};

1375 1376 1377 1378 1379 1380 1381
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1382
static const u32 prio_to_wmult[40] = {
1383 1384 1385 1386 1387 1388 1389 1390
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1391
};
1392

I
Ingo Molnar 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1418

1419 1420 1421 1422 1423 1424 1425 1426
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1427 1428
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1429 1430
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1431 1432
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1433 1434
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1435 1436
#endif

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1447
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1448
typedef int (*tg_visitor)(struct task_group *, void *);
1449 1450 1451 1452 1453

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1454
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1455 1456
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1457
	int ret;
1458 1459 1460 1461

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1462 1463 1464
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1465 1466 1467 1468 1469 1470 1471
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1472 1473 1474
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1475 1476 1477 1478 1479

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1480
out_unlock:
1481
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1482 1483

	return ret;
1484 1485
}

P
Peter Zijlstra 已提交
1486 1487 1488
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1489
}
P
Peter Zijlstra 已提交
1490 1491 1492
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1552 1553 1554 1555 1556
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1557
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1558

1559 1560
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1561 1562
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1563 1564 1565 1566 1567

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1568

1569
static __read_mostly unsigned long *update_shares_data;
1570

1571 1572 1573 1574 1575
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1576 1577 1578
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1579
				    unsigned long *usd_rq_weight)
1580
{
1581
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1582
	int boost = 0;
1583

1584
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1585 1586 1587 1588
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1589

1590
	/*
P
Peter Zijlstra 已提交
1591 1592 1593
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1594
	 */
1595
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1596
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1597

1598 1599 1600 1601
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1602

1603
		raw_spin_lock_irqsave(&rq->lock, flags);
1604
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1605
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1606
		__set_se_shares(tg->se[cpu], shares);
1607
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1608
	}
1609
}
1610 1611

/*
1612 1613 1614
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1615
 */
P
Peter Zijlstra 已提交
1616
static int tg_shares_up(struct task_group *tg, void *data)
1617
{
1618
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1619
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1620
	struct sched_domain *sd = data;
1621
	unsigned long flags;
1622
	int i;
1623

1624 1625 1626 1627
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1628
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1629

1630
	for_each_cpu(i, sched_domain_span(sd)) {
1631
		weight = tg->cfs_rq[i]->load.weight;
1632
		usd_rq_weight[i] = weight;
1633

1634
		rq_weight += weight;
1635 1636 1637 1638 1639 1640 1641 1642
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1643
		sum_weight += weight;
1644
		shares += tg->cfs_rq[i]->shares;
1645 1646
	}

1647 1648 1649
	if (!rq_weight)
		rq_weight = sum_weight;

1650 1651 1652 1653 1654
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1655

1656
	for_each_cpu(i, sched_domain_span(sd))
1657
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1658 1659

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1660 1661

	return 0;
1662 1663 1664
}

/*
1665 1666 1667
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1668
 */
P
Peter Zijlstra 已提交
1669
static int tg_load_down(struct task_group *tg, void *data)
1670
{
1671
	unsigned long load;
P
Peter Zijlstra 已提交
1672
	long cpu = (long)data;
1673

1674 1675 1676 1677 1678 1679 1680
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1681

1682
	tg->cfs_rq[cpu]->h_load = load;
1683

P
Peter Zijlstra 已提交
1684
	return 0;
1685 1686
}

1687
static void update_shares(struct sched_domain *sd)
1688
{
1689 1690 1691 1692 1693 1694 1695 1696
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1697 1698 1699

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1700
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1701
	}
1702 1703
}

1704 1705
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1706 1707 1708
	if (root_task_group_empty())
		return;

1709
	raw_spin_unlock(&rq->lock);
1710
	update_shares(sd);
1711
	raw_spin_lock(&rq->lock);
1712 1713
}

P
Peter Zijlstra 已提交
1714
static void update_h_load(long cpu)
1715
{
1716 1717 1718
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1719
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1720 1721 1722 1723
}

#else

1724
static inline void update_shares(struct sched_domain *sd)
1725 1726 1727
{
}

1728 1729 1730 1731
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1732 1733
#endif

1734 1735
#ifdef CONFIG_PREEMPT

1736 1737
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1738
/*
1739 1740 1741 1742 1743 1744
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1745
 */
1746 1747 1748 1749 1750
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1751
	raw_spin_unlock(&this_rq->lock);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1766 1767 1768 1769 1770 1771
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1772
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1773
		if (busiest < this_rq) {
1774 1775 1776 1777
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1778 1779
			ret = 1;
		} else
1780 1781
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1782 1783 1784 1785
	}
	return ret;
}

1786 1787 1788 1789 1790 1791 1792 1793 1794
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1795
		raw_spin_unlock(&this_rq->lock);
1796 1797 1798 1799 1800 1801
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1802 1803 1804
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1805
	raw_spin_unlock(&busiest->lock);
1806 1807
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1808 1809
#endif

V
Vegard Nossum 已提交
1810
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1811 1812
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1813
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1814 1815 1816
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1817
#endif
1818

1819
static void calc_load_account_active(struct rq *this_rq);
1820
static void update_sysctl(void);
1821
static int get_update_sysctl_factor(void);
1822

P
Peter Zijlstra 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1836

I
Ingo Molnar 已提交
1837 1838
#include "sched_stats.h"
#include "sched_idletask.c"
1839 1840
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1841 1842 1843 1844 1845
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1846 1847
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1848

1849
static void inc_nr_running(struct rq *rq)
1850 1851 1852 1853
{
	rq->nr_running++;
}

1854
static void dec_nr_running(struct rq *rq)
1855 1856 1857 1858
{
	rq->nr_running--;
}

1859 1860 1861
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1862 1863 1864 1865
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1866

I
Ingo Molnar 已提交
1867 1868 1869 1870 1871 1872 1873 1874
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1875

I
Ingo Molnar 已提交
1876 1877
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1878 1879
}

1880 1881 1882 1883 1884 1885
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1886
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1887
{
P
Peter Zijlstra 已提交
1888 1889 1890
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1891
	sched_info_queued(p);
1892
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1893
	p->se.on_rq = 1;
1894 1895
}

1896
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1897
{
P
Peter Zijlstra 已提交
1898 1899 1900 1901 1902 1903 1904 1905 1906
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1907 1908
	}

1909
	sched_info_dequeued(p);
1910
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1911
	p->se.on_rq = 0;
1912 1913
}

1914
/*
I
Ingo Molnar 已提交
1915
 * __normal_prio - return the priority that is based on the static prio
1916 1917 1918
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1919
	return p->static_prio;
1920 1921
}

1922 1923 1924 1925 1926 1927 1928
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1929
static inline int normal_prio(struct task_struct *p)
1930 1931 1932
{
	int prio;

1933
	if (task_has_rt_policy(p))
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1947
static int effective_prio(struct task_struct *p)
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1960
/*
I
Ingo Molnar 已提交
1961
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1962
 */
I
Ingo Molnar 已提交
1963
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1964
{
1965
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1966
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1967

1968
	enqueue_task(rq, p, wakeup);
1969
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1975
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1976
{
1977
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1978 1979
		rq->nr_uninterruptible++;

1980
	dequeue_task(rq, p, sleep);
1981
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1982 1983 1984 1985 1986 1987
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1988
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1989 1990 1991 1992
{
	return cpu_curr(task_cpu(p)) == p;
}

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
2005
#ifdef CONFIG_SMP
2006 2007 2008
/*
 * Is this task likely cache-hot:
 */
2009
static int
2010 2011 2012 2013
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2014 2015 2016
	if (p->sched_class != &fair_sched_class)
		return 0;

2017 2018 2019
	/*
	 * Buddy candidates are cache hot:
	 */
2020
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2021 2022
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2023 2024
		return 1;

2025 2026 2027 2028 2029
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2030 2031 2032 2033 2034
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2035
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2036
{
2037 2038 2039 2040 2041
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2042 2043
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2044 2045
#endif

2046
	trace_sched_migrate_task(p, new_cpu);
2047

2048 2049 2050 2051
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2052 2053

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2054 2055
}

2056
struct migration_req {
L
Linus Torvalds 已提交
2057 2058
	struct list_head list;

2059
	struct task_struct *task;
L
Linus Torvalds 已提交
2060 2061 2062
	int dest_cpu;

	struct completion done;
2063
};
L
Linus Torvalds 已提交
2064 2065 2066 2067 2068

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2069
static int
2070
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2071
{
2072
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2073 2074 2075

	/*
	 * If the task is not on a runqueue (and not running), then
2076
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2077
	 */
2078
	if (!p->se.on_rq && !task_running(rq, p))
L
Linus Torvalds 已提交
2079 2080 2081 2082 2083 2084
		return 0;

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2085

L
Linus Torvalds 已提交
2086 2087 2088
	return 1;
}

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2132 2133 2134
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2135 2136 2137 2138 2139 2140 2141
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2142 2143 2144 2145 2146 2147
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2148
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2149 2150
{
	unsigned long flags;
I
Ingo Molnar 已提交
2151
	int running, on_rq;
R
Roland McGrath 已提交
2152
	unsigned long ncsw;
2153
	struct rq *rq;
L
Linus Torvalds 已提交
2154

2155 2156 2157 2158 2159 2160 2161 2162
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2163

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2175 2176 2177
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2178
			cpu_relax();
R
Roland McGrath 已提交
2179
		}
2180

2181 2182 2183 2184 2185 2186
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2187
		trace_sched_wait_task(rq, p);
2188 2189
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2190
		ncsw = 0;
2191
		if (!match_state || p->state == match_state)
2192
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2193
		task_rq_unlock(rq, &flags);
2194

R
Roland McGrath 已提交
2195 2196 2197 2198 2199 2200
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2211

2212 2213 2214 2215 2216
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2217
		 * So if it was still runnable (but just not actively
2218 2219 2220 2221 2222 2223 2224
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2225

2226 2227 2228 2229 2230 2231 2232
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2233 2234

	return ncsw;
L
Linus Torvalds 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2250
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2260
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2261
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2262

T
Thomas Gleixner 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2284
#ifdef CONFIG_SMP
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		rcu_read_lock();
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		rcu_read_unlock();
		dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2322 2323 2324 2325 2326
/*
 * Called from:
 *
 *  - fork, @p is stable because it isn't on the tasklist yet
 *
P
Peter Zijlstra 已提交
2327
 *  - exec, @p is unstable, retry loop
2328 2329 2330 2331
 *
 *  - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
 *             we should be good.
 */
2332 2333 2334
static inline
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
{
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2348
		     !cpu_online(cpu)))
2349
		cpu = select_fallback_rq(task_cpu(p), p);
2350 2351

	return cpu;
2352 2353 2354
}
#endif

L
Linus Torvalds 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2369 2370
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2371
{
2372
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2373
	unsigned long flags;
2374
	struct rq *rq, *orig_rq;
L
Linus Torvalds 已提交
2375

2376
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2377
		wake_flags &= ~WF_SYNC;
P
Peter Zijlstra 已提交
2378

P
Peter Zijlstra 已提交
2379
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2380

2381
	smp_wmb();
2382
	rq = orig_rq = task_rq_lock(p, &flags);
2383
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2384
	if (!(p->state & state))
L
Linus Torvalds 已提交
2385 2386
		goto out;

I
Ingo Molnar 已提交
2387
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2388 2389 2390
		goto out_running;

	cpu = task_cpu(p);
2391
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2392 2393 2394 2395 2396

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2397 2398 2399
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2400 2401
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2402
	 */
2403 2404
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2405
	p->state = TASK_WAKING;
2406 2407 2408 2409

	if (p->sched_class->task_waking)
		p->sched_class->task_waking(rq, p);

P
Peter Zijlstra 已提交
2410
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2411

2412
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
P
Peter Zijlstra 已提交
2413
	if (cpu != orig_cpu)
2414
		set_task_cpu(p, cpu);
P
Peter Zijlstra 已提交
2415 2416 2417

	rq = __task_rq_lock(p);
	update_rq_clock(rq);
2418

P
Peter Zijlstra 已提交
2419 2420
	WARN_ON(p->state != TASK_WAKING);
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
2421

2422 2423 2424 2425 2426 2427 2428
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2429
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2430 2431 2432 2433 2434
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2435
#endif /* CONFIG_SCHEDSTATS */
2436

L
Linus Torvalds 已提交
2437 2438
out_activate:
#endif /* CONFIG_SMP */
2439
	schedstat_inc(p, se.nr_wakeups);
P
Peter Zijlstra 已提交
2440
	if (wake_flags & WF_SYNC)
2441 2442 2443 2444 2445 2446 2447
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2448
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2449 2450
	success = 1;

P
Peter Zijlstra 已提交
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2467
out_running:
2468
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2469
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2470

L
Linus Torvalds 已提交
2471
	p->state = TASK_RUNNING;
2472
#ifdef CONFIG_SMP
2473 2474
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2486
#endif
L
Linus Torvalds 已提交
2487 2488
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2489
	put_cpu();
L
Linus Torvalds 已提交
2490 2491 2492 2493

	return success;
}

2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2505
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2506
{
2507
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2508 2509 2510
}
EXPORT_SYMBOL(wake_up_process);

2511
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2512 2513 2514 2515 2516 2517 2518
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2519 2520 2521 2522 2523 2524 2525
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2526
	p->se.prev_sum_exec_runtime	= 0;
2527
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2528 2529
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2530 2531
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2532 2533

#ifdef CONFIG_SCHEDSTATS
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2564
#endif
N
Nick Piggin 已提交
2565

P
Peter Zijlstra 已提交
2566
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2567
	p->se.on_rq = 0;
2568
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2569

2570 2571 2572
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2583 2584 2585 2586 2587 2588
	/*
	 * We mark the process as waking here. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_WAKING;
I
Ingo Molnar 已提交
2589

2590 2591 2592 2593
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2594
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2595
			p->policy = SCHED_NORMAL;
2596 2597
			p->normal_prio = p->static_prio;
		}
2598

2599 2600
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2601
			p->normal_prio = p->static_prio;
2602 2603 2604
			set_load_weight(p);
		}

2605 2606 2607 2608 2609 2610
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2611

2612 2613 2614 2615 2616
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2617 2618
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2619

P
Peter Zijlstra 已提交
2620 2621 2622
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2623
#ifdef CONFIG_SMP
2624
	cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2625 2626 2627
#endif
	set_task_cpu(p, cpu);

2628
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2629
	if (likely(sched_info_on()))
2630
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2631
#endif
2632
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2633 2634
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2635
#ifdef CONFIG_PREEMPT
2636
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2637
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2638
#endif
2639 2640
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2641
	put_cpu();
L
Linus Torvalds 已提交
2642 2643 2644 2645 2646 2647 2648 2649 2650
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2651
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2652 2653
{
	unsigned long flags;
I
Ingo Molnar 已提交
2654
	struct rq *rq;
L
Linus Torvalds 已提交
2655 2656

	rq = task_rq_lock(p, &flags);
2657 2658
	BUG_ON(p->state != TASK_WAKING);
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2659
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2660
	activate_task(rq, p, 0);
2661
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2662
	check_preempt_curr(rq, p, WF_FORK);
2663
#ifdef CONFIG_SMP
2664 2665
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2666
#endif
I
Ingo Molnar 已提交
2667
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2668 2669
}

2670 2671 2672
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2673
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2674
 * @notifier: notifier struct to register
2675 2676 2677 2678 2679 2680 2681 2682 2683
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2684
 * @notifier: notifier struct to unregister
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2714
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2726
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2727

2728 2729 2730
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2731
 * @prev: the current task that is being switched out
2732 2733 2734 2735 2736 2737 2738 2739 2740
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2741 2742 2743
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2744
{
2745
	fire_sched_out_preempt_notifiers(prev, next);
2746 2747 2748 2749
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2750 2751
/**
 * finish_task_switch - clean up after a task-switch
2752
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2753 2754
 * @prev: the thread we just switched away from.
 *
2755 2756 2757 2758
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2759 2760
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2761
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2762 2763 2764
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2765
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2766 2767 2768
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2769
	long prev_state;
L
Linus Torvalds 已提交
2770 2771 2772 2773 2774

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2775
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2776 2777
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2778
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2779 2780 2781 2782 2783
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2784
	prev_state = prev->state;
2785
	finish_arch_switch(prev);
2786
	perf_event_task_sched_in(current, cpu_of(rq));
2787
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2788

2789
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2790 2791
	if (mm)
		mmdrop(mm);
2792
	if (unlikely(prev_state == TASK_DEAD)) {
2793 2794 2795
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2796
		 */
2797
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2798
		put_task_struct(prev);
2799
	}
L
Linus Torvalds 已提交
2800 2801
}

2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2817
		raw_spin_lock_irqsave(&rq->lock, flags);
2818 2819
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2820
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2821 2822 2823 2824 2825 2826

		rq->post_schedule = 0;
	}
}

#else
2827

2828 2829 2830 2831 2832 2833
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2834 2835
}

2836 2837
#endif

L
Linus Torvalds 已提交
2838 2839 2840 2841
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2842
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2843 2844
	__releases(rq->lock)
{
2845 2846
	struct rq *rq = this_rq();

2847
	finish_task_switch(rq, prev);
2848

2849 2850 2851 2852 2853
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2854

2855 2856 2857 2858
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2859
	if (current->set_child_tid)
2860
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2861 2862 2863 2864 2865 2866
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2867
static inline void
2868
context_switch(struct rq *rq, struct task_struct *prev,
2869
	       struct task_struct *next)
L
Linus Torvalds 已提交
2870
{
I
Ingo Molnar 已提交
2871
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2872

2873
	prepare_task_switch(rq, prev, next);
2874
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2875 2876
	mm = next->mm;
	oldmm = prev->active_mm;
2877 2878 2879 2880 2881
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2882
	arch_start_context_switch(prev);
2883

2884
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2885 2886 2887 2888 2889 2890
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2891
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2892 2893 2894
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2895 2896 2897 2898 2899 2900 2901
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2902
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2903
#endif
L
Linus Torvalds 已提交
2904 2905 2906 2907

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2908 2909 2910 2911 2912 2913 2914
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2938
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2953 2954
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2955

2956
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2957 2958 2959 2960 2961 2962 2963 2964 2965
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2966
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2967 2968 2969 2970 2971
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}

unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}


2985 2986 2987 2988 2989 2990
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

3006 3007
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3008
{
3009 3010 3011 3012
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3013

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
3025

3026 3027
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
3028

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3051 3052
}

3053
/*
I
Ingo Molnar 已提交
3054 3055
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3056
 */
I
Ingo Molnar 已提交
3057
static void update_cpu_load(struct rq *this_rq)
3058
{
3059
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3072 3073 3074 3075 3076 3077 3078
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3079 3080
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3081 3082 3083 3084 3085

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3086 3087
}

I
Ingo Molnar 已提交
3088 3089
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3090 3091 3092 3093 3094 3095
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3096
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3097 3098 3099
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3100
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3101
	if (rq1 == rq2) {
3102
		raw_spin_lock(&rq1->lock);
L
Linus Torvalds 已提交
3103 3104
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3105
		if (rq1 < rq2) {
3106 3107
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3108
		} else {
3109 3110
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3111 3112
		}
	}
3113 3114
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3115 3116 3117 3118 3119 3120 3121 3122
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3123
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3124 3125 3126
	__releases(rq1->lock)
	__releases(rq2->lock)
{
3127
	raw_spin_unlock(&rq1->lock);
L
Linus Torvalds 已提交
3128
	if (rq1 != rq2)
3129
		raw_spin_unlock(&rq2->lock);
L
Linus Torvalds 已提交
3130 3131 3132 3133 3134
	else
		__release(rq2->lock);
}

/*
P
Peter Zijlstra 已提交
3135 3136
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3137
 */
P
Peter Zijlstra 已提交
3138
void sched_exec(void)
L
Linus Torvalds 已提交
3139
{
P
Peter Zijlstra 已提交
3140
	struct task_struct *p = current;
3141
	struct migration_req req;
P
Peter Zijlstra 已提交
3142
	int dest_cpu, this_cpu;
L
Linus Torvalds 已提交
3143
	unsigned long flags;
3144
	struct rq *rq;
L
Linus Torvalds 已提交
3145

P
Peter Zijlstra 已提交
3146 3147 3148 3149 3150 3151 3152 3153
again:
	this_cpu = get_cpu();
	dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == this_cpu) {
		put_cpu();
		return;
	}

L
Linus Torvalds 已提交
3154
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
3155 3156 3157 3158 3159
	put_cpu();

	/*
	 * select_task_rq() can race against ->cpus_allowed
	 */
3160
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
P
Peter Zijlstra 已提交
3161 3162 3163 3164
	    || unlikely(!cpu_active(dest_cpu))) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
L
Linus Torvalds 已提交
3165 3166 3167 3168 3169

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3170

L
Linus Torvalds 已提交
3171 3172 3173 3174 3175
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3176

L
Linus Torvalds 已提交
3177 3178 3179 3180 3181 3182 3183 3184 3185
		return;
	}
	task_rq_unlock(rq, &flags);
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3186 3187
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3188
{
3189
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3190
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3191
	activate_task(this_rq, p, 0);
3192
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3193 3194 3195 3196 3197
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3198
static
3199
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3200
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3201
		     int *all_pinned)
L
Linus Torvalds 已提交
3202
{
3203
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3204 3205 3206 3207 3208 3209
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3210
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3211
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3212
		return 0;
3213
	}
3214 3215
	*all_pinned = 0;

3216 3217
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3218
		return 0;
3219
	}
L
Linus Torvalds 已提交
3220

3221 3222 3223 3224 3225 3226
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3227 3228 3229
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3230
#ifdef CONFIG_SCHEDSTATS
3231
		if (tsk_cache_hot) {
3232
			schedstat_inc(sd, lb_hot_gained[idle]);
3233 3234
			schedstat_inc(p, se.nr_forced_migrations);
		}
3235 3236 3237 3238
#endif
		return 1;
	}

3239
	if (tsk_cache_hot) {
3240
		schedstat_inc(p, se.nr_failed_migrations_hot);
3241
		return 0;
3242
	}
L
Linus Torvalds 已提交
3243 3244 3245
	return 1;
}

3246 3247 3248 3249 3250
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3251
{
3252
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3253 3254
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3255

3256
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3257 3258
		goto out;

3259 3260
	pinned = 1;

L
Linus Torvalds 已提交
3261
	/*
I
Ingo Molnar 已提交
3262
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3263
	 */
I
Ingo Molnar 已提交
3264 3265
	p = iterator->start(iterator->arg);
next:
3266
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3267
		goto out;
3268 3269

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3270 3271 3272
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3273 3274
	}

I
Ingo Molnar 已提交
3275
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3276
	pulled++;
I
Ingo Molnar 已提交
3277
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3278

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3289
	/*
3290
	 * We only want to steal up to the prescribed amount of weighted load.
3291
	 */
3292
	if (rem_load_move > 0) {
3293 3294
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3295 3296
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3297 3298 3299
	}
out:
	/*
3300
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3301 3302 3303 3304
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3305 3306 3307

	if (all_pinned)
		*all_pinned = pinned;
3308 3309

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3310 3311
}

I
Ingo Molnar 已提交
3312
/*
P
Peter Williams 已提交
3313 3314 3315
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3316 3317 3318 3319
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3320
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3321 3322 3323
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3324
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3325
	unsigned long total_load_moved = 0;
3326
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3327 3328

	do {
P
Peter Williams 已提交
3329 3330
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3331
				max_load_move - total_load_moved,
3332
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3333
		class = class->next;
3334

3335 3336 3337 3338 3339 3340
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3341 3342
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3343
#endif
P
Peter Williams 已提交
3344
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3345

P
Peter Williams 已提交
3346 3347 3348
	return total_load_moved > 0;
}

3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3385
	const struct sched_class *class;
P
Peter Williams 已提交
3386

3387
	for_each_class(class) {
3388
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3389
			return 1;
3390
	}
P
Peter Williams 已提交
3391 3392

	return 0;
I
Ingo Molnar 已提交
3393
}
3394
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3395
/*
3396 3397
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3398
 */
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3417
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3418 3419 3420 3421 3422 3423
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3424
#endif
3425
};
L
Linus Torvalds 已提交
3426

3427
/*
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3438

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3460
		load_idx = sd->busy_idx;
3461 3462 3463
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3464
		load_idx = sd->newidle_idx;
3465 3466
		break;
	default:
N
Nick Piggin 已提交
3467
		load_idx = sd->idle_idx;
3468 3469
		break;
	}
L
Linus Torvalds 已提交
3470

3471 3472
	return load_idx;
}
L
Linus Torvalds 已提交
3473 3474


3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3499

3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3513

3514 3515
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3516

3517 3518 3519 3520 3521 3522 3523
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3524

3525 3526 3527 3528 3529 3530 3531 3532
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3533

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3547

3548 3549 3550 3551 3552
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
3553
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3554
		return;
L
Linus Torvalds 已提交
3555

3556 3557 3558 3559 3560 3561 3562
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3563

3564
/**
3565
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3566 3567 3568 3569 3570
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3571 3572 3573 3574 3575
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3576 3577 3578 3579 3580 3581 3582 3583
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3584

3585 3586 3587
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3588

3589 3590
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3591

3592
	return 1;
L
Linus Torvalds 已提交
3593

3594 3595 3596 3597 3598 3599 3600
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3601

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_LOAD_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3627 3628 3629 3630 3631 3632 3633 3634 3635
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

3636 3637 3638 3639 3640
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

3659 3660 3661 3662 3663 3664
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

3665 3666 3667 3668 3669
	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3670
	power >>= SCHED_LOAD_SHIFT;
3671 3672

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3673 3674 3675 3676 3677
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3678 3679 3680
		power >>= SCHED_LOAD_SHIFT;
	}

3681 3682 3683 3684 3685
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;
3686

3687
	sdg->cpu_power = power;
3688 3689 3690
}

static void update_group_power(struct sched_domain *sd, int cpu)
3691 3692 3693
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
3694
	unsigned long power;
3695 3696

	if (!child) {
3697
		update_cpu_power(sd, cpu);
3698 3699 3700
		return;
	}

3701
	power = 0;
3702 3703 3704

	group = child->groups;
	do {
3705
		power += group->cpu_power;
3706 3707
		group = group->next;
	} while (group != child->groups);
3708 3709

	sdg->cpu_power = power;
3710
}
3711

3712 3713
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3714
 * @sd: The sched_domain whose statistics are to be updated.
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3725 3726
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3737
	if (local_group) {
3738
		balance_cpu = group_first_cpu(group);
3739
		if (balance_cpu == this_cpu)
3740
			update_group_power(sd, this_cpu);
3741
	}
3742 3743 3744 3745 3746

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3747

3748 3749
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3750

3751 3752
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3753

3754
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3755
		if (local_group) {
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3768
		}
3769

3770 3771 3772
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3773

3774 3775
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3776

3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3788

3789
	/* Adjust by relative CPU power of the group */
3790
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3791

3792 3793 3794 3795 3796 3797 3798 3799 3800 3801

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3802 3803
	avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
		group->cpu_power;
3804 3805 3806 3807

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

3808
	sgs->group_capacity =
3809
		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3810
}
I
Ingo Molnar 已提交
3811

3812 3813 3814 3815 3816 3817 3818 3819 3820
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3821
 */
3822 3823 3824 3825
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3826
{
P
Peter Zijlstra 已提交
3827
	struct sched_domain *child = sd->child;
3828
	struct sched_group *group = sd->groups;
3829
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3830 3831 3832 3833
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3834

3835
	init_sd_power_savings_stats(sd, sds, idle);
3836
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3837 3838 3839 3840

	do {
		int local_group;

3841 3842
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3843
		memset(&sgs, 0, sizeof(sgs));
3844
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3845
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3846

3847 3848
		if (local_group && balance && !(*balance))
			return;
3849

3850
		sds->total_load += sgs.group_load;
3851
		sds->total_pwr += group->cpu_power;
L
Linus Torvalds 已提交
3852

P
Peter Zijlstra 已提交
3853 3854 3855 3856 3857 3858
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
3859
			sgs.group_capacity = min(sgs.group_capacity, 1UL);
L
Linus Torvalds 已提交
3860 3861

		if (local_group) {
3862 3863 3864 3865 3866
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3867 3868
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3869 3870 3871 3872 3873
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3874
		}
3875

3876
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3877 3878
		group = group->next;
	} while (group != sd->groups);
3879
}
L
Linus Torvalds 已提交
3880

3881 3882
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3883 3884
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3903

3904 3905 3906 3907 3908
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3909

L
Linus Torvalds 已提交
3910
	/*
3911 3912 3913
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3914
	 */
3915

3916
	pwr_now += sds->busiest->cpu_power *
3917
			min(sds->busiest_load_per_task, sds->max_load);
3918
	pwr_now += sds->this->cpu_power *
3919 3920 3921 3922
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
3923 3924
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
3925
	if (sds->max_load > tmp)
3926
		pwr_move += sds->busiest->cpu_power *
3927 3928 3929
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
3930
	if (sds->max_load * sds->busiest->cpu_power <
3931
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3932 3933
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
3934
	else
3935 3936 3937
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
3938 3939 3940 3941 3942 3943 3944
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3957 3958 3959 3960 3961
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3962
	if (sds->max_load < sds->avg_load) {
3963
		*imbalance = 0;
3964
		return fix_small_imbalance(sds, this_cpu, imbalance);
3965
	}
3966 3967

	/* Don't want to pull so many tasks that a group would go idle */
3968 3969
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3970

L
Linus Torvalds 已提交
3971
	/* How much load to actually move to equalise the imbalance */
3972 3973
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
L
Linus Torvalds 已提交
3974 3975
			/ SCHED_LOAD_SCALE;

3976 3977 3978 3979 3980 3981
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3982 3983
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3984

3985
}
3986
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3987

3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
4012 4013 4014 4015 4016 4017 4018
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
4019

4020
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
4021

4022 4023 4024 4025 4026 4027 4028
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
4039 4040
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
4041

4042 4043
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
4044

4045
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
4046 4047
		goto out_balanced;

4048
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
4049

4050 4051 4052 4053
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
4054 4055
		goto out_balanced;

4056 4057 4058 4059
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
4060

L
Linus Torvalds 已提交
4061 4062 4063 4064 4065 4066 4067 4068
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4069
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4070 4071
	 * appear as very large values with unsigned longs.
	 */
4072
	if (sds.max_load <= sds.busiest_load_per_task)
4073 4074
		goto out_balanced;

4075 4076
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4077
	return sds.busiest;
L
Linus Torvalds 已提交
4078 4079

out_balanced:
4080 4081 4082 4083 4084 4085
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4086
ret:
L
Linus Torvalds 已提交
4087 4088 4089 4090 4091 4092 4093
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4094
static struct rq *
I
Ingo Molnar 已提交
4095
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4096
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4097
{
4098
	struct rq *busiest = NULL, *rq;
4099
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4100 4101
	int i;

4102
	for_each_cpu(i, sched_group_cpus(group)) {
4103 4104
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
I
Ingo Molnar 已提交
4105
		unsigned long wl;
4106

4107
		if (!cpumask_test_cpu(i, cpus))
4108 4109
			continue;

4110
		rq = cpu_rq(i);
4111 4112
		wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
		wl /= power;
4113

4114
		if (capacity && rq->nr_running == 1 && wl > imbalance)
4115
			continue;
L
Linus Torvalds 已提交
4116

I
Ingo Molnar 已提交
4117 4118
		if (wl > max_load) {
			max_load = wl;
4119
			busiest = rq;
L
Linus Torvalds 已提交
4120 4121 4122 4123 4124 4125
		}
	}

	return busiest;
}

4126 4127 4128 4129 4130 4131
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4132 4133 4134
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4135 4136 4137 4138
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4139
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4140
			struct sched_domain *sd, enum cpu_idle_type idle,
4141
			int *balance)
L
Linus Torvalds 已提交
4142
{
P
Peter Williams 已提交
4143
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4144 4145
	struct sched_group *group;
	unsigned long imbalance;
4146
	struct rq *busiest;
4147
	unsigned long flags;
4148
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4149

4150
	cpumask_copy(cpus, cpu_active_mask);
4151

4152 4153 4154
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4155
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4156
	 * portraying it as CPU_NOT_IDLE.
4157
	 */
I
Ingo Molnar 已提交
4158
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4159
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4160
		sd_idle = 1;
L
Linus Torvalds 已提交
4161

4162
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4163

4164
redo:
4165
	update_shares(sd);
4166
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4167
				   cpus, balance);
4168

4169
	if (*balance == 0)
4170 4171
		goto out_balanced;

L
Linus Torvalds 已提交
4172 4173 4174 4175 4176
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4177
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4178 4179 4180 4181 4182
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4183
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4184 4185 4186

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4187
	ld_moved = 0;
L
Linus Torvalds 已提交
4188 4189 4190 4191
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4192
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4193 4194
		 * correctly treated as an imbalance.
		 */
4195
		local_irq_save(flags);
N
Nick Piggin 已提交
4196
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4197
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4198
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4199
		double_rq_unlock(this_rq, busiest);
4200
		local_irq_restore(flags);
4201

4202 4203 4204
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4205
		if (ld_moved && this_cpu != smp_processor_id())
4206 4207
			resched_cpu(this_cpu);

4208
		/* All tasks on this runqueue were pinned by CPU affinity */
4209
		if (unlikely(all_pinned)) {
4210 4211
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4212
				goto redo;
4213
			goto out_balanced;
4214
		}
L
Linus Torvalds 已提交
4215
	}
4216

P
Peter Williams 已提交
4217
	if (!ld_moved) {
L
Linus Torvalds 已提交
4218 4219 4220 4221 4222
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4223
			raw_spin_lock_irqsave(&busiest->lock, flags);
4224 4225 4226 4227

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4228 4229
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4230 4231
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
4232 4233 4234 4235
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4236 4237 4238
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4239
				active_balance = 1;
L
Linus Torvalds 已提交
4240
			}
4241
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
4242
			if (active_balance)
L
Linus Torvalds 已提交
4243 4244 4245 4246 4247 4248
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4249
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4250
		}
4251
	} else
L
Linus Torvalds 已提交
4252 4253
		sd->nr_balance_failed = 0;

4254
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4255 4256
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4257 4258 4259 4260 4261 4262 4263 4264 4265
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4266 4267
	}

P
Peter Williams 已提交
4268
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4269
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4270 4271 4272
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4273 4274 4275 4276

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4277
	sd->nr_balance_failed = 0;
4278 4279

out_one_pinned:
L
Linus Torvalds 已提交
4280
	/* tune up the balancing interval */
4281 4282
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4283 4284
		sd->balance_interval *= 2;

4285
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4286
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4287 4288 4289 4290
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4291 4292
	if (ld_moved)
		update_shares(sd);
4293
	return ld_moved;
L
Linus Torvalds 已提交
4294 4295 4296 4297 4298 4299
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4300
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4301 4302
 * this_rq is locked.
 */
4303
static int
4304
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4305 4306
{
	struct sched_group *group;
4307
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4308
	unsigned long imbalance;
P
Peter Williams 已提交
4309
	int ld_moved = 0;
N
Nick Piggin 已提交
4310
	int sd_idle = 0;
4311
	int all_pinned = 0;
4312
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4313

4314
	cpumask_copy(cpus, cpu_active_mask);
N
Nick Piggin 已提交
4315

4316 4317 4318 4319
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4320
	 * portraying it as CPU_NOT_IDLE.
4321 4322 4323
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4324
		sd_idle = 1;
L
Linus Torvalds 已提交
4325

4326
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4327
redo:
4328
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4329
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4330
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4331
	if (!group) {
I
Ingo Molnar 已提交
4332
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4333
		goto out_balanced;
L
Linus Torvalds 已提交
4334 4335
	}

4336
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4337
	if (!busiest) {
I
Ingo Molnar 已提交
4338
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4339
		goto out_balanced;
L
Linus Torvalds 已提交
4340 4341
	}

N
Nick Piggin 已提交
4342 4343
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4344
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4345

P
Peter Williams 已提交
4346
	ld_moved = 0;
4347 4348 4349
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4350 4351
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4352
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4353 4354
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4355
		double_unlock_balance(this_rq, busiest);
4356

4357
		if (unlikely(all_pinned)) {
4358 4359
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4360 4361
				goto redo;
		}
4362 4363
	}

P
Peter Williams 已提交
4364
	if (!ld_moved) {
4365
		int active_balance = 0;
4366

I
Ingo Molnar 已提交
4367
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4368 4369
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4370
			return -1;
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4407
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4420 4421 4422
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
4423
		raw_spin_unlock(&this_rq->lock);
4424 4425
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4426
		raw_spin_lock(&this_rq->lock);
4427

N
Nick Piggin 已提交
4428
	} else
4429
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4430

4431
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4432
	return ld_moved;
4433 4434

out_balanced:
I
Ingo Molnar 已提交
4435
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4436
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4437
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4438
		return -1;
4439
	sd->nr_balance_failed = 0;
4440

4441
	return 0;
L
Linus Torvalds 已提交
4442 4443 4444 4445 4446 4447
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4448
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4449 4450
{
	struct sched_domain *sd;
4451
	int pulled_task = 0;
I
Ingo Molnar 已提交
4452
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4453

M
Mike Galbraith 已提交
4454 4455 4456 4457 4458
	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

L
Linus Torvalds 已提交
4459
	for_each_domain(this_cpu, sd) {
4460 4461 4462 4463 4464 4465
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4466
			/* If we've pulled tasks over stop searching: */
4467
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4468
							   sd);
4469 4470 4471 4472

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
M
Mike Galbraith 已提交
4473 4474
		if (pulled_task) {
			this_rq->idle_stamp = 0;
4475
			break;
M
Mike Galbraith 已提交
4476
		}
L
Linus Torvalds 已提交
4477
	}
I
Ingo Molnar 已提交
4478
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4479 4480 4481 4482 4483
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4484
	}
L
Linus Torvalds 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4495
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4496
{
4497
	int target_cpu = busiest_rq->push_cpu;
4498 4499
	struct sched_domain *sd;
	struct rq *target_rq;
4500

4501
	/* Is there any task to move? */
4502 4503 4504 4505
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4506 4507

	/*
4508
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4509
	 * we need to fix it. Originally reported by
4510
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4511
	 */
4512
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4513

4514 4515
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4516 4517
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4518 4519

	/* Search for an sd spanning us and the target CPU. */
4520
	for_each_domain(target_cpu, sd) {
4521
		if ((sd->flags & SD_LOAD_BALANCE) &&
4522
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4523
				break;
4524
	}
4525

4526
	if (likely(sd)) {
4527
		schedstat_inc(sd, alb_count);
4528

P
Peter Williams 已提交
4529 4530
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4531 4532 4533 4534
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4535
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4536 4537
}

4538 4539 4540
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4541
	cpumask_var_t cpu_mask;
4542
	cpumask_var_t ilb_grp_nohz_mask;
4543 4544 4545 4546
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4547 4548 4549 4550 4551
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4663
	return cpumask_first(nohz.cpu_mask);
4664 4665 4666
}
#endif

4667
/*
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4678
 *
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4694 4695 4696 4697 4698 4699 4700 4701
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4702 4703
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4704

4705 4706 4707
			return 0;
		}

4708 4709
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4710
		/* time for ilb owner also to sleep */
4711
		if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4712 4713 4714 4715 4716 4717 4718 4719 4720
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4737
			return 1;
4738
		}
4739
	} else {
4740
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4741 4742
			return 0;

4743
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4756 4757 4758 4759 4760
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4761
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4762
{
4763 4764
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4765 4766
	unsigned long interval;
	struct sched_domain *sd;
4767
	/* Earliest time when we have to do rebalance again */
4768
	unsigned long next_balance = jiffies + 60*HZ;
4769
	int update_next_balance = 0;
4770
	int need_serialize;
L
Linus Torvalds 已提交
4771

4772
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4773 4774 4775 4776
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4777
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4778 4779 4780 4781 4782 4783
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4784 4785 4786
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4787
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4788

4789
		if (need_serialize) {
4790 4791 4792 4793
			if (!spin_trylock(&balancing))
				goto out;
		}

4794
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4795
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4796 4797
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4798 4799 4800
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4801
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4802
			}
4803
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4804
		}
4805
		if (need_serialize)
4806 4807
			spin_unlock(&balancing);
out:
4808
		if (time_after(next_balance, sd->last_balance + interval)) {
4809
			next_balance = sd->last_balance + interval;
4810 4811
			update_next_balance = 1;
		}
4812 4813 4814 4815 4816 4817 4818 4819

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4820
	}
4821 4822 4823 4824 4825 4826 4827 4828

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4829 4830 4831 4832 4833 4834 4835 4836 4837
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4838 4839 4840 4841
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4842

I
Ingo Molnar 已提交
4843
	rebalance_domains(this_cpu, idle);
4844 4845 4846 4847 4848 4849 4850

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4851 4852
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4853 4854 4855
		struct rq *rq;
		int balance_cpu;

4856 4857 4858 4859
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4860 4861 4862 4863 4864 4865 4866 4867
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4868
			rebalance_domains(balance_cpu, CPU_IDLE);
4869 4870

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4871 4872
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4873 4874 4875 4876 4877
		}
	}
#endif
}

4878 4879 4880 4881 4882
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4883 4884 4885 4886 4887 4888 4889
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4890
static inline void trigger_load_balance(struct rq *rq, int cpu)
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4902
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4903 4904 4905 4906
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4907
			int ilb = find_new_ilb(cpu);
4908

4909
			if (ilb < nr_cpu_ids)
4910 4911 4912 4913 4914 4915 4916 4917 4918
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4919
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4920 4921 4922 4923 4924 4925 4926 4927 4928
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4929
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4930 4931
		return;
#endif
4932 4933 4934
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4935
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4936
}
I
Ingo Molnar 已提交
4937 4938 4939

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4940 4941 4942
/*
 * on UP we do not need to balance between CPUs:
 */
4943
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4944 4945
{
}
I
Ingo Molnar 已提交
4946

L
Linus Torvalds 已提交
4947 4948 4949 4950 4951 4952 4953
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4954
 * Return any ns on the sched_clock that have not yet been accounted in
4955
 * @p in case that task is currently running.
4956 4957
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4958
 */
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4973
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4974 4975
{
	unsigned long flags;
4976
	struct rq *rq;
4977
	u64 ns = 0;
4978

4979
	rq = task_rq_lock(p, &flags);
4980 4981
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4982

4983 4984
	return ns;
}
4985

4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
5003

5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5023
	task_rq_unlock(rq, &flags);
5024

L
Linus Torvalds 已提交
5025 5026 5027 5028 5029 5030 5031
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
5032
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5033
 */
5034 5035
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5036 5037 5038 5039
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5040
	/* Add user time to process. */
L
Linus Torvalds 已提交
5041
	p->utime = cputime_add(p->utime, cputime);
5042
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5043
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
5044 5045 5046 5047 5048 5049 5050

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
5051 5052

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5053 5054
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
5055 5056
}

5057 5058 5059 5060
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
5061
 * @cputime_scaled: cputime scaled by cpu frequency
5062
 */
5063 5064
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
5065 5066 5067 5068 5069 5070
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5071
	/* Add guest time to process. */
5072
	p->utime = cputime_add(p->utime, cputime);
5073
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5074
	account_group_user_time(p, cputime);
5075 5076
	p->gtime = cputime_add(p->gtime, cputime);

5077
	/* Add guest time to cpustat. */
5078 5079 5080 5081 5082 5083 5084
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
5085 5086
}

L
Linus Torvalds 已提交
5087 5088 5089 5090 5091
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5092
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5093 5094
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5095
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5096 5097 5098 5099
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5100
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5101
		account_guest_time(p, cputime, cputime_scaled);
5102 5103
		return;
	}
5104

5105
	/* Add system time to process. */
L
Linus Torvalds 已提交
5106
	p->stime = cputime_add(p->stime, cputime);
5107
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5108
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5109 5110 5111 5112 5113 5114 5115 5116

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5117 5118
		cpustat->system = cputime64_add(cpustat->system, tmp);

5119 5120
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5121 5122 5123 5124
	/* Account for system time used */
	acct_update_integrals(p);
}

5125
/*
L
Linus Torvalds 已提交
5126 5127
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5128
 */
5129
void account_steal_time(cputime_t cputime)
5130
{
5131 5132 5133 5134
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5135 5136
}

L
Linus Torvalds 已提交
5137
/*
5138 5139
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5140
 */
5141
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5142 5143
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5144
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5145
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5146

5147 5148 5149 5150
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5151 5152
}

5153 5154 5155 5156 5157 5158 5159 5160 5161
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
5162
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5163 5164 5165
	struct rq *rq = this_rq();

	if (user_tick)
5166
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5167
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5168
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5169 5170
				    one_jiffy_scaled);
	else
5171
		account_idle_time(cputime_one_jiffy);
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5191 5192
}

5193 5194
#endif

5195 5196 5197 5198
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5199
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5200
{
5201 5202
	*ut = p->utime;
	*st = p->stime;
5203 5204
}

5205
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5206
{
5207 5208 5209 5210 5211 5212
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
5213 5214
}
#else
5215 5216

#ifndef nsecs_to_cputime
5217
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
5218 5219
#endif

5220
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5221
{
5222
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5223 5224 5225 5226

	/*
	 * Use CFS's precise accounting:
	 */
5227
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5228 5229

	if (total) {
5230 5231 5232
		u64 temp;

		temp = (u64)(rtime * utime);
5233
		do_div(temp, total);
5234 5235 5236
		utime = (cputime_t)temp;
	} else
		utime = rtime;
5237

5238 5239 5240
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
5241
	p->prev_utime = max(p->prev_utime, utime);
5242
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5243

5244 5245
	*ut = p->prev_utime;
	*st = p->prev_stime;
5246 5247
}

5248 5249 5250 5251
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5252
{
5253 5254 5255
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
5256

5257
	thread_group_cputime(p, &cputime);
5258

5259 5260
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5261

5262 5263
	if (total) {
		u64 temp;
5264

5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
5277 5278 5279
}
#endif

5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5291
	struct task_struct *curr = rq->curr;
5292 5293

	sched_clock_tick();
I
Ingo Molnar 已提交
5294

5295
	raw_spin_lock(&rq->lock);
5296
	update_rq_clock(rq);
5297
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5298
	curr->sched_class->task_tick(rq, curr, 0);
5299
	raw_spin_unlock(&rq->lock);
5300

5301
	perf_event_task_tick(curr, cpu);
5302

5303
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5304 5305
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5306
#endif
L
Linus Torvalds 已提交
5307 5308
}

5309
notrace unsigned long get_parent_ip(unsigned long addr)
5310 5311 5312 5313 5314 5315 5316 5317
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5318

5319 5320 5321
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5322
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5323
{
5324
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5325 5326 5327
	/*
	 * Underflow?
	 */
5328 5329
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5330
#endif
L
Linus Torvalds 已提交
5331
	preempt_count() += val;
5332
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5333 5334 5335
	/*
	 * Spinlock count overflowing soon?
	 */
5336 5337
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5338 5339 5340
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5341 5342 5343
}
EXPORT_SYMBOL(add_preempt_count);

5344
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5345
{
5346
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5347 5348 5349
	/*
	 * Underflow?
	 */
5350
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5351
		return;
L
Linus Torvalds 已提交
5352 5353 5354
	/*
	 * Is the spinlock portion underflowing?
	 */
5355 5356 5357
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5358
#endif
5359

5360 5361
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5362 5363 5364 5365 5366 5367 5368
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5369
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5370
 */
I
Ingo Molnar 已提交
5371
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5372
{
5373 5374
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
5375 5376
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
5377

I
Ingo Molnar 已提交
5378
	debug_show_held_locks(prev);
5379
	print_modules();
I
Ingo Molnar 已提交
5380 5381
	if (irqs_disabled())
		print_irqtrace_events(prev);
5382 5383 5384 5385 5386

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5387
}
L
Linus Torvalds 已提交
5388

I
Ingo Molnar 已提交
5389 5390 5391 5392 5393
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5394
	/*
I
Ingo Molnar 已提交
5395
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5396 5397 5398
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5399
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5400 5401
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5402 5403
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5404
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5405 5406
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5407 5408
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5409 5410
	}
#endif
I
Ingo Molnar 已提交
5411 5412
}

P
Peter Zijlstra 已提交
5413
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
5414
{
P
Peter Zijlstra 已提交
5415 5416
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;
M
Mike Galbraith 已提交
5417

P
Peter Zijlstra 已提交
5418 5419
		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
M
Mike Galbraith 已提交
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
P
Peter Zijlstra 已提交
5430
		update_avg(&prev->se.avg_overlap, runtime);
M
Mike Galbraith 已提交
5431
	}
P
Peter Zijlstra 已提交
5432
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
5433 5434
}

I
Ingo Molnar 已提交
5435 5436 5437 5438
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5439
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5440
{
5441
	const struct sched_class *class;
I
Ingo Molnar 已提交
5442
	struct task_struct *p;
L
Linus Torvalds 已提交
5443 5444

	/*
I
Ingo Molnar 已提交
5445 5446
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5447
	 */
I
Ingo Molnar 已提交
5448
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5449
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5450 5451
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5452 5453
	}

I
Ingo Molnar 已提交
5454 5455
	class = sched_class_highest;
	for ( ; ; ) {
5456
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5457 5458 5459 5460 5461 5462 5463 5464 5465
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5466

I
Ingo Molnar 已提交
5467 5468 5469
/*
 * schedule() is the main scheduler function.
 */
5470
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5471 5472
{
	struct task_struct *prev, *next;
5473
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5474
	struct rq *rq;
5475
	int cpu;
I
Ingo Molnar 已提交
5476

5477 5478
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5479 5480
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
5481
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
5482 5483 5484 5485 5486 5487 5488
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5489

5490
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5491
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5492

5493
	raw_spin_lock_irq(&rq->lock);
5494
	update_rq_clock(rq);
5495
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5496 5497

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5498
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5499
			prev->state = TASK_RUNNING;
5500
		else
5501
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5502
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5503 5504
	}

5505
	pre_schedule(rq, prev);
5506

I
Ingo Molnar 已提交
5507
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5508 5509
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5510
	put_prev_task(rq, prev);
5511
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5512 5513

	if (likely(prev != next)) {
5514
		sched_info_switch(prev, next);
5515
		perf_event_task_sched_out(prev, next, cpu);
5516

L
Linus Torvalds 已提交
5517 5518 5519 5520
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5521
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5522 5523 5524 5525 5526 5527
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5528
	} else
5529
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5530

5531
	post_schedule(rq);
L
Linus Torvalds 已提交
5532

5533 5534 5535
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
5536
		goto need_resched_nonpreemptible;
5537
	}
P
Peter Zijlstra 已提交
5538

L
Linus Torvalds 已提交
5539
	preempt_enable_no_resched();
5540
	if (need_resched())
L
Linus Torvalds 已提交
5541 5542 5543 5544
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5545
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5606 5607
#ifdef CONFIG_PREEMPT
/*
5608
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5609
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5610 5611 5612 5613 5614
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5615

L
Linus Torvalds 已提交
5616 5617
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5618
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5619
	 */
N
Nick Piggin 已提交
5620
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5621 5622
		return;

5623 5624 5625 5626
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5627

5628 5629 5630 5631 5632
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5633
	} while (need_resched());
L
Linus Torvalds 已提交
5634 5635 5636 5637
}
EXPORT_SYMBOL(preempt_schedule);

/*
5638
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5639 5640 5641 5642 5643 5644 5645
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5646

5647
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5648 5649
	BUG_ON(ti->preempt_count || !irqs_disabled());

5650 5651 5652 5653 5654 5655
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5656

5657 5658 5659 5660 5661
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5662
	} while (need_resched());
L
Linus Torvalds 已提交
5663 5664 5665 5666
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
5667
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
5668
			  void *key)
L
Linus Torvalds 已提交
5669
{
P
Peter Zijlstra 已提交
5670
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
5671 5672 5673 5674
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5675 5676
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5677 5678 5679
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5680
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5681 5682
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5683
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
5684
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
5685
{
5686
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5687

5688
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5689 5690
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
5691
		if (curr->func(curr, mode, wake_flags, key) &&
5692
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5693 5694 5695 5696 5697 5698 5699 5700 5701
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5702
 * @key: is directly passed to the wakeup function
5703 5704 5705
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5706
 */
5707
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5708
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5721
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5722 5723 5724 5725
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5726 5727 5728 5729 5730
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5731
/**
5732
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5733 5734 5735
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5736
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5737 5738 5739 5740 5741 5742 5743
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5744 5745 5746
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5747
 */
5748 5749
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5750 5751
{
	unsigned long flags;
P
Peter Zijlstra 已提交
5752
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
5753 5754 5755 5756 5757

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
5758
		wake_flags = 0;
L
Linus Torvalds 已提交
5759 5760

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
5761
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
5762 5763
	spin_unlock_irqrestore(&q->lock, flags);
}
5764 5765 5766 5767 5768 5769 5770 5771 5772
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5773 5774
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5775 5776 5777 5778 5779 5780 5781 5782
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5783 5784 5785
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5786
 */
5787
void complete(struct completion *x)
L
Linus Torvalds 已提交
5788 5789 5790 5791 5792
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5793
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5794 5795 5796 5797
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5798 5799 5800 5801 5802
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5803 5804 5805
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5806
 */
5807
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5808 5809 5810 5811 5812
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5813
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5814 5815 5816 5817
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5818 5819
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5820 5821 5822 5823 5824 5825 5826
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5827
			if (signal_pending_state(state, current)) {
5828 5829
				timeout = -ERESTARTSYS;
				break;
5830 5831
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5832 5833 5834
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5835
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5836
		__remove_wait_queue(&x->wait, &wait);
5837 5838
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5839 5840
	}
	x->done--;
5841
	return timeout ?: 1;
L
Linus Torvalds 已提交
5842 5843
}

5844 5845
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5846 5847 5848 5849
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5850
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5851
	spin_unlock_irq(&x->wait.lock);
5852 5853
	return timeout;
}
L
Linus Torvalds 已提交
5854

5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5865
void __sched wait_for_completion(struct completion *x)
5866 5867
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5868
}
5869
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5870

5871 5872 5873 5874 5875 5876 5877 5878 5879
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5880
unsigned long __sched
5881
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5882
{
5883
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5884
}
5885
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5886

5887 5888 5889 5890 5891 5892 5893
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5894
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5895
{
5896 5897 5898 5899
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5900
}
5901
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5902

5903 5904 5905 5906 5907 5908 5909 5910
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5911
unsigned long __sched
5912 5913
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5914
{
5915
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5916
}
5917
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5918

5919 5920 5921 5922 5923 5924 5925
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5926 5927 5928 5929 5930 5931 5932 5933 5934
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
5949
	unsigned long flags;
5950 5951
	int ret = 1;

5952
	spin_lock_irqsave(&x->wait.lock, flags);
5953 5954 5955 5956
	if (!x->done)
		ret = 0;
	else
		x->done--;
5957
	spin_unlock_irqrestore(&x->wait.lock, flags);
5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
5972
	unsigned long flags;
5973 5974
	int ret = 1;

5975
	spin_lock_irqsave(&x->wait.lock, flags);
5976 5977
	if (!x->done)
		ret = 0;
5978
	spin_unlock_irqrestore(&x->wait.lock, flags);
5979 5980 5981 5982
	return ret;
}
EXPORT_SYMBOL(completion_done);

5983 5984
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5985
{
I
Ingo Molnar 已提交
5986 5987 5988 5989
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5990

5991
	__set_current_state(state);
L
Linus Torvalds 已提交
5992

5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
6007 6008 6009
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
6010
long __sched
I
Ingo Molnar 已提交
6011
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
6012
{
6013
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
6014 6015 6016
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
6017
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
6018
{
6019
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
6020 6021 6022
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
6023
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
6024
{
6025
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
6026 6027 6028
}
EXPORT_SYMBOL(sleep_on_timeout);

6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
6041
void rt_mutex_setprio(struct task_struct *p, int prio)
6042 6043
{
	unsigned long flags;
6044
	int oldprio, on_rq, running;
6045
	struct rq *rq;
6046
	const struct sched_class *prev_class = p->sched_class;
6047 6048 6049 6050

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6051
	update_rq_clock(rq);
6052

6053
	oldprio = p->prio;
I
Ingo Molnar 已提交
6054
	on_rq = p->se.on_rq;
6055
	running = task_current(rq, p);
6056
	if (on_rq)
6057
		dequeue_task(rq, p, 0);
6058 6059
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
6060 6061 6062 6063 6064 6065

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

6066 6067
	p->prio = prio;

6068 6069
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6070
	if (on_rq) {
6071
		enqueue_task(rq, p, 0);
6072 6073

		check_class_changed(rq, p, prev_class, oldprio, running);
6074 6075 6076 6077 6078 6079
	}
	task_rq_unlock(rq, &flags);
}

#endif

6080
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
6081
{
I
Ingo Molnar 已提交
6082
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
6083
	unsigned long flags;
6084
	struct rq *rq;
L
Linus Torvalds 已提交
6085 6086 6087 6088 6089 6090 6091 6092

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6093
	update_rq_clock(rq);
L
Linus Torvalds 已提交
6094 6095 6096 6097
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
6098
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
6099
	 */
6100
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
6101 6102 6103
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6104
	on_rq = p->se.on_rq;
6105
	if (on_rq)
6106
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6107 6108

	p->static_prio = NICE_TO_PRIO(nice);
6109
	set_load_weight(p);
6110 6111 6112
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6113

I
Ingo Molnar 已提交
6114
	if (on_rq) {
6115
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6116
		/*
6117 6118
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6119
		 */
6120
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6121 6122 6123 6124 6125 6126 6127
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6128 6129 6130 6131 6132
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6133
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6134
{
6135 6136
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6137

M
Matt Mackall 已提交
6138 6139 6140 6141
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6142 6143 6144 6145 6146 6147 6148 6149 6150
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6151
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6152
{
6153
	long nice, retval;
L
Linus Torvalds 已提交
6154 6155 6156 6157 6158 6159

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6160 6161
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6162 6163 6164
	if (increment > 40)
		increment = 40;

6165
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6166 6167 6168 6169 6170
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6171 6172 6173
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6192
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6193 6194 6195 6196 6197 6198 6199 6200
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6201
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6202 6203 6204
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6205
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6220
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6221 6222 6223 6224 6225 6226 6227 6228
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6229
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6230
{
6231
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6232 6233 6234
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6235 6236
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6237
{
I
Ingo Molnar 已提交
6238
	BUG_ON(p->se.on_rq);
6239

L
Linus Torvalds 已提交
6240 6241
	p->policy = policy;
	p->rt_priority = prio;
6242 6243 6244
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6245 6246 6247 6248
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
6249
	set_load_weight(p);
L
Linus Torvalds 已提交
6250 6251
}

6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6268 6269
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6270
{
6271
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6272
	unsigned long flags;
6273
	const struct sched_class *prev_class = p->sched_class;
6274
	struct rq *rq;
6275
	int reset_on_fork;
L
Linus Torvalds 已提交
6276

6277 6278
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6279 6280
recheck:
	/* double check policy once rq lock held */
6281 6282
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6283
		policy = oldpolicy = p->policy;
6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6294 6295
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6296 6297
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6298 6299
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6300
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6301
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6302
		return -EINVAL;
6303
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6304 6305
		return -EINVAL;

6306 6307 6308
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6309
	if (user && !capable(CAP_SYS_NICE)) {
6310
		if (rt_policy(policy)) {
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6327 6328 6329 6330 6331 6332
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6333

6334
		/* can't change other user's priorities */
6335
		if (!check_same_owner(p))
6336
			return -EPERM;
6337 6338 6339 6340

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6341
	}
L
Linus Torvalds 已提交
6342

6343
	if (user) {
6344
#ifdef CONFIG_RT_GROUP_SCHED
6345 6346 6347 6348
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6349 6350
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6351
			return -EPERM;
6352 6353
#endif

6354 6355 6356 6357 6358
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6359 6360 6361 6362
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
6363
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6364 6365 6366 6367
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6368
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6369 6370 6371
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6372
		__task_rq_unlock(rq);
6373
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6374 6375
		goto recheck;
	}
I
Ingo Molnar 已提交
6376
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6377
	on_rq = p->se.on_rq;
6378
	running = task_current(rq, p);
6379
	if (on_rq)
6380
		deactivate_task(rq, p, 0);
6381 6382
	if (running)
		p->sched_class->put_prev_task(rq, p);
6383

6384 6385
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6386
	oldprio = p->prio;
I
Ingo Molnar 已提交
6387
	__setscheduler(rq, p, policy, param->sched_priority);
6388

6389 6390
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6391 6392
	if (on_rq) {
		activate_task(rq, p, 0);
6393 6394

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6395
	}
6396
	__task_rq_unlock(rq);
6397
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6398

6399 6400
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6401 6402
	return 0;
}
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6417 6418
EXPORT_SYMBOL_GPL(sched_setscheduler);

6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6436 6437
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6438 6439 6440
{
	struct sched_param lparam;
	struct task_struct *p;
6441
	int retval;
L
Linus Torvalds 已提交
6442 6443 6444 6445 6446

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6447 6448 6449

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6450
	p = find_process_by_pid(pid);
6451 6452 6453
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6454

L
Linus Torvalds 已提交
6455 6456 6457 6458 6459 6460 6461 6462 6463
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6464 6465
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6466
{
6467 6468 6469 6470
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6471 6472 6473 6474 6475 6476 6477 6478
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6479
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6480 6481 6482 6483 6484 6485 6486 6487
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6488
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6489
{
6490
	struct task_struct *p;
6491
	int retval;
L
Linus Torvalds 已提交
6492 6493

	if (pid < 0)
6494
		return -EINVAL;
L
Linus Torvalds 已提交
6495 6496

	retval = -ESRCH;
6497
	rcu_read_lock();
L
Linus Torvalds 已提交
6498 6499 6500 6501
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6502 6503
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6504
	}
6505
	rcu_read_unlock();
L
Linus Torvalds 已提交
6506 6507 6508 6509
	return retval;
}

/**
6510
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6511 6512 6513
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6514
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6515 6516
{
	struct sched_param lp;
6517
	struct task_struct *p;
6518
	int retval;
L
Linus Torvalds 已提交
6519 6520

	if (!param || pid < 0)
6521
		return -EINVAL;
L
Linus Torvalds 已提交
6522

6523
	rcu_read_lock();
L
Linus Torvalds 已提交
6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
6534
	rcu_read_unlock();
L
Linus Torvalds 已提交
6535 6536 6537 6538 6539 6540 6541 6542 6543

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
6544
	rcu_read_unlock();
L
Linus Torvalds 已提交
6545 6546 6547
	return retval;
}

6548
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6549
{
6550
	cpumask_var_t cpus_allowed, new_mask;
6551 6552
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6553

6554
	get_online_cpus();
6555
	rcu_read_lock();
L
Linus Torvalds 已提交
6556 6557 6558

	p = find_process_by_pid(pid);
	if (!p) {
6559
		rcu_read_unlock();
6560
		put_online_cpus();
L
Linus Torvalds 已提交
6561 6562 6563
		return -ESRCH;
	}

6564
	/* Prevent p going away */
L
Linus Torvalds 已提交
6565
	get_task_struct(p);
6566
	rcu_read_unlock();
L
Linus Torvalds 已提交
6567

6568 6569 6570 6571 6572 6573 6574 6575
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6576
	retval = -EPERM;
6577
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6578 6579
		goto out_unlock;

6580 6581 6582 6583
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6584 6585
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6586
 again:
6587
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6588

P
Paul Menage 已提交
6589
	if (!retval) {
6590 6591
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6592 6593 6594 6595 6596
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6597
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6598 6599 6600
			goto again;
		}
	}
L
Linus Torvalds 已提交
6601
out_unlock:
6602 6603 6604 6605
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6606
	put_task_struct(p);
6607
	put_online_cpus();
L
Linus Torvalds 已提交
6608 6609 6610 6611
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6612
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6613
{
6614 6615 6616 6617 6618
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6619 6620 6621 6622 6623 6624 6625 6626 6627
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6628 6629
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6630
{
6631
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6632 6633
	int retval;

6634 6635
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6636

6637 6638 6639 6640 6641
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6642 6643
}

6644
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6645
{
6646
	struct task_struct *p;
6647 6648
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
6649 6650
	int retval;

6651
	get_online_cpus();
6652
	rcu_read_lock();
L
Linus Torvalds 已提交
6653 6654 6655 6656 6657 6658

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6659 6660 6661 6662
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6663
	rq = task_rq_lock(p, &flags);
6664
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6665
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6666 6667

out_unlock:
6668
	rcu_read_unlock();
6669
	put_online_cpus();
L
Linus Torvalds 已提交
6670

6671
	return retval;
L
Linus Torvalds 已提交
6672 6673 6674 6675 6676 6677 6678 6679
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6680 6681
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6682 6683
{
	int ret;
6684
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6685

6686
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6687 6688
		return -EINVAL;

6689 6690
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6691

6692 6693 6694 6695 6696 6697 6698 6699
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6700

6701
	return ret;
L
Linus Torvalds 已提交
6702 6703 6704 6705 6706
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6707 6708
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6709
 */
6710
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6711
{
6712
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6713

6714
	schedstat_inc(rq, yld_count);
6715
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6716 6717 6718 6719 6720 6721

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6722
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6723
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
6724 6725 6726 6727 6728 6729 6730
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6731 6732 6733 6734 6735
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6736
static void __cond_resched(void)
L
Linus Torvalds 已提交
6737
{
6738 6739 6740
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6741 6742
}

6743
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6744
{
P
Peter Zijlstra 已提交
6745
	if (should_resched()) {
L
Linus Torvalds 已提交
6746 6747 6748 6749 6750
		__cond_resched();
		return 1;
	}
	return 0;
}
6751
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6752 6753

/*
6754
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6755 6756
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6757
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6758 6759 6760
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6761
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6762
{
P
Peter Zijlstra 已提交
6763
	int resched = should_resched();
J
Jan Kara 已提交
6764 6765
	int ret = 0;

6766 6767
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
6768
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6769
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6770
		if (resched)
N
Nick Piggin 已提交
6771 6772 6773
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6774
		ret = 1;
L
Linus Torvalds 已提交
6775 6776
		spin_lock(lock);
	}
J
Jan Kara 已提交
6777
	return ret;
L
Linus Torvalds 已提交
6778
}
6779
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6780

6781
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6782 6783 6784
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6785
	if (should_resched()) {
6786
		local_bh_enable();
L
Linus Torvalds 已提交
6787 6788 6789 6790 6791 6792
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6793
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6794 6795 6796 6797

/**
 * yield - yield the current processor to other threads.
 *
6798
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6799 6800 6801 6802 6803 6804 6805 6806 6807 6808
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6809
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6810 6811 6812 6813
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
6814
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6815

6816
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6817
	atomic_inc(&rq->nr_iowait);
6818
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6819
	schedule();
6820
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6821
	atomic_dec(&rq->nr_iowait);
6822
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6823 6824 6825 6826 6827
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6828
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6829 6830
	long ret;

6831
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6832
	atomic_inc(&rq->nr_iowait);
6833
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6834
	ret = schedule_timeout(timeout);
6835
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6836
	atomic_dec(&rq->nr_iowait);
6837
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6838 6839 6840 6841 6842 6843 6844 6845 6846 6847
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6848
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6849 6850 6851 6852 6853 6854 6855 6856 6857
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6858
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6859
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6873
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6874 6875 6876 6877 6878 6879 6880 6881 6882
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6883
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6884
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6898
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6899
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6900
{
6901
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6902
	unsigned int time_slice;
6903 6904
	unsigned long flags;
	struct rq *rq;
6905
	int retval;
L
Linus Torvalds 已提交
6906 6907 6908
	struct timespec t;

	if (pid < 0)
6909
		return -EINVAL;
L
Linus Torvalds 已提交
6910 6911

	retval = -ESRCH;
6912
	rcu_read_lock();
L
Linus Torvalds 已提交
6913 6914 6915 6916 6917 6918 6919 6920
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6921 6922 6923
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
6924

6925
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
6926
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6927 6928
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6929

L
Linus Torvalds 已提交
6930
out_unlock:
6931
	rcu_read_unlock();
L
Linus Torvalds 已提交
6932 6933 6934
	return retval;
}

6935
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6936

6937
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6938 6939
{
	unsigned long free = 0;
6940
	unsigned state;
L
Linus Torvalds 已提交
6941 6942

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
6943
	printk(KERN_INFO "%-13.13s %c", p->comm,
6944
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6945
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6946
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
6947
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6948
	else
P
Peter Zijlstra 已提交
6949
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6950 6951
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
6952
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6953
	else
P
Peter Zijlstra 已提交
6954
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6955 6956
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6957
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6958
#endif
P
Peter Zijlstra 已提交
6959
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6960 6961
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6962

6963
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6964 6965
}

I
Ingo Molnar 已提交
6966
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6967
{
6968
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6969

6970
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
6971 6972
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6973
#else
P
Peter Zijlstra 已提交
6974 6975
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6976 6977 6978 6979 6980 6981 6982 6983
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6984
		if (!state_filter || (p->state & state_filter))
6985
			sched_show_task(p);
L
Linus Torvalds 已提交
6986 6987
	} while_each_thread(g, p);

6988 6989
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6990 6991 6992
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6993
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6994 6995 6996
	/*
	 * Only show locks if all tasks are dumped:
	 */
6997
	if (!state_filter)
I
Ingo Molnar 已提交
6998
		debug_show_all_locks();
L
Linus Torvalds 已提交
6999 7000
}

I
Ingo Molnar 已提交
7001 7002
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
7003
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
7004 7005
}

7006 7007 7008 7009 7010 7011 7012 7013
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
7014
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
7015
{
7016
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
7017 7018
	unsigned long flags;

7019
	raw_spin_lock_irqsave(&rq->lock, flags);
7020

I
Ingo Molnar 已提交
7021
	__sched_fork(idle);
7022
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
7023 7024
	idle->se.exec_start = sched_clock();

7025
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
7026
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
7027 7028

	rq->curr = rq->idle = idle;
7029 7030 7031
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
7032
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7033 7034

	/* Set the preempt count _outside_ the spinlocks! */
7035 7036 7037
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
7038
	task_thread_info(idle)->preempt_count = 0;
7039
#endif
I
Ingo Molnar 已提交
7040 7041 7042 7043
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
7044
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
7045 7046 7047 7048 7049 7050 7051
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
7052
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
7053
 */
7054
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
7055

I
Ingo Molnar 已提交
7056 7057 7058 7059 7060 7061 7062 7063 7064
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
7065
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
7066
{
7067
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
7082

7083 7084
	return factor;
}
I
Ingo Molnar 已提交
7085

7086 7087 7088
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
7089

7090 7091 7092 7093 7094 7095 7096 7097
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
7098

7099 7100 7101
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
7102 7103
}

L
Linus Torvalds 已提交
7104 7105 7106 7107
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7108
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7127
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7128 7129
 * call is not atomic; no spinlocks may be held.
 */
7130
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7131
{
7132
	struct migration_req req;
L
Linus Torvalds 已提交
7133
	unsigned long flags;
7134
	struct rq *rq;
7135
	int ret = 0;
L
Linus Torvalds 已提交
7136

7137 7138 7139 7140 7141 7142 7143 7144 7145 7146
	/*
	 * Since we rely on wake-ups to migrate sleeping tasks, don't change
	 * the ->cpus_allowed mask from under waking tasks, which would be
	 * possible when we change rq->lock in ttwu(), so synchronize against
	 * TASK_WAKING to avoid that.
	 */
again:
	while (p->state == TASK_WAKING)
		cpu_relax();

L
Linus Torvalds 已提交
7147
	rq = task_rq_lock(p, &flags);
7148 7149 7150 7151 7152 7153

	if (p->state == TASK_WAKING) {
		task_rq_unlock(rq, &flags);
		goto again;
	}

7154
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
7155 7156 7157 7158
		ret = -EINVAL;
		goto out;
	}

7159
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7160
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7161 7162 7163 7164
		ret = -EINVAL;
		goto out;
	}

7165
	if (p->sched_class->set_cpus_allowed)
7166
		p->sched_class->set_cpus_allowed(p, new_mask);
7167
	else {
7168 7169
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7170 7171
	}

L
Linus Torvalds 已提交
7172
	/* Can the task run on the task's current CPU? If so, we're done */
7173
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7174 7175
		goto out;

7176
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7177
		/* Need help from migration thread: drop lock and wait. */
7178 7179 7180
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7181 7182
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7183
		put_task_struct(mt);
L
Linus Torvalds 已提交
7184 7185 7186 7187 7188 7189
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7190

L
Linus Torvalds 已提交
7191 7192
	return ret;
}
7193
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7194 7195

/*
I
Ingo Molnar 已提交
7196
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7197 7198 7199 7200 7201 7202
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7203 7204
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7205
 */
7206
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7207
{
7208
	struct rq *rq_dest, *rq_src;
7209
	int ret = 0;
L
Linus Torvalds 已提交
7210

7211
	if (unlikely(!cpu_active(dest_cpu)))
7212
		return ret;
L
Linus Torvalds 已提交
7213 7214 7215 7216 7217 7218 7219

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7220
		goto done;
L
Linus Torvalds 已提交
7221
	/* Affinity changed (again). */
7222
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7223
		goto fail;
L
Linus Torvalds 已提交
7224

7225 7226 7227 7228 7229
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
7230
		deactivate_task(rq_src, p, 0);
7231
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7232
		activate_task(rq_dest, p, 0);
7233
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7234
	}
L
Linus Torvalds 已提交
7235
done:
7236
	ret = 1;
L
Linus Torvalds 已提交
7237
fail:
L
Linus Torvalds 已提交
7238
	double_rq_unlock(rq_src, rq_dest);
7239
	return ret;
L
Linus Torvalds 已提交
7240 7241
}

7242 7243 7244 7245 7246
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
7247 7248 7249 7250 7251
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7252
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7253
{
7254
	int badcpu;
L
Linus Torvalds 已提交
7255
	int cpu = (long)data;
7256
	struct rq *rq;
L
Linus Torvalds 已提交
7257 7258 7259 7260 7261 7262

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7263
		struct migration_req *req;
L
Linus Torvalds 已提交
7264 7265
		struct list_head *head;

7266
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7267 7268

		if (cpu_is_offline(cpu)) {
7269
			raw_spin_unlock_irq(&rq->lock);
7270
			break;
L
Linus Torvalds 已提交
7271 7272 7273 7274 7275 7276 7277 7278 7279 7280
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
7281
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7282 7283 7284 7285
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7286
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7287 7288
		list_del_init(head->next);

7289
		if (req->task != NULL) {
7290
			raw_spin_unlock(&rq->lock);
7291 7292 7293
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
7294
			raw_spin_unlock(&rq->lock);
7295 7296
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7297
			raw_spin_unlock(&rq->lock);
7298 7299
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
7300
		local_irq_enable();
L
Linus Torvalds 已提交
7301 7302 7303 7304 7305 7306 7307 7308 7309

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7321
/*
7322
 * Figure out where task on dead CPU should go, use force if necessary.
7323
 */
7324
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7325
{
7326
	int dest_cpu;
7327 7328

again:
7329
	dest_cpu = select_fallback_rq(dead_cpu, p);
7330 7331 7332 7333

	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7334 7335 7336 7337 7338 7339 7340 7341 7342
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7343
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7344
{
7345
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7359
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7360

7361
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7362

7363 7364
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7365 7366
			continue;

7367 7368 7369
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7370

7371
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7372 7373
}

I
Ingo Molnar 已提交
7374 7375
/*
 * Schedules idle task to be the next runnable task on current CPU.
7376 7377
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7378 7379 7380
 */
void sched_idle_next(void)
{
7381
	int this_cpu = smp_processor_id();
7382
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7383 7384 7385 7386
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7387
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7388

7389 7390 7391
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7392
	 */
7393
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
7394

I
Ingo Molnar 已提交
7395
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7396

7397 7398
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7399

7400
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7401 7402
}

7403 7404
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7418
/* called under rq->lock with disabled interrupts */
7419
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7420
{
7421
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7422 7423

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7424
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7425 7426

	/* Cannot have done final schedule yet: would have vanished. */
7427
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7428

7429
	get_task_struct(p);
L
Linus Torvalds 已提交
7430 7431 7432

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7433
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7434 7435
	 * fine.
	 */
7436
	raw_spin_unlock_irq(&rq->lock);
7437
	move_task_off_dead_cpu(dead_cpu, p);
7438
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7439

7440
	put_task_struct(p);
L
Linus Torvalds 已提交
7441 7442 7443 7444 7445
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7446
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7447
	struct task_struct *next;
7448

I
Ingo Molnar 已提交
7449 7450 7451
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7452
		update_rq_clock(rq);
7453
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7454 7455
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7456
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7457
		migrate_dead(dead_cpu, next);
7458

L
Linus Torvalds 已提交
7459 7460
	}
}
7461 7462 7463 7464 7465 7466 7467

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7468
	rq->calc_load_active = 0;
7469
}
L
Linus Torvalds 已提交
7470 7471
#endif /* CONFIG_HOTPLUG_CPU */

7472 7473 7474
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7475 7476
	{
		.procname	= "sched_domain",
7477
		.mode		= 0555,
7478
	},
7479
	{}
7480 7481 7482
};

static struct ctl_table sd_ctl_root[] = {
7483 7484
	{
		.procname	= "kernel",
7485
		.mode		= 0555,
7486 7487
		.child		= sd_ctl_dir,
	},
7488
	{}
7489 7490 7491 7492 7493
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7494
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7495 7496 7497 7498

	return entry;
}

7499 7500
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7501
	struct ctl_table *entry;
7502

7503 7504 7505
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7506
	 * will always be set. In the lowest directory the names are
7507 7508 7509
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7510 7511
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7512 7513 7514
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7515 7516 7517 7518 7519

	kfree(*tablep);
	*tablep = NULL;
}

7520
static void
7521
set_table_entry(struct ctl_table *entry,
7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7535
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7536

7537 7538 7539
	if (table == NULL)
		return NULL;

7540
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7541
		sizeof(long), 0644, proc_doulongvec_minmax);
7542
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7543
		sizeof(long), 0644, proc_doulongvec_minmax);
7544
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7545
		sizeof(int), 0644, proc_dointvec_minmax);
7546
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7547
		sizeof(int), 0644, proc_dointvec_minmax);
7548
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7549
		sizeof(int), 0644, proc_dointvec_minmax);
7550
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7551
		sizeof(int), 0644, proc_dointvec_minmax);
7552
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7553
		sizeof(int), 0644, proc_dointvec_minmax);
7554
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7555
		sizeof(int), 0644, proc_dointvec_minmax);
7556
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7557
		sizeof(int), 0644, proc_dointvec_minmax);
7558
	set_table_entry(&table[9], "cache_nice_tries",
7559 7560
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7561
	set_table_entry(&table[10], "flags", &sd->flags,
7562
		sizeof(int), 0644, proc_dointvec_minmax);
7563 7564 7565
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7566 7567 7568 7569

	return table;
}

7570
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7571 7572 7573 7574 7575 7576 7577 7578 7579
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7580 7581
	if (table == NULL)
		return NULL;
7582 7583 7584 7585 7586

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7587
		entry->mode = 0555;
7588 7589 7590 7591 7592 7593 7594 7595
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7596
static void register_sched_domain_sysctl(void)
7597
{
7598
	int i, cpu_num = num_possible_cpus();
7599 7600 7601
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7602 7603 7604
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7605 7606 7607
	if (entry == NULL)
		return;

7608
	for_each_possible_cpu(i) {
7609 7610
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7611
		entry->mode = 0555;
7612
		entry->child = sd_alloc_ctl_cpu_table(i);
7613
		entry++;
7614
	}
7615 7616

	WARN_ON(sd_sysctl_header);
7617 7618
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7619

7620
/* may be called multiple times per register */
7621 7622
static void unregister_sched_domain_sysctl(void)
{
7623 7624
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7625
	sd_sysctl_header = NULL;
7626 7627
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7628
}
7629
#else
7630 7631 7632 7633
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7634 7635 7636 7637
{
}
#endif

7638 7639 7640 7641 7642
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7643
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7663
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7664 7665 7666 7667
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7668 7669 7670 7671
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7672 7673
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7674 7675
{
	struct task_struct *p;
7676
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7677
	unsigned long flags;
7678
	struct rq *rq;
L
Linus Torvalds 已提交
7679 7680

	switch (action) {
7681

L
Linus Torvalds 已提交
7682
	case CPU_UP_PREPARE:
7683
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7684
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7685 7686 7687 7688 7689
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7690
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7691
		task_rq_unlock(rq, &flags);
7692
		get_task_struct(p);
L
Linus Torvalds 已提交
7693
		cpu_rq(cpu)->migration_thread = p;
7694
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7695
		break;
7696

L
Linus Torvalds 已提交
7697
	case CPU_ONLINE:
7698
	case CPU_ONLINE_FROZEN:
7699
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7700
		wake_up_process(cpu_rq(cpu)->migration_thread);
7701 7702 7703

		/* Update our root-domain */
		rq = cpu_rq(cpu);
7704
		raw_spin_lock_irqsave(&rq->lock, flags);
7705
		if (rq->rd) {
7706
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7707 7708

			set_rq_online(rq);
7709
		}
7710
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7711
		break;
7712

L
Linus Torvalds 已提交
7713 7714
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7715
	case CPU_UP_CANCELED_FROZEN:
7716 7717
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7718
		/* Unbind it from offline cpu so it can run. Fall thru. */
7719
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7720
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7721
		kthread_stop(cpu_rq(cpu)->migration_thread);
7722
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7723 7724
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7725

L
Linus Torvalds 已提交
7726
	case CPU_DEAD:
7727
	case CPU_DEAD_FROZEN:
7728
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7729 7730 7731
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7732
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7733 7734
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7735
		raw_spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7736
		update_rq_clock(rq);
7737
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
7738 7739
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7740
		migrate_dead_tasks(cpu);
7741
		raw_spin_unlock_irq(&rq->lock);
7742
		cpuset_unlock();
L
Linus Torvalds 已提交
7743 7744
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7745
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7746 7747 7748 7749 7750
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
7751
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7752
		while (!list_empty(&rq->migration_queue)) {
7753 7754
			struct migration_req *req;

L
Linus Torvalds 已提交
7755
			req = list_entry(rq->migration_queue.next,
7756
					 struct migration_req, list);
L
Linus Torvalds 已提交
7757
			list_del_init(&req->list);
7758
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7759
			complete(&req->done);
7760
			raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7761
		}
7762
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7763
		break;
G
Gregory Haskins 已提交
7764

7765 7766
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7767 7768
		/* Update our root-domain */
		rq = cpu_rq(cpu);
7769
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
7770
		if (rq->rd) {
7771
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7772
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7773
		}
7774
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
7775
		break;
L
Linus Torvalds 已提交
7776 7777 7778 7779 7780
#endif
	}
	return NOTIFY_OK;
}

7781 7782 7783
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
7784
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
7785
 */
7786
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7787 7788 7789 7790
	.notifier_call = migration_call,
	.priority = 10
};

7791
static int __init migration_init(void)
L
Linus Torvalds 已提交
7792 7793
{
	void *cpu = (void *)(long)smp_processor_id();
7794
	int err;
7795 7796

	/* Start one for the boot CPU: */
7797 7798
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7799 7800
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7801

7802
	return 0;
L
Linus Torvalds 已提交
7803
}
7804
early_initcall(migration_init);
L
Linus Torvalds 已提交
7805 7806 7807
#endif

#ifdef CONFIG_SMP
7808

7809
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7810

7811 7812 7813 7814 7815 7816 7817 7818 7819 7820
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

7821
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7822
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7823
{
I
Ingo Molnar 已提交
7824
	struct sched_group *group = sd->groups;
7825
	char str[256];
L
Linus Torvalds 已提交
7826

R
Rusty Russell 已提交
7827
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7828
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7829 7830 7831 7832

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
7833
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
7834
		if (sd->parent)
P
Peter Zijlstra 已提交
7835 7836
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
7837
		return -1;
N
Nick Piggin 已提交
7838 7839
	}

P
Peter Zijlstra 已提交
7840
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7841

7842
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
7843 7844
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
7845
	}
7846
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
7847 7848
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
7849
	}
L
Linus Torvalds 已提交
7850

I
Ingo Molnar 已提交
7851
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7852
	do {
I
Ingo Molnar 已提交
7853
		if (!group) {
P
Peter Zijlstra 已提交
7854 7855
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7856 7857 7858
			break;
		}

7859
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
7860 7861 7862
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
7863 7864
			break;
		}
L
Linus Torvalds 已提交
7865

7866
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
7867 7868
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
7869 7870
			break;
		}
L
Linus Torvalds 已提交
7871

7872
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
7873 7874
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
7875 7876
			break;
		}
L
Linus Torvalds 已提交
7877

7878
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7879

R
Rusty Russell 已提交
7880
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7881

P
Peter Zijlstra 已提交
7882
		printk(KERN_CONT " %s", str);
7883
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
7884 7885
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
7886
		}
L
Linus Torvalds 已提交
7887

I
Ingo Molnar 已提交
7888 7889
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
7890
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7891

7892
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
7893
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7894

7895 7896
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
7897 7898
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
7899 7900
	return 0;
}
L
Linus Torvalds 已提交
7901

I
Ingo Molnar 已提交
7902 7903
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7904
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7905
	int level = 0;
L
Linus Torvalds 已提交
7906

7907 7908 7909
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
7910 7911 7912 7913
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7914

I
Ingo Molnar 已提交
7915 7916
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7917
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7918 7919 7920 7921
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7922
	for (;;) {
7923
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7924
			break;
L
Linus Torvalds 已提交
7925 7926
		level++;
		sd = sd->parent;
7927
		if (!sd)
I
Ingo Molnar 已提交
7928 7929
			break;
	}
7930
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7931
}
7932
#else /* !CONFIG_SCHED_DEBUG */
7933
# define sched_domain_debug(sd, cpu) do { } while (0)
7934
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7935

7936
static int sd_degenerate(struct sched_domain *sd)
7937
{
7938
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7939 7940 7941 7942 7943 7944
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7945 7946 7947
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7948 7949 7950 7951 7952
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
7953
	if (sd->flags & (SD_WAKE_AFFINE))
7954 7955 7956 7957 7958
		return 0;

	return 1;
}

7959 7960
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7961 7962 7963 7964 7965 7966
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7967
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7968 7969 7970 7971 7972 7973 7974
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7975 7976 7977
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7978 7979
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7980 7981 7982 7983 7984 7985 7986
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7987 7988
static void free_rootdomain(struct root_domain *rd)
{
7989 7990
	synchronize_sched();

7991 7992
	cpupri_cleanup(&rd->cpupri);

7993 7994 7995 7996 7997 7998
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7999 8000
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
8001
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
8002 8003
	unsigned long flags;

8004
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
8005 8006

	if (rq->rd) {
I
Ingo Molnar 已提交
8007
		old_rd = rq->rd;
G
Gregory Haskins 已提交
8008

8009
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
8010
			set_rq_offline(rq);
G
Gregory Haskins 已提交
8011

8012
		cpumask_clear_cpu(rq->cpu, old_rd->span);
8013

I
Ingo Molnar 已提交
8014 8015 8016 8017 8018 8019 8020
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
8021 8022 8023 8024 8025
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

8026
	cpumask_set_cpu(rq->cpu, rd->span);
8027
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8028
		set_rq_online(rq);
G
Gregory Haskins 已提交
8029

8030
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
8031 8032 8033

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
8034 8035
}

L
Li Zefan 已提交
8036
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
8037
{
8038 8039
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
8040 8041
	memset(rd, 0, sizeof(*rd));

8042 8043
	if (bootmem)
		gfp = GFP_NOWAIT;
8044

8045
	if (!alloc_cpumask_var(&rd->span, gfp))
8046
		goto out;
8047
	if (!alloc_cpumask_var(&rd->online, gfp))
8048
		goto free_span;
8049
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8050
		goto free_online;
8051

P
Pekka Enberg 已提交
8052
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
8053
		goto free_rto_mask;
8054
	return 0;
8055

8056 8057
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
8058 8059 8060 8061
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
8062
out:
8063
	return -ENOMEM;
G
Gregory Haskins 已提交
8064 8065 8066 8067
}

static void init_defrootdomain(void)
{
8068 8069
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
8070 8071 8072
	atomic_set(&def_root_domain.refcount, 1);
}

8073
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
8074 8075 8076 8077 8078 8079 8080
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

8081 8082 8083 8084
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
8085 8086 8087 8088

	return rd;
}

L
Linus Torvalds 已提交
8089
/*
I
Ingo Molnar 已提交
8090
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
8091 8092
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
8093 8094
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
8095
{
8096
	struct rq *rq = cpu_rq(cpu);
8097 8098 8099
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
8100
	for (tmp = sd; tmp; ) {
8101 8102 8103
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
8104

8105
		if (sd_parent_degenerate(tmp, parent)) {
8106
			tmp->parent = parent->parent;
8107 8108
			if (parent->parent)
				parent->parent->child = tmp;
8109 8110
		} else
			tmp = tmp->parent;
8111 8112
	}

8113
	if (sd && sd_degenerate(sd)) {
8114
		sd = sd->parent;
8115 8116 8117
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8118 8119 8120

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8121
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8122
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8123 8124 8125
}

/* cpus with isolated domains */
8126
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8127 8128 8129 8130

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8131
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
8132
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8133 8134 8135
	return 1;
}

I
Ingo Molnar 已提交
8136
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8137 8138

/*
8139 8140
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8141 8142
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8143 8144 8145 8146 8147
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8148
static void
8149 8150 8151
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8152
					struct sched_group **sg,
8153 8154
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8155 8156 8157 8158
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8159
	cpumask_clear(covered);
8160

8161
	for_each_cpu(i, span) {
8162
		struct sched_group *sg;
8163
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8164 8165
		int j;

8166
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8167 8168
			continue;

8169
		cpumask_clear(sched_group_cpus(sg));
8170
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
8171

8172
		for_each_cpu(j, span) {
8173
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8174 8175
				continue;

8176
			cpumask_set_cpu(j, covered);
8177
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8178 8179 8180 8181 8182 8183 8184 8185 8186 8187
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8188
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8189

8190
#ifdef CONFIG_NUMA
8191

8192 8193 8194 8195 8196
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8197
 * Find the next node to include in a given scheduling domain. Simply
8198 8199 8200 8201
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8202
static int find_next_best_node(int node, nodemask_t *used_nodes)
8203 8204 8205 8206 8207
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8208
	for (i = 0; i < nr_node_ids; i++) {
8209
		/* Start at @node */
8210
		n = (node + i) % nr_node_ids;
8211 8212 8213 8214 8215

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8216
		if (node_isset(n, *used_nodes))
8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8228
	node_set(best_node, *used_nodes);
8229 8230 8231 8232 8233 8234
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8235
 * @span: resulting cpumask
8236
 *
I
Ingo Molnar 已提交
8237
 * Given a node, construct a good cpumask for its sched_domain to span. It
8238 8239 8240
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8241
static void sched_domain_node_span(int node, struct cpumask *span)
8242
{
8243
	nodemask_t used_nodes;
8244
	int i;
8245

8246
	cpumask_clear(span);
8247
	nodes_clear(used_nodes);
8248

8249
	cpumask_or(span, span, cpumask_of_node(node));
8250
	node_set(node, used_nodes);
8251 8252

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8253
		int next_node = find_next_best_node(node, &used_nodes);
8254

8255
		cpumask_or(span, span, cpumask_of_node(next_node));
8256 8257
	}
}
8258
#endif /* CONFIG_NUMA */
8259

8260
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8261

8262 8263
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8264 8265 8266
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8311
/*
8312
 * SMT sched-domains:
8313
 */
L
Linus Torvalds 已提交
8314
#ifdef CONFIG_SCHED_SMT
8315
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8316
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
8317

I
Ingo Molnar 已提交
8318
static int
8319 8320
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8321
{
8322
	if (sg)
8323
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
8324 8325
	return cpu;
}
8326
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8327

8328 8329 8330
/*
 * multi-core sched-domains:
 */
8331
#ifdef CONFIG_SCHED_MC
8332 8333
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8334
#endif /* CONFIG_SCHED_MC */
8335 8336

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8337
static int
8338 8339
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8340
{
8341
	int group;
8342

8343
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8344
	group = cpumask_first(mask);
8345
	if (sg)
8346
		*sg = &per_cpu(sched_group_core, group).sg;
8347
	return group;
8348 8349
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8350
static int
8351 8352
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8353
{
8354
	if (sg)
8355
		*sg = &per_cpu(sched_group_core, cpu).sg;
8356 8357 8358 8359
	return cpu;
}
#endif

8360 8361
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8362

I
Ingo Molnar 已提交
8363
static int
8364 8365
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8366
{
8367
	int group;
8368
#ifdef CONFIG_SCHED_MC
8369
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8370
	group = cpumask_first(mask);
8371
#elif defined(CONFIG_SCHED_SMT)
8372
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8373
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8374
#else
8375
	group = cpu;
L
Linus Torvalds 已提交
8376
#endif
8377
	if (sg)
8378
		*sg = &per_cpu(sched_group_phys, group).sg;
8379
	return group;
L
Linus Torvalds 已提交
8380 8381 8382 8383
}

#ifdef CONFIG_NUMA
/*
8384 8385 8386
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8387
 */
8388
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8389
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8390

8391
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8392
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8393

8394 8395 8396
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8397
{
8398 8399
	int group;

8400
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8401
	group = cpumask_first(nodemask);
8402 8403

	if (sg)
8404
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8405
	return group;
L
Linus Torvalds 已提交
8406
}
8407

8408 8409 8410 8411 8412 8413 8414
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8415
	do {
8416
		for_each_cpu(j, sched_group_cpus(sg)) {
8417
			struct sched_domain *sd;
8418

8419
			sd = &per_cpu(phys_domains, j).sd;
8420
			if (j != group_first_cpu(sd->groups)) {
8421 8422 8423 8424 8425 8426
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8427

8428
			sg->cpu_power += sd->groups->cpu_power;
8429 8430 8431
		}
		sg = sg->next;
	} while (sg != group_head);
8432
}
8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
8454 8455
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
8456 8457 8458 8459 8460 8461 8462 8463 8464
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

8465
	sg->cpu_power = 0;
8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
8484 8485
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
8486 8487
			return -ENOMEM;
		}
8488
		sg->cpu_power = 0;
8489 8490 8491 8492 8493 8494 8495 8496 8497
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8498
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8499

8500
#ifdef CONFIG_NUMA
8501
/* Free memory allocated for various sched_group structures */
8502 8503
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8504
{
8505
	int cpu, i;
8506

8507
	for_each_cpu(cpu, cpu_map) {
8508 8509 8510 8511 8512 8513
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8514
		for (i = 0; i < nr_node_ids; i++) {
8515 8516
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8517
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8518
			if (cpumask_empty(nodemask))
8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8535
#else /* !CONFIG_NUMA */
8536 8537
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8538 8539
{
}
8540
#endif /* CONFIG_NUMA */
8541

8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8556 8557
	long power;
	int weight;
8558 8559 8560

	WARN_ON(!sd || !sd->groups);

8561
	if (cpu != group_first_cpu(sd->groups))
8562 8563 8564 8565
		return;

	child = sd->child;

8566
	sd->groups->cpu_power = 0;
8567

8568 8569 8570 8571 8572
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8573 8574 8575
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8576
		 */
P
Peter Zijlstra 已提交
8577 8578
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8579
			power /= weight;
P
Peter Zijlstra 已提交
8580 8581
			power >>= SCHED_LOAD_SHIFT;
		}
8582
		sd->groups->cpu_power += power;
8583 8584 8585 8586
		return;
	}

	/*
8587
	 * Add cpu_power of each child group to this groups cpu_power.
8588 8589 8590
	 */
	group = child->groups;
	do {
8591
		sd->groups->cpu_power += group->cpu_power;
8592 8593 8594 8595
		group = group->next;
	} while (group != child->groups);
}

8596 8597 8598 8599 8600
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8601 8602 8603 8604 8605 8606
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8607
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8608

8609 8610 8611 8612 8613
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8614
	sd->level = SD_LV_##type;				\
8615
	SD_INIT_NAME(sd, type);					\
8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8630 8631 8632 8633
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8634 8635 8636 8637 8638 8639
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
8658
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8659 8660
	} else {
		/* turn on idle balance on this domain */
8661
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8662 8663 8664
	}
}

8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8685
#ifdef CONFIG_NUMA
8686 8687 8688 8689 8690 8691 8692
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8693
#endif
8694 8695 8696 8697
	case sa_none:
		break;
	}
}
8698

8699 8700 8701
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8702
#ifdef CONFIG_NUMA
8703 8704 8705 8706 8707 8708 8709 8710 8711 8712
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
8713
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8714
		return sa_notcovered;
8715
	}
8716
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8717
#endif
8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
8730
		printk(KERN_WARNING "Cannot alloc root domain\n");
8731
		return sa_tmpmask;
G
Gregory Haskins 已提交
8732
	}
8733 8734
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8735

8736 8737 8738 8739
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8740
#ifdef CONFIG_NUMA
8741
	struct sched_domain *parent;
L
Linus Torvalds 已提交
8742

8743 8744 8745 8746 8747
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8748
		set_domain_attribute(sd, attr);
8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8763
#endif
8764 8765
	return sd;
}
L
Linus Torvalds 已提交
8766

8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8782

8783 8784 8785 8786 8787
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8788
#ifdef CONFIG_SCHED_MC
8789 8790 8791 8792 8793 8794 8795
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8796
#endif
8797 8798
	return sd;
}
8799

8800 8801 8802 8803 8804
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8805
#ifdef CONFIG_SCHED_SMT
8806 8807 8808 8809 8810 8811 8812
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8813
#endif
8814 8815
	return sd;
}
L
Linus Torvalds 已提交
8816

8817 8818 8819 8820
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8821
#ifdef CONFIG_SCHED_SMT
8822 8823 8824 8825 8826 8827 8828 8829
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8830
#endif
8831
#ifdef CONFIG_SCHED_MC
8832 8833 8834 8835 8836 8837 8838
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8839
#endif
8840 8841 8842 8843 8844 8845 8846
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8847
#ifdef CONFIG_NUMA
8848 8849 8850 8851 8852
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8853 8854
	default:
		break;
8855
	}
8856
}
8857

8858 8859 8860 8861 8862 8863 8864 8865 8866
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8867
	struct sched_domain *sd;
8868
	int i;
8869
#ifdef CONFIG_NUMA
8870
	d.sd_allnodes = 0;
8871
#endif
8872

8873 8874 8875 8876
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8877

L
Linus Torvalds 已提交
8878
	/*
8879
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8880
	 */
8881
	for_each_cpu(i, cpu_map) {
8882 8883
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8884

8885
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8886
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8887
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8888
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8889
	}
8890

8891
	for_each_cpu(i, cpu_map) {
8892
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8893
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8894
	}
8895

L
Linus Torvalds 已提交
8896
	/* Set up physical groups */
8897 8898
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8899

L
Linus Torvalds 已提交
8900 8901
#ifdef CONFIG_NUMA
	/* Set up node groups */
8902 8903
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8904

8905 8906
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8907
			goto error;
L
Linus Torvalds 已提交
8908 8909 8910
#endif

	/* Calculate CPU power for physical packages and nodes */
8911
#ifdef CONFIG_SCHED_SMT
8912
	for_each_cpu(i, cpu_map) {
8913
		sd = &per_cpu(cpu_domains, i).sd;
8914
		init_sched_groups_power(i, sd);
8915
	}
L
Linus Torvalds 已提交
8916
#endif
8917
#ifdef CONFIG_SCHED_MC
8918
	for_each_cpu(i, cpu_map) {
8919
		sd = &per_cpu(core_domains, i).sd;
8920
		init_sched_groups_power(i, sd);
8921 8922
	}
#endif
8923

8924
	for_each_cpu(i, cpu_map) {
8925
		sd = &per_cpu(phys_domains, i).sd;
8926
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8927 8928
	}

8929
#ifdef CONFIG_NUMA
8930
	for (i = 0; i < nr_node_ids; i++)
8931
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8932

8933
	if (d.sd_allnodes) {
8934
		struct sched_group *sg;
8935

8936
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8937
								d.tmpmask);
8938 8939
		init_numa_sched_groups_power(sg);
	}
8940 8941
#endif

L
Linus Torvalds 已提交
8942
	/* Attach the domains */
8943
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8944
#ifdef CONFIG_SCHED_SMT
8945
		sd = &per_cpu(cpu_domains, i).sd;
8946
#elif defined(CONFIG_SCHED_MC)
8947
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8948
#else
8949
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8950
#endif
8951
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8952
	}
8953

8954 8955 8956
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8957 8958

error:
8959 8960
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8961
}
P
Paul Jackson 已提交
8962

8963
static int build_sched_domains(const struct cpumask *cpu_map)
8964 8965 8966 8967
{
	return __build_sched_domains(cpu_map, NULL);
}

8968
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8969
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8970 8971
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8972 8973 8974

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8975 8976
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8977
 */
8978
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8979

8980 8981 8982 8983 8984 8985
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8986
{
8987
	return 0;
8988 8989
}

8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

9015
/*
I
Ingo Molnar 已提交
9016
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
9017 9018
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
9019
 */
9020
static int arch_init_sched_domains(const struct cpumask *cpu_map)
9021
{
9022 9023
	int err;

9024
	arch_update_cpu_topology();
P
Paul Jackson 已提交
9025
	ndoms_cur = 1;
9026
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
9027
	if (!doms_cur)
9028 9029
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
9030
	dattr_cur = NULL;
9031
	err = build_sched_domains(doms_cur[0]);
9032
	register_sched_domain_sysctl();
9033 9034

	return err;
9035 9036
}

9037 9038
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
9039
{
9040
	free_sched_groups(cpu_map, tmpmask);
9041
}
L
Linus Torvalds 已提交
9042

9043 9044 9045 9046
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
9047
static void detach_destroy_domains(const struct cpumask *cpu_map)
9048
{
9049 9050
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9051 9052
	int i;

9053
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
9054
		cpu_attach_domain(NULL, &def_root_domain, i);
9055
	synchronize_sched();
9056
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9057 9058
}

9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
9075 9076
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
9077
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
9078 9079 9080
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
9081
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
9082 9083 9084
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
9085 9086 9087
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
9088 9089 9090 9091 9092 9093
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
9094
 *
9095
 * If doms_new == NULL it will be replaced with cpu_online_mask.
9096 9097
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
9098
 *
P
Paul Jackson 已提交
9099 9100
 * Call with hotplug lock held
 */
9101
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9102
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
9103
{
9104
	int i, j, n;
9105
	int new_topology;
P
Paul Jackson 已提交
9106

9107
	mutex_lock(&sched_domains_mutex);
9108

9109 9110 9111
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

9112 9113 9114
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

9115
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
9116 9117 9118

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
9119
		for (j = 0; j < n && !new_topology; j++) {
9120
			if (cpumask_equal(doms_cur[i], doms_new[j])
9121
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
9122 9123 9124
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
9125
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
9126 9127 9128 9129
match1:
		;
	}

9130 9131
	if (doms_new == NULL) {
		ndoms_cur = 0;
9132
		doms_new = &fallback_doms;
9133
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9134
		WARN_ON_ONCE(dattr_new);
9135 9136
	}

P
Paul Jackson 已提交
9137 9138
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9139
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9140
			if (cpumask_equal(doms_new[i], doms_cur[j])
9141
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9142 9143 9144
				goto match2;
		}
		/* no match - add a new doms_new */
9145
		__build_sched_domains(doms_new[i],
9146
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9147 9148 9149 9150 9151
match2:
		;
	}

	/* Remember the new sched domains */
9152 9153
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
9154
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9155
	doms_cur = doms_new;
9156
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9157
	ndoms_cur = ndoms_new;
9158 9159

	register_sched_domain_sysctl();
9160

9161
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9162 9163
}

9164
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9165
static void arch_reinit_sched_domains(void)
9166
{
9167
	get_online_cpus();
9168 9169 9170 9171

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9172
	rebuild_sched_domains();
9173
	put_online_cpus();
9174 9175 9176 9177
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9178
	unsigned int level = 0;
9179

9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9191 9192 9193
		return -EINVAL;

	if (smt)
9194
		sched_smt_power_savings = level;
9195
	else
9196
		sched_mc_power_savings = level;
9197

9198
	arch_reinit_sched_domains();
9199

9200
	return count;
9201 9202 9203
}

#ifdef CONFIG_SCHED_MC
9204 9205
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9206 9207 9208
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9209
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9210
					    const char *buf, size_t count)
9211 9212 9213
{
	return sched_power_savings_store(buf, count, 0);
}
9214 9215 9216
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9217 9218 9219
#endif

#ifdef CONFIG_SCHED_SMT
9220 9221
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9222 9223 9224
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9225
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9226
					     const char *buf, size_t count)
9227 9228 9229
{
	return sched_power_savings_store(buf, count, 1);
}
9230 9231
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9232 9233 9234
		   sched_smt_power_savings_store);
#endif

9235
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9251
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9252

9253
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9254
/*
9255 9256
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9257 9258 9259
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9260 9261 9262 9263
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
9264 9265 9266 9267
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
9268
		partition_sched_domains(1, NULL, NULL);
9269 9270 9271 9272 9273 9274 9275 9276 9277 9278
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9279
{
P
Peter Zijlstra 已提交
9280 9281
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9282 9283
	switch (action) {
	case CPU_DOWN_PREPARE:
9284
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9285
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9286 9287 9288
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9289
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9290
	case CPU_ONLINE:
9291
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9292
		enable_runtime(cpu_rq(cpu));
9293 9294
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9295 9296 9297 9298 9299 9300 9301
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9302 9303 9304
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9305
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9306

9307 9308 9309 9310 9311
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9312
	get_online_cpus();
9313
	mutex_lock(&sched_domains_mutex);
9314
	arch_init_sched_domains(cpu_active_mask);
9315 9316 9317
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9318
	mutex_unlock(&sched_domains_mutex);
9319
	put_online_cpus();
9320 9321

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9322 9323
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9324 9325 9326 9327 9328
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9329
	init_hrtick();
9330 9331

	/* Move init over to a non-isolated CPU */
9332
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9333
		BUG();
I
Ingo Molnar 已提交
9334
	sched_init_granularity();
9335
	free_cpumask_var(non_isolated_cpus);
9336

9337
	init_sched_rt_class();
L
Linus Torvalds 已提交
9338 9339 9340 9341
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9342
	sched_init_granularity();
L
Linus Torvalds 已提交
9343 9344 9345
}
#endif /* CONFIG_SMP */

9346 9347
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9348 9349 9350 9351 9352 9353 9354
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9355
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9356 9357
{
	cfs_rq->tasks_timeline = RB_ROOT;
9358
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9359 9360 9361
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9362
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9363 9364
}

P
Peter Zijlstra 已提交
9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9378
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9379
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9380
#ifdef CONFIG_SMP
9381
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9382 9383
#endif
#endif
P
Peter Zijlstra 已提交
9384 9385 9386
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9387
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9388 9389 9390 9391
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9392
	rt_rq->rt_runtime = 0;
9393
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9394

9395
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9396
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9397 9398
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9399 9400
}

P
Peter Zijlstra 已提交
9401
#ifdef CONFIG_FAIR_GROUP_SCHED
9402 9403 9404
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9405
{
9406
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9407 9408 9409 9410 9411 9412 9413
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9414 9415 9416 9417
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9418 9419 9420 9421 9422
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9423 9424
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9425
	se->load.inv_weight = 0;
9426
	se->parent = parent;
P
Peter Zijlstra 已提交
9427
}
9428
#endif
P
Peter Zijlstra 已提交
9429

9430
#ifdef CONFIG_RT_GROUP_SCHED
9431 9432 9433
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9434
{
9435 9436
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9437 9438 9439 9440
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9441
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9442 9443 9444 9445
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9446 9447 9448
	if (!rt_se)
		return;

9449 9450 9451 9452 9453
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9454
	rt_se->my_q = rt_rq;
9455
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9456 9457 9458 9459
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9460 9461
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9462
	int i, j;
9463 9464 9465 9466 9467 9468 9469
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9470 9471 9472
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9473 9474
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9475
	alloc_size += num_possible_cpus() * cpumask_size();
9476 9477
#endif
	if (alloc_size) {
9478
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9479 9480 9481 9482 9483 9484 9485

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9486 9487 9488 9489 9490 9491 9492

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9493 9494
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9495 9496 9497 9498 9499
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9500 9501 9502 9503 9504 9505 9506 9507
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9508 9509
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9510 9511 9512 9513 9514 9515
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9516
	}
I
Ingo Molnar 已提交
9517

G
Gregory Haskins 已提交
9518 9519 9520 9521
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9522 9523 9524 9525 9526 9527
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9528 9529 9530
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9531 9532
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9533

9534
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9535
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9536 9537 9538 9539 9540 9541
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9542 9543
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9544

9545 9546 9547 9548
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
9549
	for_each_possible_cpu(i) {
9550
		struct rq *rq;
L
Linus Torvalds 已提交
9551 9552

		rq = cpu_rq(i);
9553
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9554
		rq->nr_running = 0;
9555 9556
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9557
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9558
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9559
#ifdef CONFIG_FAIR_GROUP_SCHED
9560
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9561
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9577
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9578 9579 9580 9581
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9582
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9583
#elif defined CONFIG_USER_SCHED
9584 9585
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9586 9587 9588 9589 9590 9591 9592 9593
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9594
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9595 9596
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9597
		init_tg_cfs_entry(&init_task_group,
9598
				&per_cpu(init_tg_cfs_rq, i),
9599 9600
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9601

9602
#endif
D
Dhaval Giani 已提交
9603 9604 9605
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9606
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9607
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9608
#ifdef CONFIG_CGROUP_SCHED
9609
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9610
#elif defined CONFIG_USER_SCHED
9611
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9612
		init_tg_rt_entry(&init_task_group,
9613
				&per_cpu(init_rt_rq_var, i),
9614 9615
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9616
#endif
I
Ingo Molnar 已提交
9617
#endif
L
Linus Torvalds 已提交
9618

I
Ingo Molnar 已提交
9619 9620
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9621
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9622
		rq->sd = NULL;
G
Gregory Haskins 已提交
9623
		rq->rd = NULL;
9624
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9625
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9626
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9627
		rq->push_cpu = 0;
9628
		rq->cpu = i;
9629
		rq->online = 0;
L
Linus Torvalds 已提交
9630
		rq->migration_thread = NULL;
9631 9632
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
9633
		INIT_LIST_HEAD(&rq->migration_queue);
9634
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9635
#endif
P
Peter Zijlstra 已提交
9636
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9637 9638 9639
		atomic_set(&rq->nr_iowait, 0);
	}

9640
	set_load_weight(&init_task);
9641

9642 9643 9644 9645
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9646
#ifdef CONFIG_SMP
9647
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9648 9649
#endif

9650
#ifdef CONFIG_RT_MUTEXES
9651
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
9652 9653
#endif

L
Linus Torvalds 已提交
9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9667 9668 9669

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9670 9671 9672 9673
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9674

9675
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9676
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9677
#ifdef CONFIG_SMP
9678
#ifdef CONFIG_NO_HZ
9679
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9680
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9681
#endif
R
Rusty Russell 已提交
9682 9683 9684
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9685
#endif /* SMP */
9686

9687
	perf_event_init();
9688

9689
	scheduler_running = 1;
L
Linus Torvalds 已提交
9690 9691 9692
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9693 9694
static inline int preempt_count_equals(int preempt_offset)
{
9695
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
9696 9697 9698 9699 9700

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9701
{
9702
#ifdef in_atomic
L
Linus Torvalds 已提交
9703 9704
	static unsigned long prev_jiffy;	/* ratelimiting */

9705 9706
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9707 9708 9709 9710 9711
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
9712 9713 9714 9715 9716 9717 9718
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
9719 9720 9721 9722 9723

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9724 9725 9726 9727 9728 9729
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9730 9731 9732
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9733

9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9745 9746
void normalize_rt_tasks(void)
{
9747
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9748
	unsigned long flags;
9749
	struct rq *rq;
L
Linus Torvalds 已提交
9750

9751
	read_lock_irqsave(&tasklist_lock, flags);
9752
	do_each_thread(g, p) {
9753 9754 9755 9756 9757 9758
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9759 9760
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9761 9762 9763
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9764
#endif
I
Ingo Molnar 已提交
9765 9766 9767 9768 9769 9770 9771 9772

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9773
			continue;
I
Ingo Molnar 已提交
9774
		}
L
Linus Torvalds 已提交
9775

9776
		raw_spin_lock(&p->pi_lock);
9777
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9778

9779
		normalize_task(rq, p);
9780

9781
		__task_rq_unlock(rq);
9782
		raw_spin_unlock(&p->pi_lock);
9783 9784
	} while_each_thread(g, p);

9785
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9786 9787 9788
}

#endif /* CONFIG_MAGIC_SYSRQ */
9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9807
struct task_struct *curr_task(int cpu)
9808 9809 9810 9811 9812 9813 9814 9815 9816 9817
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9818 9819
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9820 9821 9822 9823 9824 9825 9826
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9827
void set_curr_task(int cpu, struct task_struct *p)
9828 9829 9830 9831 9832
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9833

9834 9835
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9850 9851
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9852 9853
{
	struct cfs_rq *cfs_rq;
9854
	struct sched_entity *se;
9855
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9856 9857
	int i;

9858
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9859 9860
	if (!tg->cfs_rq)
		goto err;
9861
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9862 9863
	if (!tg->se)
		goto err;
9864 9865

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9866 9867

	for_each_possible_cpu(i) {
9868
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9869

9870 9871
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9872 9873 9874
		if (!cfs_rq)
			goto err;

9875 9876
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9877
		if (!se)
9878
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
9879

9880
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9881 9882 9883 9884
	}

	return 1;

9885 9886
 err_free_rq:
	kfree(cfs_rq);
9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9901
#else /* !CONFG_FAIR_GROUP_SCHED */
9902 9903 9904 9905
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9906 9907
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9919
#endif /* CONFIG_FAIR_GROUP_SCHED */
9920 9921

#ifdef CONFIG_RT_GROUP_SCHED
9922 9923 9924 9925
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9926 9927
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9939 9940
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9941 9942
{
	struct rt_rq *rt_rq;
9943
	struct sched_rt_entity *rt_se;
9944 9945 9946
	struct rq *rq;
	int i;

9947
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9948 9949
	if (!tg->rt_rq)
		goto err;
9950
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9951 9952 9953
	if (!tg->rt_se)
		goto err;

9954 9955
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9956 9957 9958 9959

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9960 9961
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9962 9963
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9964

9965 9966
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9967
		if (!rt_se)
9968
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
9969

9970
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9971 9972
	}

9973 9974
	return 1;

9975 9976
 err_free_rq:
	kfree(rt_rq);
9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9991
#else /* !CONFIG_RT_GROUP_SCHED */
9992 9993 9994 9995
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9996 9997
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
10009
#endif /* CONFIG_RT_GROUP_SCHED */
10010

10011
#ifdef CONFIG_GROUP_SCHED
10012 10013 10014 10015 10016 10017 10018 10019
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
10020
struct task_group *sched_create_group(struct task_group *parent)
10021 10022 10023 10024 10025 10026 10027 10028 10029
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

10030
	if (!alloc_fair_sched_group(tg, parent))
10031 10032
		goto err;

10033
	if (!alloc_rt_sched_group(tg, parent))
10034 10035
		goto err;

10036
	spin_lock_irqsave(&task_group_lock, flags);
10037
	for_each_possible_cpu(i) {
10038 10039
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
10040
	}
P
Peter Zijlstra 已提交
10041
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
10042 10043 10044 10045 10046

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
10047
	list_add_rcu(&tg->siblings, &parent->children);
10048
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
10049

10050
	return tg;
S
Srivatsa Vaddagiri 已提交
10051 10052

err:
P
Peter Zijlstra 已提交
10053
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
10054 10055 10056
	return ERR_PTR(-ENOMEM);
}

10057
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
10058
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
10059 10060
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
10061
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
10062 10063
}

10064
/* Destroy runqueue etc associated with a task group */
10065
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
10066
{
10067
	unsigned long flags;
10068
	int i;
S
Srivatsa Vaddagiri 已提交
10069

10070
	spin_lock_irqsave(&task_group_lock, flags);
10071
	for_each_possible_cpu(i) {
10072 10073
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
10074
	}
P
Peter Zijlstra 已提交
10075
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
10076
	list_del_rcu(&tg->siblings);
10077
	spin_unlock_irqrestore(&task_group_lock, flags);
10078 10079

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
10080
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
10081 10082
}

10083
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
10084 10085 10086
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
10087 10088
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
10089 10090 10091 10092 10093 10094 10095 10096 10097
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

10098
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10099 10100
	on_rq = tsk->se.on_rq;

10101
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10102
		dequeue_task(rq, tsk, 0);
10103 10104
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10105

P
Peter Zijlstra 已提交
10106
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
10107

P
Peter Zijlstra 已提交
10108 10109
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
10110
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
10111 10112
#endif

10113 10114 10115
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
10116
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
10117 10118 10119

	task_rq_unlock(rq, &flags);
}
10120
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
10121

10122
#ifdef CONFIG_FAIR_GROUP_SCHED
10123
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10124 10125 10126 10127 10128
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
10129
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10130 10131 10132
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
10133
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
10134

10135
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10136
		enqueue_entity(cfs_rq, se, 0);
10137
}
10138

10139 10140 10141 10142 10143 10144
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

10145
	raw_spin_lock_irqsave(&rq->lock, flags);
10146
	__set_se_shares(se, shares);
10147
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
10148 10149
}

10150 10151
static DEFINE_MUTEX(shares_mutex);

10152
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10153 10154
{
	int i;
10155
	unsigned long flags;
10156

10157 10158 10159 10160 10161 10162
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10163 10164
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10165 10166
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10167

10168
	mutex_lock(&shares_mutex);
10169
	if (tg->shares == shares)
10170
		goto done;
S
Srivatsa Vaddagiri 已提交
10171

10172
	spin_lock_irqsave(&task_group_lock, flags);
10173 10174
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10175
	list_del_rcu(&tg->siblings);
10176
	spin_unlock_irqrestore(&task_group_lock, flags);
10177 10178 10179 10180 10181 10182 10183 10184

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10185
	tg->shares = shares;
10186 10187 10188 10189 10190
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10191
		set_se_shares(tg->se[i], shares);
10192
	}
S
Srivatsa Vaddagiri 已提交
10193

10194 10195 10196 10197
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10198
	spin_lock_irqsave(&task_group_lock, flags);
10199 10200
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10201
	list_add_rcu(&tg->siblings, &tg->parent->children);
10202
	spin_unlock_irqrestore(&task_group_lock, flags);
10203
done:
10204
	mutex_unlock(&shares_mutex);
10205
	return 0;
S
Srivatsa Vaddagiri 已提交
10206 10207
}

10208 10209 10210 10211
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10212
#endif
10213

10214
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10215
/*
P
Peter Zijlstra 已提交
10216
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10217
 */
P
Peter Zijlstra 已提交
10218 10219 10220 10221 10222
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10223
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10224

P
Peter Zijlstra 已提交
10225
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10226 10227
}

P
Peter Zijlstra 已提交
10228 10229
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10230
{
P
Peter Zijlstra 已提交
10231
	struct task_struct *g, *p;
10232

P
Peter Zijlstra 已提交
10233 10234 10235 10236
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10237

P
Peter Zijlstra 已提交
10238 10239
	return 0;
}
10240

P
Peter Zijlstra 已提交
10241 10242 10243 10244 10245
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10246

P
Peter Zijlstra 已提交
10247 10248 10249 10250 10251 10252
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10253

P
Peter Zijlstra 已提交
10254 10255
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10256

P
Peter Zijlstra 已提交
10257 10258 10259
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10260 10261
	}

10262 10263 10264 10265 10266 10267 10268
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10269 10270 10271 10272 10273
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10274

10275 10276 10277
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10278 10279
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10280

P
Peter Zijlstra 已提交
10281
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10282

10283 10284 10285 10286 10287
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10288

10289 10290 10291
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10292 10293 10294
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10295

P
Peter Zijlstra 已提交
10296 10297 10298 10299
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10300

P
Peter Zijlstra 已提交
10301
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10302
	}
P
Peter Zijlstra 已提交
10303

P
Peter Zijlstra 已提交
10304 10305 10306 10307
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10308 10309
}

P
Peter Zijlstra 已提交
10310
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10311
{
P
Peter Zijlstra 已提交
10312 10313 10314 10315 10316 10317 10318
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10319 10320
}

10321 10322
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10323
{
P
Peter Zijlstra 已提交
10324
	int i, err = 0;
P
Peter Zijlstra 已提交
10325 10326

	mutex_lock(&rt_constraints_mutex);
10327
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10328 10329
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10330
		goto unlock;
P
Peter Zijlstra 已提交
10331

10332
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10333 10334
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10335 10336 10337 10338

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

10339
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
10340
		rt_rq->rt_runtime = rt_runtime;
10341
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
10342
	}
10343
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10344
 unlock:
10345
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10346 10347 10348
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10349 10350
}

10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10363 10364 10365 10366
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10367
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10368 10369
		return -1;

10370
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10371 10372 10373
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10374 10375 10376 10377 10378 10379 10380 10381

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10382 10383 10384
	if (rt_period == 0)
		return -EINVAL;

10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10399
	u64 runtime, period;
10400 10401
	int ret = 0;

10402 10403 10404
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10405 10406 10407 10408 10409 10410 10411 10412
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10413

10414
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10415
	read_lock(&tasklist_lock);
10416
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10417
	read_unlock(&tasklist_lock);
10418 10419 10420 10421
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10422 10423 10424 10425 10426 10427 10428 10429 10430 10431

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10432
#else /* !CONFIG_RT_GROUP_SCHED */
10433 10434
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10435 10436 10437
	unsigned long flags;
	int i;

10438 10439 10440
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10441 10442 10443 10444 10445 10446 10447
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

10448
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
10449 10450 10451
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

10452
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
10453
		rt_rq->rt_runtime = global_rt_runtime();
10454
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
10455
	}
10456
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
10457

10458 10459
	return 0;
}
10460
#endif /* CONFIG_RT_GROUP_SCHED */
10461 10462

int sched_rt_handler(struct ctl_table *table, int write,
10463
		void __user *buffer, size_t *lenp,
10464 10465 10466 10467 10468 10469 10470 10471 10472 10473
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

10474
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10491

10492
#ifdef CONFIG_CGROUP_SCHED
10493 10494

/* return corresponding task_group object of a cgroup */
10495
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10496
{
10497 10498
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10499 10500 10501
}

static struct cgroup_subsys_state *
10502
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10503
{
10504
	struct task_group *tg, *parent;
10505

10506
	if (!cgrp->parent) {
10507 10508 10509 10510
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10511 10512
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10513 10514 10515 10516 10517 10518
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10519 10520
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10521
{
10522
	struct task_group *tg = cgroup_tg(cgrp);
10523 10524 10525 10526

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10527
static int
10528
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10529
{
10530
#ifdef CONFIG_RT_GROUP_SCHED
10531
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10532 10533
		return -EINVAL;
#else
10534 10535 10536
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10537
#endif
10538 10539
	return 0;
}
10540

10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
10560 10561 10562 10563
	return 0;
}

static void
10564
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10565 10566
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
10567 10568
{
	sched_move_task(tsk);
10569 10570 10571 10572 10573 10574 10575 10576
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
10577 10578
}

10579
#ifdef CONFIG_FAIR_GROUP_SCHED
10580
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10581
				u64 shareval)
10582
{
10583
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10584 10585
}

10586
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10587
{
10588
	struct task_group *tg = cgroup_tg(cgrp);
10589 10590 10591

	return (u64) tg->shares;
}
10592
#endif /* CONFIG_FAIR_GROUP_SCHED */
10593

10594
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10595
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10596
				s64 val)
P
Peter Zijlstra 已提交
10597
{
10598
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10599 10600
}

10601
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10602
{
10603
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10604
}
10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10616
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10617

10618
static struct cftype cpu_files[] = {
10619
#ifdef CONFIG_FAIR_GROUP_SCHED
10620 10621
	{
		.name = "shares",
10622 10623
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10624
	},
10625 10626
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10627
	{
P
Peter Zijlstra 已提交
10628
		.name = "rt_runtime_us",
10629 10630
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10631
	},
10632 10633
	{
		.name = "rt_period_us",
10634 10635
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10636
	},
10637
#endif
10638 10639 10640 10641
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10642
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10643 10644 10645
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10646 10647 10648 10649 10650 10651 10652
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10653 10654 10655
	.early_init	= 1,
};

10656
#endif	/* CONFIG_CGROUP_SCHED */
10657 10658 10659 10660 10661 10662 10663 10664 10665 10666

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10667
/* track cpu usage of a group of tasks and its child groups */
10668 10669 10670 10671
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10672
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10673
	struct cpuacct *parent;
10674 10675 10676 10677 10678
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10679
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10680
{
10681
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10694
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10695 10696
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10697
	int i;
10698 10699

	if (!ca)
10700
		goto out;
10701 10702

	ca->cpuusage = alloc_percpu(u64);
10703 10704 10705 10706 10707 10708
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10709

10710 10711 10712
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10713
	return &ca->css;
10714 10715 10716 10717 10718 10719 10720 10721 10722

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10723 10724 10725
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10726
static void
10727
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10728
{
10729
	struct cpuacct *ca = cgroup_ca(cgrp);
10730
	int i;
10731

10732 10733
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10734 10735 10736 10737
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10738 10739
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10740
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10741 10742 10743 10744 10745 10746
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
10747
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10748
	data = *cpuusage;
10749
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10750 10751 10752 10753 10754 10755 10756 10757 10758
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10759
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10760 10761 10762 10763 10764

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
10765
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10766
	*cpuusage = val;
10767
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10768 10769 10770 10771 10772
#else
	*cpuusage = val;
#endif
}

10773
/* return total cpu usage (in nanoseconds) of a group */
10774
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10775
{
10776
	struct cpuacct *ca = cgroup_ca(cgrp);
10777 10778 10779
	u64 totalcpuusage = 0;
	int i;

10780 10781
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10782 10783 10784 10785

	return totalcpuusage;
}

10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10798 10799
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10800 10801 10802 10803 10804

out:
	return err;
}

10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10839 10840 10841
static struct cftype files[] = {
	{
		.name = "usage",
10842 10843
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10844
	},
10845 10846 10847 10848
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10849 10850 10851 10852
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10853 10854
};

10855
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10856
{
10857
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10858 10859 10860 10861 10862 10863 10864 10865 10866 10867
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10868
	int cpu;
10869

L
Li Zefan 已提交
10870
	if (unlikely(!cpuacct_subsys.active))
10871 10872
		return;

10873
	cpu = task_cpu(tsk);
10874 10875 10876

	rcu_read_lock();

10877 10878
	ca = task_ca(tsk);

10879
	for (; ca; ca = ca->parent) {
10880
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10881 10882
		*cpuusage += cputime;
	}
10883 10884

	rcu_read_unlock();
10885 10886
}

10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10908 10909 10910 10911 10912 10913 10914 10915
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
11001
		raw_spin_lock_irqsave(&rq->lock, flags);
11002
		list_add(&req->list, &rq->migration_queue);
11003
		raw_spin_unlock_irqrestore(&rq->lock, flags);
11004 11005 11006 11007 11008 11009 11010
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
11011
		raw_spin_lock_irqsave(&rq->lock, flags);
11012 11013 11014
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
11015
		raw_spin_unlock_irqrestore(&rq->lock, flags);
11016 11017
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11018
	synchronize_sched_expedited_count++;
11019 11020 11021 11022 11023 11024 11025 11026
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */